[go: up one dir, main page]

EP0438347A1 - Method and apparatus for controlling the bedding of a post - Google Patents

Method and apparatus for controlling the bedding of a post Download PDF

Info

Publication number
EP0438347A1
EP0438347A1 EP91400083A EP91400083A EP0438347A1 EP 0438347 A1 EP0438347 A1 EP 0438347A1 EP 91400083 A EP91400083 A EP 91400083A EP 91400083 A EP91400083 A EP 91400083A EP 0438347 A1 EP0438347 A1 EP 0438347A1
Authority
EP
European Patent Office
Prior art keywords
mass
post
transfer function
foundation
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP91400083A
Other languages
German (de)
French (fr)
Inventor
Philippe Lepert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Etat Francais
Original Assignee
Etat Francais
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Etat Francais filed Critical Etat Francais
Publication of EP0438347A1 publication Critical patent/EP0438347A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/317Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by electromagnetic means
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0032Generation of the force using mechanical means
    • G01N2203/0039Hammer or pendulum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0218Calculations based on experimental data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0244Tests performed "in situ" or after "in situ" use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0244Tests performed "in situ" or after "in situ" use
    • G01N2203/0246Special simulation of "in situ" conditions, scale models or dummies

Definitions

  • the invention relates to methods and devices for checking the sealing of a pole and in particular of an electric pole.
  • the subject of the invention is methods and devices for determining the mass M of a foundation massif supporting a post of known mass m, and the stiffness K of the ground on this premise.
  • the foundation of a post is carried out by pouring a concrete mass in a dig. During this operation, the post is kept vertical in the center of the excavation.
  • the excavation can be of insufficient size, and / or it can be badly cleaned.
  • the concrete block will be undersized, and in the second case, the connection between the concrete block and the soil in place will be very poor.
  • These two faults will reduce the stability of the post.
  • vibrational analysis methods for structures according to which a structure is mechanically excited under determined and perfectly reproducible conditions, each time the mechanical excitation and mechanical response signals of the various elements of the structure are measured, these are treated measurements to deduce therefrom a transfer function which is a relationship between the mechanical response signals and the mechanical excitation signals and these measurements are repeated at time intervals.
  • the mass foundation of mass M is represented by a system with a degree of freedom, comprising a rigid mass M resting on a spring of stiffness K in parallel with a damper of coefficient C.
  • the latter two elements represent the action of the ground in which the concrete block is embedded: the spring diagrams the elasticity of this ground, while the shock absorber translates the radiation of mechanical energy of which it is the seat.
  • the conventional impulse method described above can no longer be used to determine the mass M of the mass and the stiffness K.
  • the aim of the present invention is to propose a method for determining the mass M of a foundation block supporting a post of known mass m, and the stiffness of the ground / block connection K, with a view to checking, a posteriori, the sealing. pole in the ground.
  • the invention achieves its object by the fact that: said mass is mechanically excited by applying to it mechanical excitation signals f (t) along a vertical axis, the mechanical excitation signals f (t) and the mechanical response signals x (t) are simultaneously measured along vertical axes for a period sufficient for said signals to be fully amortized, a Fourier transformation is applied to the mechanical excitation signals f (t) and to the mechanical response signals x (t), the transfer function T (w) is calculated by dividing the Fourier transform of the mechanical response signal by the Fourier transform of the mechanical excitation signal, said transfer function having peaks corresponding respectively to the frequency of resonance of the solid mass when heaving and to the frequency of resonance of the post in the axial vibration mode, we seek the theoretical curve closest to the calculated transfer function and which materializes the transfer function of a system with two degrees of freedom, respectively modeling the mass of mass M and the column of mass m, we identify the constants (residue r1, resonance w1 and w2 and damping) of this
  • said vertical shock is applied using an impactor (hammer or falling mass) instrumented by a force sensor.
  • an impactor hammer or falling mass instrumented by a force sensor.
  • the mechanical response signals of the massif are measured by measuring the speed or the vertical acceleration of the massif at several points close to the base of the post and by averaging the measured speeds or accelerations.
  • the speed or vertical acceleration of the massif is measured using a motion sensor (geophone or accelerometer).
  • the Fourier transforms are averaged for the mechanical excitation and speed (or acceleration) signals measured during several successive shocks before calculating the transfer function.
  • the values of the measurements of mechanical excitation and mechanical response signals are stored on a magnetic medium, the values stored by a computer are processed and the nearest theoretical curve is sought using software known as "d 'modal analysis or parametric identification'.
  • An objective of the present invention is also to propose a relatively light and inexpensive device which allows the implementation of the method.
  • the device according to the invention is characterized in that it comprises: an impactor (hammer or falling mass) intended to be used to give vertical impacts on the foundation mass and instrumented by a force sensor measuring the force of the impact, at least one movement sensor (geophone or accelerometer) intended to measure the speed or acceleration of vertical displacement of the foundation mass under the action of the hammer shock, a microcomputer connected to the force sensor of the impactor and to the motion sensor via interfaces, digitizing the signals received from them corresponding to the force of the shock of the impactor and at the speed or acceleration of movement of the solid as a function of time, and capable of calculating the mass M of the foundation solid and the stiffness of the soil / solid mass K using appropriate programs.
  • an impactor hammer or falling mass
  • a force sensor measuring the force of the impact
  • at least one movement sensor geophone or accelerometer
  • a microcomputer connected to the force sensor of the impactor and to the motion sensor via interfaces, digitizing the signals received from them corresponding to the force of the shock of the impact
  • An advantage of the invention lies in the fact that the elements of the device exist commercially and that the assembly forms a compact assembly, of low weight and easy to transport by an operator.
  • Figure 1 schematically shows a foundation block to support a post, properly made.
  • Figure 2 shows, on the contrary, a mass of concrete poured into an incorrect excavation.
  • FIG. 3 represents the system with two degrees of freedom modeling the assembly constituted by the solid foundation and its post.
  • Figure 4 is a top view of the foundation block showing the preferred locations of the measuring equipment.
  • FIG. 5 gives the appearance of the transfer function calculated for a healthy solid mass.
  • Figure 6 shows the calibration of the theoretical curve of the system with two degrees of freedom.
  • Figure 7 shows the shape of the transfer function calculated for a defective bed.
  • Figure 1 shows a pole 1, which can be an electric pole or a cable car support pole for example, whose foot 2 is fixed in the ground 3 using a concrete block 4 poured into a excavation 5
  • the quality of the sealing of the post 1 is a function of the volume or of the mass M of the block 4 and of the quality of connection between the ground 3 and the block 4.
  • Figure 2 shows an example of post sealing which is carried out by a solid poured into an excavation 5 too small and poorly cleaned. Visual verification of the structure after completion does not make it possible to ensure that the mass M of the massif 4 conforms to the specifications.
  • FIG. 3 shows the diagram of a system 6 with two degrees of freedom which models as correctly as possible the post 1 of known mass m and its foundation 4.
  • the first stage of this system 6 comprises a rigid body 7 of mass M which is connected to the ground 3 by a spring 8 of stiffness K and a damper 9 of coefficient C.
  • the spring 8 shows diagrammatically the elasticity of the ground 3 and the damper 9 reflects the radiation of mechanical energy of which it is the seat.
  • the second stage of this system 6 comprises a second rigid body 10 of mass m which is connected to the rigid body 7 of mass M by a spring 11 of stiffness k.
  • the first stage models the concrete mass 4 embedded in the ground 3 and the second stage makes it possible to represent the fundamental mode of axial vibration of the post 1.
  • the principle of the invention consists in calculating the experimental transfer function T (w) obtained by dividing the Fourier transform of the mechanical response signal x (t) by the Fourier transform of the shock signal f (t) applied to the upper face 12 of the foundation mass 4, at draw the graph of this transfer function, find the curve of the theoretical transfer function of a system with two degrees of freedom which is closest to the curve of the transfer function resulting from experience, determine the constants r1, w1 and w2 of this theoretical transfer function and calculating the mechanical values M and K of the foundation mass. It is naturally necessary to measure the shock signals f (t) and the mechanical response signals x (t) during the duration of the experiment. The duration of the experiment is such that the mechanical response signals x (t) are completely damped at the end of the measurements.
  • the device according to the invention comprises an impactor which can advantageously be a hammer 14 instrumented by a force sensor, which is commonly found on the market and which will not be described further in the present description.
  • the hammer 14 is connected by a suitable interface 15 to a microcomputer 16 which receives information concerning the shock signals f (t).
  • the mechanical response to the shock applied by the hammer 14 on the foundation block 4 is measured by a plurality of motion sensors, geophones 17 for example, also connected to the microcomputer 16 via an interface 18.
  • Each geophone 17 is of known type and consists of a seismic speed sensor.
  • the microcomputer 16 is provided with means for storing data and programs. One of these so-called "modal analysis or parametric identification" programs makes it possible to search for the theoretical transfer function closest to the transfer function calculated from the data measured during the experiment.
  • the hammer 14 can be replaced by a falling mass instrumented by a force sensor.
  • the geophones 14 can also be replaced by accelerometers which measure the acceleration of the movement of the massif 4 under the action of shocks.
  • the first of these posts was properly sealed in the ground, the excavation having been carried out under careful conditions.
  • the second post on the contrary was badly sealed, the excavation having been deliberately carried out too small and badly cleaned.
  • the volume of the excavations was measured before they were filled with concrete, and the quantity of concrete poured into each excavation was weighed.
  • the weight of concrete poured into the properly completed excavation was evaluated at 23 tonnes (10 m3), compared to 9.2 tonnes poured into the deliberately bored excavation (4 m3).
  • the method described above was applied to the two massifs.
  • FIG. 5 shows the transfer function 20 measured between the vertical response of the sound body along its axis and the vertical shock given at point C1.
  • residue r1 associated with the first resonance was calculated by setting the theoretical curve 21 of the transfer function of a system with two degrees of freedom on the transfer function 20 as we see in FIG. 6.
  • the residue r1 of this theoretical curve 21 is 3.92 10 ⁇ 5 m / s / N.
  • the post having a mass of 2.8 tonnes, the calculation according to the proposed process provides for the solid mass a mass equal to 21920 kg instead of the expected 23 tonnes and a stiffness K of 1.10 109 N / m.
  • FIG. 7 finally presents the transfer function 22 measured between the vertical response of the defective block along its axis and the vertical shock given in C1.
  • the residue associated with the first resonance is 7.88 10 ⁇ 5 m / s / N.
  • the proposed method is valid for the control of the foundation solid masses 4 of posts 1. It makes it possible to quickly determine the mass M of the solid mass, and it provides an indication of the quality of the solid / soil connection.
  • the weight of the device used is close to 10 kg, including the acquisition and processing unit.
  • the control can be carried out by an operator alone, in a time less than a quarter of an hour per post, installation and folding of the sensors included.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Mining & Mineral Resources (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

La masse M du massif de fondation (4) supportant le poteau (1) et la raideur de liaison sol/massif K déterminés en rapprochant la fonction de transfert T(w) calculée à partir de la mesure d'un choc vertical f(t) appliqué au pied (2) du poteau (1) et de la mesure des vibrations verticales x(t) correspondantes du massif (4), de la fonction de transfert théorique (21) d'un système (6) à deux degrés de liberté, à l'aide d'un logiciel dit d'analyse modale.

Figure imga0001
The mass M of the foundation mass (4) supporting the post (1) and the stiffness of the soil / solid mass K determined by comparing the transfer function T (w) calculated from the measurement of a vertical shock f (t ) applied to the base (2) of the post (1) and to the measurement of the corresponding vertical vibrations x (t) of the bed (4), of the theoretical transfer function (21) of a system (6) with two degrees of freedom, using a so-called modal analysis software.
Figure imga0001

Description

L'invention a pour objet des procédés et des dispositifs pour vérifier le scellement d'un poteau et notamment d'un poteau électrique.The invention relates to methods and devices for checking the sealing of a pole and in particular of an electric pole.

Plus précisément l'invention a pour objet des procédés et des dispositifs pour déterminer la masse M d'un massif de fondation supportant un poteau de masse m connue, et la raideur K du sol sur ce massif.More specifically, the subject of the invention is methods and devices for determining the mass M of a foundation massif supporting a post of known mass m, and the stiffness K of the ground on this massif.

La fondation d'un poteau, électrique par exemple, est réalisée en coulant un massif de béton dans une fouille. Pendant cette opération, le poteau est maintenu vertical au centre de la fouille. Parmi d'autres, deux malfaçons peuvent entacher la réalisation de cette fondation: la fouille peut être de taille insuffisante, et/ou elle peut être mal curée. Dans le premier cas le massif de béton sera sous-dimensionné, et dans le second cas, la liaison entre le massif de béton et le sol en place sera très mauvaise. Ces deux malfaçons réduiront la stabilité du poteau. Naturellement, on peut contrôler la qualité de la fouille avant de couler le béton et mesurer le poids ou le volume du béton coulé pour savoir si la fondation est correctement réalisée. Ceci nécessite la présence d'une personne de confiance lors de la réalisation des travaux et ce n'est pas toujours possible. De plus, il peut être bon de vérifier a posteriori, après le scellement du poteau, que la liaison entre le massif et le sol reste de bonne qualité dans le temps.The foundation of a post, electric for example, is carried out by pouring a concrete mass in a dig. During this operation, the post is kept vertical in the center of the excavation. Among others, two faults can taint the realization of this foundation: the excavation can be of insufficient size, and / or it can be badly cleaned. In the first case the concrete block will be undersized, and in the second case, the connection between the concrete block and the soil in place will be very poor. These two faults will reduce the stability of the post. Of course, we can check the quality of the excavation before pouring the concrete and measure the weight or volume of the concrete poured to find out if the foundation is correctly made. This requires the presence of a support person during the completion of the work and this is not always possible. In addition, it may be good to check a posteriori, after the post has been sealed, that the connection between the massif and the ground remains of good quality over time.

On connaît des procédés dits d'analyse vibratoire des structures selon lesquels on excite mécaniquement une structure dans des conditions déterminées et parfaitement reproductibles, on mesure chaque fois les signaux d'excitation mécanique et de réponse mécanique des divers éléments de la structure, on traite ces mesures pour en déduire une fonction de transfert qui est un rapport entre les signaux de réponse mécanique et les signaux d'excitation mécanique et on répète ces mesures à intervalles de temps.There are known so-called vibrational analysis methods for structures according to which a structure is mechanically excited under determined and perfectly reproducible conditions, each time the mechanical excitation and mechanical response signals of the various elements of the structure are measured, these are treated measurements to deduce therefrom a transfer function which is a relationship between the mechanical response signals and the mechanical excitation signals and these measurements are repeated at time intervals.

Ces procédés permettent de savoir si des fissures sont apparues dans la structure. Ils permettraient probablement de savoir si la liaison entre le massif et le sol ne se modifie pas dans le temps, mais ils ne permettent pas de connaître, a posteriori, la masse M du massif en béton portant un poteau de masse m connue.These methods make it possible to know whether cracks have appeared in the structure. They would probably make it possible to know if the connection between the solid mass and the ground does not change over time, but they do not make it possible to know, a posteriori, the mass M of the concrete solid bearing a post of known mass m.

En effet dans la méthode impulsionnelle classique, le massif de fondation de masse M est représenté par un système à un degré de liberté, comprenant une masse rigide M reposant sur un ressort de raideur K en parallèle avec un amortisseur de coefficient C. Ces deux derniers éléments représentent l'action du sol dans lequel est encastré le massif de béton: le ressort schématise l'élasticité de ce sol, alors que l'amortisseur traduit le rayonnement d'énergie mécanique dont il est le siège. En donnant un choc vertical f(t) au centre de la masse et en mesurant la réponse x(t) de celle-ci, au même endroit et selon la même direction, on peut calculer la fonction de transfert du système à un degré de liberté et en extraire très facilement les paramètres M, C et K.Indeed, in the conventional impulse method, the mass foundation of mass M is represented by a system with a degree of freedom, comprising a rigid mass M resting on a spring of stiffness K in parallel with a damper of coefficient C. The latter two elements represent the action of the ground in which the concrete block is embedded: the spring diagrams the elasticity of this ground, while the shock absorber translates the radiation of mechanical energy of which it is the seat. By giving a vertical shock f (t) at the center of the mass and by measuring the response x (t) of it, in the same place and in the same direction, we can calculate the transfer function of the system at a degree of freedom and very easily extract the parameters M, C and K.

Mais dans le cas où le massif supporte un poteau de masse m, on remarque que la fonction de transfert présente deux pics.But in the case where the massif supports a pole of mass m, we notice that the transfer function has two peaks.

La méthode impulsionnelle classique décrite ci-dessus ne peut plus être utilisée pour déterminer la masse M du massif et la raideur K.The conventional impulse method described above can no longer be used to determine the mass M of the mass and the stiffness K.

Le but de la présente invention est de proposer un procédé pour déterminer la masse M d'un massif de fondation supportant un poteau de masse m connue, et la raideur de liaison sol/massif K, en vue de contrôler, a posteriori, le scellement du poteau dans le sol.The aim of the present invention is to propose a method for determining the mass M of a foundation block supporting a post of known mass m, and the stiffness of the ground / block connection K, with a view to checking, a posteriori, the sealing. pole in the ground.

L'invention atteint son but par le fait que:
on excite mécaniquement ledit massif en lui appliquant des signaux d'excitation mécanique f(t) selon un axe vertical,
on mesure simultanément les signaux d'excitation mécanique f(t) et les signaux de réponse mécanique x(t) selon des axes verticaux pendant une durée suffisante pour que lesdits signaux soient complètement amortis,
on applique aux signaux d'excitation mécanique f(t) et aux signaux de réponse mécanique x(t) une transformation de Fourier,
on calcule la fonction de transfert T(w) en divisant la transformée de Fourier du signal de réponse mécanique par la transformée de Fourier du signal d'excitation mécanique,
ladite fonction de transfert présentant des pics correspondant respectivement à la fréquence de résonnance du massif au pilonnement et à la fréquence de résonnance du poteau au mode de vibration axiale,
on recherche la courbe théorique la plus proche de la fonction de transfert calculée et qui matérialise la fonction de transfert d'un système à deux degrés de liberté, modélisant respectivement le massif de masse M et le poteau de masse m,
on identifie les constantes (résidu r1, résonnance w1 et w2 et amortissement) de cette courbe théorique,
on détermine la masse M du massif de fondation à l'aide de la formule approximative: M = 1/r1 -(1 - (w1/w2)²)⁻²m

Figure imgb0001
et on détermine la raideur de liaison sol/massif K à l'aide de la formule exacte: K = M(w1²+W2²) / 2-0.5 |M²(W1²-W2²)² - 4w1²w2²Mm| 0.5
Figure imgb0002
formule à laquelle on pourra avantageusement substituer, dans les cas usuels, la formule approchée: K = M w1²
Figure imgb0003
The invention achieves its object by the fact that:
said mass is mechanically excited by applying to it mechanical excitation signals f (t) along a vertical axis,
the mechanical excitation signals f (t) and the mechanical response signals x (t) are simultaneously measured along vertical axes for a period sufficient for said signals to be fully amortized,
a Fourier transformation is applied to the mechanical excitation signals f (t) and to the mechanical response signals x (t),
the transfer function T (w) is calculated by dividing the Fourier transform of the mechanical response signal by the Fourier transform of the mechanical excitation signal,
said transfer function having peaks corresponding respectively to the frequency of resonance of the solid mass when heaving and to the frequency of resonance of the post in the axial vibration mode,
we seek the theoretical curve closest to the calculated transfer function and which materializes the transfer function of a system with two degrees of freedom, respectively modeling the mass of mass M and the column of mass m,
we identify the constants (residue r1, resonance w1 and w2 and damping) of this theoretical curve,
the mass M of the foundation mass is determined using the approximate formula: M = 1 / r1 - (1 - (w1 / w2) ²) ⁻²m
Figure imgb0001
and the stiffness of the soil / solid mass K is determined using the exact formula: K = M (w1² + W2²) / 2-0.5 | M² (W1²-W2²) ² - 4w1²w2²Mm | 0.5
Figure imgb0002
formula which can advantageously be substituted, in usual cases, the approximate formula: K = M w1²
Figure imgb0003

Il a été en effet constaté qu'il est plus correct de représenter le poteau et son massif de fondation par un système à deux degrés de liberté. L'étage inférieur du système modélise le massif de béton encastré dans le sol, alors que l'étage supérieur permet de représenter le mode fondamental de vibration axiale du poteau lui-même. L'originalité de l'invention consiste à retenir ce modèle à deux degrés de liberté pour l'interprétation des mesures et la détermination de la masse M du massif et de la raideur de liaison sol/massif K.It has in fact been found that it is more correct to represent the post and its foundation mass by a system with two degrees of freedom. The lower stage of the system models the concrete mass embedded in the ground, while the upper stage makes it possible to represent the fundamental mode of axial vibration of the post itself. The originality of the invention consists in retaining this model with two degrees of freedom for the interpretation of the measurements and the determination of the mass M of the massif and of the stiffness of the soil / massif K.

De préférence, on applique le choc vertical sur la face supérieure du massif de fondation près du pied du poteau.Preferably, apply the vertical shock on the face top of the foundation mass near the base of the post.

Avantageusement, on applique ledit choc vertical à l'aide d'un impacteur (marteau ou masse tombante) instrumenté par un capteur de force.Advantageously, said vertical shock is applied using an impactor (hammer or falling mass) instrumented by a force sensor.

Avantageusement on mesure les signaux de réponse mécanique du massif en mesurant la vitesse ou l'accélération verticale du massif en plusieurs points voisins du pied du poteau et en faisant la moyenne des vitesses ou accélérations mesurées. On mesure la vitesse ou l'accélération verticale du massif à l'aide d'un capteur de mouvement (géophone ou accéléromètre).Advantageously, the mechanical response signals of the massif are measured by measuring the speed or the vertical acceleration of the massif at several points close to the base of the post and by averaging the measured speeds or accelerations. The speed or vertical acceleration of the massif is measured using a motion sensor (geophone or accelerometer).

De manière à éliminer tous les bruits, on fait la moyenne des transformées de Fourier des signaux d'excitation mécanique et de vitesse (ou d'accélération) mesurés lors de plusieurs chocs successifs avant de calculer la fonction de transfert.In order to eliminate all the noises, the Fourier transforms are averaged for the mechanical excitation and speed (or acceleration) signals measured during several successive shocks before calculating the transfer function.

Avantageusement on stocke les valeurs des mesures de signaux d'excitation mécanique et de réponse mécanique sur un support magnétique, on traite les valeurs stockées par un ordinateur et on cherche la courbe théorique la plus proche à l'aide d'un logiciel dit "d'analyse modale ou d'identification paramétrique".Advantageously, the values of the measurements of mechanical excitation and mechanical response signals are stored on a magnetic medium, the values stored by a computer are processed and the nearest theoretical curve is sought using software known as "d 'modal analysis or parametric identification'.

Un objectif de la présente invention est également de proposer un dispositif relativement léger et peu coûteux qui permette la mise en oeuvre du procédé.An objective of the present invention is also to propose a relatively light and inexpensive device which allows the implementation of the method.

Le dispositif selon l'invention est caractérisé en ce qu'il comporte:
un impacteur (marteau ou masse tombante) destiné à être utilisé pour donner des chocs verticaux sur le massif de fondation et instrumenté par un capteur de force mesurant la force du choc, au moins un capteur de mouvement (géophone ou accéléromètre) destiné à mesurer la vitesse ou l'accélération de déplacement vertical du massif de fondation sous l'action du choc du marteau, un micro-ordinateur relié au capteur de force de l'impacteur et au capteur de mouvement par l'intermédiaire d'interfaces, numérisant les signaux reçus de ceux-ci correspondant à la force du choc de l'impacteur et à la vitesse ou accélération de déplacement du massif en fonction du temps, et susceptible de calculer la masse M du massif de fondation et la raideur de liaison sol/massif K à l'aide de programmes appropriés.
The device according to the invention is characterized in that it comprises:
an impactor (hammer or falling mass) intended to be used to give vertical impacts on the foundation mass and instrumented by a force sensor measuring the force of the impact, at least one movement sensor (geophone or accelerometer) intended to measure the speed or acceleration of vertical displacement of the foundation mass under the action of the hammer shock, a microcomputer connected to the force sensor of the impactor and to the motion sensor via interfaces, digitizing the signals received from them corresponding to the force of the shock of the impactor and at the speed or acceleration of movement of the solid as a function of time, and capable of calculating the mass M of the foundation solid and the stiffness of the soil / solid mass K using appropriate programs.

Un avantage de l'invention réside dans le fait que les éléments du dispositif existent dans le commerce et que l'ensemble forme un ensemble peu encombrant, de faible poids et facile à transporter par un opérateur.An advantage of the invention lies in the fact that the elements of the device exist commercially and that the assembly forms a compact assembly, of low weight and easy to transport by an operator.

La description suivante se réfère aux dessins annexés qui représentent, sans aucun caractère limitatif, un exemple de réalisation et d'utilisation d'un dispositif selon l'invention.The following description refers to the appended drawings which represent, without any limiting nature, an example of embodiment and use of a device according to the invention.

La figure 1 représente schématiquement un massif de fondation pour supporter un poteau, correctement réalisé.Figure 1 schematically shows a foundation block to support a post, properly made.

La figure 2 représente au contraire un massif de béton coulé dans une fouille incorrecte.Figure 2 shows, on the contrary, a mass of concrete poured into an incorrect excavation.

La figure 3 représente le système à deux degrés de liberté modélisant l'ensemble constitué par le massif de fondation et son poteau.FIG. 3 represents the system with two degrees of freedom modeling the assembly constituted by the solid foundation and its post.

La figure 4 est une vue du dessus du massif de fondation montrant les emplacements préférentiels des équipements de mesure.Figure 4 is a top view of the foundation block showing the preferred locations of the measuring equipment.

La figure 5 donne l'allure de la fonction de transfert calculée pour un massif sain.FIG. 5 gives the appearance of the transfer function calculated for a healthy solid mass.

La figure 6 montre le calage de la courbe théorique du système à deux degrés de liberté.Figure 6 shows the calibration of the theoretical curve of the system with two degrees of freedom.

La figure 7 montre l'allure de la fonction de transfert calculée pour un massif défectueux.Figure 7 shows the shape of the transfer function calculated for a defective bed.

La figure 1 représente un poteau 1, qui peut être un poteau électrique ou un poteau de support de téléphérique par exemple, dont le pied 2 est fixé dans le sol 3 à l'aide d'un massif en béton 4 coulé dans une fouille 5. La qualité du scellement du poteau 1 est fonction du volume ou de la masse M du massif 4 et de la qualité de liaison entre le sol 3 et le massif 4.Figure 1 shows a pole 1, which can be an electric pole or a cable car support pole for example, whose foot 2 is fixed in the ground 3 using a concrete block 4 poured into a excavation 5 The quality of the sealing of the post 1 is a function of the volume or of the mass M of the block 4 and of the quality of connection between the ground 3 and the block 4.

La figure 2 montre un exemple de scellement de poteau qui est réalisé par un massif coulé dans une fouille 5 trop petite et mal curée. La vérification visuelle de l'ouvrage après réalisation ne permet pas de s'assurer que la masse M du massif 4 est conforme au cahier des charges.Figure 2 shows an example of post sealing which is carried out by a solid poured into an excavation 5 too small and poorly cleaned. Visual verification of the structure after completion does not make it possible to ensure that the mass M of the massif 4 conforms to the specifications.

La figure 3 montre le schéma d'un système 6 à deux degrés de liberté qui modélise le plus correctement possible le poteau 1 de masse m connue et sa fondation 4.FIG. 3 shows the diagram of a system 6 with two degrees of freedom which models as correctly as possible the post 1 of known mass m and its foundation 4.

Le premier étage de ce système 6 comprend un corps rigide 7 de masse M qui est relié au sol 3 par un ressort 8 de raideur K et un amortisseur 9 de coefficient C. Le ressort 8 schématise l'élasticité du sol 3 et l'amortisseur 9 traduit le rayonnement d'énergie mécanique dont il est le siège.The first stage of this system 6 comprises a rigid body 7 of mass M which is connected to the ground 3 by a spring 8 of stiffness K and a damper 9 of coefficient C. The spring 8 shows diagrammatically the elasticity of the ground 3 and the damper 9 reflects the radiation of mechanical energy of which it is the seat.

Le deuxième étage de ce système 6 comprend un deuxième corps rigide 10 de masse m qui est relié au corps rigide 7 de masse M par un ressort 11 de raideur k.The second stage of this system 6 comprises a second rigid body 10 of mass m which is connected to the rigid body 7 of mass M by a spring 11 of stiffness k.

Le premier étage modélise le massif de béton 4 encastré dans le sol 3 et le deuxième étage permet de représenter le mode fondamental de vibration axiale du poteau 1.The first stage models the concrete mass 4 embedded in the ground 3 and the second stage makes it possible to represent the fundamental mode of axial vibration of the post 1.

En donnant un choc vertical f(t) au centre du corps rigide 7 et en mesurant la réponse mécanique x(t) de ce dernier, au même endroit et selon la même direction, on peut calculer la fonction de transfert T(w) de ce système 6 à deux degrés de liberté. Cette fonction de transfert idéale présente deux pics de fréquence w1 et w2 qui correspondent, respectivement, à la fréquence propre de résonnance w1 du massif de fondation 4 de masse M dans un mouvement de pilonnement, et à la fréquence propre de résonnance w2 du mode fondamental de vibration axiale du poteau 1. Cette fonction de transfert idéale est caractérisée par des constantes telles que le résidu r1 associé à la fréquence w1 et les fréquences w1 et w2.By giving a vertical shock f (t) to the center of the rigid body 7 and by measuring the mechanical response x (t) of the latter, in the same place and in the same direction, we can calculate the transfer function T (w) of this system 6 has two degrees of freedom. This ideal transfer function presents two peaks of frequency w1 and w2 which correspond, respectively, to the natural frequency of resonance w1 of the solid mass of foundation 4 of mass M in a pounding movement, and to the natural frequency of resonance w2 of the fundamental mode of axial vibration of the pole 1. This ideal transfer function is characterized by constants such as the residue r1 associated with the frequency w1 and the frequencies w1 and w2.

On démontre que lorsque l'écart entre w1 et w2 est important, on peut relier les caractéristiques mécaniques M et K de l'ensemble massif+sol par les relations approximatives: 1/r1 = M+(1 - (w1/w2)²)⁻²m

Figure imgb0004
et K = M w1²
Figure imgb0005
We show that when the difference between w1 and w2 is large, we can relate the mechanical characteristics M and K of the solid mass + soil by approximate relations: 1 / r1 = M + (1 - (w1 / w2) ²) ⁻²m
Figure imgb0004
and K = M w1²
Figure imgb0005

Le principe de l'invention consiste à calculer la fonction de transfert T(w) expérimentale obtenue en divisant la transformée de Fourier du signal de réponse mécanique x(t) par la transformée de Fourier du signal de choc f(t) appliqué sur la face supérieure 12 du massif de fondation 4, à tracer le graphique de cette fonction de transfert, à rechercher la courbe de la fonction de transfert théorique d'un système à deux degrés de liberté qui se rapproche le plus de la courbe de la fonction de transfert issue de l'expérience, à déterminer les constantes r1, w1 et w2 de cette fonction de transfert théorique et à calculer les valeurs mécaniques M et K du massif de fondation. Il faut naturellement mesurer les signaux de choc f(t) et les signaux de réponse mécanique x(t) pendant la durée de l'expérience. La durée de l'expérience est telle que les signaux de réponse mécanique x(t) sont totalement amortis à la fin des mesures.The principle of the invention consists in calculating the experimental transfer function T (w) obtained by dividing the Fourier transform of the mechanical response signal x (t) by the Fourier transform of the shock signal f (t) applied to the upper face 12 of the foundation mass 4, at draw the graph of this transfer function, find the curve of the theoretical transfer function of a system with two degrees of freedom which is closest to the curve of the transfer function resulting from experience, determine the constants r1, w1 and w2 of this theoretical transfer function and calculating the mechanical values M and K of the foundation mass. It is naturally necessary to measure the shock signals f (t) and the mechanical response signals x (t) during the duration of the experiment. The duration of the experiment is such that the mechanical response signals x (t) are completely damped at the end of the measurements.

Le dispositif selon l'invention comporte un impacteur qui peut être avantageusement un marteau 14 instrumenté par un capteur de force, que l'on trouve couramment dans le commerce et quine sera pas décrit davantage dans la présente description. Le marteau 14 est relié par une interface appropriée 15 à un micro-ordinateur 16 qui reçoit des informations concernant les signaux de choc f(t). La réponse mécanique au choc appliqué par le marteau 14 sur le massif de fondation 4 est mesurée par une pluralité de capteurs de mouvement, des géophones 17 par exemple, également reliés au micro-ordinateur 16 par l'intermédiaire d'une interface 18. Chaque géophone 17 est de type connu et consiste en un capteur sismique de vitesse. Le micro-ordinateur 16 est muni de moyens de stockage de données et de programmes. L'un de ces programmes dit "d'analyse modale ou d'identification paramétrique" permet de rechercher la fonction de transfert théorique la plus proche de la fonction de transfert calculée à partir des données mesurées pendant l'expérience.The device according to the invention comprises an impactor which can advantageously be a hammer 14 instrumented by a force sensor, which is commonly found on the market and which will not be described further in the present description. The hammer 14 is connected by a suitable interface 15 to a microcomputer 16 which receives information concerning the shock signals f (t). The mechanical response to the shock applied by the hammer 14 on the foundation block 4 is measured by a plurality of motion sensors, geophones 17 for example, also connected to the microcomputer 16 via an interface 18. Each geophone 17 is of known type and consists of a seismic speed sensor. The microcomputer 16 is provided with means for storing data and programs. One of these so-called "modal analysis or parametric identification" programs makes it possible to search for the theoretical transfer function closest to the transfer function calculated from the data measured during the experiment.

Comme on le voit sur la figure 4, on applique des chocs verticaux en C1 au voisinage du pied du poteau 1 sur la face supérieure 12 du massif 4. Les géophones 17, au nombre de quatre sur le dessin, sont disposés autour du poteau 1 et à égale distance de celui-ci. Le micro-ordinateur 16 fait la moyenne des signaux de réponse x(t) des différents géophones. Il est également souhaitable, pour minimiser les bruits de mesure, de réaliser plusieurs mesures x(t) à la suite de plusieurs chocs f(t), et de faire la moyenne des mesures faites avant de calculer la fonction de transfert expérimentale. La fonction de transfert est calculée selon une technique numérique classique, à partir des auto-spectres et des spectres croisés des signaux de chocs et de réponse.As can be seen in FIG. 4, vertical shocks are applied at C1 in the vicinity of the base of the post 1 on the upper face 12 of the massif 4. The geophones 17, four in number in the drawing, are arranged around the post 1 and equidistant of it. The microcomputer 16 averages the response signals x (t) of the different geophones. It is also desirable, to minimize the measurement noise, to carry out several measurements x (t) following several shocks f (t), and to average the measurements made before calculating the experimental transfer function. The transfer function is calculated according to a conventional digital technique, from the self-spectra and crossed spectra of the shock and response signals.

Le marteau 14 peut être remplacé par une masse tombante instrumentée par un capteur de force. Les géophones 14 peuvent également être remplacés par des accéléromètres qui mesurent l'accélération du déplacement du massif 4 sous l'action des chocs.The hammer 14 can be replaced by a falling mass instrumented by a force sensor. The geophones 14 can also be replaced by accelerometers which measure the acceleration of the movement of the massif 4 under the action of shocks.

Le demandeur a vérifié la validité de son procédé et de la théorie décrite ci-dessus en faisant installer deux poteaux identiques sur une aire d'essai. Le premier de ces poteaux était correctement scellé dans le sol, la fouille ayant été réalisée dans des conditions soignées. Le second poteau au contraire était mal scellé, la fouille ayant été volontairement réalisée trop petite et mal curée. Le volume des fouilles avait été mesuré avant qu'elles ne soient remplies de béton, et la quantité de béton coulée dans chaque fouille avait été pesée. Le poids de béton coulé dans la fouille correctement réalisée fut évalué à 23 tonnes (10 m3), contre 9.2 tonnes coulées dans la fouille volontairement baclée (4 m3). La méthode décrite ci-dessus fut appliquée sur les deux massifs.The applicant verified the validity of his process and of the theory described above by installing two identical posts on a test area. The first of these posts was properly sealed in the ground, the excavation having been carried out under careful conditions. The second post on the contrary was badly sealed, the excavation having been deliberately carried out too small and badly cleaned. The volume of the excavations was measured before they were filled with concrete, and the quantity of concrete poured into each excavation was weighed. The weight of concrete poured into the properly completed excavation was evaluated at 23 tonnes (10 m3), compared to 9.2 tonnes poured into the deliberately bored excavation (4 m3). The method described above was applied to the two massifs.

La figure 5 présente la fonction de transfert 20 mesurée entre la réponse verticale du massif sain selon son axe et le choc vertical donné au point C1. On reconnaît sans ambiguïté les deux résonnances du système, l'une w1 associée au mode de pilonnement du massif 4 et l'autre w2 au mode de vibration axiale du poteau 1. Ces deux résonnances ont des valeurs de 35.7 Hz et 130.8 Hz. Le résidu r1 associé à la première résonnance a été calculé en calant la courbe théorique 21 de la fonction de transfert d'un système à deux degrés de liberté sur la fonction de transfert 20 comme on le voit sur la figure 6. Le résidu r1 de cette courbe théorique 21 vaut 3.92 10⁻⁵ m/s/N. Le poteau ayant une masse de 2.8 tonnes, le calcul selon le procédé proposé fournit pour le massif sain une masse égale à 21920 kg au lieu des 23 tonnes attendues et une raideur K de 1.10 10⁹ N/m.FIG. 5 shows the transfer function 20 measured between the vertical response of the sound body along its axis and the vertical shock given at point C1. One recognizes without ambiguity the two resonances of the system, one w1 associated with the mode of heaving of the solid mass 4 and the other w2 with the mode of axial vibration of the pole 1. These two resonances have values of 35.7 Hz and 130.8 Hz. residue r1 associated with the first resonance was calculated by setting the theoretical curve 21 of the transfer function of a system with two degrees of freedom on the transfer function 20 as we see in FIG. 6. The residue r1 of this theoretical curve 21 is 3.92 10⁻⁵ m / s / N. The post having a mass of 2.8 tonnes, the calculation according to the proposed process provides for the solid mass a mass equal to 21920 kg instead of the expected 23 tonnes and a stiffness K of 1.10 10⁹ N / m.

La figure 7 présente enfin la fonction de transfert 22 mesurée entre la réponse verticale du massif défectueux selon son axe et le choc vertical donné en C1. On y reconnaît encore, sans ambiguïté, les deux résonnances du système (35.6 Hz et 121.2 Hz). Le résidu associé à la première résonnance vaut 7.88 10⁻⁵ m/s/N. Le poteau 1 ayant encore une masse de 2.8 tonnes, on obtient: M = 9370 kg (pour 9.2 tonnes attendues) et K = 0.47 10⁹ N/m.FIG. 7 finally presents the transfer function 22 measured between the vertical response of the defective block along its axis and the vertical shock given in C1. We can still recognize, without ambiguity, the two resonances of the system (35.6 Hz and 121.2 Hz). The residue associated with the first resonance is 7.88 10⁻⁵ m / s / N. The post 1 still having a mass of 2.8 tonnes, we obtain: M = 9370 kg (for 9.2 tonnes expected) and K = 0.47 10⁹ N / m.

On voit donc que le procédé proposé est valable pour le contrôle des massifs de fondation 4 de poteaux 1. Il permet de déterminer rapidement la masse M du massif, et il fournit une indication sur la qualité de la liaison massif/sol. Le poids du dispositif utilisé est voisin de 10 kg, y compris l'unité d'acquisition et de traitement. Le contrôle peut être mené à bien par un opérateur seul, dans un temps inférieur à un quart d'heure par poteau, installation et repliement des capteurs compris.It can therefore be seen that the proposed method is valid for the control of the foundation solid masses 4 of posts 1. It makes it possible to quickly determine the mass M of the solid mass, and it provides an indication of the quality of the solid / soil connection. The weight of the device used is close to 10 kg, including the acquisition and processing unit. The control can be carried out by an operator alone, in a time less than a quarter of an hour per post, installation and folding of the sensors included.

Claims (8)

Procédé pour déterminer la masse m d'un massif de fondation (4) supportant un poteau (1) de masse m connue, et la raideur de liaison sol/Massif K, en vue de contrôler a posteriori le scellement du poteau (1) dans le sol (3),
   caractérisé en ce que
   on excite mécaniquement ledit massif (4) en lui appliquant des signaux d'excitation mécanique f(t) selon un axe vertical,
   on mesure simultanément les signaux d'excitation mécanique f(t) et les signaux de réponse mécanique x(t) selon des axes verticaux pendant une durée suffisante pour que lesdits signaux soient complètement amortis,
   on applique aux signaux d'excitation mécanique f(t) et aux signaux de réponse mécanique x(t) une transformation de Fourier,
   on calcule la fonction de transfert T(w) en divisant la transformée de Fourier du signal de réponse mécanique par la transformée de Fourier du signal d'excitation mécanique,
   ladite fonction de transfert (20) présentant des pics correspondant respectivement à la fréquence de résonnance du massif (4) au pilonnement et à la fréquence de résonnance du poteau (1) au mode de vibration axiale,
   on recherche la courbe théorique (21) la plus proche de la fonction de transfert (20) calculée et qui matérialise la fonction de transfert d'un système (6) à deux degrés de liberté, modélisant respectivement le massif de masse M et le poteau de masse m,
   on identifie les constantes (résidu r1, résonnance w1 et w2 et amortissement) de cette courbe théorique (21),
   on détermine la masse m du massif de fondation (4) à l'aide de la formule approximative: M = 1/r1 -(1 - (w1/w2)²)⁻²m
Figure imgb0006
et on détermine la raideur K de liaison sol/massif K à l'aide de la formule exacte:
Figure imgb0007
Figure imgb0008
formule à laquelle on pourra avantageusement substituer, dans les cas usuels, la formule approchée: K = m w1².
Figure imgb0009
Method for determining the mass m of a foundation mass (4) supporting a post (1) of known mass m, and the stiffness of the soil / Mass K connection, with a view to a posteriori checking the sealing of the post (1) in the ground (3),
characterized in that
said mass (4) is mechanically excited by applying to it mechanical excitation signals f (t) along a vertical axis,
the mechanical excitation signals f (t) and the mechanical response signals x (t) are simultaneously measured along vertical axes for a period sufficient for said signals to be completely damped,
a Fourier transformation is applied to the mechanical excitation signals f (t) and to the mechanical response signals x (t),
the transfer function T (w) is calculated by dividing the Fourier transform of the mechanical response signal by the Fourier transform of the mechanical excitation signal,
said transfer function (20) having peaks corresponding respectively to the resonant frequency of the block (4) at the heaving and to the resonant frequency of the post (1) in the axial vibration mode,
we seek the theoretical curve (21) closest to the transfer function (20) calculated and which materializes the transfer function of a system (6) with two degrees of freedom, respectively modeling the mass of mass M and the post of mass m,
we identify the constants (residue r1, resonance w1 and w2 and damping) of this theoretical curve (21),
the mass m of the foundation mass (4) is determined using the approximate formula: M = 1 / r1 - (1 - (w1 / w2) ²) ⁻²m
Figure imgb0006
and we determine the stiffness K of the soil / solid connection K using the exact formula:
Figure imgb0007
Figure imgb0008
formula which can advantageously be substituted, in the usual cases, the approximate formula: K = m w1².
Figure imgb0009
Procédé selon la revendication 1 caractérisé en ce qu'on applique le choc vertical sur la face supérieure (12) du massif de fondation (4) près du pied du poteau (1).Method according to claim 1, characterized in that the vertical shock is applied to the upper face (12) of the foundation block (4) near the base of the post (1). Procédé selon la revendication 2 caractérisé en ce qu'on applique ledit choc vertical à l'aide d'un impacteur (marteau ou masse tombante) (14) instrumenté par un capteur de force.A method according to claim 2 characterized in that said vertical shock is applied using an impactor (hammer or falling mass) (14) instrumented by a force sensor. Procédé selon l'une quelconque des revendications 2 et 3 caractérisé en ce qu'on mesure les signaux de réponse mécanique du massif (4) en mesurant la vitesse ou l'accélération verticale du massif (4) en plusieurs points voisins du pied du poteau (1) et en faisant la moyenne des vitesses ou accélérations mesurées.Method according to either of Claims 2 and 3, characterized in that the mechanical response signals of the block (4) are measured by measuring the speed or the vertical acceleration of the block (4) at several points close to the base of the post. (1) and by averaging the measured speeds or accelerations. Procédé selon la revendication 4 caractérisé en ce qu'on mesure la vitesse ou l'accélération verticale du massif (4) à l'aide d'un capteur de mouvement (17) (géophone ou accéléromètre).Method according to Claim 4, characterized in that the speed or vertical acceleration of the massif (4) is measured using a motion sensor (17) (geophone or accelerometer). Procédé selon l'une quelconque des revendications 2 à 5, caractérisé en ce qu'on fait la moyenne des transformées de Fourier des signaux d'excitation mécanique et de vitesse (ou d'accélération) mesurés lors de plusieurs chocs successifs avant de calculer la fonction de transfert.Method according to any one of Claims 2 to 5, characterized in that the Fourier transforms of the mechanical excitation and speed (or acceleration) signals measured during several successive shocks are averaged before calculating the transfer function. Procédé selon l'une quelconque des revendications 1 à 7 caractérisé en ce qu'on stocke les valeurs des mesures de signaux d'excitation mécanique et de réponse mécanique sur un support magnétique, en ce qu'on traite les valeurs stockées par un ordinateur (16) et en ce qu'on cherche la courbe théorique (21) la plus proche à l'aide d'un logiciel dit "d'analyse modale ou d'identification paramétrique".Method according to any one of Claims 1 to 7, characterized in that the values of the measurements of mechanical excitation and mechanical response signals are stored on a magnetic medium, while the values stored by a computer are processed ( 16) and in that the closest theoretical curve (21) is sought using software known as "modal analysis or parametric identification". Dispositif pour la mise en oeuvre du procédé selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comporte:
   un impacteur (marteau ou masse tombante) (14) destiné à être utilisé pour donner des chocs verticaux sur le massif de fondation (4) et instrumenté par un capteur de force mesurant la force du choc,
   au moins un capteur de mouvement (géophone ou accéléromètre) (17) destiné à mesurer la vitesse ou l'accélération de déplacement vertical du massif de fondation (4) sous l'action du choc de l'impacteur (14),
   un micro-ordinateur relié au capteur de force de l'impacteur et au capteur de mouvement par l'intermédiaire d'interfaces, numérisant les signaux reçus de ceux-ci correspondant à la force du choc de l'impacteur et à la vitesse ou accélération de déplacement du massif (4) en fonction du temps, et susceptible de calculer la masse M du massif de fondation (4) et la raideur de liaison sol/massif K à l'aide de programmes appropriés.
Device for implementing the method according to any one of the preceding claims, characterized in that it comprises:
an impactor (hammer or falling mass) (14) intended to be used to give vertical shocks to the foundation mass (4) and instrumented by a force sensor measuring the force of the impact,
at least one motion sensor (geophone or accelerometer) (17) intended to measure the speed or the acceleration of vertical movement of the foundation mass (4) under the action of the impactor impact (14),
a microcomputer connected to the impactor force sensor and to the motion sensor via interfaces, digitizing the signals received from them corresponding to the impact force of the impactor and to the speed or acceleration displacement of the block (4) as a function of time, and capable of calculating the mass M of the foundation block (4) and the stiffness of the soil / block connection K using appropriate programs.
EP91400083A 1990-01-17 1991-01-16 Method and apparatus for controlling the bedding of a post Withdrawn EP0438347A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9000506A FR2657099B1 (en) 1990-01-17 1990-01-17 METHOD AND DEVICE FOR CONTROLLING THE SEALING OF A POST.
FR9000506 1990-01-17

Publications (1)

Publication Number Publication Date
EP0438347A1 true EP0438347A1 (en) 1991-07-24

Family

ID=9392854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91400083A Withdrawn EP0438347A1 (en) 1990-01-17 1991-01-16 Method and apparatus for controlling the bedding of a post

Country Status (2)

Country Link
EP (1) EP0438347A1 (en)
FR (1) FR2657099B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2872283A1 (en) * 2004-06-25 2005-12-30 Rincent Btp Services Soc En Co METHOD AND DEVICE FOR DETERMINING THE TRACTION EFFORT TO WHICH A SEALED ELEMENT IS SUBJECTED
CN106193772A (en) * 2014-12-16 2016-12-07 戴亚细 Electric pole anchor block
CN110806295A (en) * 2019-11-14 2020-02-18 山东瓦鲁智能科技股份有限公司 Method for confirming ratio of structural part deformation and actual deformation calculated based on software

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2083913A (en) * 1980-09-12 1982-03-31 Syminex Sa Method and device for detecting changes in the mechanical state of the members of a structure implanted in the sea
EP0121395A1 (en) * 1983-03-31 1984-10-10 National Research Development Corporation Improvements in or relating to the testing of structures by impact
WO1987007378A1 (en) * 1986-05-21 1987-12-03 Centre Experimental De Recherches Et D'etudes Du B Method and device for the mechanical control of building works

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2083913A (en) * 1980-09-12 1982-03-31 Syminex Sa Method and device for detecting changes in the mechanical state of the members of a structure implanted in the sea
EP0121395A1 (en) * 1983-03-31 1984-10-10 National Research Development Corporation Improvements in or relating to the testing of structures by impact
WO1987007378A1 (en) * 1986-05-21 1987-12-03 Centre Experimental De Recherches Et D'etudes Du B Method and device for the mechanical control of building works

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2872283A1 (en) * 2004-06-25 2005-12-30 Rincent Btp Services Soc En Co METHOD AND DEVICE FOR DETERMINING THE TRACTION EFFORT TO WHICH A SEALED ELEMENT IS SUBJECTED
WO2006010830A1 (en) * 2004-06-25 2006-02-02 Rincent Btp Services Method and device for determining the tensile stress exerted on a sealed element
CN106193772A (en) * 2014-12-16 2016-12-07 戴亚细 Electric pole anchor block
CN106193772B (en) * 2014-12-16 2018-05-01 国网河南省电力公司郑州供电公司 Electric pole anchor block
CN110806295A (en) * 2019-11-14 2020-02-18 山东瓦鲁智能科技股份有限公司 Method for confirming ratio of structural part deformation and actual deformation calculated based on software
CN110806295B (en) * 2019-11-14 2021-08-24 山东瓦鲁智能科技股份有限公司 Method for confirming ratio of structural part deformation and actual deformation calculated based on software

Also Published As

Publication number Publication date
FR2657099A1 (en) 1991-07-19
FR2657099B1 (en) 1994-02-25

Similar Documents

Publication Publication Date Title
AU2007261183B2 (en) Noise estimation in a vector sensing streamer
CN101052896B (en) Improved geophone calibration technique
US6430105B1 (en) Sensor apparatus and method
FR2599150A1 (en) METHOD AND DEVICE FOR MECHANICAL CONTROL OF COATINGS OF ARTWORK
WO2010092249A2 (en) Method for time tracking and positioning of seismic signals of shafts with three components
FR2539232A1 (en) METHOD FOR DETERMINING ACCELERATION FROM THE FREQUENCIES OF TRANSDUCERS OF AN ACCELEROMETER
EP0291388B1 (en) Seismic prospection method for learning about subsoil geologic discontinuities
US20130114375A1 (en) Seismic Acquisition Method for Mode Separation
FR2461066A1 (en) METHOD AND APPARATUS FOR DYNAMIC PIEUX TESTING
EP1703303A2 (en) Calibration of pressure gradient recording
FR2532058A1 (en) APPARATUS AND METHOD FOR ACOUSTICAL DIAGRAPHY AND METHOD OF REDUCING NOISE FROM COMPRESSION AND STONELEY WAVES
FR2690528A1 (en) Method for correcting the speed of sound propagation in water in seismic exploration at sea.
US5991238A (en) Weighted backus filter method of combining dual sensor traces
WO2006001831A2 (en) Downhole library of master wavelets for vsp-while-drilling applications
US6018494A (en) Signature estimation of a seismic source
US10310121B2 (en) Seismic sensor devices, systems, and methods including noise filtering
US5384753A (en) Self-orienting seismic detector
EP0438347A1 (en) Method and apparatus for controlling the bedding of a post
JP4160033B2 (en) Early measurement seismic intensity prediction method and apparatus therefor
FR2543304A1 (en) METHOD AND DEVICE FOR OBTAINING THE CORRELATION VALUE OF A SIGNAL AND APPLICATION TO A METHOD AND DEVICE FOR DETERMINING SOIL HARDNESS
EP0458947B1 (en) Method and device for acquiring seismic data in a weill in two opposite directions
EP0182683B1 (en) Process for detecting underground fractures using an acoustic tool
Lyon et al. Recovery of fault signatures in diesel engines
FR2501869A1 (en) Novel seismic prospecting method - giving three dimensional view directly
Dong A mathematical model for the downhole orbital vibrator source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920113

17Q First examination report despatched

Effective date: 19920225

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19930810