EP0498598B1 - Exhaust gas purification system for an internal combustion engine - Google Patents
Exhaust gas purification system for an internal combustion engine Download PDFInfo
- Publication number
- EP0498598B1 EP0498598B1 EP92300896A EP92300896A EP0498598B1 EP 0498598 B1 EP0498598 B1 EP 0498598B1 EP 92300896 A EP92300896 A EP 92300896A EP 92300896 A EP92300896 A EP 92300896A EP 0498598 B1 EP0498598 B1 EP 0498598B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- exhaust gas
- internal combustion
- combustion engine
- purification system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
- F01N3/2046—Periodically cooling catalytic reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/002—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
- F01N3/2033—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
- F01N3/208—Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/02—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2260/00—Exhaust treating devices having provisions not otherwise provided for
- F01N2260/02—Exhaust treating devices having provisions not otherwise provided for for cooling the device
- F01N2260/024—Exhaust treating devices having provisions not otherwise provided for for cooling the device using a liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/063—Surface coverings for exhaust purification, e.g. catalytic reaction zeolites
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/02—Catalytic activity of catalytic converters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/05—Systems for adding substances into exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/026—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/06—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/03—Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/14—Arrangements for the supply of substances, e.g. conduits
- F01N2610/1453—Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
- F01N2610/146—Control thereof, e.g. control of injectors or injection valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/10—Parameters used for exhaust control or diagnosing said parameters being related to the vehicle or its components
- F01N2900/102—Travelling distance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to an exhaust gas purification system for an internal combustion engine provided with a zeolite-type NOx reduction catalyst in an exhaust conduit of the engine wherein a high NOx purification rate of the catalyst can be obtained even after the catalyst has been degraded.
- Carbon dioxide (CO2) exhausted from automobile engines is desired to be reduced for environmental protection, and fuel combustion of engines at lean air-fuel ratios (lean burn) is one solution therefor.
- a conventional three-way catalyst cannot reduce nitrogen oxides (NOx) included in the exhaust gas from the lean burn engine, it is a problem how to decrease the amount of NOx exhausted from the engine to the environment.
- NOx nitrogen oxides
- a catalyst capable of reducing NOx under oxidizing gas conditions exhaust gas conditions of the lean burn engine
- a catalyst constructed of zeolite carrying transition metals and reducing NOx in the presence of hydrocarbons (HC) is disclosed in, for example, Japanese Patent Publications HEI 1-130735 and HEI 1-135541.
- An object of the invention is to provide an exhaust gas purification system for an internal combustion engine with a zeolite catalyst installed in an exhaust conduit of the engine, wherein the zeolite catalyst can still operate with a considerably high NOx purification rate (NOx conversion) even after the catalyst has been thermally degraded.
- the above-described object is attained by an exhaust gas purification system for an internal combustion engine in accordance with the present invention.
- the exhaust gas purification system includes an internal combustion engine capable of fuel combustion at lean air-fuel ratios and having an exhaust conduit, and a catalyst installed in the exhaust conduit of the engine.
- the catalyst may be constructed of zeolite carrying at least one metal- selected from the group consisting of transition metals and noble metals to reduce nitrogen oxides included in exhaust gas from the engine under oxidizing gas conditions and in the presence of hydrocarbons (such catalyst may be called a lean NOx catalyst hereinafter).
- the exhaust gas purification system further includes means for determining degradation of the catalyst, and means for increasing the amount of hydrocarbons supplied to the catalyst when the means for determining degradation of the catalyst determines that the catalyst has been degraded. (This system will be explained as first through third embodiments of the invention hereinafter.)
- the means for increasing the amount of hydrocarbons can be substituted by or may be used together with means for changing a catalyst temperature to a higher temperature side when the means for determining degradation of the catalyst determines that the catalyst has been degraded. (This system will be explained as fourth through six embodiments of the invention hereinafter.)
- An NOx reduction mechanism of the lean NOx catalyst is presumed to be a reaction of radicals generated through partial oxidation of HC with NOx. Therefore, if the amount of HC included in the exhaust gas is increased, the amount of radicals will increase and the NOx purification rate of the lean NOx catalyst will be increased.
- the means for determining degradation of the catalyst determines the extent of degradation of the catalyst and increases the amount of HC supplied to the catalyst in accordance with the degradation extent of the catalyst.
- JP-62251415 describes an exhaust gas purifying device for an IC engine, in which fuel evaporated gas is supplied to a catalytic device but only when a lean air fuel ratio is detected.
- the first through third embodiments include means for increasing the amount of HC as an essential element thereof, and the fourth through sixth embodiments include means for changing the catalyst temperature as an essential element thereof.
- the first embodiment which includes means for determining degradation of a catalyst based on an accumulated running distance of an automobile
- the second embodiment which includes means for studying and determing degradation of a catalyst based on an accumulated running distance
- the third embodiment which includes means for determining degradation of a catalyst based on a temperature difference between the inlet gas and the outlet gas of the catalyst, is illustrated in FIGS. 6 and 14-18.
- the fourth embodiment which includes means for determining degradation of a catalyst based on an accumulated running distance of an automobile, is illustrated in FIGS. 1-7.
- the fifth embodiment which includes means for studying and determing degradation of a catalyst based on an accumulated running distance, is illustrated in FIGS. 6 and 8-13.
- the sixth embodiment includes means for changing a catalyst temperature by controlling the amount of cooling wind and is illustrated in FIGS. 19 and 20.
- an engine 2 capable of fuel combustion at lean air-fuel ratios has an exhaust conduit 4 where a lean NOx catalyst 6 is installed.
- An exhaust gas temperature control device 8 is installed in a portion of the exhaust conduit upstream of the lean NOx catalyst 6.
- a catalyst temperature of the lean NOx catalyst 6 changes according to the change in the exhaust gas temperature.
- a portion of engine cooling water is lead to the exhaust gas temperature control device 8 and the circulation amount of cooling water is controlled by a control valve so that the exhaust gas temperature control device 8 can control the exhaust gas temperature.
- the engine cooling water-type exhaust gas temperature control device 8 may be replaced by other-type exhaust gas temperature control devices.
- a device using introduction of secondary air if the secondary air is introduced into the exhaust gas, the exhaust gas temperature is lowered
- a device using an air-fuel ratio control if the air-fuel ratio is changed to a richer side in a lean air-fuel ratio range, the exhaust gas temperature rises
- a device using an ignition timing control if the ignition timing is advanced, the exhaust gas-temperature is lowered up to a certain ignition timing and then rises at further advanced ignition timings
- the exhaust gas temperature control device 8 may be replaced by a device using a charging pressure control (if the charging pressure is increased, the exhaust gas temperature lowers), and a device using an intake throttle valve control (if an opening degree of the intake throttle valve is made large, the exhaust gas temperature lowers).
- the operation of the exhaust gas temperature control device 8 is controlled by an electronic control unit (ECU) 10.
- ECU electronice control unit
- a hydrocarbon supply device In the portion of the exhaust conduit 4 upstream of the lean NOx catalyst 6, a hydrocarbon supply device (HC supply device) is provided.
- the HC supply device includes a hydrocarbon source (HC source) 12, a hydrocarbon supply port (HC supply port) 14 for introducing the HC from the HC source 12 into the portion of the exhaust conduit 4 upstream of the lean.
- the control valve 16 is driven by a valve drive device 18 which is controlled by the ECU 10.
- a first exhaust gas temperature sensor 24 is installed in the portion of the exhaust conduit upstream of the lean NOx catalyst 6, and a second exhaust gas temperature sensor 20 is installed in a portion of the exhaust conduit downstream of the lean NOx catalyst 6. Further, an NOx sensor 22 is installed in the portion of the exhaust conduit downstream of the lean NOx catalyst 6.
- the output signals of these sensors 20, 24, and 22 are fed to the ECU 10. Also, a signal of a running distance of the automobile to which the engine 2 is mounted, and signals of an engine load and an engine speed are fed to the ECU 10.
- the ECU 10 is constituted by a micro-computer which includes an input interface, an output interface, an analog/digital converter for converting analog signals to digital signals, a read-only memory (ROM), a random access memory (ROM), and a central processor unit (CPU) for conducting calculation.
- the ROM stores the flow charts and maps of FIGS 1-5, and the calculations are executed in the CPU.
- FIG. 1 illustrates a routine for determining a degradation extent of the lean NOx catalyst 6 and constitutes means for determing degradation of the catalyst 6. This routine is entered at intervals of predetermined periods of time, for example, at intervals of fifty milliseconds.
- step 102 it is determined whether or not the ignition switch is turned on. If the ignition switch is in an OFF state, the routine proceeds to a return step because it is necessary to determine degradation of the catalyst. If the ignition switch is in an ON state at step 102, the routine proceeds to step 104, where an accumulated running distance S of the automobile, to which the engine 2 is mounted, is calculated. Then, at step 106, a lower temperature limit T1 and an upper temperature limit T2 of a temperature range where the lean NOx catalyst 6 can operate with a high NOx purification rate are calculated so as to correspond to the calculated running distance S using the map of FIG. 2. As illustrated in FIG.
- the values of T1 and T2 increase in accordance with the degradation extent of the lean NOx catalyst, that is, an increase in the accumulated running distance S.
- the T1 and T2 shown in FIG. 7 correspond to those of the lean NOx catalyst at an initial state.
- the routine proceeds to step 108, where a lower limit TC of an object exhaust gas temperature range is replaced by T1 and an upper limit TH of the object exhaust gas temperature range is replaced by T2.
- the routine further proceeds to step 110, where an object hydrocarbon concentration H1 is calculated based on the calculated accumulated running distance S using FIG. 3.
- an object amount of HC supplied to the lean NOx catalyst 6 should be increased, as shown in FIG. 3, so that the radicals generated through partial oxidation of HC are increased to suppress a decrease in the NOx purification rate of the lean NOx catalyst 6.
- an HC concentration HT according to which the opening degree of HC control valve 16 is operated, is replaced by the increased H1, and then the routine returns.
- the catalyst temperature is controlled using the routine of FIG. 4 and the HC amount is increased using the routine of FIG. 5.
- the routine of FIG. 4 is not essential in the first embodiment, but the routine of FIG. 5 is essential in the first embodiment.
- a current exhaust gas temperature TE (an output of the exhaust gas temperature sensor 20) is entered at step 202. Then, at step 204, it is determined whether or not the exhaust gas temperature TE is lower than the lower limit TC of the object temperature range calculated in FIG. 1. When TE is lower than TC, it is necessary to increase the exhaust gas temperature and the routine proceeds to step 206 where circulation of the engine cooling water to the exhaust gas temperature control device 8 is stopped. When TE is equal to or higher than TC at step 204, the routine proceeds to step 208, where it is determined whether or not the current exhaust gas temperature TE is higher than the upper limit TH of the object temperature range.
- step 210 the engine cooling water is circulated to the exhaust gas temperature control device 8.
- step 212 the previous state is maintained and then the routine returns.
- the routine of FIG. 4, the steps 106 and 108 of FIG. 1, and the map of FIG. 3, constitute means for changing the catalyst temperature (which corresponds to the exhaust gas temperature) to a richer side when the lean NOx catalyst 6 has been degraded.
- FIG. 5 illustrates a routine for increasing the amount of HC.
- This routine is entered at intervals of predetermined periods of time, for example, at intervals of fifty milliseconds.
- an intake air amount or quantity Q is entered.
- an object opening degree VA of the HC control valve 16 is calculated based on the intake air amount Q and the calculated object HC concentration HT using a predetermined Q versus HT map so that the higher the HC concentration HT is the larger the opening degree VA of the HC control valve 16 is. Further, the larger the intake air amount Q is, the larger the opening degree VA of the HC control valve 16 is.
- the output VA is sent to the actuator of the HC control valve 16 so that the opening degree of the HC control valve 16 is adjusted to the opening degree VA.
- the HT value is made large at step 112 of FIG. 1, and the amount of HC supplied to the lean NOx catalyst 6 is increased by the routine of FIG. 5, so that decrease of the NOx purification rate of the lean NOx catalyst 6 is suppressed or the NOx purification rate is increased.
- the step 110 of FIG. 1, FIG. 3, and the routine of FIG. 5 constitutes the means for increasing the HC amount.
- the HC amount is increased by the means for increasing the HC amount in accordance with the degradation extent of the lean NOx catalyst 6.
- the catalyst temperature is changed to a higher side, using the routine of FIG. 4 together with the above-described HC amount increase, the NOx purification rate of the lean NOx catalyst 6 is further increased. More particularly, even if the lean NOx catalyst is degraded, accompanied by a shift of the NOx purification rate peak temperature, to a higher temperature side, the catalyst temperature also is changed to the higher side corresponding to the degradation extent of the catalyst 6, so that the lean NOx catalyst 6 is always used at or near its NOx purification rate peak temperature and the NOx purification ability of the lean NOx catalyst 6 can be extracted for a long period of time.
- the second embodiment differs from the first embodiment with regard to the means for determining degradation of the lean NOx catalyst 6. Further, in the second embodiment, the means for changing the catalyst temperature includes means for changing a catalyst temperature using an ignition timing control. Since structures of other portions, and the operation of the other portions, are the same as those of the first embodiment, only the portions different from the first embodiment will be explained below.
- FIG. 8 illustrates a routine for studying and determining degradation of the lean NOx catalyst 6.
- This routine is entered at intervals of predetermined periods of time, for example, at intervals of fifty milliseconds.
- a predetermined value S for example, 2,000 km.
- the catalyst 6 When the accumulated running distance exceeds the predetermined value S, the catalyst 6 is deemed to have been degraded, and the routine proceeds to step 414 and the subsequent steps where the degradation extent of the catalyst 6 is calculated by a difference of the current output of the NOx sensor and the stored value. Then, the HC amount is increased corresponding to the degradation extent of the catalyst 6.
- step 404 where it is determined whether or not a catalyst degradation studying condition is satisfied, for example, whether or not the current engine operating condition is in a warmed-up and usual running condition. If the current condition is not in the catalyst degradation studying condition, the routine returns, and if the current condition is in the catalyst degradation studying condition, the routine proceeds to step 406.
- the current operating conditions for example, the current engine load Q/N and the current engine speed NE are entered.
- the stored NOx sensor output Gi corresponding to the current engine operating conditions is found using the map of engine load versus engine speed of FIG. 9.
- the stored NOx sensor output Gi is gradually modified by the current output N of the NOx sensor 22 using the equation (N + 9*Gi) / 10 and this modified value is stored as Gi in the RAM of the ECU 10.
- a temperature modification factor K which will be used in a routine of FIG. 12 is set to 0 and an HC concentration HT used in the routine of FIG. 5 is set to a basic HC concentration H10 which will be obtained in FIG. 11.
- step 414 a determination is made as to whether or not a catalyst degradation determining condition is satisfied, for example, whether or not the current engine operating condition is in a warmed-up and usual running condition. If the current condition is not in the catalyst degradation determining condition, the routine returns, and if the current condition is in the catalyst degradation determining condition, the routine proceeds to step 416. At step 416, the current engine load Q/N and the current engine speed NE are entered. Then, at step 418, the Gi value corresponding to the engine operating condition is read from the studied and stored Gi values.
- steps 402-420 and FIG. 9 constitute the means for determining degradation of the lean NOx catalyst 6 in the second embodiment.
- a catalyst temperature modification factor K is calculated from the NOx purification rate decrease extent D using a map of K versus D of FIG. 10. As shown in FIG. 10, the larger the value D is, the larger the factor K is. Then, at step 424, an object HC concentration H1 is calculated using a map of H1 versus D of FIG. 11. In FIG. 11, the larger the value D is, the larger the object concentration H1 is. The initial value of H1 is H10. Then, the routine proceeds to step 426, where HT is replaced by the calculated value H1, and then the routine returns.
- the above-described steps 424 and 426 and FIGS. 11 and 5 constitute the means for increasing the amount of HC supplied to the lean NOx catalyst 6 in the second embodiment.
- FIG. 12 illustrates a routine for ignition timing control for changing the catalyst temperature in the second embodiment. Since there is a relationship between ignition timing and exhaust gas temperature as shown in FIG. 13, the catalyst temperature is controlled by the ignition timing in the second embodiment.
- the routine of FIG. 12 is entered at intervals of predetermined crank angles, for example at intervals of 30° crank angles.
- a basic ignitior timing ⁇ BASE is calculated from the current engine load Q/N and the current engine speed NE.
- the value ⁇ A is restricted to a value equal to or less than a predetermined value, alpha.
- step 512 the ignition timing ⁇ is executed, and then the routine returns.
- the value K is large
- the value ⁇ is also large, so that the exhaust gas temperature and the catalyst temperature are high.
- the above-described step 422 of FIG. 8, the map of FIG. 10, and the routine of FIG. 12 constitute the means for changing the catalyst temperature to a higher side when the lean NOx catalyst 6 has been degraded in the second embodiment.
- the third embodiment differs from the first embodiment only in the means for determining degradation of the lean NOx catalyst 6. Since the structure of the other portions and the operation of the other portions are the same as those of the first embodiment, only the portions different from those of the first embodiment will be explained below.
- FIG. 14 illustrates a routine for determining degradation of the lean NOx catalyst 6.
- This routine is entered at intervals of predetermined periods of time, for example, at intervals of fifty milliseconds.
- a determination is made as to whether or not the current engine operating condition is in a catalyst degradation determining condition, for example, in a warmed-up and usual running condition. If the current condition is not in the catalyst degradation determining condition, the routine returns. If the current condition is in the catalyst degradation determining condition, the routine proceeds to step 604, where the current engine load Q/N and the current engine speed NE are entered. Then, at step 606, a predetermined reference temperature difference (delta Ti) between the inlet gas and the outlet gas of the lean NOx catalyst 6, which corresponds to the engine load and engine speed conditions, is read from a map of FIG. 15.
- delta Ti a predetermined reference temperature difference
- step 612 a catalyst degradation extent DR is calculated using a map of DR versus D map of FIG. 16.
- the steps 604 through 612 and FIG. 16 constitute the means for determining degradation of the lean NOx catalyst 6 in the third embodiment.
- a lower limit T1 and an upper limit T2 of an object temperature range for the catalyst 6 are calculated based on the catalyst degradation extent DR using a map of object temperature range versus catalyst degradation extent of FIG. 17.
- FIG. 17 there is a relationship between the temperatures T1 and T2 and the degradation extent DR such that the larger the value DR is, the higher the temperatures T1 and T2 are.
- the lower limit of the object temperature range TC is replaced by the calculated T1 and the upper limit of the range TH is replaced by T2.
- the control of catalyst temperature is executed according to the routine of FIG. 4 which was discussed.
- step 618 an object HC concentration H1 is calculated using the map of H1 versus DR of FIG. 18.
- FIG. 18 there is a relationship between the object HC concentration H1 and the degradation extent DR such that the larger the DR is, the higher the HC concentration H1 is.
- step 620 the object HC concentration HT is replaced by the calculated H1.
- the control of the HC amount is executed using the routine of FIG. 5 which was discussed.
- the steps 618 and 620 and FIG. 18 constitute the means for increasing the amount of hydrocarbons supplied to the lean NOx catalyst 6 in the third embodiment.
- the steps 614 and 616 and FIG. 17 constitute the means for increasing the catalyst temperature when the catalyst 6 has been degraded in the third embodiment.
- FIGS. 1-7 An exhaust gas purification system for an internal combustion engine of a fourth embodiment is illustrated in FIGS. 1-7.
- the system according to the fourth embodiment has the same structure and operation as those of the exhaust gas purification system of the first embodiment except that the means for changing a catalyst temperature to a higher temperature side is essential in the fourth embodiment while such means was not absolutely essential in the first embodiment.
- the means for increasing the amount of hydrocarbons supplied to the catalyst 6 was essential in the first embodiment, while such means is not absolutely essential in the fourth embodiment.
- means for determining degradation of the lean NOx catalyst 6 determines degradation of the catalyst 6 based on an accumulated running distance of an automobile to which the engine 2 is mounted, as in the first embodiment.
- the catalyst temperature is shifted to a higher temperature side when the means for determining degradation of the lean NOx catalyst 6 determines that the catalyst 6 has been degraded.
- the maximum NOx purification rate of the catalyst 6 can be used even after the catalyst 6 has been degraded, so that decrease of the NOx purification rate of the lean NOx catalyst 6 is suppressed.
- FIGS. 6 and 8-13 An exhaust gas purification system for an internal combustion engine of a fifth embodiment is illustrated in FIGS. 6 and 8-13.
- the system according to the fifth embodiment has the same structure and operation as the exhaust gas purification system of the second embodiment except that the means for changing a catalyst temperature to a higher temperature side is essential in the fifth embodiment while such means was not absolutely essential in the second embodiment.
- the means for increasing the amount of hydrocarbons supplied to the catalyst 6 was essential in the second embodiment, while such means is not absolutely essential in the fifth embodiment.
- means for determining degradation of the lean NOx catalyst 6 studies and determines degradation of the catalyst 6 based on an accumulated running distance of an automobile to which the engine 2 is mounted, as in the second embodiment.
- the catalyst temperature is shifted to a higher temperature side when the means for determining degradation of the lean NOx catalyst 6 determines that the catalyst 6 has been degraded.
- the maximum NOx purification rate of the catalyst 6 can be used even after the catalyst 6 has been degraded, so that decrease of the NOx purification rate of the lean NOx catalyst 6 is suppressed.
- FIGS. 19 and 20 An exhaust gas purification system for an internal combustion engine in accordance with a sixth embodiment is illustrated in FIGS. 19 and 20.
- the internal combustion engine 2, the exhaust conduit 4, the lean NOx catalyst 6, the inlet gas temperature sensor 24, and the outlet gas temperature sensor 20 illustrated in FIG. 6 are applicable to the sixth embodiment. Further, a cooling water temperature sensor 32 and a muffler 30 are provided.
- a catalyst temperature control device includes an air pump 34 driven by the engine 2, an air nozzle 26 for injecting air from the air pump 34 against a converter case housing the lean NOx catalyst 6, and a control valve 28 installed in an air conduit connecting the air pump 34 and the air nozzle 26.
- the amount of air injected from the air nozzle 26 is controlled by the air control valve 28 which is controlled by the ECU 10.
- a routine (FIG. 19) for controlling the amount of cooling air is stored in the ROM of the ECU 10 and the routine is executed in the CPU of the ECU 10.
- This routine of FIG. 19 is entered at intervals of predetermined periods of time, for example, at intervals of fifty milliseconds.
- the output of the cooling water temperature sensor 32 is entered and it is determined whether or not the engine is being warmed based on the cooling water temperature. For example, when the cooling water temperature is equal to or lower than 90°C, the engine condition is determined to be during a warming condition.
- the routine proceeds to step 710 to close the air control valve 28 to stop air injection because the lean NOx catalyst 6 should be warmed-up quickly in such a condition.
- step 704 a determination is made as to whether or not the current engine operating condition is in a condition in which engine cooling is allowed. For example, if the current engine operating condition is not in an idling condition, the engine operating condition may be deemed to be an engine cooling allowable condition, and the routine proceeds to step 710 where the air control valve 28 is closed. Contrarily, if the current engine operating condition is in an engine cooling allowable condition at step 704, the routine proceeds to step 706.
- a difference between the output TI of the inlet gas temperature sensor 24 and the output TE of the outlet gas temperature sensor 20 is calculated, and it is determined whether or not the temperature difference is larger than a predetermined value TA.
- TA a predetermined value
- the lean NOx catalyst 6 is deemed to have been degraded.
- the step 706 of FIG. 19 constitutes means for determining degradation of the lean NOx catalyst 6 of the sixth embodiment.
- step 710 the air control valve 28 is closed so that cooling of the catalyst 6 is stopped and the catalyst temperature is changed to a higher side.
- step 710 of FIG. 19 constitutes means for changing a catalyst temperature to a higher side in the sixth embodiment.
- step 708 the air control valve 28 is opened so that the catalyst 6 is cooled.
- Other structures and operation of the sixth embodiment are the same as those of the first embodiment of the invention.
- either the amount of HC supplied to the catalyst 6 is increased by the means for increasing the amount of HC or the catalyst temperature is changed to a higher side by the means for changing the catalyst temperature, so that, in either case, the NOx purification rate of the catalyst 6 is maintained to be high even after the catalyst 6 has been degraded.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
Description
- The present invention relates to an exhaust gas purification system for an internal combustion engine provided with a zeolite-type NOx reduction catalyst in an exhaust conduit of the engine wherein a high NOx purification rate of the catalyst can be obtained even after the catalyst has been degraded.
- Carbon dioxide (CO₂) exhausted from automobile engines is desired to be reduced for environmental protection, and fuel combustion of engines at lean air-fuel ratios (lean burn) is one solution therefor. However, since a conventional three-way catalyst cannot reduce nitrogen oxides (NOx) included in the exhaust gas from the lean burn engine, it is a problem how to decrease the amount of NOx exhausted from the engine to the environment.
- As a catalyst capable of reducing NOx under oxidizing gas conditions (exhaust gas conditions of the lean burn engine), a catalyst constructed of zeolite carrying transition metals and reducing NOx in the presence of hydrocarbons (HC) is disclosed in, for example, Japanese Patent Publications HEI 1-130735 and HEI 1-135541.
- However, with the zeolite catalyst, there is a problem that the catalyst tends to undergo thermal degradation which makes it impossible to utilize the catalyst effectively.
- An object of the invention is to provide an exhaust gas purification system for an internal combustion engine with a zeolite catalyst installed in an exhaust conduit of the engine, wherein the zeolite catalyst can still operate with a considerably high NOx purification rate (NOx conversion) even after the catalyst has been thermally degraded.
- The above-described object is attained by an exhaust gas purification system for an internal combustion engine in accordance with the present invention. The exhaust gas purification system includes an internal combustion engine capable of fuel combustion at lean air-fuel ratios and having an exhaust conduit, and a catalyst installed in the exhaust conduit of the engine. The catalyst may be constructed of zeolite carrying at least one metal- selected from the group consisting of transition metals and noble metals to reduce nitrogen oxides included in exhaust gas from the engine under oxidizing gas conditions and in the presence of hydrocarbons (such catalyst may be called a lean NOx catalyst hereinafter). The exhaust gas purification system further includes means for determining degradation of the catalyst, and means for increasing the amount of hydrocarbons supplied to the catalyst when the means for determining degradation of the catalyst determines that the catalyst has been degraded. (This system will be explained as first through third embodiments of the invention hereinafter.)
- In above, the means for increasing the amount of hydrocarbons can be substituted by or may be used together with means for changing a catalyst temperature to a higher temperature side when the means for determining degradation of the catalyst determines that the catalyst has been degraded. (This system will be explained as fourth through six embodiments of the invention hereinafter.)
- An NOx reduction mechanism of the lean NOx catalyst is presumed to be a reaction of radicals generated through partial oxidation of HC with NOx. Therefore, if the amount of HC included in the exhaust gas is increased, the amount of radicals will increase and the NOx purification rate of the lean NOx catalyst will be increased.
- In the present invention, the means for determining degradation of the catalyst determines the extent of degradation of the catalyst and increases the amount of HC supplied to the catalyst in accordance with the degradation extent of the catalyst. As a result, even if the lean NOx catalyst is thermally degraded to make the reaction of the radicals with NOx less active, the supply amount is increased in proportion to the degradation extent and therefore the amount of radicals is increased, so that decrease of the NOx purification rate is suppressed and the NOx purification rate may be increased. In this instance, since the amount of HC is increased in accordance with the degradation extent of the lean NOx catalyst, the increased amount of HC will be optimum to minimize HC consumption.
- Since a temperature range where the lean NOx catalyst can operate with a high NOx purification rate shifts to a higher temperature side in accordance with degradation of the catalyst, decrease of the NOx purification rate of the lean NOx catalyst can be effectively suppressed by changing the catalyst temperature to a high temperature side using the means for changing the catalyst temperature.
- JP-62251415 describes an exhaust gas purifying device for an IC engine, in which fuel evaporated gas is supplied to a catalytic device but only when a lean air fuel ratio is detected.
- The above and other objects, features, and advantages of the present invention will become more apparent and will be more readily appreciated from the following detailed description of the preferred embodiments of the invention taken in conjunction with the accompanying drawings, in which:
- FIG. 1 is a flow chart for determining degradation of a lean NOx catalyst for an exhaust gas purification system for an internal combustion engine in accordance with a first embodiment of the present invention;
- FIG. 2 is a graphical representation of a map of exhaust gas temperature versus accumulated running distance used in calculation by the flow chart of FIG. 1;
- FIG. 3 is a graphical representation of a map of object HC concentration versus accumulated running distance used in calculation by the flow chart of FIG. 1;
- FIG. 4 is a flow chart for changing a catalyst temperature for an exhaust gas purification system for an internal combustion engine in accordance with the first embodiment of the present invention and is applicable to a fourth embodiment of the present invention;
- FIG. 5 is a flow chart for increasing the amount of HC for an exhaust gas purification system for an internal combustion engine in accordance with the first embodiment of the present invention and is applicable to the second and third embodiments and the fourth through sixth embodiments of the present invention;
- FIG. 6 is a schematic system diagram of an exhaust gas purification system for an internal combustion engine in accordance with the first through fifth embodiments of the present invention;
- FIG. 7 is a graph illustrating a NOx purification rate (NOx conversion) versus lean NOx catalyst temperature (or exhaust gas temperature) characteristic;
- FIG. 8 is a flow chart for determining degradation of a lean NOx catalyst for an exhaust gas purification system for an internal combustion engine in accordance with the second embodiment of the present invention and is applicable to the fifth embodiment of the invention;
- FIG. 9 is a graphical representation of a map of engine load versus engine speed used in calculation by the flow chart of FIG. 8;
- FIG. 10 is a graphical representation of a map of temperature modification factor versus purification rate decrease extent used in calculation by the flow chart of FIG. 8;
- FIG. 11 is a graphical representation of a map of HC concentration versus purification rate decrease extent used in calculation by the flow chart of FIG. 8;
- FIG. 12 is a flow chart for changing a catalyst temperature for an exhaust gas purification system for an internal combustion engine in accordance with the second embodiment of the present invention and is applicable to the fifth embodiment of the present invention;
- FIG. 13 is a graphical representation of a map of exhaust gas temperature versus ignition timing used in calculation by the flow chart of FIG. 12;
- FIG. 14 is a flow chart for determining degradation of a lean NOx catalyst in accordance with the third embodiment of the present invention;
- FIG. 15 is a graphical representation of a map of engine load versus engine speed used in calculation by the flow chart of FIG. 14;
- FIG. 16 is a graphical representation of a map of catalyst degradation extent versus catalyst degradation function used in calculation by the flow chart of FIG. 14;
- FIG. 17 is a graphical representation of a map of exhaust gas temperature versus catalyst degradation used in calculation by the flow chart of FIG. 14;
- FIG. 18 is a graphical representation of a map of object HC concentration versus catalyst degradation extent used in calculation by the flow chart of FIG. 14;
- FIG. 19 is a flow chart for changing a catalyst temperature by controlling the amount of cooling wind in accordance with the sixth embodiment of the present invention; and
- FIG. 20 is a schematic system. diagram of an exhaust gas purification system for an internal combustion engine in accordance with the sixth embodiment of the present invention.
- Six embodiments of the invention will be explained. The first through third embodiments include means for increasing the amount of HC as an essential element thereof, and the fourth through sixth embodiments include means for changing the catalyst temperature as an essential element thereof.
- Further, the first embodiment, which includes means for determining degradation of a catalyst based on an accumulated running distance of an automobile, is illustrated in FIGS. 1-7. The second embodiment, which includes means for studying and determing degradation of a catalyst based on an accumulated running distance, is illustrated in FIGS. 6 and 8-13. The third embodiment, which includes means for determining degradation of a catalyst based on a temperature difference between the inlet gas and the outlet gas of the catalyst, is illustrated in FIGS. 6 and 14-18. The fourth embodiment, which includes means for determining degradation of a catalyst based on an accumulated running distance of an automobile, is illustrated in FIGS. 1-7. The fifth embodiment, which includes means for studying and determing degradation of a catalyst based on an accumulated running distance, is illustrated in FIGS. 6 and 8-13. The sixth embodiment includes means for changing a catalyst temperature by controlling the amount of cooling wind and is illustrated in FIGS. 19 and 20.
- As illustrated in FIG. 6, an
engine 2 capable of fuel combustion at lean air-fuel ratios (lean burn engine) has anexhaust conduit 4 where alean NOx catalyst 6 is installed. An exhaust gastemperature control device 8 is installed in a portion of the exhaust conduit upstream of thelean NOx catalyst 6. When the exhaust gas temperature changes, a catalyst temperature of thelean NOx catalyst 6 changes according to the change in the exhaust gas temperature. A portion of engine cooling water is lead to the exhaust gastemperature control device 8 and the circulation amount of cooling water is controlled by a control valve so that the exhaust gastemperature control device 8 can control the exhaust gas temperature. The engine cooling water-type exhaust gastemperature control device 8 may be replaced by other-type exhaust gas temperature control devices. For example, a device using introduction of secondary air (if the secondary air is introduced into the exhaust gas, the exhaust gas temperature is lowered), a device using an air-fuel ratio control (if the air-fuel ratio is changed to a richer side in a lean air-fuel ratio range, the exhaust gas temperature rises), or a device using an ignition timing control (if the ignition timing is advanced, the exhaust gas-temperature is lowered up to a certain ignition timing and then rises at further advanced ignition timings) may be employed. In the case of diesel engines, the exhaust gastemperature control device 8 may be replaced by a device using a charging pressure control (if the charging pressure is increased, the exhaust gas temperature lowers), and a device using an intake throttle valve control (if an opening degree of the intake throttle valve is made large, the exhaust gas temperature lowers). The operation of the exhaust gastemperature control device 8 is controlled by an electronic control unit (ECU) 10. - In the portion of the
exhaust conduit 4 upstream of thelean NOx catalyst 6, a hydrocarbon supply device (HC supply device) is provided. The HC supply device includes a hydrocarbon source (HC source) 12, a hydrocarbon supply port (HC supply port) 14 for introducing the HC from theHC source 12 into the portion of theexhaust conduit 4 upstream of the lean.NOx catalyst 6, and a control valve (HC control valve) 16 for controlling the amount of HC supplied into theexhaust conduit 4. Thecontrol valve 16 is driven by avalve drive device 18 which is controlled by theECU 10. - A first exhaust
gas temperature sensor 24 is installed in the portion of the exhaust conduit upstream of thelean NOx catalyst 6, and a second exhaustgas temperature sensor 20 is installed in a portion of the exhaust conduit downstream of thelean NOx catalyst 6. Further, anNOx sensor 22 is installed in the portion of the exhaust conduit downstream of thelean NOx catalyst 6. The output signals of thesesensors ECU 10. Also, a signal of a running distance of the automobile to which theengine 2 is mounted, and signals of an engine load and an engine speed are fed to theECU 10. - The
ECU 10 is constituted by a micro-computer which includes an input interface, an output interface, an analog/digital converter for converting analog signals to digital signals, a read-only memory (ROM), a random access memory (ROM), and a central processor unit (CPU) for conducting calculation. The ROM stores the flow charts and maps of FIGS 1-5, and the calculations are executed in the CPU. - FIG. 1 illustrates a routine for determining a degradation extent of the
lean NOx catalyst 6 and constitutes means for determing degradation of thecatalyst 6. This routine is entered at intervals of predetermined periods of time, for example, at intervals of fifty milliseconds. - At
step 102, it is determined whether or not the ignition switch is turned on. If the ignition switch is in an OFF state, the routine proceeds to a return step because it is necessary to determine degradation of the catalyst. If the ignition switch is in an ON state atstep 102, the routine proceeds to step 104, where an accumulated running distance S of the automobile, to which theengine 2 is mounted, is calculated. Then, atstep 106, a lower temperature limit T1 and an upper temperature limit T2 of a temperature range where thelean NOx catalyst 6 can operate with a high NOx purification rate are calculated so as to correspond to the calculated running distance S using the map of FIG. 2. As illustrated in FIG. 2, the values of T1 and T2 increase in accordance with the degradation extent of the lean NOx catalyst, that is, an increase in the accumulated running distance S. The T1 and T2 shown in FIG. 7 correspond to those of the lean NOx catalyst at an initial state. When thelean NOx catalyst 7 is degraded, the temperature where thelean NOx catalyst 6 operates with a maximum NOx purification rate shifts to a higher temperature side, from a to b and from b to c in FIG. 7. Then, the routine proceeds to step 108, where a lower limit TC of an object exhaust gas temperature range is replaced by T1 and an upper limit TH of the object exhaust gas temperature range is replaced by T2. - The routine further proceeds to step 110, where an object hydrocarbon concentration H1 is calculated based on the calculated accumulated running distance S using FIG. 3. When the accumulated running distance increases and the degradation extent of the
lean NOx catalyst 6 increases, the object amount of HC supplied to thelean NOx catalyst 6 should be increased, as shown in FIG. 3, so that the radicals generated through partial oxidation of HC are increased to suppress a decrease in the NOx purification rate of thelean NOx catalyst 6. Then, atstep 112, an HC concentration HT, according to which the opening degree ofHC control valve 16 is operated, is replaced by the increased H1, and then the routine returns. - When the data TC, TH, and HT have been calculated in the routine of FIG. 1, the catalyst temperature is controlled using the routine of FIG. 4 and the HC amount is increased using the routine of FIG. 5. In this instance, the routine of FIG. 4 is not essential in the first embodiment, but the routine of FIG. 5 is essential in the first embodiment.
- In the routine of FIG. 4, a current exhaust gas temperature TE (an output of the exhaust gas temperature sensor 20) is entered at
step 202. Then, atstep 204, it is determined whether or not the exhaust gas temperature TE is lower than the lower limit TC of the object temperature range calculated in FIG. 1. When TE is lower than TC, it is necessary to increase the exhaust gas temperature and the routine proceeds to step 206 where circulation of the engine cooling water to the exhaust gastemperature control device 8 is stopped. When TE is equal to or higher than TC atstep 204, the routine proceeds to step 208, where it is determined whether or not the current exhaust gas temperature TE is higher than the upper limit TH of the object temperature range. If TE is higher than TH, it is necessary to lower the exhaust gas temperature, and the routine proceeds to step 210 where the engine cooling water is circulated to the exhaust gastemperature control device 8. When TE is equal to or lower than TH, TE is between TC and TH and there is no need to control the exhaust gas temperature. Therefore, the routine proceeds to step 212 where the previous state is maintained and then the routine returns. The routine of FIG. 4, thesteps lean NOx catalyst 6 has been degraded. - FIG. 5 illustrates a routine for increasing the amount of HC. This routine is entered at intervals of predetermined periods of time, for example, at intervals of fifty milliseconds. At
step 302, an intake air amount or quantity Q is entered. Then, atstep 304, an object opening degree VA of theHC control valve 16 is calculated based on the intake air amount Q and the calculated object HC concentration HT using a predetermined Q versus HT map so that the higher the HC concentration HT is the larger the opening degree VA of theHC control valve 16 is. Further, the larger the intake air amount Q is, the larger the opening degree VA of theHC control valve 16 is. Then, atstep 306, the output VA is sent to the actuator of theHC control valve 16 so that the opening degree of theHC control valve 16 is adjusted to the opening degree VA. In this HC supply amount control, when thelean NOx catalyst 6 is thermally degraded, the HT value is made large atstep 112 of FIG. 1, and the amount of HC supplied to thelean NOx catalyst 6 is increased by the routine of FIG. 5, so that decrease of the NOx purification rate of thelean NOx catalyst 6 is suppressed or the NOx purification rate is increased. More particularly, even if the reaction of HC and NOx is decreased due to degradation of thelean NOx catalyst 6, the amount of HC supplied to thelean NOx catalyst 6 is increased so that the NOx purification rate is increased as shown by the broken link of FIG. 7. In this instance, thestep 110 of FIG. 1, FIG. 3, and the routine of FIG. 5 constitutes the means for increasing the HC amount. - Operation with respect to the first embodiment will now be explained.
- When it is determined, based on the accumulated running distance, that the
lean NOx catalyst 6 has been degraded, the HC amount is increased by the means for increasing the HC amount in accordance with the degradation extent of thelean NOx catalyst 6. The more degraded thecatalyst 6 is, the less the NOx purification rate of thecatalyst 6 is, and the more the HC amount supplied to thecatalyst 6 is, the more the NOx purification rate of thecatalyst 6 is. Therefore, even if the NOx purification characteristic shifts from a to b, and from b to c in FIG. 7, due to degradation of thecatalyst 6, the characteristic line is raised, as shown by a broken line in FIG. 7, by increasing the amount of HC supplied to thecatalyst 6. - Further, if the catalyst temperature is changed to a higher side, using the routine of FIG. 4 together with the above-described HC amount increase, the NOx purification rate of the
lean NOx catalyst 6 is further increased. More particularly, even if the lean NOx catalyst is degraded, accompanied by a shift of the NOx purification rate peak temperature, to a higher temperature side, the catalyst temperature also is changed to the higher side corresponding to the degradation extent of thecatalyst 6, so that thelean NOx catalyst 6 is always used at or near its NOx purification rate peak temperature and the NOx purification ability of thelean NOx catalyst 6 can be extracted for a long period of time. - The second embodiment differs from the first embodiment with regard to the means for determining degradation of the
lean NOx catalyst 6. Further, in the second embodiment, the means for changing the catalyst temperature includes means for changing a catalyst temperature using an ignition timing control. Since structures of other portions, and the operation of the other portions, are the same as those of the first embodiment, only the portions different from the first embodiment will be explained below. - FIG. 8 illustrates a routine for studying and determining degradation of the
lean NOx catalyst 6. This routine is entered at intervals of predetermined periods of time, for example, at intervals of fifty milliseconds. At step 402, it is determined whether or not the accumulated running distance exceeds a predetermined value S, for example, 2,000 km. When the accumulated running distance is less than the predetermined value S, it can be presumed that thecatalyst 6 is not yet degraded, and the routine proceeds to step 404 and the subsequent steps where the current output of the NOx sensor is studied and stored. When the accumulated running distance exceeds the predetermined value S, thecatalyst 6 is deemed to have been degraded, and the routine proceeds to step 414 and the subsequent steps where the degradation extent of thecatalyst 6 is calculated by a difference of the current output of the NOx sensor and the stored value. Then, the HC amount is increased corresponding to the degradation extent of thecatalyst 6. - More particularly, at
step 404, where it is determined whether or not a catalyst degradation studying condition is satisfied, for example, whether or not the current engine operating condition is in a warmed-up and usual running condition. If the current condition is not in the catalyst degradation studying condition, the routine returns, and if the current condition is in the catalyst degradation studying condition, the routine proceeds to step 406. Atstep 406, the current operating conditions, for example, the current engine load Q/N and the current engine speed NE are entered. Then, at step 408, the stored NOx sensor output Gi corresponding to the current engine operating conditions is found using the map of engine load versus engine speed of FIG. 9. Then, at step 410, the stored NOx sensor output Gi is gradually modified by the current output N of theNOx sensor 22 using the equation (N + 9*Gi) / 10 and this modified value is stored as Gi in the RAM of theECU 10. Then, atstep 412, a temperature modification factor K which will be used in a routine of FIG. 12 is set to 0 and an HC concentration HT used in the routine of FIG. 5 is set to a basic HC concentration H10 which will be obtained in FIG. 11. - The routine then proceeds from step 402 to step 414. At step 414 a determination is made as to whether or not a catalyst degradation determining condition is satisfied, for example, whether or not the current engine operating condition is in a warmed-up and usual running condition. If the current condition is not in the catalyst degradation determining condition, the routine returns, and if the current condition is in the catalyst degradation determining condition, the routine proceeds to step 416. At
step 416, the current engine load Q/N and the current engine speed NE are entered. Then, atstep 418, the Gi value corresponding to the engine operating condition is read from the studied and stored Gi values. Then, atstep 420, from the current NOx sensor output N (after the catalyst degradation) and the read Gi value (before the catalyst degradation), a NOx purification rate decrease extent D is calculated rising the equationlean NOx catalyst 6 in the second embodiment. - Then, at step 422, a catalyst temperature modification factor K is calculated from the NOx purification rate decrease extent D using a map of K versus D of FIG. 10. As shown in FIG. 10, the larger the value D is, the larger the factor K is. Then, at step 424, an object HC concentration H1 is calculated using a map of H1 versus D of FIG. 11. In FIG. 11, the larger the value D is, the larger the object concentration H1 is. The initial value of H1 is H10. Then, the routine proceeds to step 426, where HT is replaced by the calculated value H1, and then the routine returns. The above-described steps 424 and 426 and FIGS. 11 and 5 constitute the means for increasing the amount of HC supplied to the
lean NOx catalyst 6 in the second embodiment. - FIG. 12 illustrates a routine for ignition timing control for changing the catalyst temperature in the second embodiment. Since there is a relationship between ignition timing and exhaust gas temperature as shown in FIG. 13, the catalyst temperature is controlled by the ignition timing in the second embodiment.
- The routine of FIG. 12 is entered at intervals of predetermined crank angles, for example at intervals of 30° crank angles. At
step 502, a basic ignitior timing ϑBASE is calculated from the current engine load Q/N and the current engine speed NE. Then, atstep 504, an ignition timing advance amount ϑA is calculated from the equationsteps step 512, the ignition timing ϑ is executed, and then the routine returns. In this instance, when the value K is large, the value ϑ is also large, so that the exhaust gas temperature and the catalyst temperature are high. The above-described step 422 of FIG. 8, the map of FIG. 10, and the routine of FIG. 12 constitute the means for changing the catalyst temperature to a higher side when thelean NOx catalyst 6 has been degraded in the second embodiment. - The third embodiment differs from the first embodiment only in the means for determining degradation of the
lean NOx catalyst 6. Since the structure of the other portions and the operation of the other portions are the same as those of the first embodiment, only the portions different from those of the first embodiment will be explained below. - FIG. 14 illustrates a routine for determining degradation of the
lean NOx catalyst 6. This routine is entered at intervals of predetermined periods of time, for example, at intervals of fifty milliseconds. Atstep 602, a determination is made as to whether or not the current engine operating condition is in a catalyst degradation determining condition, for example, in a warmed-up and usual running condition. If the current condition is not in the catalyst degradation determining condition, the routine returns. If the current condition is in the catalyst degradation determining condition, the routine proceeds to step 604, where the current engine load Q/N and the current engine speed NE are entered. Then, atstep 606, a predetermined reference temperature difference (delta Ti) between the inlet gas and the outlet gas of thelean NOx catalyst 6, which corresponds to the engine load and engine speed conditions, is read from a map of FIG. 15. - Then, at
step 608, the difference between the current inlet gas temperature t1 (output of the temperature sensor 24) and the current outlet gas temperature t2 (output of the temperature sensor 20) of thelean NOx catalyst 6 is calculated using the equationstep 610, a catalyst degradation function D is calculated as a difference between the current temperature difference delta t and the reference temperature difference delta Ti using the equationstep 612, a catalyst degradation extent DR is calculated using a map of DR versus D map of FIG. 16. In this instance, thesteps 604 through 612 and FIG. 16 constitute the means for determining degradation of thelean NOx catalyst 6 in the third embodiment. - Then, at
step 614, a lower limit T1 and an upper limit T2 of an object temperature range for thecatalyst 6 are calculated based on the catalyst degradation extent DR using a map of object temperature range versus catalyst degradation extent of FIG. 17. In FIG. 17, there is a relationship between the temperatures T1 and T2 and the degradation extent DR such that the larger the value DR is, the higher the temperatures T1 and T2 are. Then, atstep 616, the lower limit of the object temperature range TC is replaced by the calculated T1 and the upper limit of the range TH is replaced by T2. The control of catalyst temperature is executed according to the routine of FIG. 4 which was discussed. Then, the routine proceeds to step 618, where an object HC concentration H1 is calculated using the map of H1 versus DR of FIG. 18. In FIG. 18, there is a relationship between the object HC concentration H1 and the degradation extent DR such that the larger the DR is, the higher the HC concentration H1 is. Atstep 620, the object HC concentration HT is replaced by the calculated H1. The control of the HC amount is executed using the routine of FIG. 5 which was discussed. In this instance, thesteps 618 and 620 and FIG. 18 constitute the means for increasing the amount of hydrocarbons supplied to thelean NOx catalyst 6 in the third embodiment. Further, thesteps catalyst 6 has been degraded in the third embodiment. - An exhaust gas purification system for an internal combustion engine of a fourth embodiment is illustrated in FIGS. 1-7. The system according to the fourth embodiment has the same structure and operation as those of the exhaust gas purification system of the first embodiment except that the means for changing a catalyst temperature to a higher temperature side is essential in the fourth embodiment while such means was not absolutely essential in the first embodiment. In contrast, the means for increasing the amount of hydrocarbons supplied to the
catalyst 6 was essential in the first embodiment, while such means is not absolutely essential in the fourth embodiment. Further, in the fourth embodiment, means for determining degradation of thelean NOx catalyst 6 determines degradation of thecatalyst 6 based on an accumulated running distance of an automobile to which theengine 2 is mounted, as in the first embodiment. - Due to this structure, in the fourth embodiment, the catalyst temperature is shifted to a higher temperature side when the means for determining degradation of the
lean NOx catalyst 6 determines that thecatalyst 6 has been degraded. As a result, the maximum NOx purification rate of thecatalyst 6 can be used even after thecatalyst 6 has been degraded, so that decrease of the NOx purification rate of thelean NOx catalyst 6 is suppressed. - An exhaust gas purification system for an internal combustion engine of a fifth embodiment is illustrated in FIGS. 6 and 8-13. The system according to the fifth embodiment has the same structure and operation as the exhaust gas purification system of the second embodiment except that the means for changing a catalyst temperature to a higher temperature side is essential in the fifth embodiment while such means was not absolutely essential in the second embodiment. In contrast, the means for increasing the amount of hydrocarbons supplied to the
catalyst 6 was essential in the second embodiment, while such means is not absolutely essential in the fifth embodiment. Further, in the fifth embodiment, means for determining degradation of thelean NOx catalyst 6 studies and determines degradation of thecatalyst 6 based on an accumulated running distance of an automobile to which theengine 2 is mounted, as in the second embodiment. - Due to this structure, in the fifth embodiment, the catalyst temperature is shifted to a higher temperature side when the means for determining degradation of the
lean NOx catalyst 6 determines that thecatalyst 6 has been degraded. As a result, the maximum NOx purification rate of thecatalyst 6 can be used even after thecatalyst 6 has been degraded, so that decrease of the NOx purification rate of thelean NOx catalyst 6 is suppressed. - An exhaust gas purification system for an internal combustion engine in accordance with a sixth embodiment is illustrated in FIGS. 19 and 20. The
internal combustion engine 2, theexhaust conduit 4, thelean NOx catalyst 6, the inletgas temperature sensor 24, and the outletgas temperature sensor 20 illustrated in FIG. 6 are applicable to the sixth embodiment. Further, a coolingwater temperature sensor 32 and amuffler 30 are provided. - As illustrated in FIG. 20, in the sixth embodiment, a catalyst temperature control device includes an
air pump 34 driven by theengine 2, anair nozzle 26 for injecting air from theair pump 34 against a converter case housing thelean NOx catalyst 6, and acontrol valve 28 installed in an air conduit connecting theair pump 34 and theair nozzle 26. The amount of air injected from theair nozzle 26 is controlled by theair control valve 28 which is controlled by theECU 10. - A routine (FIG. 19) for controlling the amount of cooling air is stored in the ROM of the
ECU 10 and the routine is executed in the CPU of theECU 10. This routine of FIG. 19 is entered at intervals of predetermined periods of time, for example, at intervals of fifty milliseconds. At step 702, the output of the coolingwater temperature sensor 32 is entered and it is determined whether or not the engine is being warmed based on the cooling water temperature. For example, when the cooling water temperature is equal to or lower than 90°C, the engine condition is determined to be during a warming condition. When the engine is determined to be during a warming condition at step 702, the routine proceeds to step 710 to close theair control valve 28 to stop air injection because thelean NOx catalyst 6 should be warmed-up quickly in such a condition. - When the engine is determined to have finished warming-up at step 702, the routine proceeds to step 704 where a determination is made as to whether or not the current engine operating condition is in a condition in which engine cooling is allowed. For example, if the current engine operating condition is not in an idling condition, the engine operating condition may be deemed to be an engine cooling allowable condition, and the routine proceeds to step 710 where the
air control valve 28 is closed. Contrarily, if the current engine operating condition is in an engine cooling allowable condition at step 704, the routine proceeds to step 706. - At step 706, a difference between the output TI of the inlet
gas temperature sensor 24 and the output TE of the outletgas temperature sensor 20 is calculated, and it is determined whether or not the temperature difference is larger than a predetermined value TA. When the temperature difference is equal to or less than TA, thelean NOx catalyst 6 is deemed to have been degraded. In this instance, the step 706 of FIG. 19 constitutes means for determining degradation of thelean NOx catalyst 6 of the sixth embodiment. - When it is determined at step 706 that the
lean NOx catalyst 6 has been degraded, the routine proceeds to step 710 where theair control valve 28 is closed so that cooling of thecatalyst 6 is stopped and the catalyst temperature is changed to a higher side. In this instance, the step 710 of FIG. 19 constitutes means for changing a catalyst temperature to a higher side in the sixth embodiment. When it is determined at step 706 that thelean NOx catalyst 6 has not yet been degraded, the routine proceeds to step 708 where theair control valve 28 is opened so that thecatalyst 6 is cooled. Other structures and operation of the sixth embodiment are the same as those of the first embodiment of the invention. - In accordance with any embodiment of the invention, when it is determined by the means for determining degradation of a catalyst, that the
catalyst 6 has been degraded, either the amount of HC supplied to thecatalyst 6 is increased by the means for increasing the amount of HC or the catalyst temperature is changed to a higher side by the means for changing the catalyst temperature, so that, in either case, the NOx purification rate of thecatalyst 6 is maintained to be high even after thecatalyst 6 has been degraded.
Claims (22)
- An exhaust gas purification system for an internal combustion engine comprising:
an internal combustion engine (2) capable of fuel combustion at lean air-fuel ratios and having an exhaust conduit (4);
a catalyst (6) installed in the exhaust conduit (4) of the engine (2) and constructed of zeolite, said catalyst carrying at least one metal selected from the group consisting of transition metals and noble metals to reduce nitrogen oxides included in exhaust gas from the engine (2) under oxidizing gas conditions and in the presence of hydrocarbons;
means for determining degradation of the catalyst (6); and
means for increasing the amount of hydrocarbons supplied to the catalyst (6) when the means for determining degradation of the catalyst determines that the catalyst (6) has been degraded. - An exhaust gas purification system for an internal combustion engine according to claim 1, further comprising an exhaust gas temperature control device (8) installed in a portion of the exhaust conduit (4) upstream of the catalyst (6).
- An exhaust gas purification system for an internal combustion engine according to claim 1, and further comprising a hydrocarbon supply device which includes a hydrocarbon source (12), a hydrocarbon supply port (14) for introducing the hydrocarbons from the hydrocarbon source (14) into a portion of the exhaust conduit (4) upstream of the catalyst (6), and a control valve (16), installed in a conduit connecting the hydrocarbon source (12) and the hydrocarbon supply port (14), for controlling the amount of hydrocarbons supplied into the exhaust conduit (4).
- An exhaust gas purification system for an internal combustion engine according to claim 1, further comprising:
a first exhaust gas temperature sensor (24) installed in a portion of the exhaust conduit (4) upstream of the catalyst (6);
a second exhaust gas temperature sensor (20) installed in a portion of the exhaust conduit (4) downstream of the catalyst (6); and
an NOx sensor (22) installed in the portion of the exhaust gas conduit (4) downstream of the catalyst (6). - An exhaust gas purification system for an internal combustion engine according to claim 1, wherein the means for determining degradation of the catalyst comprises means for determining degradation of the catalyst (6) based on an accumulated running distance of an automobile to which the engine (2) is mounted.
- An exhaust gas purification system for an internal combustion engine according to claim 5, wherein the means for increasing the amount of hydrocarbons includes means for calculating an object amount of hydrocarbons to supplied to the catalyst (6) such that the larger the accumulated running distance is, the more the object amount of hydrocarbons to be supplied to the catalyst (6) is.
- An exhaust gas purification system for an internal combustion engine according to claim 5, further comprising catalyst temperature changing means for calculating upper and lower limits of an object catalyst temperature range such that the more catalyst (6) has been degraded, the higher the upper and lower limits of the object catalyst temperature range are.
- An exhaust gas purification system for an internal combustion engine according to claim 1, wherein the means for determining degradation of the catalyst (6) comprises means for modifying a reference NOx value by a current detected NOx amount and storing the modified reference NOx value until an accumulated running distance of an automobile to which the engine is mounted finally reaches a predetermined value, and means for calculating a NOx value difference between a current detected NOx amount and the stored reference NOx value to determine a degradation extent of the catalyst (6) based on the NOx value difference.
- An exhaust gas purification system for an internal combustion engine according to claim 8, wherein the means for increasing the amount of hydrocarbons supplied to the catalyst (6) includes means for calculating an object hydrocarbon concentration based on the calculated NOx value difference such that the larger the calculated NOx value difference is, the higher the object hydrocarbon concentration is.
- An exhaust gas purification system for an internal combustion engine according to claim 8, further comprising means for calculating a catalyst temperature modification factor based on the calculated NOx value difference such that the larger the calculated NOx value difference is, the larger the catalyst temperature modification factor is, and means for controlling an object exhaust gas temperature based on the calculated catalyst temperature modification factor such that the larger the calculated catalyst temperature modification factor is, the higher the object exhaust gas temperature is.
- An exhaust gas purification system for an internal combustion engine according to claim 1, wherein the means for determining degradation of the catalyst (6) includes means for calculating a reference temperature difference between inlet gas and outlet gas of the catalyst (6) at a non-degraded state from an engine load versus engine speed map, detecting a current temperature difference between the inlet gas and the outlet gas of the catalyst (6), and calculating a degradation extent of the catalyst (6) based on a difference between the detected current temperature difference and the reference temperature difference.
- An exhaust gas purification system for an internal combustion engine according to claim 11, wherein the means for increasing the amount of hydrocarbons supplied to the catalyst (6) includes means for calculating an object hydrocarbon concentration bases on the calculated degradation extent of the catalyst (6) such that the larger the calculated degradation extent of the catalyst (6) is, the higher the object hydrocarbon concentration is.
- An exhaust gas purification system for an internal combustion engine according to claim 11, further comprising catalyst temperature changing means for calculating upper and lower limits of an object catalyst temperature range based on the calculated degradation extent of the catalyst (6) such that the larger the calculated degradation extent of the catalyst (6) is, the higher the upper and lower limits of the object catalyst temperature range are.
- An exhaust gas purification system for an internal combustion engine comprising:
an internal combustion engine (2) capable of fuel combustion at lean air-fuel ratios and having an exhaust conduit (4);
a catalyst (6) installed in the exhaust conduit (4) of the engine (2) and constructed of zeolite, said catalyst carrying at least one metal selected from the group consisting of transition metals and noble metals to reduce nitrogen oxides included in exhaust gas from the engine under oxidizing gas conditions and in the presence of hydrocarbons;
means for determining degradation of the catalyst (6); and
means for changing a catalyst temperature to a higher side when the means for determining degradation of the catalyst (6) determines that the catalyst (6) has been degraded. - An exhaust gas purification system for an internal combustion engine according to claim 14, further comprising an exhaust gas temperature control device (8) installed in a portion of the exhaust conduit (4) upstream of the catalyst (6).
- An exhaust gas purification system for an internal combustion engine according to claim 14, further comprising a hydrocarbon supply device which includes a hydrocarbon source (12), a hydrocarbon supply port (14) for introducing the hydrocarbons from the hydrocarbon source (12) into a portion of the exhaust conduit (4) upstream of the catalyst (6), and a control valve (16), installed in a conduit connecting the hydrocarbon source (12) and the hydrocarbon supply port (14), for controlling the amount of hydrocarbons supplied into the exhaust conduit (4).
- An exhaust gas purification system for an internal combustion engine according to claim 14, further comprising:
a first exhaust gas temperature sensor (24) installed in a portion of the exhaust conduit (4) upstream of the catalyst (6);
a second exhaust gas temperature sensor (20) installed in a portion of the exhaust conduit (4) downstream of the catalyst (6); and
an NOx sensor (22) installed in the portion of the exhaust gas conduit (4) downstream of the catalyst (6). - An exhaust gas purification system for an internal combustion engine according to claim 14, wherein the means for determining degradation of the catalyst (6) comprises means for determining degradation of the catalyst (6) based on an accumulated running distance of an automobile to which the engine (2) is mounted.
- An exhaust gas purification system for an internal combustion engine according to claim 14, wherein the means for determining degradation of the catalyst (6) comprises means for modifying a reference NOx value by a current detected NOx amount and storing the modified reference NOx value until an accumulated running distance of an automobile to which the engine (2) is mounted reaches a predetermined value, and means for calculating an NOx value difference between a current detected NOx amount and the stored reference NOx value to determine a degradation extent of the catalyst (6) based on the NOx value difference.
- An exhaust gas purification system for an internal combustion engine according to claim 14, wherein the exhaust gas temperature control device includes an air pump (34), an air nozzle (26) for injecting air from the air pump (34) to a converter case housing the catalyst (6) therein, and a control valve (28) installed in an air conduit connecting the air pump (34) and the air nozzle (26).
- An exhaust gas purification system for an internal combustion engine according to claim 20, wherein the means for determining degradation of the catalyst (6) includes means which determines that the catalyst (6) has been degraded when a temperature difference between inlet gas and outlet gas of the catalyst (6) exceeds a predetermined value.
- An exhaust gas purification system for an internal combustion engine according to claim 21, wherein the means for changing a catalyst temperature includes means for closing the control valve (28) when the means for determining degradation of the catalyst (6) determines that the catalyst (6) has been degraded.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3336691A JP2884798B2 (en) | 1991-02-04 | 1991-02-04 | Exhaust gas purification device for internal combustion engine |
JP33366/91 | 1991-02-04 | ||
JP45662/91 | 1991-02-20 | ||
JP3045662A JP2616262B2 (en) | 1991-02-20 | 1991-02-20 | Exhaust gas purification device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0498598A1 EP0498598A1 (en) | 1992-08-12 |
EP0498598B1 true EP0498598B1 (en) | 1995-04-26 |
Family
ID=26372045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92300896A Expired - Lifetime EP0498598B1 (en) | 1991-02-04 | 1992-02-03 | Exhaust gas purification system for an internal combustion engine |
Country Status (3)
Country | Link |
---|---|
US (1) | US5201802A (en) |
EP (1) | EP0498598B1 (en) |
DE (1) | DE69202163T2 (en) |
Families Citing this family (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69202172T2 (en) * | 1991-02-20 | 1995-11-30 | Hitachi Automotive Eng | Catalyst control unit. |
DE4217552C1 (en) * | 1992-05-27 | 1993-08-19 | Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De | |
JPH0631173A (en) * | 1992-07-10 | 1994-02-08 | N E Chemcat Corp | Catalyst for purification of exhaust gas and method for purifying exhaust gas |
US5433074A (en) * | 1992-07-30 | 1995-07-18 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification device for an engine |
DE4310926A1 (en) * | 1993-04-02 | 1994-10-06 | Siemens Ag | Device and method for the reduction of pollutant emissions in the exhaust gas |
JP2605579B2 (en) * | 1993-05-31 | 1997-04-30 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
US5497617A (en) * | 1993-07-02 | 1996-03-12 | Corning Incorporated | Gas-enriched light-off |
US5611198A (en) * | 1994-08-16 | 1997-03-18 | Caterpillar Inc. | Series combination catalytic converter |
DE4436415A1 (en) * | 1994-10-12 | 1996-04-18 | Bosch Gmbh Robert | Device for the aftertreatment of exhaust gases from a self-igniting internal combustion engine |
US5609022A (en) * | 1994-10-31 | 1997-03-11 | General Motors Corporation | Method of reducing NOx emissions from lean-burn combustion engines |
DE19512298A1 (en) * | 1995-04-05 | 1996-10-24 | Haefele Cornelia | Emission-controlled arrangement for catalytic pollutant reduction in catalysts |
DE19536571C2 (en) * | 1995-09-29 | 1998-09-03 | Siemens Ag | Method and device for metering the input of a reducing agent into the exhaust gas or exhaust air stream of an incineration plant |
CN1198798A (en) * | 1995-09-29 | 1998-11-11 | 西门子公司 | Method and device for converting harmful substances in exhaust gas on catalyst |
JP3852788B2 (en) * | 1995-10-02 | 2006-12-06 | 株式会社小松製作所 | Diesel engine NOx catalyst deterioration detection device and its deterioration detection method |
DE19543219C1 (en) * | 1995-11-20 | 1996-12-05 | Daimler Benz Ag | Diesel engine operating method |
JPH09177640A (en) * | 1995-12-15 | 1997-07-11 | Caterpillar Inc | Combustion exhaust emission control system by fuel injector having high suck capacity and its method |
US5709080A (en) * | 1996-03-15 | 1998-01-20 | Caterpillar Inc. | Leak detection method and apparatus for an exhaust purification system |
DE19781739T1 (en) * | 1996-04-26 | 1999-04-01 | Komatsu Mfg Co Ltd | Device and method for regenerating a NOx catalyst for diesel engines |
DE19629163C1 (en) * | 1996-07-19 | 1997-10-09 | Daimler Benz Ag | Diesel engine operation to suppress nitrogen oxides emission |
JPH1047048A (en) * | 1996-08-02 | 1998-02-17 | Toyota Motor Corp | Emission control device for internal combustion engine |
JP3787913B2 (en) * | 1996-09-17 | 2006-06-21 | 株式会社デンソー | Exhaust gas purification device for internal combustion engine |
JP3426451B2 (en) * | 1996-10-23 | 2003-07-14 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
US5897846A (en) * | 1997-01-27 | 1999-04-27 | Asec Manufacturing | Catalytic converter having a catalyst with noble metal on molecular sieve crystal surface and method of treating diesel engine exhaust gas with same |
FR2764638B1 (en) * | 1997-06-16 | 1999-08-13 | Inst Francais Du Petrole | METHOD AND ASSEMBLY FOR REMOVING NITROGEN OXIDES FROM EXHAUST GASES USING A HEAT EXCHANGER |
DE59807160D1 (en) * | 1997-07-19 | 2003-03-20 | Volkswagen Ag | Method and device for monitoring the de-sulfation in NOx storage catalysts |
JP3799758B2 (en) * | 1997-08-05 | 2006-07-19 | トヨタ自動車株式会社 | Catalyst regeneration device for internal combustion engine |
EP0915244B1 (en) * | 1997-11-10 | 2003-08-06 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust gas purifying apparatus of internal combustion engine |
JP3331935B2 (en) * | 1997-12-04 | 2002-10-07 | トヨタ自動車株式会社 | Compression ignition type internal combustion engine |
DE19801625A1 (en) * | 1998-01-17 | 1999-07-22 | Bosch Gmbh Robert | Monitoring method for NOx storage catalytic convertors |
JP3456401B2 (en) * | 1998-02-12 | 2003-10-14 | 日産自動車株式会社 | Exhaust gas purification device for internal combustion engine |
DE19808382A1 (en) * | 1998-02-27 | 1999-09-02 | Volkswagen Ag | Control of a NOx absorber catalytic converter |
DE19823923C2 (en) * | 1998-05-28 | 2003-04-17 | Siemens Ag | Process for nitrogen oxide reduction in the exhaust gas of an internal combustion engine |
DE19843423A1 (en) * | 1998-09-22 | 2000-03-30 | Siemens Ag | Method and device for the catalytic removal of a pollutant from the exhaust gas of an incineration plant |
US6357226B2 (en) * | 1998-10-22 | 2002-03-19 | Chrysler Corporation | Control system for lean air-fuel ratio NOx catalyst system |
SE519240C2 (en) * | 1998-11-20 | 2003-02-04 | Volvo Personvagnar Ab | Combustion engine arrangements included a heat exchanger to adjust the temperature of exhaust gases to pass a NOx adsorbing catalyst |
FR2787037B1 (en) * | 1998-12-09 | 2002-01-11 | Inst Francais Du Petrole | METHOD AND DEVICE FOR REMOVING NITROGEN OXIDES FROM AN EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE |
US6718756B1 (en) * | 1999-01-21 | 2004-04-13 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust gas purifier for use in internal combustion engine |
DE19903439A1 (en) * | 1999-01-29 | 2000-08-03 | Bosch Gmbh Robert | Method and device for controlling an exhaust gas aftertreatment system |
DE19906344A1 (en) * | 1999-02-17 | 2000-08-24 | Man Nutzfahrzeuge Ag | Process for adding a reductant to an internal combustion engine exhaust gas containing nitrogen oxides uses a correction factor of the change of catalyst charge either from a performance graph or from sensors |
JP3607976B2 (en) * | 1999-03-29 | 2005-01-05 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
DE19931321A1 (en) | 1999-07-07 | 2001-01-18 | Siemens Ag | Method for checking a three-way catalytic converter of an internal combustion engine |
US6305160B1 (en) * | 1999-07-12 | 2001-10-23 | Ford Global Technologies, Inc. | Emission control system |
EP1092856B1 (en) * | 1999-10-12 | 2004-03-17 | Honda Giken Kogyo Kabushiki Kaisha | Exhaust emission control system for internal combustion engine |
DE19963901A1 (en) * | 1999-12-31 | 2001-07-12 | Bosch Gmbh Robert | Method for operating a catalyst of an internal combustion engine |
US6269633B1 (en) * | 2000-03-08 | 2001-08-07 | Ford Global Technologies, Inc. | Emission control system |
US6434930B1 (en) | 2000-03-17 | 2002-08-20 | Ford Global Technologies, Inc. | Method and apparatus for controlling lean operation of an internal combustion engine |
US6487849B1 (en) | 2000-03-17 | 2002-12-03 | Ford Global Technologies, Inc. | Method and apparatus for controlling lean-burn engine based upon predicted performance impact and trap efficiency |
US6477832B1 (en) * | 2000-03-17 | 2002-11-12 | Ford Global Technologies, Inc. | Method for improved performance of a vehicle having an internal combustion engine |
US6860100B1 (en) | 2000-03-17 | 2005-03-01 | Ford Global Technologies, Llc | Degradation detection method for an engine having a NOx sensor |
US6360530B1 (en) | 2000-03-17 | 2002-03-26 | Ford Global Technologies, Inc. | Method and apparatus for measuring lean-burn engine emissions |
US6487850B1 (en) | 2000-03-17 | 2002-12-03 | Ford Global Technologies, Inc. | Method for improved engine control |
US6427437B1 (en) | 2000-03-17 | 2002-08-06 | Ford Global Technologies, Inc. | Method for improved performance of an engine emission control system |
US6629453B1 (en) | 2000-03-17 | 2003-10-07 | Ford Global Technologies, Llc | Method and apparatus for measuring the performance of an emissions control device |
US6499293B1 (en) | 2000-03-17 | 2002-12-31 | Ford Global Technologies, Inc. | Method and system for reducing NOx tailpipe emissions of a lean-burn internal combustion engine |
US6438944B1 (en) | 2000-03-17 | 2002-08-27 | Ford Global Technologies, Inc. | Method and apparatus for optimizing purge fuel for purging emissions control device |
US6539704B1 (en) | 2000-03-17 | 2003-04-01 | Ford Global Technologies, Inc. | Method for improved vehicle performance |
US6374597B1 (en) | 2000-03-17 | 2002-04-23 | Ford Global Technologies, Inc. | Method and apparatus for accessing ability of lean NOx trap to store exhaust gas constituent |
US6327847B1 (en) | 2000-03-17 | 2001-12-11 | Ford Global Technologies, Inc. | Method for improved performance of a vehicle |
US6810659B1 (en) | 2000-03-17 | 2004-11-02 | Ford Global Technologies, Llc | Method for determining emission control system operability |
US6481199B1 (en) | 2000-03-17 | 2002-11-19 | Ford Global Technologies, Inc. | Control for improved vehicle performance |
US6594989B1 (en) | 2000-03-17 | 2003-07-22 | Ford Global Technologies, Llc | Method and apparatus for enhancing fuel economy of a lean burn internal combustion engine |
US6708483B1 (en) | 2000-03-17 | 2004-03-23 | Ford Global Technologies, Llc | Method and apparatus for controlling lean-burn engine based upon predicted performance impact |
US6843051B1 (en) | 2000-03-17 | 2005-01-18 | Ford Global Technologies, Llc | Method and apparatus for controlling lean-burn engine to purge trap of stored NOx |
US6308515B1 (en) | 2000-03-17 | 2001-10-30 | Ford Global Technologies, Inc. | Method and apparatus for accessing ability of lean NOx trap to store exhaust gas constituent |
US6308697B1 (en) | 2000-03-17 | 2001-10-30 | Ford Global Technologies, Inc. | Method for improved air-fuel ratio control in engines |
US6370868B1 (en) | 2000-04-04 | 2002-04-16 | Ford Global Technologies, Inc. | Method and system for purge cycle management of a lean NOx trap |
US6427439B1 (en) | 2000-07-13 | 2002-08-06 | Ford Global Technologies, Inc. | Method and system for NOx reduction |
US6408616B1 (en) | 2000-07-20 | 2002-06-25 | Ford Global Technologies, Inc. | Diesel OBD-II system for detection of degradation of catalyst activity |
US6363713B1 (en) | 2000-07-20 | 2002-04-02 | Ford Global Technologies, Inc. | On-board diagnostics for detecting the operation of diesel emissions control system |
US6389803B1 (en) | 2000-08-02 | 2002-05-21 | Ford Global Technologies, Inc. | Emission control for improved vehicle performance |
JP4491932B2 (en) * | 2000-08-07 | 2010-06-30 | マツダ株式会社 | Engine exhaust purification system |
US6826906B2 (en) | 2000-08-15 | 2004-12-07 | Engelhard Corporation | Exhaust system for enhanced reduction of nitrogen oxides and particulates from diesel engines |
US6691507B1 (en) | 2000-10-16 | 2004-02-17 | Ford Global Technologies, Llc | Closed-loop temperature control for an emission control device |
JP3685052B2 (en) * | 2000-11-30 | 2005-08-17 | 日産自動車株式会社 | Exhaust gas purification device for internal combustion engine |
US6568179B2 (en) * | 2001-03-01 | 2003-05-27 | Engelhard Corporation | Apparatus and method for vehicle emissions control |
DE10113010A1 (en) * | 2001-03-17 | 2002-09-19 | Bosch Gmbh Robert | Process used in a motor vehicle for monitoring exhaust gas treatment system, especially oxidation catalyst, identifies error when operating variable unexpectedly changes in presence of predetermined operating state |
US6449945B1 (en) | 2001-04-18 | 2002-09-17 | Ford Global Technologies, Inc. | Emission control system |
US6487853B1 (en) | 2001-06-19 | 2002-12-03 | Ford Global Technologies. Inc. | Method and system for reducing lean-burn vehicle emissions using a downstream reductant sensor |
US6453666B1 (en) | 2001-06-19 | 2002-09-24 | Ford Global Technologies, Inc. | Method and system for reducing vehicle tailpipe emissions when operating lean |
US6691020B2 (en) | 2001-06-19 | 2004-02-10 | Ford Global Technologies, Llc | Method and system for optimizing purge of exhaust gas constituent stored in an emission control device |
US6546718B2 (en) | 2001-06-19 | 2003-04-15 | Ford Global Technologies, Inc. | Method and system for reducing vehicle emissions using a sensor downstream of an emission control device |
US6694244B2 (en) | 2001-06-19 | 2004-02-17 | Ford Global Technologies, Llc | Method for quantifying oxygen stored in a vehicle emission control device |
US6490860B1 (en) | 2001-06-19 | 2002-12-10 | Ford Global Technologies, Inc. | Open-loop method and system for controlling the storage and release cycles of an emission control device |
US6604504B2 (en) | 2001-06-19 | 2003-08-12 | Ford Global Technologies, Llc | Method and system for transitioning between lean and stoichiometric operation of a lean-burn engine |
US6615577B2 (en) | 2001-06-19 | 2003-09-09 | Ford Global Technologies, Llc | Method and system for controlling a regeneration cycle of an emission control device |
US6467259B1 (en) | 2001-06-19 | 2002-10-22 | Ford Global Technologies, Inc. | Method and system for operating dual-exhaust engine |
US6463733B1 (en) | 2001-06-19 | 2002-10-15 | Ford Global Technologies, Inc. | Method and system for optimizing open-loop fill and purge times for an emission control device |
US6553754B2 (en) | 2001-06-19 | 2003-04-29 | Ford Global Technologies, Inc. | Method and system for controlling an emission control device based on depletion of device storage capacity |
US6502387B1 (en) | 2001-06-19 | 2003-01-07 | Ford Global Technologies, Inc. | Method and system for controlling storage and release of exhaust gas constituents in an emission control device |
US6650991B2 (en) | 2001-06-19 | 2003-11-18 | Ford Global Technologies, Llc | Closed-loop method and system for purging a vehicle emission control |
US6539706B2 (en) | 2001-06-19 | 2003-04-01 | Ford Global Technologies, Inc. | Method and system for preconditioning an emission control device for operation about stoichiometry |
DE10135646A1 (en) * | 2001-07-21 | 2003-02-06 | Ballard Power Systems | Apparatus and method for reducing Stichoxiden in the exhaust gas of an internal combustion engine |
US6742326B2 (en) | 2001-08-09 | 2004-06-01 | Ford Global Technologies, Llc | High efficiency conversion of nitrogen oxides in an exhaust aftertreatment device at low temperature |
US6928359B2 (en) | 2001-08-09 | 2005-08-09 | Ford Global Technologies, Llc | High efficiency conversion of nitrogen oxides in an exhaust aftertreatment device at low temperature |
US6421599B1 (en) * | 2001-08-09 | 2002-07-16 | Ford Global Technologies, Inc. | Control strategy for an internal combustion engine in a hybrid vehicle |
US6698191B2 (en) | 2001-08-09 | 2004-03-02 | Ford Global Technologies, Llc | High efficiency conversion of nitrogen oxides in an exhaust aftertreatment device at low temperature |
US6487852B1 (en) | 2001-09-04 | 2002-12-03 | Ford Global Technologies, Inc. | Method and apparatus for controlling reactant injection into an active lean NOx catalyst |
US7121085B2 (en) * | 2001-09-04 | 2006-10-17 | Ford Global Technologies, Llc | Method and apparatus for controlling hydrocarbon injection into engine exhaust to reduce NOx |
JP2003148198A (en) * | 2001-11-13 | 2003-05-21 | Toyota Motor Corp | Exhaust purification device for internal combustion engine |
US6735938B2 (en) | 2002-06-04 | 2004-05-18 | Ford Global Technologies, Llc | Method to control transitions between modes of operation of an engine |
US7168239B2 (en) * | 2002-06-04 | 2007-01-30 | Ford Global Technologies, Llc | Method and system for rapid heating of an emission control device |
US7032572B2 (en) * | 2002-06-04 | 2006-04-25 | Ford Global Technologies, Llc | Method for controlling an engine to obtain rapid catalyst heating |
US6725830B2 (en) | 2002-06-04 | 2004-04-27 | Ford Global Technologies, Llc | Method for split ignition timing for idle speed control of an engine |
US6736121B2 (en) | 2002-06-04 | 2004-05-18 | Ford Global Technologies, Llc | Method for air-fuel ratio sensor diagnosis |
US6745747B2 (en) | 2002-06-04 | 2004-06-08 | Ford Global Technologies, Llc | Method for air-fuel ratio control of a lean burn engine |
US6568177B1 (en) | 2002-06-04 | 2003-05-27 | Ford Global Technologies, Llc | Method for rapid catalyst heating |
US6736120B2 (en) | 2002-06-04 | 2004-05-18 | Ford Global Technologies, Llc | Method and system of adaptive learning for engine exhaust gas sensors |
US6758185B2 (en) | 2002-06-04 | 2004-07-06 | Ford Global Technologies, Llc | Method to improve fuel economy in lean burn engines with variable-displacement-like characteristics |
US6769398B2 (en) * | 2002-06-04 | 2004-08-03 | Ford Global Technologies, Llc | Idle speed control for lean burn engine with variable-displacement-like characteristic |
US7111450B2 (en) * | 2002-06-04 | 2006-09-26 | Ford Global Technologies, Llc | Method for controlling the temperature of an emission control device |
US6925982B2 (en) | 2002-06-04 | 2005-08-09 | Ford Global Technologies, Llc | Overall scheduling of a lean burn engine system |
US6715462B2 (en) | 2002-06-04 | 2004-04-06 | Ford Global Technologies, Llc | Method to control fuel vapor purging |
US6868827B2 (en) | 2002-06-04 | 2005-03-22 | Ford Global Technologies, Llc | Method for controlling transitions between operating modes of an engine for rapid heating of an emission control device |
US6895747B2 (en) | 2002-11-21 | 2005-05-24 | Ford Global Technologies, Llc | Diesel aftertreatment systems |
US6862879B2 (en) | 2002-11-21 | 2005-03-08 | Ford Global Technologies, Llc | Diesel aftertreatment system |
US6834498B2 (en) * | 2002-11-21 | 2004-12-28 | Ford Global Technologies, Llc | Diesel aftertreatment systems |
US6928806B2 (en) * | 2002-11-21 | 2005-08-16 | Ford Global Technologies, Llc | Exhaust gas aftertreatment systems |
US6761025B1 (en) * | 2002-12-19 | 2004-07-13 | Caterpillar Inc. | Enhanced ammonia feed control for selective catalytic reduction |
DE10301602A1 (en) | 2003-01-17 | 2004-07-29 | Robert Bosch Gmbh | Method and device for operating a dosing unit of a catalyst |
US6871489B2 (en) * | 2003-04-16 | 2005-03-29 | Arvin Technologies, Inc. | Thermal management of exhaust systems |
DE10323247A1 (en) * | 2003-05-22 | 2004-12-09 | Umicore Ag & Co.Kg | Method for operating a drive system from a diesel engine with a diesel oxidation catalyst for exhaust gas purification |
SE526488C2 (en) * | 2003-06-10 | 2005-09-27 | Scania Cv Abp | Method and apparatus for monitoring an SCR catalyst comparing measured and calculated temperature values |
US6925796B2 (en) * | 2003-11-19 | 2005-08-09 | Ford Global Technologies, Llc | Diagnosis of a urea SCR catalytic system |
US20060254260A1 (en) * | 2005-05-16 | 2006-11-16 | Arvinmeritor Emissions Technologies Gmbh | Method and apparatus for piezoelectric injection of agent into exhaust gas for use with emission abatement device |
US7332142B2 (en) * | 2005-06-17 | 2008-02-19 | Emcon Tehnologies Germany (Augsburg) Gmbh | Method and apparatus for bubble injection of agent into exhaust gas for use with emission abatement device |
US7533519B2 (en) * | 2005-11-09 | 2009-05-19 | International Engine Intellectual Property Company, Llc | Three sensor comparison rationality test |
JP4710564B2 (en) * | 2005-11-22 | 2011-06-29 | いすゞ自動車株式会社 | Exhaust gas purification system control method and exhaust gas purification system |
JP4215050B2 (en) | 2005-12-15 | 2009-01-28 | トヨタ自動車株式会社 | Exhaust gas purification system for internal combustion engine |
US8156732B2 (en) * | 2006-03-24 | 2012-04-17 | Fleetguard, Inc. | Apparatus, system, and method for regenerating an exhaust gas treatment device |
JP4428361B2 (en) * | 2006-05-24 | 2010-03-10 | トヨタ自動車株式会社 | Exhaust gas purification system for internal combustion engine |
US7587890B2 (en) * | 2006-08-21 | 2009-09-15 | Cummins Inc. | Reductant injection rate shaping method for regeneration of aftertreatment systems |
JP4733003B2 (en) * | 2006-11-24 | 2011-07-27 | 本田技研工業株式会社 | Exhaust gas purification device for internal combustion engine |
JP2008138522A (en) * | 2006-11-30 | 2008-06-19 | Hitachi Ltd | Method of early warming up catalyst during engine starting, and fuel control device provided with the method |
JP5121240B2 (en) * | 2007-02-02 | 2013-01-16 | ボッシュ株式会社 | Failure diagnosis device for exhaust purification system and failure diagnosis method for exhaust purification system |
JP4665924B2 (en) * | 2007-03-16 | 2011-04-06 | トヨタ自動車株式会社 | Exhaust gas purification system for internal combustion engine |
US20090139210A1 (en) * | 2007-11-30 | 2009-06-04 | Rodrigo Lain Sanchez | Gas concentration sensor drift and failure detection system |
US9631538B2 (en) * | 2009-07-10 | 2017-04-25 | GM Global Technology Operations LLC | Identifying ammonia slip conditions in a selective catalytic reduction application |
KR101251517B1 (en) * | 2010-12-09 | 2013-04-05 | 현대자동차주식회사 | Exhaust gas post processing system |
US20120222399A1 (en) * | 2011-03-03 | 2012-09-06 | GM Global Technology Operations LLC | Oxidation catalyst burn threshold adjustment to avoid quenching |
JP6025606B2 (en) * | 2013-02-22 | 2016-11-16 | 三菱重工業株式会社 | Fuel cetane number estimation method and apparatus |
KR101518941B1 (en) * | 2013-12-23 | 2015-05-11 | 현대자동차 주식회사 | Method of correcting control logic of selective catalytic reduction catalyst and exhaust system using the same |
US10920645B2 (en) * | 2018-08-02 | 2021-02-16 | Ford Global Technologies, Llc | Systems and methods for on-board monitoring of a passive NOx adsorption catalyst |
US10865689B2 (en) * | 2018-09-21 | 2020-12-15 | Cummins Inc. | Systems and methods for diagnosis of NOx storage catalyst |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5129260B2 (en) * | 1972-09-14 | 1976-08-24 | ||
GB1530343A (en) * | 1975-03-31 | 1978-10-25 | Nissan Motor | Air-fuel mixture supply device of internal combustion engine |
JPS62223427A (en) * | 1986-03-20 | 1987-10-01 | Nissan Motor Co Ltd | Air-fuel ratio controller |
JPS62251415A (en) * | 1986-04-23 | 1987-11-02 | Toyota Motor Corp | Exhaust gas purifying device for internal combustion engine |
DE3713169A1 (en) * | 1987-04-17 | 1988-11-03 | Bayer Ag | METHOD AND DEVICE FOR REDUCING NITROGEN OXIDES |
JP2659720B2 (en) * | 1987-09-11 | 1997-09-30 | 三菱重工業株式会社 | Exhaust heat exchanger |
JP2660411B2 (en) * | 1987-11-18 | 1997-10-08 | トヨタ自動車株式会社 | Method for reducing and removing nitrogen oxides in exhaust gas |
JP2660412B2 (en) * | 1987-11-19 | 1997-10-08 | トヨタ自動車株式会社 | Exhaust gas purification method |
JP2593506B2 (en) * | 1988-02-22 | 1997-03-26 | 三菱自動車工業株式会社 | Catalyst deterioration diagnosis device for internal combustion engine |
JP3150679B2 (en) * | 1989-07-20 | 2001-03-26 | トヨタ自動車株式会社 | Air-fuel ratio control device for internal combustion engine |
EP0433772B1 (en) * | 1989-12-06 | 1995-03-08 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification system for an internal combustion engine |
JP2850547B2 (en) * | 1990-02-09 | 1999-01-27 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
-
1992
- 1992-01-31 US US07/829,212 patent/US5201802A/en not_active Expired - Fee Related
- 1992-02-03 EP EP92300896A patent/EP0498598B1/en not_active Expired - Lifetime
- 1992-02-03 DE DE69202163T patent/DE69202163T2/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN, vol. 12, no. 126 (M-687), 19th April 1988; & JP-A-62 251 415 (TOYOTA MOTOR CORP.) 02-11-1987 * |
PATENT ABSTRACTS OF JAPAN, vol. 13, no. 528 (M-898), 24th November 1989; & JP-A-1 216 009 (MITSUBISHI MOTORS CORP.) 30-08-1989 * |
Also Published As
Publication number | Publication date |
---|---|
DE69202163T2 (en) | 1995-09-28 |
EP0498598A1 (en) | 1992-08-12 |
US5201802A (en) | 1993-04-13 |
DE69202163D1 (en) | 1995-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0498598B1 (en) | Exhaust gas purification system for an internal combustion engine | |
EP0503882B1 (en) | Exhaust gas purification system for an internal combustion engine | |
EP0490550B1 (en) | Control apparatus for an internal combustion engine | |
US6148612A (en) | Engine exhaust gas control system having NOx catalyst | |
US6701707B1 (en) | Exhaust emission diagnostics | |
EP0822323B1 (en) | An exhaust emission purification apparatus and method for an internal combustion engine | |
US6983589B2 (en) | Diesel aftertreatment systems | |
US7134273B2 (en) | Exhaust emission control and diagnostics | |
US5483795A (en) | Exhaust purification device of internal combustion engine | |
US6438943B1 (en) | In-cylinder injection type internal combustion engine | |
US5564283A (en) | Exhaust emission control system in internal combustion engine | |
JP3613676B2 (en) | Exhaust gas purification device for internal combustion engine | |
US20050252197A1 (en) | Diesel aftertreatment systems | |
US5737917A (en) | Device for judging deterioration of catalyst of engine | |
US20050223698A1 (en) | Exhaust gas cleaning device | |
JP3508744B2 (en) | Exhaust gas purification device for internal combustion engine | |
US6449945B1 (en) | Emission control system | |
US5501074A (en) | Exhaust gas purifying system | |
JP3855444B2 (en) | Reducing agent supply device for internal combustion engine | |
JP2962127B2 (en) | Control device for internal combustion engine | |
US20220186643A1 (en) | Exhaust purification system of internal combustion engine | |
JP2962089B2 (en) | Catalyst deterioration diagnosis device for internal combustion engine | |
JP4888368B2 (en) | Control device for internal combustion engine | |
JPH04255521A (en) | Exhaust gas purifier for internal combustion engine | |
US11434806B2 (en) | Catalyst deterioration detection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19920212 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 19940302 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 69202163 Country of ref document: DE Date of ref document: 19950601 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19991231 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000202 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20000210 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010203 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011201 |