[go: up one dir, main page]

EP0520396B1 - Automatische Werkzeugvermessung - Google Patents

Automatische Werkzeugvermessung Download PDF

Info

Publication number
EP0520396B1
EP0520396B1 EP92110612A EP92110612A EP0520396B1 EP 0520396 B1 EP0520396 B1 EP 0520396B1 EP 92110612 A EP92110612 A EP 92110612A EP 92110612 A EP92110612 A EP 92110612A EP 0520396 B1 EP0520396 B1 EP 0520396B1
Authority
EP
European Patent Office
Prior art keywords
tool
edge
tool cutting
image processing
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP92110612A
Other languages
English (en)
French (fr)
Other versions
EP0520396A1 (de
Inventor
Günter Heilig
Erich Schwab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6434584&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0520396(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of EP0520396A1 publication Critical patent/EP0520396A1/de
Application granted granted Critical
Publication of EP0520396B1 publication Critical patent/EP0520396B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37559Camera, vision of tool, compute tool center, detect tool wear

Definitions

  • the invention relates to a device for automatically measuring a tool on a sharpening tool or the like.
  • Machine in particular on a measuring and setting device, which has a slide adjustable in two coordinate directions of a plane with an optics that can be aligned with the tool cutting edge, and a tool holder with which the tool cutting edge can be adjusted in the coordinate plane, the optics of the carriage being connected to an image processing computer Connected camera includes, the camera contains an area array with a calculated crosshair, which is stored as a reference system for the image processing computer, and the carriage is provided with motors controlled by the image processing computer for adjustment in both coordinate directions.
  • Optical-mechanical measuring and setting devices for tools of processing and machine tools are known, in which one is movable on a vertical or horizontal bed guide and with a viewer lens provided slide can be coupled and uncoupled to a fine adjustment device at any position of its adjustment path.
  • the tool fastened in a tool holder is clamped in a receptacle which corresponds to the tool holder receptacle of the processing machine on which the tool is to be used. So that, for example, a drilling tool exactly adheres to the prescribed drilling depth in an automatically running machining process, the position of the tool tip in relation to the holder of the tool holder must be determined.
  • the dimensions determined on the setting device e.g. a length dimension or the coordinate position of an off-center tool cutting edge can be transferred to the holder of the machine tool.
  • the slide In order to align the observer lens arranged on the slide of the setting device to the cutting edge of the tool clamped in the receptacle, the slide can be moved roughly into the field of view of the observer lens or as close as possible to the crosshairs shown on a screen and then the crosshairs Carry out further necessary slide movements until adjustment by means of a fine adjustment drive.
  • the measured values X for the radial distance of the cutting tip from the tool axis and Z for the longitudinal distance of the tool cutting edge from the receptacle must be determined.
  • the tool is clamped in the holder of the setting device and the projector is positioned with respect to the illuminated tool cutting edge in such a way that the tool cutting edge gets exactly into the crosshairs of the projector.
  • the tool cutting edge initially appears out of focus in the projector.
  • the coordinate slide is adjusted by operating the handwheels provided for the fine adjustment until the tool cutting edge appears exactly in the crosshairs of the projector.
  • the measured values X and Z can be read on a digital counter.
  • the measurement method described above is largely dependent on the qualification of the Operator dependent on the setting device, both with regard to the setting time and the setting accuracy.
  • the accuracy that can be achieved is between 0.002 and 0.004 mm.
  • the measured values X and Z ascertained can be stored and, when the tool is in use, can be called up from the computer of the processing machine if the measured tool is used. Additionally or alternatively, the measured values X and Z can also be printed out and remain with the tool, so that they are only entered by the operator of the processing machine when the tool is used.
  • the measurement can be combined with an adjustment process.
  • suitable measures for adjusting the tool cutting edge with respect to the tool holder for example by loosening clamping screws, moving or knocking the tool and tightening the clamping screws.
  • this setting device has a CCD camera and a monitor on which the tool cutting edge is displayed.
  • An image processing engine is connected to the camera and monitor via interfaces and also has an output for a digital counter.
  • the coordinate slide of the setting device carrying the camera is initially generally aligned with the tool cutting edge until the cutting edge appears on the monitor.
  • the tool holder is adjusted around its axis of rotation until the tool cutting edge is clearly shown on the monitor.
  • the image processing computer is now able to use the image recorded by the camera to calculate the ⁇ X and ⁇ Z values, ie the distances of the cutting edge in the X and Z directions from the coordinate zero point, which is in a the camera is integrated surface array, which is overlaid by the image recorded by the camera and serves as a reference system for the image processing computer.
  • the position of the zero point with respect to the tool holder and with respect to the tool axis, corrected by the calculated ⁇ X and ⁇ Z values, deliver the final measurement result, which is sent to the Digital counter is output.
  • the known setting device is often equipped with two cameras. This results in additional mechanical effort, since the two cameras have to be used automatically.
  • such setting devices are equipped with motor drives to relieve the operator of manual interventions. However, this automatic leads not to improve the measurement accuracy, but only to improve ease of use.
  • the imaging optics of a camera are always flawed, which lead to imaging errors (aberrations), but the size of the errors increases with the distance of the imaging object from the center of the image field.
  • the imaging errors also change differently in every direction, starting from the center of the image field, so that their computational consideration is not possible.
  • the measurement of a tool cutting edge to be measured becomes increasingly difficult with increasing distance from the center of the field of view, because the larger aberrations there lead to poor resolution of the optoelectronic camera and to a widened gray edge course, and under these conditions the position of the tool cutting edge only becomes difficult, even with high computational effort can approximately determine what also requires powerful computers or accordingly more computing time.
  • a further disadvantage of this known device is consequently also that different setting dimensions are calculated for one and the same tool if the measurements are in different relative positions from tool cutting edge to coordinate zero point. To avoid this, the setting dimensions must be output with a lower accuracy.
  • the present invention has set itself the task of improving and developing a device of the type mentioned in such a way that, regardless of the relative initial position of the object to the crosshair at the start of measurement, an automatic tool measurement reproducibly with high measurement accuracy and the required equipment in relation to achievable high accuracy and speed of measurements is kept relatively low. At the same time, it should also be possible with the device to quickly set tools using the automatic measurement of serving parts or assemblies of the device.
  • the measuring device according to the invention with which tools can be precisely measured independently of an operator, advantageously differs from the known measuring device described above, in which the existing distances of the tool cutting edge in the two coordinate directions are calculated and indicated by the crosshairs entered by the computer using the image processing system and the calculated result is relatively imprecise for the reasons given.
  • the device according to the invention with the image processing system more or less approximate distance values of the tool cutting edge in the X and Z axes are first calculated and then the coordinate slide of the device in the X or Z axis is adjusted accordingly. The distances are gradually completely eliminated due to the constantly automatically repeated measurements and the correspondingly updated adjustment movements, ie the axes of the crosshairs of the image camera are brought into line with the tool cutting edge.
  • the measuring accuracy can be increased in the range of +/- 0.001 mm, for which purpose in comparison to the prior art considerably less demanding requirements regarding the sensitivity of the device and the computing effort provide sid, which benefits a larger cost reduction.
  • parts and measuring sequences of the device according to the invention can also be used advantageously for setting tools.
  • the tool holder have a servomotor controlled by the image processing computer in such a way that the computer emits impulses to the servomotor at the beginning of the sequence of the work program (blurring of the tool image) until the tool cutting edge is in the coordinate plane .
  • a monitor arranged in particular on the coordinate slide can be connected to the image processing computer, on which the image supplied by the camera including the area array with the calculated crosshairs are depicted.
  • LED displays can be provided on the monitor which, after the work program of the computer has ended, light up for the focus adjustment of the tool cutting edge and for the zero adjustment in the direction of the X axis and Z axis.
  • acoustic signal transmitters can be provided to indicate the end of the measuring process om or around the respective axis, so that the operator is informed when setting work is carried out, provided that it is carried out without the complete automatic workflow, that the respective zero adjustment has been reached.
  • Additional servomotors for rough adjustment of the coordinate slide and also for rotating the tool holder for the purpose of focusing the tool cutting edge can be connected to the image processing computer.
  • the coordinate slide can also be adjusted independently of the servomotors manually, for example with the help of handwheels seated on adjusting spindles.
  • An automatic switch can be provided to start the work program, starting with the focusing of the tool cutting edge.
  • the arrangement is such that the automatic triggered with the start button is interrupted after the tool cutting edge has been set, so that the automatic switch must be actuated again to start the following work program or an additional automatic key is provided for this. This subdivision and push button actuation is useful when setting tools, where the focus is carried out again each time after the tool cutting edge has been adjusted.
  • security means can be provided in the image processing computer, which only switch on the work program of the automatic tool measurement after the tool cutting edge has been sharply imaged with the aid of the adjusting device assigned to the tool holder.
  • the device according to the invention is not tied to specific designs of measuring and setting devices, but can be attached to any setting devices. It can also be used as an assembly on a tool or eroding machine for the automatic measurement of clamped tools.
  • the method can be further developed in that step d) of the above-described method for the person concerned another value, Z or X, is carried out, and in the event that the tool cutting edge only has a desired position which has already been set by using the above-described method, and in addition the undetermined distance dimension with respect to the other axis is to be measured, thereby further developed that by pressing the automatic switch again to carry out the automatic measuring process, the tool cutting edge is automatically adjusted to the relevant axis of the crosshairs until the associated LED display signals zero adjustment.
  • a setting device equipped in connection with the device according to the invention comprises, according to FIG. 1, a device bed 1 with a guide covered by a bellows, on which a lower coordinate slide 2 is adjustable in the horizontal direction, which in turn is a guide for one running perpendicular to the plane of the drawing
  • Direction adjustable upper coordinate slide 3 carries.
  • a television picture camera 7 is clamped on an arm 4 starting from the upper part of the coordinate slide 3, while a screen or monitor 8 is arranged on the upper coordinate slide, which can also be set up at any other point.
  • a light source 5 is arranged on the upper coordinate slide 3, so that in the Distance between this and the camera 7, the cutting edge 21 of the tool 20 to be measured can be recorded.
  • the coordinate plane perpendicular to the drawing plane of FIG. 1, to which the camera is in focus and in which the cutting edge of the tool is to be measured, runs through the horizontal axis B of a receptacle housing 15, which, for example, together with other receptacles (not shown) for a boring bar , a steel holder and / or for tools with straight shanks or steep taper is arranged on a turret table 16 mounted on the device bed 1.
  • Camera 7 and monitor 8 replace the projector that is otherwise available with standard setting devices. They are connected via interfaces 11 and 12 of their connecting lines to an image processing computer 9 which is connected to a digital counter 6 via an output and an interface 10.
  • the setting device has servomotors 13 and 14 for the adjustment of the coordinate slide and the camera 7 arranged thereon.
  • a servomotor 17 can be provided which drives a receptacle 18 mounted in the receiving housing 15 in order to rotate the rotary tool 20 inserted or clamped therein To adjust axis B.
  • handwheels (not shown) can be provided in order to be able to intervene manually in the measuring or setting process if necessary.
  • a surface array 22 of the camera 7 shown on the monitor is shown in FIG. 2.
  • the area array is about 5 x 5 mm in size and integrated in the camera.
  • the crosshair drawn in is calculated in the image memory of the image processing computer 9 and is superimposed on the tool cutting edge shown on the monitor 8.
  • the monitor 8 is shown with a tool cutting edge 2 that initially appears out of focus at the start of the tool measurement.
  • Two groups 24, 26 of three LED displays each are arranged on the monitor, the middle ones of which light up together when the setting or measuring process is complete, including focusing for the rotary axis B. These or other displays can be accompanied by an acoustic signal.
  • the automatic program sequence begins when measuring and / or adjusting the tool cutting edge.
  • the image processing computer 9 first recognizes the out of focus illustrated cutting edge 21 of the tool 20. For focusing, it delivers pulses to the servomotor 17, which rotates the receptacle 18 until the computer 9 has perceived the focusing of the tool cutting edge shown in FIG. 4. This focusing is indicated on the screen by an LED display of the group 24, 26 according to FIG. 3.
  • the image processing computer 9 then recognizes, in accordance with its program, that the tool cutting edge 2 is at a distance ⁇ X and ⁇ Z from the calculated crosshairs.
  • the computer therefore outputs pulses to the servomotors 13 and 14 with which the coordinate slides of the setting device are controlled until the distances between the crosshairs and the tool cutting edge shown are eliminated or the ⁇ X and ⁇ Z values become zero.
  • the tool is now set precisely, and the image processing computer 9 outputs the ready message via the interface 10 to the digital counter 6, from which the exact measurement result can be read or printed.
  • the measuring accuracy lies in the range between +/- 0.001 mm.
  • Reaching the exact measurement result is simultaneously shown on the monitor 8 by the LED displays 24, 26 and can also be accompanied by an acoustic signal. This state is shown on the monitor in the illustration according to FIG. 6, where the middle LEDs of the display groups 24 for the X-axis and 26 for the Z-axis light up.
  • the accuracy which is significantly increased compared to the one-time calculation of the ⁇ X and ⁇ Z values in the known measuring device described at the outset, is achieved because, with the differences becoming smaller and smaller in the course of the measuring and adjusting method, the resolving power contained in the device for constantly smaller difference values Is available and thus the comparison is becoming more and more precise, so that in comparison there are considerably lower requirements for the sensitivity of the device and the computing effort.
  • only a ready message and no transmission of ⁇ X or ⁇ Z values takes place via the interface 10 from the image processing computer 9 to the digital counter 6.
  • the measuring process which runs automatically without an operator, is carried out on a measuring and setting device, e.g. B. applied to milling cutters, cutting steels and other non-rotating tools; Because these are specified in their dimensions after grinding or after delivery and can therefore only be measured, but not adjusted.
  • a measuring and setting device e.g. B. applied to milling cutters, cutting steels and other non-rotating tools; Because these are specified in their dimensions after grinding or after delivery and can therefore only be measured, but not adjusted.
  • an adjustment process is carried out on rotary tools, in particular on boring bars, drills or milling heads with adjustable cutting edges.
  • the coordinate slides of the setting device are moved manually or by motor until the set values for the X and Z axes are displayed in the digital counter 6.
  • the crosshairs of the camera 7 are then in the target position for the tool cutting edge 2.
  • ⁇ X corresponds to the precisely set radial value (distance of the cutting edge from axis B e.g. a boring bar);
  • the indefinite distance dimension with respect to the other axis can be determined by automatically measuring the tool.
  • the automatic button 30 is actuated again in order to initiate the automatic measuring process with respect to this other axis in the device, so that after the measuring process has been completed, the tool cutting edge, as shown in FIG. 6, is displayed precisely on the monitor.
  • the operator automatically and quickly obtains the X and Z values appearing on the digital counter, of which the one value corresponding to the predetermined target position has been reached by manually adjusting the cutting edge.
  • the utilization of the automatic tool measurement during the setting process can also be expedient if the operator wants to know the distance by which the cutting edge is still in one or the known setpoint before the setting or when the tool cutting edge is already partially adjusted the other direction.
  • the coordinate slides or the camera are brought back to the predetermined target position appearing on the digital counter 6 and then the cutting edge is adjusted by the determined difference value.
  • the image processing computer used there requires a high level of performance in order to determine the distances in the X and Z directions to be able to calculate with the desired high measuring accuracy.
  • a prerequisite for high measuring accuracy is high performance of the optical system of the camera, so that the available image of the tool cutting edge is not falsified by optical aberration or other optical inadequacies.
  • the measurement accuracy can also be affected by lighting errors that lead to inaccurate imaging of the cutting edges. Blurred images created in this way can only be compensated for by increased structural complexity of the image processing computer, which has to determine the course of the gray edge.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

  • Die Erfindung bezieht sich auf eine Vorrichtung zu automatischen Vermessen eines Werkzeuges auf einer Schärf-, Werkzeug odgl. Maschine, insbesondere auf einem Meß- und Einstellgerät, die einen in zwei Koordinatenrichtungen einer Ebene verstellbaren Schlitten mit einer auf die Werkzeugschneide ausrichtbaren Optik sowie eine Werkzeugaufnahme aufweist, mit der die Werkzeugschneide in die Koordinatenebene verstellbar ist, wobei die Optik des Schlittens eine an einen Bildverarbeitungsrechner angeschlossene Kamera umfaßt, die Kamera ein Flächenarray mit einem errechneten Fadenkreuz enthält, das als Bezugssystem dem Bildverarbeitungsrechner eingespeichert ist, und der Schlitten mit vom Bildverarbeitungsrechner gesteuerten Motoren zur Verstellung in beiden Koordinatenrichtungen versehen ist.
  • Es sind optisch-mechanische Meß- und Einstellgeräte für Werkzeuge von Bearbeitungs- und Werkzeugmaschinen bekannt, bei denen ein auf einer vertikalen oder horizontalen Bettführung beweglicher und mit einem Betrachterobjektiv versehener Schlitten an einer beliebigen Position seines Verstellweges an eine Feinverstelleinrichtung an- und abkuppelbar ist.
  • Beim Betrieb eines solchen Meß- und Einstellgerätes wird das in einem Werkzeughalter befestigte Werkzeug in einer Aufnahme gespannt, die der Werkzeughalteraufnahme der Bearbeitungsmaschine entspricht, auf der das Werkzeug zum Einsatz kommen soll. Damit in einem automatisch ablaufenden Bearbeitungsvorgang beispielsweise ein Bohrwerkzeug die vorgeschriebene Bohrtiefe genau einhält, muß die Position der Werkzeugspitze in Bezug auf die Aufnahme des Werkzeughalters bestimmt werden. Die am Einstellgerät ermittelten Maße, z.B. ein Längenmaß oder die Koordinatenposition einer außerzentrisch angeordneten Werkzeugschneide, sind auf die Aufnahme der Werkzeugmaschine übertragbar.
  • Um das auf dem Schlitten des Einstellgerätes angeordnete Betrachterobjektiv auf die Schneide des in der Aufnahme eingespannten Werkzeuges auszurichten, kann man den Schlitten über eine Grobverstellung schlell in das Sichtfeld des Betrachterobjektivs bzw. so nahe wie möglich an das auf einem Sichtschirm abgebildete Fadenkreuz heranfahren und danach die weiteren notwendigen Schlittenbewegungen bis zum Abgleich durch einen Feinverstelltrieb vornehmen.
  • Wenn auf dem Einstellgerät beispielsweise die Werkzeugschneide eines Ausdrehwerkzeuges in Form einer Bohrstange vermessen werden soll, müssen die Meßwerte X für den radialen Abstand der Schneidenspitze von der Werkzeugachse und Z für den Längsabstand der Werkzeugschneide von der Aufnahme ermittelt werden.
  • Dazu wird das Werkzeug in der Aufnahme des Einstellgerätes eingespannt und der Projektor bezüglich der beleuchteten Werkzeugschneide so positioniert, daß die Werkzeugschneide genau in das Fadenkreuz des Projektors gelangt. Beim Heranfahren des Koordinatenschlittens des Einstellgerätes mit dem Projektor bildet sich die Werkzeugschneide zunächst unscharf im Projektor ab. Durch Betätigen eines Handrades wird die Aufnahme mit der Schneide in die Koordinatenebene gedreht und im Projektor scharf gestellt. Nach dieser Scharfstellung wird durch Betätigung von für die Feinverstellung vorgesehenen Handrädern der Koordinatenschlitten soweit verstellt, bis die Werkzeugschneide genau im Fadenkreuz des Projektors erscheint. Für das nunmehr genau vermessene Werkzeug können an einem Digitalzähler die Meßwerte X und Z abgelesen werden.
  • Das vorbeschriebene Meßverfahren ist weitgehend von der Qualifikation der Bedienungsperson am Einstellgerät abhängig, und zwar sowohl hinsichtlich der Einstellzeit als auch der Einstellgenauigkeit. Die hierbei erreichbare Genauigkeit liegt zwischen 0,002 und 0,004 mm.
  • Die ermittelten Meßwerte X und Z können abgespeichert und bei Gebrauch des Werkzeuges vom Rechner der Bearbeitungsmaschine abgerufen werden, wenn das vermessene Werkzeug zum Einsatz kommt. Zusätzlich oder alternativ können die Meßwerte X und Z auch ausgedruckt werden und beim Werkzeug verbleiben, so daß sie erst bei Einsatz des Werkzeuges von der Bedienungsperson der Bearbeitungsmaschine eingegeben werden.
  • Wenn eine nachgeschliffene oder neu eingesetzte Werkzeugschneide am Werkzeug selbst einstellbar ist, kann das Vermessen mit einem Einstellvorgang kombiniert werden. In diesem Fall kommt es darauf an, die Werkzeugschneide auf vorgegebene Koordinatenwerte einzustellen. Dazu werden die für den Betrachter am Projektor erkennbaren Abweichungen der Meßwerte von den Sollwerten durch geeignete Maßnahmen zur Verstellung der Werkzeugschneide bezüglich des Werkzeughalters beseitigt, z.B. durch Lösen von Spannschrauben, Verschieben bzw. Klopfen des Werkzeuges und Anziehen der Spannschrauben.
  • Aus DE-OS 37 43 717 ist ein Einstellgerät mit Bildverarbeitung bekannt, mit dem Werkzeuge jedoch nur gemessen, nicht aber eingestellt werden können. Dieses Einstellgerät besitzt anstelle des Projektors eine CCD-Kamera und einen Monitor, auf dem die Werkzeugschneide dargestellt wird. Über Schnittstellen ist an Kamera und Monitor ein Bildverarbeitungsrehner angeschlossen, der außerdem einen Ausgang für einen Digitalzähler aufweist.
  • Aus der US-A-4 645 993 ist eine iterative Werkstück positionierung bekannt, wobei allerdings die Iteration keinen Einfluß auf die Genanigkeit der Mittelpunkt bestimmung hat.
  • Beim Meßvorgang wird der die Kamera tragende Koordinatenschlitten des Einstellgerätes zunächst allgemein auf die Werkzeugschneide ausgerichtet, bis die Schneide auf dem Monitor erscheint. Die Aufnahme mit dem Werkzeug wird um dessen Drehachse soweit verstellt, bis die Werkzeugschneide auf dem Monitor scharf abgebildet ist. Nunmehr ist der Bildverarbeitungsrechner in der Lage, mit Hilfe des von der Kamera aufgezeichneten Bildes die Δ X- und Δ Z-Werte, d.h. die Abstände der Schneide in X- und Z-Richtung vom Koordinaten-Nullpunkt zu errechnen, der sich in einem in der Kamera integrierten Flächenarray befindet, das von dem von der Kamera aufgenommenen Bild überlagert wird und dem Bildverarbeitungsrechner als Bezugssystem dient. Die Position des Nullpunktes bezüglich der Werkzeugaufnahme sowie bezüglich der Werkzeugachse, korrigiert um die errechneten Δ X- und Δ Z-Werte, liefern das endgültige Meßergebnis, das an den Digitalzähler ausgegeben wird.
  • Mit diesem Meßverfahren ist ein weitgehend von der Bedienungsperson unabhängiges Messen möglich. Die Meßgenauigkeit hängt nicht mehr von der Bedienungsperson, sondern nur vom Meßsystem selbst ab. Nachteilig sind bei diesem System der Bildverarbeitung sehr hohe Gestehungskosten und eine relativ niedrige Meßgenauigkeit, die insbesondere bei größeren Δ X-und Δ Z-Werten noch geringer ist. Die hohen Kosten sind auf den dadurch verursachten Aufwand zurückzuführen, daß die Kamera mit einem CCD-Flächenarray ausgestattet ist, das sehr genau sein muß, und hohe Anforderungen an die Optik der Kamera gestellt werden. Ferner benötigt das System einen hochwertigen Rechner mit großer Rechenleistung, um die Abstandswerte in den X- und Z-Richtungen mit der oben genannten Meßgenauigkeit errechnen zu können.
  • Das bekannte Einstellgerät wird häufig mit zwei Kameras ausgestattet. Daraus resultiert ein zusätzlicher mechanischer Aufwand, da die beiden Kameras automatisch zum Einsatz kommen müssen. Außerdem sind solche Einstellgeräte mit motorischen Antrieben ausgestattet, um die Bedienungsperson von manuellen Eingriffen zu entlasten. Diese Automatik führt jedoch nicht zu einer Verbesserung der Meßgenauigkeit, sondern lediglich zu einem verbesserten Bedienungskomfort.
  • Darüber hinaus ist die Abbildungsoptik einer Kamera immer mit Mängeln behaftet, die zu Abbildungsfehlern (Aberrationen) führen, wobei aber die Größe der Fehler mit dem Abstand des Abbildungsgegenstandes vom Bildfeldmittelpunkt zunimmt. Auch ändern sich die Abbildungsfehler ausgehend vom Bildfeldmittelpunkt in jeder Richtung anders, so daß ihre rechnerische Berücksichtigung nicht möglich ist. Zusätzlich wird das Ausmessen einer zu vermessenden Werkzeugschneide mit zunehmendem Abstand vom Bildfeldmittelpunkt auch deshalb immer schwieriger, weil die dort größeren Aberrationen zu Auflösungsmängeln der opto-elektronischen Kamera und zu einem verbreiterten Graukantenverlauf führen und sich unter diesen Bedingungen die Lage der Werkzeugschneide selbst mit hohem Rechenaufwand nur näherungsweise bestimmen läßt, was zudem leistungsstarke Rechner oder dementsprechend mehr Rechenzeit erfordert.
  • Ein weiterer Nachteil dieser bekannten Vorrichtung besteht folglich auch darin, daß für ein und dasselbe Werkzeug unterschiedliche Einstellmaße berechnet werden, wenn die Messungen in verschiedenen relativen Positionen von Werkzeugschneide zu Koordinaten-Nullpunkt durchgeführt werden. Um dies zu vermeiden, müssen die Einstellmaße mit einer geringeren Genauigkeitsgüte ausgegeben werden.
  • Demgegenüber hat sich die vorliegende Erfindung als Aufgabe gestellt, eine Vorrichtung der eingangs angegebenen Art dahingehend zu verbessern und weiterzubilden, daß unabhängig von der relativen Anfangslage des Abbildungsgegenstandes zum Fadenkreuz bei Messungsbeginn eine automatische Werkzeugvermessung reproduzierbar mit hoher Meßgenauigkeit ermöglicht und der dazu erforderliche Geräteaufwand im Verhältnis zur erreichbaren hohen Genauigkeit und Schnelligkeit der Messungen verhältnismäßig niedrig gehalten wird. Gleichzeitig soll es mit der Vorrichtung auch möglich sein, Werkzeuge unter Ausnutzung von der automatischen Vermessung dienender Teile oder Baugruppen der Vorrichtung schnell einzustellen.
  • Zur Lösung dieser Aufgabe ist eine Vorrichtung zum automatischen Vermessen von Werkzeugen erfindungsgemäß durch folgende Merkmale gekennzeichnet:
    • der Fadenkreuz-Nullpunkt ist in der Bildfeldmitte der Kamera angeordnet,
    • der Rechner enthält ein Arbeitsprogramm, mit dem ständig die Abstandswerte der Werkzeugschneide von den Koordinatenachsen des Fadenkreuzes ermittelt sowie die Abstandswerte kompensierende Impulse an die Motoren solange abgegeben werden, bis in der neuen Werkzeugposition die Abweichungen in der X- und Z-Richtung Null sind und somit das Werkzeug genau vermessen ist,
    • der Rechner ist über eine Schnittstelle mit einem Digitalzähler verbunden, der die auf die Werkzeugaufnahme bezogenen Koordinatenmeßwerte (X, Z) der Werkzeugschneide anzeigt.
  • Die erfindungsgemäße Meßvorrichtung, mit der sich Werkzeuge unabhängig von einer Bedienungsperson genau vermessen lassen, unterscheidet sich vorteilhaft von der weiter oben beschriebenen bekannten Meßvorrichtung, bei der mit dem Bildverarbeitungssystem die vorhandenen Abstände der Werkzeugschneide in den beiden Koordinatenrichtungen von dem dem Rechner eingegebenen Fadenkreuz errechnet und angegeben werden und dies errechnete Ergebnis aus den angeführten Gründen verhältnismäßig ungenau ist. Demgegenüber werden bei der erfindungsgemäßen Vorrichtung mit dem Bildverarbeitungssystem zunächst mehr oder weniger angenäherte Abstandswerte der Werkzeugschneide in den X- und Z-Achsen errechnet und daraufhin die Koordinatenschlitten des Gerätes in der X- bzw. Z-Achse entsprechend verstellt. Aufgrund der ständig automatisch erneut durchgeführten Messungen und dementsprechend aktualisierten Verstellbewegungen werden die Abstände allmählich vollständig beseitigt, d.h. die Achsen des Fadenkreuzes der Bildkamera mit der Werkzeugschneide zur Deckung gebracht. Die dadurch erreichbare wesentlich höhere Genauigkeit ist darauf zurückzuführen, daß die während der vom Rechner in Verbindung mit der Kameraoptik und den Stellmotoren durchgeführten Meß- und Nachstellschritten die gemessenen Abstandswerte ständig abnehmen und somit das durch die Qualität der Kamera und die Kapazität des Rechners verfügbare Auflösungsvermögen den ständig kleiner werdenden Differenzwerten zur Verfügung steht. Bei jeder nachfolgenden Messung werden folglich etwaige Aberrationsfehler der Kameraoptik zwangsläufig beseitigt, da sich der Fadenkreuz-Nullpunkt im praktisch abbildungsfehlerfreien mittleren Linsenbereich befindet. Dabei wird unabhängig von der Ausgangslage bei Messungsbeginn für die Schneidkante immer die gleiche Endstellung erreicht und folglich immer Meßwerte gleicher Güte ermittelt. Mit Hilfe dieser Meßmethode läßt sich die Meßgenauigkeit bis in den Bereich von +/- 0,001 mm steigern, wozu im Vergleich zum Stand der Technik erheblich gerignere Anforderungen an die Geräteempfindlichkeit und den Rechneraufwand zu stellen sid, was einer größeren Kostenreduzierung zu Gute kommt. Darüber hinaus lassen sich Teile und Meßabläufe der erfindungsgemäßen Vorrichtung auch zum Einstellen von Werkzeugen vorteilhaft anwenden.
  • In weiterer Ausgestaltung der Vorrichtung wird vorgeschlagen, daß die Werkzeugaufnahme einen vom Bildverarbeitungsrechner derart gesteuerten Stellmotor aufweist, daß der Rechner zu Beginn des Ablaufes des Arbeitsprogramms bei Bedarf (Unschärfe der Werkzeugabbildung) solange Impulse an den Stellmotor abgibt, bis sich die Werkzeugschneide in der Koordinatenebene befindet.
  • Zweckmäßigerweise kann ein insbesondere auf dem Koordinatenschlitten angeordneter Monitor an den Bildverarbeitungsrechner angeschlossen sein, auf dem das von der Kamera gelieferte Bild einschließlich des Flächenarray mit dem errechneten Fadenkreuz abgebildet sind. Zusätzlich können auf dem Monitor LED-Anzeigen vorgesehen sein, die nach Beendigung des Arbeitsprogramms des Rechners für die Scharfeinstellung der Werkzeugschneide und für den Null-Abgleich in Richtung X-Achse und Z-Achse aufleuchten. Außerdem können akkustische Signalgeber zur Anzeige der Beendigung des Meßvorganges om der bzw. um die jeweilige Achse vorgesehen sein, so daß die Bedienungsperson bei Durchführung von Einstellarbeiten, soweit sie ohne den vollständigen automatischen Arbeitsablauf durchgeführt werden, über das Erreichen des jeweiligen Null-Abgleiches informiert wird.
  • An den Bildverarbeitungsrechner können zusätzliche Stellmotoren zur Grobverstellung der Koordinatenschlitten und auch zur Verdrehung der Werkzeugaufnahme zwecks Scharfeinstellung der Werkzeugschneide angeschlossen sein. Die Koordinatenschlitten können unabhängig von den Stellmotoren auch manuell z.B. mit Hilfe von auf Verstellspindeln sitzenden Handrädern verstellbar sein. Zum Starten des Arbeitsprogrammes, beginnend mit der Scharfeinstellung der Werkzeugschneide, kann ein Automatikschalter vorgesehen sein. Bei einer Ausführungsform ist die Anordnung so getroffen, daß die mit dem Startknopf ausgelöste Automatik nach der Scharfeinstellung der Werkzeugschneide unterbrochen wird, so daß zum Starten des folgenden Arbeitsprogramms der Automatikschalter nochmals betätigt werden muß oder dafür eine zusätzliche Automatiktaste vorgesehen ist. Diese Unterteilung und Drucktastenbetätigung ist beim Einstellen von Werkzeugen zweckmäßig, wo die Scharfeinstellung jedesmal erneut vorgenommen wird, nachdem die Werkzeugschneide nachgestellt worden ist.
  • Ferner können im Bildverarbeitungsrechner Sicherungsmittel vorgesehen sein, die das Arbeitsprogramm der automatischen Werkzeugvermessung erst einschalten, nachdem die Werkzeugschneide mit Hilfe der der Werkzeugaufnahme zugeordneten Stelleinrichtung scharf abgebildet ist. - Die Vorrichtung nach der Erfindung ist nicht an bestimmte Bauformen von Meß- und Einstellgeräten gebunden, sondern läßt sich an alle beliebigen Einstellgeräte anbauen. Sie ist ferner als Baugruppe an einer Werkzeug- oder Erodiermaschine zur automatischen Vermessung eingespannter Werkzeuge einsetzbar.
  • Die Erfindung erstreckt sich auch auf ein Verfahren zum Einstellen eines Rotationswerkzeuges auf einem Einstellgerät, das einen in zwei Koordinatenrichtungen einer Ebene verstellbaren Schlitten mit einer auf die Werkzeugschneide ausrichtbaren Optik sowie eine Werkzeugaufnahme aufweist, mit der die Werkzeugschneide in die Koordinatenebene verstellbar ist, wobei die Optik des Schlittens eine an einen Bildverarbeitungsrechner angeschlossene Kamera umfaßt, die Kamera ein Flächenarray mit einem errechneten Fadenkreuz enthält, das als Bezugssystem dem Bildverarbeitungsrechner eingespeichert ist, und der Schlitten mit vom Bildverarbeitungsrechner gesteuerten Motoren zur Verstellung in beiden Koordinatenrichtungen versehen ist, und wobei der Schlitten einen an den Bildverarbeitungsrechner angeschlossenen, das Bildfeld der Kamera wiedergebenden Monitor aufweist, und der Rechner mit einem die Koordinatenmeßwerte (X, Z) der Werkzeugschneide anzeigenden Digitalzähler verbunden ist, gekennzeicluet durch folgende Schritte:
    • a) der Schlitten wird auf die durch den Digitalzähler angezeigte Sollposition für die einzustellende Werkzeugschneide eingestellt,
    • b) die Werkzeugschneide wird manuell soweit in das Bildfeld nachgestellt, bis sie auf dem Monitor sichtbar ist,
    • c) durch Betätigen eines Automatikschalters zur Ausführung der automatischen Scharfeinstellung wird die Werkzeugschneide durch Drehen der Werkzeugaufnahme zur Scharfabbildung auf dem Monitor gebracht,
    • d) zur Einstellung einer Sollposition eines X- oder Z-Wertes der Werkzeugschneide bezüglich einer der Fadenkreuz-Achsen wird die Werkzeugschneide in der betreffenden Richtung, X oder Z, so lange manuell auf die zugehörige Achse des Fadenkreuzes verstellt, bis eine zugeordnete LED-Anzeige den Null-Abgleich signalisiert.
  • Das Verfahren kann für den Fall, daß die Werkzeugschneide zwei Sollpositionen aufweist, deren Werte beide eingestellt werden sollen, dadurch weitergebildet sein, daß Schritt d) des vorbeschriebenen Verfahrens für den betreffenden anderen Wert, Z bzw. X, durchgeführt wird, und für den Fall, daß die Werkzeugschneide nur eine Sollposition aufweist, die durch Anwendung des vorbeschriebenen Verfahrens bereits eingestellt ist, und zusätzlich das unbestimmte Abstandsmaß bezüglich der anderen Achse ausgemessen werden soll, dadurch weitergebildet sein, daß durch erneutes Betätigen des Automatikschalters zur Ausführung des automatischen Meßvorgangs die Werkzeugschneide solange automatisch auf die betreffende Achse des Fadenkreuzes verstellt wird, bis die zugehörige LED-Anzeige den Null-Abgleich signalisiert.
  • Weitere Merkmale und Vorteile von Vorrichtung und Verfahren nach der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels sowie aus den Zeichnungen, die ebenfalls erfindungswesentliche Merkmale darstellen. Die einzelnen Merkmale, insbesondere der Ansprüche, können jeweils für sich oder in beliebiger anderer Kombination weitere Ausführungsformen der Erfindung bilden. Es zeigen, jeweils schematisch,
  • Fig. 1
    eine Übersicht über eine Vorrichtung nach der Erfindung in Anwendung bei einem Meß- und Einstellgerät,
    Fig. 2
    ein Beispiel eines in der Bildkamera integrierten Flächenarray,
    Fig. 3
    eine Darstellung des Monitorbildschirms mit LED-Anzeigen und einer unscharf abgebildeten Werkzeugschneide,
    Fig. 4
    einen Monitorschirm mit scharfgestellter und genau eingestellter vermessener Werkzeugschneide,
    Fig. 5
    eine Übersicht über die zur erfindungsgemäßen Vorrichtung gehörenden Baugruppen im Zustand vor Beginn des automatischen Meßvorganges und
    Fig. 6
    die Vorrichtung in ähnlicher Darstellung wie in Fig. 5 nach Beendigung des automatischen Meßvorgangs.
  • Ein in Verbindung mit der Vorrichtung nach der Erfindung ausgestattetes Einstellgerät umfaßt entsprechend Fig. 1 ein Gerätebett 1 mit einer durch einen Balg abgedeckten Führung, auf der ein unterer Koordinatenschlitten 2 in waagerechter Richtung verstellbar ist, der seinerseits eine Führung für einen in senkrecht zur Zeichenebene verlaufender Richtung verstellbaren oberen Koordinatenschlitten 3 trägt. Auf einem vom Oberteil des Koordinatenschlittens 3 ausgehenden Arm 4 ist eine Fernseh-Bildkamera 7 eingespannt, während oben auf dem oberen Koordinatenschlitten ein Bildschirm bzw. Monitor 8 angeordnet ist, der auch an beliebiger anderer Stelle aufgestellt sein kann. Mit Abstand unterhalb der Kamera ist am oberen Koordinatenschlitten 3 eine Lichtquelle 5 angeordnet, so daß in dem Abstand zwischen dieser und der Kamera 7 die Schneide 21 des zu vermessenden Werkzeuges 20 aufgenommen werden kann.
  • Die senkrecht zur Zeichenebene von Fig. 1 stehende Koordinatenebene, auf die die Kamera scharf eingestellt ist und in der die Schneide des Werkzeuges zu vermessen ist, verläuft durch die waagerechte Achse B eines Aufnahmegehäuses 15, das beispielsweise zusammen mit anderen nicht gezeigten Aufnahmen für eine Bohrstange, einen Stahlhalter und/oder für Werkzeuge mit Zylinderschaft oder Steilkegel auf einem auf dem Gerätebett 1 gelagerten Revolvertisch 16 angeordnet ist. Kamera 7 und Monitor 8 ersetzen den sonst bei Standard-Einstellgeräten vorhandenen Projektor. Sie sind über Schnittstellen 11 bzw. 12 ihrer Anschlußleitungen mit einem Bildverarbeitungsrechner 9 verbunden, der über einen Ausgang und eine Schnittstelle 10 an einen Digitalzähler 6 angeschlossen ist.
  • Das erfindungsgemäße Einstellgerät besitzt Stellmotoren 13 und 14 für die Verstellung der Koordinatenschlitten und der darauf angeordneten Kamera 7. Außerdem kann ein Stellmotor 17 vorgesehen sein, der eine im Aufnahmegehäuse 15 gelagerte Aufnahme 18 antreibt, um das darin eingesetzte bzw. eingespannte Bohrwerkzeug 20 um die rotatorische Achse B zu verstellen. Mit Hilfe dieser Stellmotoren wird eine automatische Werkzeugvermessung durchgeführt, ohne daß sich die Bedienungsperson um das Messen zu kümmern braucht. Zusätzlich zu den beschriebenen Stellmotoren können nicht gezeigte Handräder vorgesehen sein, um bei Bedarf manuell in den Meß- oder Einstellablauf eingreifen zu können.
  • In Fig. 2 ist ein auf dem Monitor abgebildetes Flächenarray 22 der Kamera 7 dargestellt. Das Flächenarray ist etwa 5 x 5 mm groß und in der Kamera integriert. Das eingezeichnete Fadenkreuz ist im Bildspeicher des Bildverarbeitungsrechners 9 errechnet und wird der auf dem Monitor 8 abgebildeten Werkzeugschneide überlagert.
  • In Fig. 3 ist der Monitor 8 mit einer bei Beginn der Werkzeugvermessung sich zunächst unscharf abbildenden Werkzeugschneide 2 dargestellt. Auf dem Monitor sind zwei Gruppen 24, 26 von jeweils drei LED-Anzeigen angeordnet, von denen die mittleren gemeinsam beim abgeschlossenen Einstell- oder Meßvorgang einschließlich Scharfstellung für die rotatorische Achse B aufleuchten. Diese oder andere Anzeigen können durch ein akustisches Signal begleitet werden. Je eine seitliche Leuchtdiode der Gruppe 24, 26 zeigt die abgeschlossene Einstellung (Differenz = 0) bezüglich der X-Achse bzw. Z-Achse und die Leuchtdiode auf der anderen Seite die vom Rechner erkannte Scharfeinstellung um die Achse B an.
  • Durch Betätigung eines Automatik-Schaltknopfes 28 in Fig. 1 beginnt der automatische Programmablauf beim Vermessen und/oder Einstellen der Werkzeugschneide. Beim Meßvorgang erkennt der Bildverarbeitungsrechner 9 zunächst die unscharf abgebildete Schneide 21 des Werkzeugs 20. Er liefert zur Scharfeinstellung Impulse an den Stellmotor 17, der die Aufnahme 18 solange dreht, bis der Rechner 9 die in Fig. 4 dargestellte Scharfeinstellung der Werkzeugschneide wahrgenommen hat. Diese Scharfeinstellung wird auf dem Bildschirm durch je eine LED- Anzeige der Gruppe 24, 26 gemäß Fig. 3 angezeigt.
  • Anschließend erkennt der Bildverarbeitungsrechner 9 entsprechend seinem Programm, daß die Werkzeugschneide 2 sich um die Beträge ΔX und ΔZ vom errechneten Fadenkreuz entfernt befindet. Der Rechner gibt deshalb an die Stellmotoren 13 und 14 Impulse aus, mit denen die Koordinatensschlitten des Einstellgerätes so weit gesteuert werden, bis die Abstände zwischen dem Fadenkreuz und der abgebildeten Werkzeugschneide beseitigt sind bzw. die ΔX- und ΔZ-Werte zu Null werden.
  • Nunmehr ist das Werkzeug genau eingestellt, und der Bildverarbeitungsrechner 9 gibt über die Schnittstelle 10 an den Digitalzähler 6 die Fertigmeldung aus, von dem das genaue Meßergebnis abgelesen oder ausgedruckt werden kann. Die Meßgenauigkeit liegt bei diesem Verfahren im Bereich zwischen +/- 0,001 mm. Das Erreichen des genauen Meßergebnisses wird gleichzeitig am Monitor 8 durch die LED-Anzeigen 24, 26 dargestellt und kann auch von einem akustischen Signal begleitet werden. Dieser Zustand ist auf dem Monitor in der Darstellung gemäß Fig. 6 gezeigt, wo die mittleren LED der Anzeigegruppen 24 für die X-Achse und 26 für die Z-Achse aufleuchten.
  • Bei der milder erfindungsgemäßen Vorrichtung unabhängig von einer Bedienungsperson durchgeführten neuartigen Werkzeugvermessung werden mit Hilfe des Bildverarbeitungssystems nach Erfassung und Errechnung der angenäherten ΔX- und ΔZ-Werte die Koordinatenschlitten des Einstellgerätes in der X- bzw. Z-Achse entsprechend verstellt, wobei ständig erneute Messungen und Nachstellungen erfolgen, bis die Differenzen = 0 geworden sind. Die gegenüber der einmaligen Errechnung der ΔX- und ΔZ-Werte bei dem eingangs beschriebenen bekannten Meßgerät erfindungsgemäß wesentlich erhöhte Genauigkeit wird erreicht, weil mit den im Zuge des Meß- und Nachstellverfahrens immer kleiner werdenden Differenzen das in der Vorrichtung enthaltene Auflösungsvermögen für ständig kleinere Differenzwerte zur Verfügung steht und somit der Abgleich immer genauer wird, so daß im Vergleich erheblich geringere Anforderungen an die Geräteempfindlichkeit und den Rechneraufwand gestellt zu werden brauchen. Außerdem erfolgt über die Schnittstelle 10 vom Bilverarbeitungsrechner 9 an den digitalen Zähler 6 lediglich eine Fertigmeldung und keine Übertragung von ΔX- oder ΔZ-Werten.
  • Der automatisch ohne Bedienungsperson ablaufende Meßvorgang wird auf einem Meß- und Einstellgerät z. B. bei Fräsern, Schneidstählen und anderen, nicht rotierenden Werkzeugen angewendet; denn diese sind nach dem Schleifen bzw. nach der Anlieferung in ihren Maßen vorgegeben und können deshalb nur vermessen, nicht aber eingestellt werden.
  • Demgegenüber wird bei Rotationswerkzeugen ein Einstellvorgang durchgeführt, insbesondere bei Bohrstangen, Bohrern oder Fräsköpfen mit einstellbaren Schneiden. Beim Einstellvorgang werden die Koordinatenschlitten des Einstellgerätes manuell oder motorisch soweit bewegt, bis im Digitalzähler 6 für die X- und Z-Achsen die vorgegebenen Einstellwerte angezeigt sind. Das Fadenkreuz der Kamera 7 befindet sich dann auf der Sollposition für die Werkzeugschneide 2.
  • Die Werkzeugschneide 21 kann jetzt manuell soweit nachgestellt werden, worauf sie sich auf dem Monitor 8 wie in Fig. 3 unscharf darstellt. Nunmehr kann durch Betätigen des Automatikknopfes 30 die Scharfeinstellung der Werkzeugschneide wie beim Meßvorgang entsprechend Fig. 5 herbeigeführt werden. Anschließend wird die Schneide auf dem Werkzeug manuell so verstellt, daß entweder der ΔX-Wert oder ΔZ-Wert = 0 wird. Als optisches Hilfsmittel leuchtet zu diesem Zeitpunkt die zugeordnete LED-Anzeige der Gruppe 24 oder 26 auf. ΔX entspricht dem genau eingestellten Radialwert (Abstand der Schneide von der Achse B z.B. einer Bohrstange); ΔZ = 0 entspricht dem genau eingestellten Längenmaß (Abstand der Schneide von der Werkzeugaufnahme).
  • Je nach Art des Werkzeuges oder seiner Schneide kann Bedarf bestehen, daß sowohl der Radius (Abstand von der Achse B) als auch die Länge auf genaue Sollwerte einzustellen sind; es gibt jedoch auch Fälle, in denen entweder nur der Radius oder nur die Länge genau eingestellt werden müssen. Das Erreichen des genauen Einstellwertes von Radius oder von Durchmesser wird durch die LED-Anzeigen auf dem Monitor dargestellt, wobei auch ein akustisches Signal von einem entsprechenden nicht gezeigten Gerät ausgegeben werden kann. Sobald die Differenzwerte = 0 sind, ist der Einstellvorgang beendet.
  • In den Fällen, in denen nur der X-Wert oder der Z-Wert der Werkzeugschneide eine Sollposition hat und diese Sollposition durch manuelles Einstellen am Werkzeug herbeigeführt worden ist, kann das unbestimmte Abstandsmaß bezüglich der jeweils anderen Achse durch automatischen Vermessen des Werkzeuges ermittelt werden. Dazu wird erneut der Automatikknopf 30 betätigt, um in der Vorrichtung den automatischen Meßvorgang bezüglich dieser anderen Achse einzuleiten, so daß nach Abschluß des Meßvorganges sich die Werkzeugschneide, wie in Fig. 6, genau eingestellt im Monitor darstellt. Somit gewinnt die Bedienungsperson automatisch und schnell die auf dem Digitalzähler erscheinenden X- und Z-Werte, von denen der eine Wert entsprechend der vorbestimmten Sollposition durch manuelles Nachstellen der Schneide erreicht worden ist.
  • Die Ausnutzung der automatischen Werkzeugvermessung beim Einstellvorgang kann auch dann zweckmäßig sein, wenn die Bedienungsperson vor dem Einstellen oder bei schon teilweise nachgestellter Werkzeugschneide den Abstand erfahren will, um den die Schneide noch von dem bekannten Sollwert in der einen oder anderen Richtung entfernt ist. Nach dieser automatischen Zwischenmessung werden die Koordinatenschlitten bzw. die Kamera wieder auf die vorgegebene, auf dem Digitalzähler 6 erscheinende Sollposition gebracht und danach die Schneide um den ermittelten Differenzwert nachgestellt.
  • Da bei dem einleitend beschriebenen bekannten Meßverfahren der die Kamera tragende Koordinatenschlitten manuell nur soweit verstellt wird, bis die Werkzeugschneide auf dem Monitor im allgemeinen scharf eingestellt erscheint, benötigt der dort eingesetzte Bildverarbeitungsrechner eine hohe Leistungsfähigkeit, um die Abstände in den X- und Z-Richtungen mit der erwünschten hohen Meßgenauigkeit errechnen zu können. Voraussetzung für eine hohe Meßgenauigkeit ist eine hohe Leistungsfähigkeit des optischen Systems der Kamera, damit die verfügbare Abbildung der Werkzeugschneide nicht durch optische Aberration oder andere optische Unzulänglichkeiten verfälscht wird. Die Meßgenauigkeit kann außerdem durch Beleuchtungsfehler beeinträchtigt sein, die zu ungenauer Abbildung der Schneidkanten führen. Auf diese Weise entstehende unscharfe Abbildungen können nur durch einen erhöhten baulichen Aufwand des Bildverarbeitungsrechners kompensiert werden, der den Verlauf der Graukante ermitteln muß. Je weiter die auf dem Monitor abgebildete Werkzeugschneide vom der oder den zugeordneten Koordinaten entfernt liegt, desto größer ist die Gefahr, daß der zu errechnende Abstand vom Nullpunkt des Koordinatensystems durch Fehler in der Kameraoptik und/oder durch Rechenfehler bei der Ermittlung des Graukantenverlaufes verfälscht wird.
  • Bei der Erfindung werden diese Probleme dadurch beseitigt, daß mit Hilfe des Bildverarbeitungsrechners und der angeschlossenen Stellmotoren automatisch nacheinanderfolgende Meß- und Annäherungsschritte durchgeführt werden, so daß die Koordinate oder der Koordinaten-Nullpunkt in einer Folge von beispielsweise zwei oder drei Schritten bis zum Null-Abgleich an die Werkzeugschneide herangebracht wird, so daß bei jeder nachfolgenden Messung etwaige Aberrationsfehler der Kameraoptik zwangsläufig beseitigt werden, da sich der Fadenkreuz-Nullpunkt im praktisch abbildungsfehlerfreien mittleren Linsenbereich befindet und danach die in diesem Bereich vor sich gehende Ermittlung des Graukantenverlaufes der Schneide genauer bzw. eindeutiger wird. - Das oben genannte Flächenarray ist eine flächige Anordnung von Fotodioden, wobei der Bildspeicher des Rechners ein elektronisches Abbild des Array enthält und bestimmte Speicherplätze oder Speicheradressen als Fadenkreuz des Koordinatensystems definiert sind.

Claims (14)

  1. Vorrichtung zum automatischen Vermessen eines Werkzeuges auf einer Schärf-, Werkzeug- oder dergleichen Maschine, insbesondere auf einem Meß- und Einstellgerät, die einen in zwei Koordinatenrichtungen (X und Z) einer Ebene verstellbaren Schlitten mit einer auf die Werkzeugschneide ausrichtbaren Optik sowie eine Werkzeugaufnahme aufweist, mit der die Werkzeugschneide in die Koordinatenebene verstellbar ist, wobei die Optik des Schlittens eine an einen Bildverarbeitungsrechner (9) angeschlossene Kamera (7) umfaßt, die Kamera (7) ein Flächenarray (22) mit einem errechneten Fadenkreuz enthält, das als Bezugssystem dem Bildverarbeitungsrechner (9) eingespeichert ist, und der Schlitten mit vom Bildverarbeitungsrechner (9) gesteuerten Motoren (13, 14) zur Verstellung in beiden Koordinatenrichtungen versehen ist,
    dadurch gekennzeichnet, daß
    - der Fadenkreuz-Nullpunkt in der Bildfeldmitte der Kamera (7) angeordnet ist,
    - der Rechner (9) ein Arbeitsprogramm enthält, mit dem ständig die Abstandswerte der Werkzeugschneide (21) von den Koordinatenachsen des Fadenkreuzes ermittelt sowie die Abstandswerte kompensierende Impulse an die Motoren (13, 14) solange abgegeben werden, bis in der neuen Werkzeugposition die Abweichungen in der X- und Z-Richtung Null sind und somit das Werkzeug (20) genau vermessen ist, und
    - der Rechner (9) über eine Schnittstelle (10) mit einem Digitalzähler (6) verbunden ist, der die auf die Werkzeugaufnahme (18) bezogenen Koordinatenmeßwerte (X, Z) der Werkzeugschneide (21) anzeigt.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Werkzeugaufnahme (18) einen vom Bildverarbeitungsrechner (9) derart gesteuerten Stellmotor (17) aufweist, der zu Beginn des Ablaufes des Arbeitsprogramms bei Bedarf (Unschärfe der Werkzeug-Abbildung) solange Impulse vom Rechner (9) zugeführt erhält, bis bei Scharfabbildung der Werkzeugschneide (21) sich diese in der Koordinatenebene befindet.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein insbesondere auf dem Koordinatenschlitten angeordneter Monitor (8) an den Bildverarbeitungsrechner (9) angeschlossen ist, auf dem das von der Kamera (7) gelieferte Bild einschließlich des Flächenarray (22) mit dem errechneten Fadenkreuz abgebildet sind.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß auf dem Monitor LED-Anzeigen (24, 26) vorgesehen sind, die nach Beendigung des Arbeitsprogramms des Bildverarbeitungsrechners (9) für die Scharfeinstellung der Werkzeugschneide (21) und für den Null-Abgleich in Richtung der X-Achse und in Richtung der Z-Achse aufleuchten.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zusätzlich zu den optischen LED-Anzeigen akustische Signalgeber zur Anzeige der Beendigung des Meßvorganges in der bzw. um die jeweilige Achse vorgesehen sind.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß an den Bildverarbeitungsrechner (9) zusätzliche Stellmotoren zur Grobverstellung der Koordinatenschlitten in Richtung der X- und Z-Achse sowie ein Stellmotor zur Drehung der Werkzeugaufnahme (18) um die Rotationsachse (B) zwecks Scharfeinstellung der Werkzeugschneide (21) angeschlossen sind.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Koordinatenschlitten unabhängig von den Stellmotoren manuell verstellbar sind.
  8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Bildverarbeitungsrechner (9) Sicherungsmittel vorgesehen sind, die das Arbeitsprogramm der automatischen Werkzeugvermessung erst einschalten, nachdem die Werkzeugschneide (21) mit Hilfe der der Werkzeugaufnahme (18) zugeordneten Stelleinrichtung scharf abgebildet ist.
  9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zum Starten des Arbeitsprogramms, beginnend mit der Scharfeinstellung der Werkzeugschneide (21), ein Automatikschalter (28) vorgesehen ist.
  10. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie an bestehende Einstellgeräte anbaubar ist.
  11. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie als Baugruppe an einer Werkzeug- oder Erodiermaschine zur Vermessung eingespannter Werkzeuge einsetzbar ist.
  12. Verfahren zum Einstellen eines Rotations-Werkzeuges auf einem Einstellgerät unter Vervendung der Vorrichtung nach einem der Ansprüche 2-9, das einen in zwei Koordinatenrichtungen, die X- und Z Richtung, einer Ebene verstellbaren Schlitten mit einer auf die Werkzeugschneide (21) ausrichtbaren Optik sowie eine Werkzeugaufnahme (18) aufweist, mit der die Werkzeugschneide (21) in die Koordinatenebene verstellbar ist, wobei die Optik des Schlittens eine an einen Bildverarbeitungsrechner (9) angeschlossene Kamera (7) umfaßt, die Kamera (7) ein Flächenarray (22) mit einem errechneten Fadenkreuz enthält, das als Bezugssystem dem Bildverarbeitungsrechner (9) eingespeichert ist, und der Schlitten mit vom Bildverarbeitungsrechner (9) gesteuerten Motoren (13, 14) zur Verstellung in beiden Koordinatenrichtungen versehen ist, und wobei der Schlitten einen an den Bildverarbeitungsrechner (9) angeschlossenen, das Bildfeld der Kamera (7) wiedergebenden Monitor (8) aufweist, und der Rechner (9) mit einem die Koordinatenmeßwerte (X, Z) der Werkzeugschneide (21) anzeigenden Digitalzähler (6) verbunden ist, gekennzeichnet durch folgende Schritte:
    a) der Schlitten wird auf die durch den Digitalzähler (6) angezeigte Sollposition für die einzustellende Werkzeugschneide (21) eingestellt,
    b) die Werkzeugschneide (21) wird manuell soweit in das Bildfeld nachgestellt, bis sie auf dem Monitor (8) sichtbar ist,
    c) durch Betätigen eines Automatikschalters (28) zur Ausführung der automatischen Scharfeinstellung wird die Werkzeugschneide (21) durch Drehen der Werkzeugaufnahme (18) zur Scharfabbildung auf dem Monitor (8) gebracht,
    d) zur Einstellung einer Sollposition eines X- oder Z-Wertes der Werkzeugschneide (21) bezüglich einer der Fadenkreuz-Achsen wird die Werkzeug schneide (21) in der betreffenden Richtung, X oder Z, so lange manuell auf die zugehörige Achse des Fadenkreuzes verstellt, bis eine zugeordnete LED-Anzeige den Null-Abgleich signalisiert.
  13. Verfahren zum Einstellen eines Rotations-Werkzeuges auf einem Einstellgerät nach Anspruch 12, gekennzeichnet durch folgenden Schritt: wenn die Werkzeugschneide (21) zwei Sollpositionen aufweist, deren Werte beide eingestellt werden sollen, wird Schritt d) aus Anspruch 12 für den betreffenden anderen Wert, Z bzw. X, durchgeführt.
  14. Verfahren zum Einstellen eines Rotations-Werkzeuges auf einem Einstellgerät nach Anspruch 12, gekennzeichnet durch folgenden Schritt: wenn die Werkzeugschneide (21) nur eine Sollposition aufweist, die durch Anwendung des Verfahrens nach Anspruch 12 bereits eingestellt ist, und zusätzlich das unbestimmte Abstandsmaß bezüglich der anderen Achse ausgemessen werden soll, wird durch erneutes Betätigen des Automatikschalters (28) zur Ausführung des automatischen Meßvorgangs die Werkzeugschneide (21) solange automatisch auf die betreffende Achse des Fadenkreuzes verstellt, bis die zugehörige LED-Anzeige den Null-Abgleich signalisiert.
EP92110612A 1991-06-24 1992-06-24 Automatische Werkzeugvermessung Revoked EP0520396B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4120746 1991-06-24
DE4120746A DE4120746A1 (de) 1991-06-24 1991-06-24 Automatische werkzeugvermessung

Publications (2)

Publication Number Publication Date
EP0520396A1 EP0520396A1 (de) 1992-12-30
EP0520396B1 true EP0520396B1 (de) 1997-05-28

Family

ID=6434584

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92110612A Revoked EP0520396B1 (de) 1991-06-24 1992-06-24 Automatische Werkzeugvermessung

Country Status (7)

Country Link
EP (1) EP0520396B1 (de)
JP (1) JPH05200654A (de)
KR (1) KR930000933A (de)
AT (1) ATE153782T1 (de)
CA (1) CA2071764A1 (de)
DE (2) DE4120746A1 (de)
TW (1) TW198699B (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0184533B1 (ko) * 1993-12-28 1999-05-01 모리시타 요이찌 절삭공구세팅방법
DE4431059C5 (de) * 1994-09-01 2005-05-04 Kelch Gmbh + Co. Kg Werkzeugmaschinenfabrik Verfahren und Einrichtung zum Vermessen von Werkzeugen, insbesondere Maschinenwerkzeugen in Einstellgeräten
JPH0970780A (ja) * 1995-09-06 1997-03-18 Fanuc Ltd ロボットのツール形状補正方式
DE19629616C2 (de) * 1996-07-23 1998-05-07 Heilig & Schwab Gmbh Vorrichtung und Verfahren zum manuellen Einstellen, Messen, ggf. Prüfen von Werkzeugen für Bearbeitungsmaschinen
JP3958815B2 (ja) * 1996-11-11 2007-08-15 株式会社森精機製作所 Nc工作機械における工具位置測定方法
DE19734411A1 (de) 1997-08-08 1999-02-11 Heidelberger Druckmasch Ag Verfahren zum Positionieren von Gravierorganen
DE19735336A1 (de) 1997-08-14 1999-02-18 Wolfcraft Gmbh Werktisch
DE10000491B4 (de) * 2000-01-08 2004-09-23 Kelch Gmbh + Co Werkzeugmaschinenfabrik Verfahren und Messeinrichtung zum Vermessen eines Rotationswerkzeuges
DE10130737B4 (de) * 2001-06-19 2005-09-08 Kelch Gmbh + Co. Kg Werkzeugmaschinenfabrik Einstellsystem für Werkzeuge
DE10237426B4 (de) * 2002-08-12 2010-06-02 Joachim Egelhof Verfahren und Vorrichtung zum Vermessen von Werkzeugen
ITBO20030430A1 (it) * 2003-07-17 2005-01-18 Marposs Spa Apparecchiatura e metodo per il controllo della posizione
DE102005026375A1 (de) * 2005-06-07 2006-12-21 Wolfgang Madlener Vorrichtung und Verfahren zur Positions-und/oder Dimensionsbestimmung von einem an einer Werkzeugmaschine angeordneten Werkzeug
JP5274960B2 (ja) * 2008-09-26 2013-08-28 株式会社ディスコ 切削装置
JP5366124B2 (ja) * 2008-10-24 2013-12-11 富士機械製造株式会社 切削工具検査システム
JP5300003B2 (ja) * 2008-10-27 2013-09-25 富士機械製造株式会社 旋盤の制御装置
JP5467773B2 (ja) * 2009-01-19 2014-04-09 富士機械製造株式会社 切削工具検査システム
JP5342371B2 (ja) * 2009-08-19 2013-11-13 三菱重工業株式会社 工具の回転方向位置決め方法
ITBO20120221A1 (it) * 2012-04-20 2013-10-21 Marposs Spa Metodo per posizionare un utensile di una macchina utensile nel campo visivo di un sistema di visione e relativa macchina utensile
CN102773768B (zh) * 2012-07-29 2015-07-08 宁波瑞丰汽车零部件有限公司 一种机床加工零件的在线测量装置
JP6297283B2 (ja) * 2013-09-06 2018-03-20 中村留精密工業株式会社 工作機械の工具オフセット値の自動設定装置及び自動設定方法
DE102013218411B4 (de) * 2013-09-13 2015-05-13 Dmg Microset Gmbh Werkzeugvoreinstellvorrichtung
DE202015007074U1 (de) 2014-10-10 2015-12-09 Hegenscheidt Mfd Gmbh Vorrichtung zur Positionserfassung von Werkzeugen an einer Drehmaschine
JP2016093872A (ja) * 2014-11-14 2016-05-26 中村留精密工業株式会社 工作機械の工具補正値の自動設定装置及び自動設定方法
CN108106558B (zh) * 2017-12-27 2023-11-14 湖南中大创远数控装备有限公司 一种齿轮加工刀具的测量方法和测量装置
CN108942408A (zh) * 2018-09-27 2018-12-07 上海气焊机厂有限公司 零件切割偏差分析装置
JP7159021B2 (ja) * 2018-11-27 2022-10-24 共立精機株式会社 ツールプリセッタにおけるツール形状の測定装置及び測定方法
CH716246A1 (fr) 2019-06-03 2020-12-15 Watch Out Sa Module d'usinage et machine-outil comprenant une unité de suivi de l'usure de l'outil, et procédés de détection de la position, du profil et de l'usure de l'outil.
CN113560643A (zh) * 2021-07-26 2021-10-29 苏州瑞得恩自动化设备科技有限公司 一种钟摆零件弧面闭角铣削加工用铣床及其控制方法
CN115502840A (zh) * 2022-08-11 2022-12-23 青岛高测科技股份有限公司 磨床的上料控制方法及系统、计算机设备、介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969248A (ja) * 1982-10-12 1984-04-19 Okuma Mach Works Ltd 工具径自動計測補正方法
JPS60189517A (ja) * 1984-03-09 1985-09-27 Mitsubishi Electric Corp 位置制御装置
DE3743717A1 (de) * 1987-12-23 1989-07-06 Alfred Dipl Ing Spitzley Optoelektronische messvorrichtung zur automatischen vermessung der werkzeugschneidkantenlage mit handelsueblichen werkzeugvoreinstellgeraeten

Also Published As

Publication number Publication date
DE59208532D1 (de) 1997-07-03
DE4120746A1 (de) 1993-01-14
TW198699B (de) 1993-01-21
KR930000933A (ko) 1993-01-16
CA2071764A1 (en) 1992-12-25
ATE153782T1 (de) 1997-06-15
EP0520396A1 (de) 1992-12-30
JPH05200654A (ja) 1993-08-10

Similar Documents

Publication Publication Date Title
EP0520396B1 (de) Automatische Werkzeugvermessung
DE10000491B4 (de) Verfahren und Messeinrichtung zum Vermessen eines Rotationswerkzeuges
DE4036127C2 (de) Vorrichtung zum Ausrichten eines in einer Gelenkarmoptik einer Laserstrahl-Bearbeitungsmaschine geführten Laserstrahls
DE102017120570A1 (de) Vorrichtung zum Bearbeiten eines Werkstücks mit einem Werkzeug
DE102017129221A1 (de) Verfahren und Vorrichtung zur Bestimmung von geometrischen Merkmalen an Werkstücken
WO2007036457A2 (de) Verfahren und system zur kalibrierung einer kamera in produktionsmaschinen
EP0403908B1 (de) Verfahren und Einrichtung zum Messen der Konturen eines Körpers
DE102008004578B4 (de) Verfahren zum Messen eines mit mindestens einer Schneide versehenen Rotationswerkzeuges sowie Messvorrichtung hierfür
DE60007609T2 (de) Verfahren und gerät zur zentrierung einer ophtalmischen linse
DE3242532A1 (de) Einrichtung zur automatischen und programmierten pruefung von teilen oder werkstuecken sowie elektrooptischer taster dafuer
DE19629616C2 (de) Vorrichtung und Verfahren zum manuellen Einstellen, Messen, ggf. Prüfen von Werkzeugen für Bearbeitungsmaschinen
EP3168701A1 (de) Verfahren zur darstellung der bearbeitung in einer werkzeugmaschine
DE19851411A1 (de) Verfahren und Vorrichtung zum Vermessen von Fräs- oder Bohrwerkzeugen und zur Geometriekompensation im Automatikbetrieb an Werkzeugmaschinen
DE19927496B4 (de) Verfahren zum Messen eines mit wenigstens einer Schneide ausgebildeten Werkzeugs sowie Einstell- und Messgeräte
DE19549412C2 (de) Scharfstellverfahren einer Fachkamera
EP1477274B1 (de) Werkzeugmaschine
DE10361920B4 (de) Vorrichtung und Verfahren zur Kontrolle von Werkzeugen
DE19626140A1 (de) Verfahren zum Einstellen und Messen von Schneidwerkzeugen
DE4019995C2 (de)
DE2926679C2 (de) Vorrichtung zum Messen des Durchmessers eines Werkstücks auf einer Drehbank
DE2432325B2 (de) Werkzeugvoreinstellgeraet fuer drehautomaten
WO2000003839A1 (de) Vorrichtung zum berührungslosen abtasten der brillenglasöffnung einer brillenfassung oder des umfangs eines brillenglases oder einer formscheibe
EP4180761B1 (de) Verfahren zur vermessung von werkzeugen
DE817671C (de) Geraet zum Ausrichten zusammenarbeitender Teile von Werkzeugmaschinen
DE19906272A1 (de) Verfahren und Vorrichtung zum Messen von Winkeln an Werkzeugschneiden sowie Meßeinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19930119

17Q First examination report despatched

Effective date: 19940913

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19970528

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970528

Ref country code: DK

Effective date: 19970528

Ref country code: FR

Effective date: 19970528

Ref country code: GB

Effective date: 19970528

REF Corresponds to:

Ref document number: 153782

Country of ref document: AT

Date of ref document: 19970615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970630

REF Corresponds to:

Ref document number: 59208532

Country of ref document: DE

Date of ref document: 19970703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970805

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970826

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970829

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19970528

BERE Be: lapsed

Owner name: HEILIG GUNTER

Effective date: 19970630

Owner name: SCHWAB ERICH

Effective date: 19970630

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: KELCH GMBH + CO. WERKZEUGMASCHINENFABRIK

Effective date: 19980227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980827

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19991104