[go: up one dir, main page]

EP0437796B1 - Drehgeschwindigkeitsmessaufnehmereinheit - Google Patents

Drehgeschwindigkeitsmessaufnehmereinheit Download PDF

Info

Publication number
EP0437796B1
EP0437796B1 EP90125046A EP90125046A EP0437796B1 EP 0437796 B1 EP0437796 B1 EP 0437796B1 EP 90125046 A EP90125046 A EP 90125046A EP 90125046 A EP90125046 A EP 90125046A EP 0437796 B1 EP0437796 B1 EP 0437796B1
Authority
EP
European Patent Office
Prior art keywords
stator
rotor
rotational speed
speed sensor
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90125046A
Other languages
English (en)
French (fr)
Other versions
EP0437796A2 (de
EP0437796A3 (en
Inventor
David E. Peck
George E. Platzer
Dennis A. Kramer
William D. Krusel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing North American Inc
Original Assignee
Rockwell International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwell International Corp filed Critical Rockwell International Corp
Priority to EP94116159A priority Critical patent/EP0632272A3/de
Publication of EP0437796A2 publication Critical patent/EP0437796A2/de
Publication of EP0437796A3 publication Critical patent/EP0437796A3/en
Application granted granted Critical
Publication of EP0437796B1 publication Critical patent/EP0437796B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/488Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by variable reluctance detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets

Definitions

  • This invention relates generally to rotational speed sensors, and more particularly to compact, unitary rotational speed sensors.
  • Rotational speed sensors are used in many control and indicating systems.
  • One frequently used type employs the variable reluctance principle.
  • Common problems in such sensors in the prior art include constructing a device which will fit into compact spaces while maintaining close control over rotor-stator spacing, and providing sufficient output signal in terms of both signal amplitude and number of pulses per revolution.
  • Prior art devices known to the inventors include those disclosed in US-A-2,462,761, US-A-3,480,812, US-A-3,596,122, US-A-3,604,966, US-A-3,649,859, US-A-4,027,753 and US-A-4,110,647.
  • US-A-3,480,812 shows a nesting arrangement of rotor, magnet, coil and stator elements.
  • US-A-3,649,859 discloses a reluctance-type rotational speed sensor utilizing radially extending teeth on both stator and rotor.
  • the device known from US-A-4,027,753 comprises a sealed system. None of the above-mentioned devises, however, combine the various teachings of the present invention to obtain a significantly more compact design that is capable of greater output levels, and versatile enough for use in many environments.
  • a reluctance-type rotational speed sensor comprises a stator including two coaxial, axially spaced elements. Each of the stator elements has first and second radial portions. The first, inner radial portion of each stator element has alternating circumferentially spaced regions offering first and second magnitudes of magnetic permeability.
  • the stator elements are in magnetic communciation with one another.
  • a magnet is disposed between the stator elements.
  • a rotor is arranged for rotation about an axis. This rotor, too, has alternating circumferentially spaced regions offering first and second magnitudes of magnetic permeability.
  • the rotor, magnet and stator are arranged to form a magnetic flux path whereby a variation in a magnetic flux indicative of the rotational speed of the rotor relative to the stator is produced in the magnetic flux path upon rotation of the rotor. Means are provided for sensing this variation in magnetic flux in said flux path.
  • the rotor can be split into two halves, sandwiching an annular magnet.
  • a measuring sensing device for detecting a rotational speed or a rotational speed change including a rotor and a stator constructed as magnet and having a coil is disclosed.
  • the stator is constructed as an annular member with a U-shaped cross section.
  • the coil is inserted on the inside of the U-shaped cross section.
  • the outer leg portion of the stator carries at its free end an end-face toothed arrangement or serration opposite an end-face toothed arrangement or serration on the outer circumference of the disk-shaped rotor.
  • the coil is used for sensing variation in magnetic flux.
  • the present rotational speed sensor as defined in claim 1 improves upon prior art speed sensors by utilizing an axially compact design to obtain accurate measurements in a variety of environments.
  • the flat, generally circular shape allows the sensor to measure the rotational speed of either a rotating shaft or a rotating bore.
  • the sensor is designed to minimize the effects of eccentricities and unwanted relative movement between sensor components. For example, both radial runout and axial runout have minimal effect on the output of the sensor.
  • the particular design of the magnetic circuit used by this sensor enables it to generate a high output signal for its size.
  • the changes in flux generated by the rotor system induce alternating voltage in a coil of wire in a well known manner to produce signals representative of rotational speed.
  • the rotor carries circumferentially spaced magnets in an axially opposed position with respect to teeth formed on the stator.
  • This embodiment may be used, with minor modifications, in environments where a rotating shaft turns within a stationary bore, or where a rotating bore turns about a stationary shaft.
  • FIG 1 shows one embodiment of the rotational speed sensor of the present invention.
  • rotor 410 is shown having several axially extending passageways 412 circumferentially spaced about the rotor.
  • the passageways define openings on each opposing rotor surface.
  • Magnets 414 are retained in the passageways by use of an adhesive or by mechanical interlock. Magnets 414 are aligned so as to offer common pole faces oriented toward opposing rotor surfaces.
  • the rotor 410 is constructed from a low magnetic permeability material such as nylon.
  • Stator elements 416 and 418 are relatively thin members constructed from a high magnetic permeability material having slots 420. Slots 420 may be formed by piercing holes in the stator structure or by forming teeth which project from the stator structure itself. In either manner, the stator elements offer radial portions having alternating circumferentially spaced regions having first and second magnitudes of magnetic permeability.
  • the magnets on the rotor provide a magnetic flux source and are arranged to produce a variable magnetic flux in a flux path formed around the coil 426.
  • Coil 426 provides a means for sensing variations in magnetic flux in said flux path.
  • the slots 420 are preferably filled with low magnetic permeability material to provide a relatively flat stator surface.
  • the radial length of the magnets 414 is shorter than the radial length of the stator slots 420 to avoid magnetic shunting of the magnets.
  • the circumferential width of the magnets 414 is preferably approximately the circumferential width of the stator slots 420 to permit the magnets to move into positions in which the magnetic flux path offers alternating high or low magnetic reluctance.
  • the plastic overmolds 422 and 424 are molded and secured to the stator elements by injection molding the overmolds with the stator elements 416 and 418 incorporated in an injection molding die as inserts. During the injection molding process, plastic flows to fill the slots formed in the stator elements to form an intimately bonded structure.
  • the stator elements 416 and 418 and the overmolds 422 and 424 are mirror images of one another permitting manufacture using the same process equipment.
  • the stator elements 416 and 418 have flanged portions which form a cavity for receiving wire coil 426.
  • Wire coil 426 is preferably 1300 turns of No. 39 enameled wire wound and encapsulated in bobbin 428.
  • Retainer 430 is constructed of high magnetic permeability material and serves to maintain structural connection of the stator elements as well as establish magnetic communication therebetween.
  • Lead wires 432 and 434 are connected to the wire coil 426 and pass through the retainer 430 and stator element 418 via strain relief 436.
  • the air gap 438 between rotor 410 and stator elements 416 and 418 is maintained by the clamping action of retainer 430 maintaining the stator elements 416 and 418 against opposing face portions of bobbin 428.
  • the inner most radial portions of the plastic overmold 422 and 424 may contact the hub portion 448 of rotor 410. If this occurs, very little wear will be experienced as the rotor 410 is preferably constructed from nylon filled with long fiber aramid and the plastic overmolds 422 and 424 are preferably constructed from PPS having 10% glass and 5% Teflon.
  • a toroidal magnetic flux path is established around the coil 426 proceeding from one pole face of magnets 414 passing through the teeth of the stator element 416 radially through the stator element, axially through the retainer 430 into stator element 418 radially therethrough into the respective stator teeth and finally to the opposing pole face of magnet 414.
  • FIG. 5 illustrates the stator elements 416 and 418 having teeth 421 in aligned positions with respect to magnets 414 of rotor 410.
  • Figure 6 illustrates the same components wherein the rotor 410 has moved to a non-aligned position.
  • 100 magnets are used and each stator element has 100 slots.
  • the output voltage across leads 432 and 434 shown in Figure 1 will be an alternating voltage with an amplitude proportional to the speed of rotation and a frequency equal to the speed of rotation times the number of teeth encountered in one revolution.
  • the elastomeric ring 440 as shown in Figure 1 provides a compliant force frictionally engaging driving shaft 442.
  • ring 440 provides vibration isolation of the rotor relative to shaft 442.
  • the ring 440 includes two lip portions 444 and 445 which contact plastic overmolds 422 and 424 respectively to provide a seal to keep contaminants out of the moving parts of the sensor.
  • Friction drive of the rotor via ring 440 is the preferred drive means for the sensor; other means however, including tangs or keys engaging slots on the rotating shaft could also be used.
  • a supplemental seal 446 may be used on either or both sides of the sensor to supplement the sealing action of lip portions 444 and 445.
  • Figure 3 is a plan view of the rotor 410 illustrating the axially extending passageways 412 and rotor hub 448.
  • Figure 4 is a sectional view of rotor 410 taken along the lines 12-12 in Figure 3 showing passageway 412 having a first opening on a first radially extending surface of rotor 410 and a second opening on a second radially extending surface and a portion of the passageway intermediate the openings having a smaller radial dimension so as to mechanically interlock magnet 414 formed in the passageway.
  • the embodiment as illustrated in Figure 1 features a coil 426 radially spaced from the rotor 410 whereby the coil and rotor provide a minimal axial package size.
  • a variation of this embodiment features a coil 500 axially spaced from rotor 410 whereby the coil 500 and rotor 410 provide a minimal radial package size.
  • stator elements 502 and 504 are relatively thin members constructed from a high magnetic permeability material having slots 506. Teeth (not shown) are located intermediate the slots.
  • Plastic overmolds 508 and 510 are molded and secured to the stator elements by injection molding with the stator elements 502 and 504 incorporated in an injection molding die as inserts.
  • Stator element 504 has a flange portion which acts in conjunction with a flange portion formed integral to overmold 510 to define a cavity for receiving wire coil 500.
  • Retainer 514 acts in conjunction with annular magnetic flux conductor 516 to maintain stator 502 and 504 in magnetic communication with one another.
  • a toroidal magnetic flux path is established around the coil 500 proceeding from one pole face of magnet 414 passing through the teeth of the stator element 502 radially through the stator element, axially through the retainer 514 into the annular conductor 516, radially through the annular conductor into the stator element 504, radially through the stator to the stator teeth and finally to the opposite pole face of magnet 414.
  • All other components of the variation to the first embodiment are identical and retain identical numbers as previously described.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Claims (17)

  1. Drehgeschwindigkeitssensor, enthaltend:
    - einen Stator (416, 418; 502, 504) mit abwechselnden, in Umfangsrichtung voneinander beabstandeten Bereichen (420, 421; 506), die eine erste und eine zweite Größe magnetischer Permeabilität aufweisen;
    - einen Rotor (410), der um eine Achse drehbar ist; und
    - Mittel (426; 500) zum Erfassen von Veränderungen des magnetischen Flusses in einem wenigstens teilweise von dem Stator gebildeten Flußweg; dadurch gekennzeichnet, daß:
    - der Stator zwei koaxiale, axial voneinander beabstandete Elemente (416, 418; 502, 504) aufweist;
    - die Statorelemente (416, 418; 502, 504) erste und zweite radiale Abschnitte aufweisen;
    - der erste radiale Abschnitt der Statorelemente (416, 418; 502, 504) die abwechselnden, in Umfangsrichtung voneinander beabstandeten Bereiche (420, 421; 506) aufweist, die die erste und die zweite Größe magnetischer Permeabilität aufweisen;
    - die Statorelemente (416, 418; 502, 504) magnetisch miteinander in Verbindung stehen;
    - der Rotor ein Rotor (410) mit geringer magnetischer Permeabilität ist, der auf sich angeordnet mehrere in Umfangsrichtung voneinander beabstandete Magnetflußquellen (414) aufweist;
    - die Magnetquellen (414) auf dem Rotor (410) und die in Umfangsrichtung voneinander beabstandeten Bereiche (420, 421; 506) auf dem Stator einander axial gegenüberliegend angeordnet sind, um den von dem Stator gebildeten Magnetflußweg zu vervollständigen; und
    - die Magnetflußquellen (414) so angeordnet sind, daß sie einen variablen Magnetfluß in dem Flußweg erzeugen, wenn die in Umfangsrichtung voneinander beabstandeten Bereiche (420, 421; 506) auf den Statorelementen (414, 418; 502, 504) und die Magnetflußquellen (414) zwischen einander axial gegenüberliegend ausgerichteten und nicht ausgerichteten Stellungen abwechseln.
  2. Drehgeschwindigkeitssensor nach Anspruch 1, bei dem die Mittel zum Erfassen von Veränderungen des magnetischen Flusses in dem Flußweg eine Drahtschleife (426; 500) sind, die in unmittelbarer Nähe des Magnetflußweges angeordnet ist.
  3. Drehgeschwindigkeitssensor nach Anspruch 2, bei dem der Rotor (410) und die Schleife (426) koaxial zwischen die Statorelemente (416, 418) geschachtelt sind.
  4. Drehgeschwindigkeitssensor nach Anspruch 2, bei dem die Schleife (500) axial von dem Rotor (410) beabstandet ist, wodurch die Schleife (500) und der Rotor (410) eine minimale radiale Packungsgröße aufweisen.
  5. Drehgeschwindigkeitssensor nach Anspruch 2, bei dem die Schleife (426) radial von dem Rotor (410) beabstandet ist, wodurch die Schleife (426) und der Rotor (410) eine minimale axiale Packungsgröße aufweisen.
  6. Drehgeschwindigkeitssensor nach Anspruch 2, bei dem die abwechselnden, in Umfangsrichtung voneinander beabstandeten Bereiche (420, 421; 506) des Stators durch Öffnungen (420; 506) gebildet sind, die in den Statorelementen (416, 418; 502, 504) gebildet sind, und bei dem die Statorelemente (416, 418; 502, 504) aus einem Material mit hoher magnetischer Permeabilität gebildet sind.
  7. Drehgeschwindigkeitssensor nach Anspruch 6, bei dem die Öffnungen (420; 506) mit einem Material niedriger magnetischer Permeabilität gefüllt sind, wodurch die Flächen der Statorelemente (426, 418; 502, 504) ein relativ flaches Profil aufweisen.
  8. Drehgeschwindigkeitssensor nach Anspruch 1, bei dem die abwechselnden, in Umfangsrichtung voneinander beabstandeten Bereiche (420, 421; 506) des Stators durch in Umfangsrichtung voneinander beabstandete Zähne (421) gebildet sind, die auf diesem angeordnet sind, und bei dem die Zähne (421) den Magnetflußquellen (414) des Rotors (410) axial gegenüberliegend und in deren unmittelbarer Nähe angeordnet sind.
  9. Drehgeschwindigkeitssensor nach Anspruch 3, zusätzlich enthaltend Rückhaltemittel (430; 514), die so angeordnet sind, daß sie den Stator, die Schleife (426; 500) und den Rotor (410) in einer einzigen Baugruppe zusammenhalten.
  10. Drehgeschwindigkeitssensor nach den Ansprüchen 1, 3 und 8, bei dem zusätzlich:
    - die in Umfangsrichtung voneinander beabstandeten Zähne (421) auf einander axial gegenüberliegenden, sich radial erstreckenden inneren und äußeren Flächen der Statorelemente (416, 418; 502, 504) angeordnet sind;
    - der Rotor (410) axial voneinander beabstandete, sich radial erstreckende erste und zweite Flächen aufweist, die mehrere in Umfangsrichtung voneinander beabstandete Durchgänge (412) aufweisen, welche eine erste Öffnung in der ersten Fläche und eine zugehörige zweite Öffnung in der zweiten Fläche bestimmen;
    - jede der in den Durchgängen (412) angeordneten Magnetflußquellen (414) angrenzend an die erste Öffnung einen ersten Pol und angrenzend an die zweite Öffnung einen zweiten Pol aufweist;
    - die in den Durchgängen (412) angeordneten Magnetflußquellen (414) und die Zähne (421) des Stators einander axial gegenüberliegend in gegenseitiger unmittelbarer Nähe angeordnet sind; und
    - die Magnetflußquellen (414) und der Stator so angeordnet sind, daß ein Magnetflußweg gebildet ist, durch den in der Schleife (426; 500) bei einer Drehung des Rotors (410) ein die Drehgeschwindigkeit des Rotors (410) relativ zu dem Stator angebender elektrischer Strom aufgrund von periodischen Veränderungen des Flußweges erzeugt wird, wenn die Magnetflußquellen (414) und die Zahnmittel (421) zwischen einander axial gegenüberliegend ausgerichteten und nicht ausgerichteten Stellungen abwechseln.
  11. Drehgeschwindigkeitssensor nach Anspruch 1 oder 10, bei dem der Stator außerdem Abschnitte (420; 506) mit geringer magnetischer Permeabilität aufweist, die wenigstens teilweise den Raum zwischen den Zähnen (421) ausfüllen, wodurch der Stator ein relativ flaches Profil aufweist.
  12. Drehgeschwindigkeitssensor nach Anspruch 1 oder 10, zusätzlich enthaltend ein elastisches Dichtungsmittel (444, 445, 446), das dem Sensor zugeordnet und so angeordnet ist, daß ein Durchgang von Fluid oder Verunreinigungen aus wenigstens einer Richtung verhindert ist.
  13. Drehgeschwindigkeitssensor nach Anspruch 1 oder 10, bei dem der Rotor (410) von einem Reibungsantriebsmittel angetrieben ist, welches ein federndes Element (440) umfaßt, das an dem Rotor (410) befestigt ist und nachgiebig an einem Antriebsteil (442) angreift.
  14. Drehgeschwindigkeitssensor nach den Ansprüchen 12 und 13, bei dem das Reibungsantriebsmittel (440) und das Dichtmittel (444, 445, 446) ein einstückiges Dicht- und Antriebselement (440, 444, 445) umfassen.
  15. Drehgeschwindigkeitssensor nach Anspruch 14, bei dem der Rotor (410) ringförmig ist und diametral angeordnete innere und äußere Randflächen aufweist und bei dem das einstückige Dicht- und Antriebselement (440, 444, 445) sich entlang der inneren Randfläche des Rotors (410) erstreckt und mit wenigstens einem der Statorelemente (416, 418; 502, 504) in einer Dichtverbindung steht.
  16. Drehgeschwindigkeitssensor nach den Ansprüchen 10 und 9, bei dem zusätzlich die Rückhaltemittel (430; 514) so angeordnet sind, daß sie eine magnetische Verbindung zwischen jedem der Statorelemente (416, 418; 502, 504) schaffen.
  17. Drehgeschwindigkeitssensor nach Anspruch 10, bei dem der Durchgang (412) eine radiale Abmessung aufweist, die zwischen der ersten und der zweiten Öffnung liegt und kleiner als die radiale Abmessung der ersten und der zweiten Öffnung ist, wobei die kleinere radiale Abmessung so wirkt, daß ein Formschluß gebildet ist, der die Magnetflußquelle (414) in dem Durchgang (412) zurückhält.
EP90125046A 1990-01-12 1990-12-20 Drehgeschwindigkeitsmessaufnehmereinheit Expired - Lifetime EP0437796B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP94116159A EP0632272A3 (de) 1990-01-12 1990-12-20 Drehgeschwindigkeitsmessaufnehmereinheit.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US463736 1990-01-12
US07/463,736 US5111098A (en) 1988-08-24 1990-01-12 Unitary rotational speed sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP94116159.8 Division-Into 1994-10-13

Publications (3)

Publication Number Publication Date
EP0437796A2 EP0437796A2 (de) 1991-07-24
EP0437796A3 EP0437796A3 (en) 1991-11-21
EP0437796B1 true EP0437796B1 (de) 1995-04-26

Family

ID=23841162

Family Applications (2)

Application Number Title Priority Date Filing Date
EP94116159A Withdrawn EP0632272A3 (de) 1990-01-12 1990-12-20 Drehgeschwindigkeitsmessaufnehmereinheit.
EP90125046A Expired - Lifetime EP0437796B1 (de) 1990-01-12 1990-12-20 Drehgeschwindigkeitsmessaufnehmereinheit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP94116159A Withdrawn EP0632272A3 (de) 1990-01-12 1990-12-20 Drehgeschwindigkeitsmessaufnehmereinheit.

Country Status (7)

Country Link
US (1) US5111098A (de)
EP (2) EP0632272A3 (de)
JP (1) JPH04212066A (de)
AU (1) AU653710B2 (de)
BR (1) BR9100056A (de)
DE (2) DE69018958T2 (de)
ES (1) ES2023628T3 (de)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9116918D0 (en) * 1991-08-06 1991-09-18 Lucas Ind Plc Fuel pumping apparatus
US5281911A (en) * 1991-11-08 1994-01-25 Eaton Corporation Vehicle wheel speed sensor employing a locating plate
US5200697B1 (en) * 1991-11-27 1996-06-18 Ntn Toyo Bearing Co Ltd Hub and bearing assembly with integrated rotation sensor including a tone ring and annular transducer
US5986448A (en) * 1991-12-27 1999-11-16 Ntn Corporation Revolving speed detecting device with reduced eddy current loss
US5296805A (en) * 1992-08-17 1994-03-22 General Motors Corporation Serviceable wheel speed sensor with magnet assisted retention
JP2605140Y2 (ja) * 1993-01-22 2000-06-26 日産自動車株式会社 回転速センサ
US5291130A (en) * 1993-01-25 1994-03-01 Eaton Corporation Vehicle wheel speed sensor employing an adaptable rotor cap
US5504424A (en) * 1993-05-28 1996-04-02 Durakool, Inc. Variable reluctance sensor utilizing a magnetic bobbin
FR2710985B1 (fr) * 1993-10-06 1995-11-24 Skf France Elément codeur pour roulement muni d'un ensemble capteur d'informations et roulement comportant un tel élément codeur.
US5705873A (en) * 1993-12-22 1998-01-06 Canon Denshi Kabushiki Kaisha Light-quantity control device
US5574361A (en) * 1994-12-27 1996-11-12 Ssi Technologies, Inc. Switched reluctance angular velocity sensor
US5491407A (en) * 1995-02-03 1996-02-13 Kearney-National, Inc. Wheel bearing speed sensor
JPH08278318A (ja) * 1995-03-31 1996-10-22 Ntn Corp 車輪支持軸受用回転センサ
CA2175946A1 (en) * 1995-06-06 1996-12-07 Brian G. Babin Apparatus for sensing the speed of a rotating element
AU7237996A (en) * 1995-09-05 1997-03-27 Cts Corporation Rotary position sensor with insert molded coil winding
DE19533385A1 (de) * 1995-09-09 1997-03-13 Kostal Leopold Gmbh & Co Kg Sensoreinrichtung
JP3301303B2 (ja) * 1995-10-13 2002-07-15 トヨタ自動車株式会社 電動機
US5717268A (en) * 1996-06-17 1998-02-10 Philips Electronics North America Corp. Electric motor with tachometer signal generator
DE19732347A1 (de) * 1997-07-28 1999-02-04 Mannesmann Vdo Ag Vorrichtung zum Bestimmen der Relativgeschwindigkeit zwischen einem rotierenden Bauteil und einem stationären Bauteil
US6348751B1 (en) 1997-12-12 2002-02-19 New Generation Motors Corporation Electric motor with active hysteresis-based control of winding currents and/or having an efficient stator winding arrangement and/or adjustable air gap
US6100615A (en) * 1998-05-11 2000-08-08 Birkestrand; Orville J. Modular motorized electric wheel hub assembly for bicycles and the like
US6253614B1 (en) * 1998-07-15 2001-07-03 Ssi Technologies, Inc. Speed sensor having a UV-cured glue seal and a method of applying the same
IL142123A0 (en) * 1999-07-23 2002-03-10 Advanced Rotary Systems Inc Electric drive (options)
JP3651575B2 (ja) * 1999-09-06 2005-05-25 スズキ株式会社 車両の推進装置
SI20497B (sl) * 2000-01-14 2008-08-31 Harmonic Drive Systems Sinhronski hibridni elektriäśni stroj s toroidnim navitjem
US6707188B2 (en) * 2000-05-08 2004-03-16 Asmo Co., Ltd. Motor having rotational sensor
US6400050B1 (en) 2000-07-14 2002-06-04 Robert Bosch Corporation Motor having rotating movement detection capability
US6952068B2 (en) * 2000-12-18 2005-10-04 Otis Elevator Company Fabricated components of transverse flux electric motors
US20030137210A1 (en) * 2001-08-17 2003-07-24 Southall Otway Archer Integrated commutator and slip-ring with sense magnet
US6984916B2 (en) * 2001-08-17 2006-01-10 Energy Conversion Systems Holdings, Llc Integrated commutator with sense magnet
JP4044880B2 (ja) * 2003-08-05 2008-02-06 株式会社日立製作所 非接触式角度測定装置
US20070176593A1 (en) * 2006-01-31 2007-08-02 Paul Fathauer Transmission sensor with overmolding and method of manufacturing the same
DE102006020602A1 (de) * 2006-05-02 2007-11-08 Rolls-Royce Deutschland Ltd & Co Kg Induktiver Sensor
EP2054990A4 (de) * 2006-08-04 2013-08-28 Clean Current Ltd Partnership Axialluftspaltmaschine mit aus mehreren auseinanderlösbaren segmenten gebildeten stator- und rotorscheiben
WO2009082808A1 (en) * 2007-12-28 2009-07-09 Clean Current Power Systems Incorporated Hybrid electric power system with distributed segmented generator/motor
US8742750B2 (en) * 2008-06-13 2014-06-03 Eaton Corporation Speed sensor pick-up for fluid device
US8013696B2 (en) * 2008-10-14 2011-09-06 Nexteer (Beijing) Technology Co., Ltd. Magnetic apparatus and method of manufacturing the magnetic apparatus
FR3031589B1 (fr) * 2015-01-13 2018-11-16 Hutchinson Capteurs inductifs de deplacement
US9797268B2 (en) * 2015-03-27 2017-10-24 United Technologies Corporation Oil scoop with integrated sensor
US10829201B2 (en) * 2019-03-20 2020-11-10 Pratt & Whitney Canada Corp. Blade angle position feedback system with extended markers
CN110065098B (zh) * 2019-06-03 2024-03-19 江苏万宝瑞达高新技术有限公司 一种防止漏涂或断纸的刮刀装置
CN111537761B (zh) * 2020-05-29 2023-06-30 西安航空制动科技有限公司 一种电磁式双齿环机轮速度传感器

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB600980A (en) * 1945-10-08 1948-04-23 British Thomson Houston Co Ltd Improvements relating to the stroboscopic observation of shafts and like rotating members
US2567422A (en) * 1948-01-08 1951-09-11 Tennessee Coal Iron And Railro Sheet counter
FR1234263A (fr) * 1959-05-12 1960-10-17 Electronique & Automatisme Sa Alternateur à haute fréquence
AT216089B (de) * 1959-09-07 1961-07-10 Elektro Motoren Ag Wechselstrommaschine
US3230407A (en) * 1962-08-01 1966-01-18 Anelex Corp Electromagnetic transducers
US3480812A (en) * 1967-08-17 1969-11-25 Gen Electric Signal generating device for use in conjunction with a dynamoelectric machine and the like
DE1773149A1 (de) * 1968-04-06 1971-09-02 Siemens Ag Einrichtung zur Drehrichtungsanzeige von Antrieben
US3515920A (en) * 1968-07-18 1970-06-02 Kelsey Hayes Co Permanent magnet inductor generator for vehicle wheel speed sensor
US3551712A (en) * 1968-07-25 1970-12-29 Kelsey Hayes Co Sensor with flexible coupling
US3489935A (en) * 1968-08-08 1970-01-13 Kelsey Hayes Co Vehicle wheel inductor generator with one air gap filled with low reluctance material
US3571640A (en) * 1969-04-25 1971-03-23 Kelsey Hayes Co Flux reversing sensor
US3564313A (en) * 1969-08-08 1971-02-16 Trans Sonics Inc Self-compensating tachometer generator
US3604966A (en) * 1969-09-22 1971-09-14 Kelsey Hayes Co Rotational speed sensor
DE1950647A1 (de) * 1969-10-08 1971-04-22 Bosch Gmbh Robert Einrichtung zum Erkennen des Schlupfs von Fahrzeugraedern
DE2054852C3 (de) * 1969-11-10 1980-02-28 Lucas Industries Ltd., Birmingham (Ver. Koenigreich) Vorrichtung zur Messung der Drehzahl eines Fahrzeugrades
DE1961846C3 (de) * 1969-12-10 1974-05-02 Daimler-Benz Ag, 7000 Stuttgart Drehzahlgeber zur Bestimmung der Drehzahl oder Drehzahländerung von Fahrzeugrädern, insbesondere für Bremsschlupfregelanlagen von Kraftfahrzeugen
US3646376A (en) * 1970-05-01 1972-02-29 Gen Electric High-frequency tachometer generator
US3626226A (en) * 1970-06-01 1971-12-07 Bendix Corp Wheel speed sensor for an adaptive braking system
US3649859A (en) * 1970-06-15 1972-03-14 Kelsey Hayes Co Sensor with constant airgap
DE2053262B2 (de) * 1970-10-30 1972-09-21 Robert Bosch Gmbh, 7000 Stuttgart Wechselspannungsgenerator zur Drehzahlmessung, insbesondere für eine Blockierschutzeinrichtung einer Fahrzeugbremsanlage
GB1381501A (en) * 1971-01-15 1975-01-22 Girling Ltd Electrical angular speed sensor
CH539996A (de) * 1971-08-10 1973-07-31 Stoll & Co H Impulsgenerator an einer elektronischen Steuereinrichtung einer Maschine, insbesondere an einer Programmsteuereinrichtung einer Strickmaschine
US3927339A (en) * 1971-12-07 1975-12-16 Daimler Benz Ag Frequency transmitters for producing control signals controlling the brake force in motor vehicle wheels
US3772549A (en) * 1972-05-02 1973-11-13 Rockwell International Corp Wheel speed sensor
US3769533A (en) * 1972-05-22 1973-10-30 Bendix Corp Adaptive braking wheel speed sensor
US3812391A (en) * 1972-06-16 1974-05-21 Rockwell International Corp Wheel speed sensor
US3854556A (en) * 1973-12-27 1974-12-17 Eaton Corp Anti-skid system having improved sensor
US4061938A (en) * 1975-06-20 1977-12-06 Matsushita Electric Industrial Co., Ltd. Device for generating electrical pulses in response to shaft rotation
US4110647A (en) * 1977-01-13 1978-08-29 The Bendix Corporation Wheel speed sensor
US4171495A (en) * 1978-03-20 1979-10-16 Eaton Corporation Wheel speed sensor
GB2043256A (en) * 1979-02-22 1980-10-01 Bosch Gmbh Robert Rotation sensor
JPS6039336A (ja) * 1983-08-12 1985-03-01 Nippon Denso Co Ltd 扁平型回転電機の冷却構造
EP0159069B1 (de) * 1984-04-11 1991-02-27 Mavilor Systèmes S.A. Kollektorloser,elektronisch kommutierter elektrischer Motor
US4639626A (en) * 1985-04-26 1987-01-27 Magnetics Research International Corporation Permanent magnet variable reluctance generator
JPS6225267A (ja) * 1985-07-26 1987-02-03 Honda Motor Co Ltd 磁気信号発生リング
CA1333964C (en) * 1988-08-24 1995-01-17 David E. Peck Unitary rotational speed sensor

Also Published As

Publication number Publication date
EP0437796A2 (de) 1991-07-24
JPH04212066A (ja) 1992-08-03
DE69018958T2 (de) 1995-09-21
AU6801290A (en) 1991-07-18
EP0632272A2 (de) 1995-01-04
EP0437796A3 (en) 1991-11-21
EP0632272A3 (de) 1995-04-12
AU653710B2 (en) 1994-10-13
ES2023628A4 (es) 1992-02-01
US5111098A (en) 1992-05-05
DE69018958D1 (de) 1995-06-01
DE437796T1 (de) 1991-11-07
ES2023628T3 (es) 1995-08-01
BR9100056A (pt) 1991-10-22

Similar Documents

Publication Publication Date Title
EP0437796B1 (de) Drehgeschwindigkeitsmessaufnehmereinheit
EP0942186B1 (de) Wälzlagereinheit mit Drehgeschwindigkeitssensor
US4529900A (en) Brushless motor
US5508608A (en) Magnetic flux device for measuring rotary motions and for generating an electric alternating signal representative of the rotary motions
US5583431A (en) Hub unit with rotation speed sensor
US4689557A (en) In-axle vehicle wheel speed sensing device
WO1994022021A1 (en) A fluid seal and speed sensor assembly
US4406983A (en) Rotational magnetic transducer
WO1992021003A1 (en) Magnetoresistance type revolution detector
US5111138A (en) Speed sensor having a closed magnetic flux path for sensing speed from an axial face of a rotating member
JPH03120473A (ja) 可変磁気抵抗センサ
US5013946A (en) Miniature motor with a frequency generator
US5574361A (en) Switched reluctance angular velocity sensor
EP3324523B1 (de) Variabler reluktanztypwinkelsensor mit teilweisem statorkern
US5523680A (en) Wheel speed sensor that accurately senses variations in magnetic reluctance
US6003375A (en) Hub unit with rotation speed sensor
KR20000070595A (ko) 회전각도를 접촉없이 감지할 수 있는 측정장치
EP0802414A2 (de) Wellendichtung und Wellenmessaufnehmer
JPH07243804A (ja) 無接触ポテンショメータ
SU972634A1 (ru) Вентильный электродвигатель
JPS6311895Y2 (de)
JP2023022828A (ja) アブソリュート磁気エンコーダ及びその設計方法
SU1224557A1 (ru) Датчик контрол изменений радиального смещени вращающегос ферромагнитного вала
JPH04212634A (ja) 回転式速度センサ
JPS5937875A (ja) ブラシレスモ−タ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

ITCL It: translation for ep claims filed

Representative=s name: SOCIETA' ITALIANA BREVETTI S.P.A.

EL Fr: translation of claims filed
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

DET De: translation of patent claims
AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19920423

17Q First examination report despatched

Effective date: 19930505

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 94116159.8 EINGEREICHT AM 20/12/90.

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 69018958

Country of ref document: DE

Date of ref document: 19950601

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2023628

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961115

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961122

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961128

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19961216

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051220