[go: up one dir, main page]

EP0403730B1 - Sabot - Google Patents

Sabot Download PDF

Info

Publication number
EP0403730B1
EP0403730B1 EP90104244A EP90104244A EP0403730B1 EP 0403730 B1 EP0403730 B1 EP 0403730B1 EP 90104244 A EP90104244 A EP 90104244A EP 90104244 A EP90104244 A EP 90104244A EP 0403730 B1 EP0403730 B1 EP 0403730B1
Authority
EP
European Patent Office
Prior art keywords
sabot
cross
fact
segment
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90104244A
Other languages
German (de)
French (fr)
Other versions
EP0403730A3 (en
EP0403730A2 (en
Inventor
Jürgen Meyer
Achim Sippel
Monika Wildau
Heinz-Josef Kruse
Rainer Diel
Wilfried Becker
Gisbert Bartsch
Klaus-Dieter Pahnke
Jürgen Huege
Hans-Werner Luther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Industrie AG
Original Assignee
Rheinmetall GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19893920254 external-priority patent/DE3920254A1/en
Application filed by Rheinmetall GmbH filed Critical Rheinmetall GmbH
Publication of EP0403730A2 publication Critical patent/EP0403730A2/en
Publication of EP0403730A3 publication Critical patent/EP0403730A3/en
Application granted granted Critical
Publication of EP0403730B1 publication Critical patent/EP0403730B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B14/00Projectiles or missiles characterised by arrangements for guiding or sealing them inside barrels, or for lubricating or cleaning barrels
    • F42B14/06Sub-calibre projectiles having sabots; Sabots therefor
    • F42B14/061Sabots for long rod fin stabilised kinetic energy projectiles, i.e. multisegment sabots attached midway on the projectile

Definitions

  • the invention relates to a segmented dropable sabot for a sub-caliber balancing projectile according to the features in the preamble of claim 1.
  • FIG. 1 Such a conventional two-flange drive cage (push-pull drive cage) with a caliber-sized guide flange on the front and a caliber-sized pressure flange at the rear and over its entire length with a rotationally symmetrical cross section is shown in FIG.
  • Two-flange sabot cages with at least one longitudinal rib on the back of a sabot segment between the front guide flange and the rear pressure flange are, for. B. from US-A-4,326,464 or DE-A-37 04 027 known.
  • common single-flange sabot pull sabot with front pressure and guide flange and rear gas-permeable guide webs z. B.
  • the sabot segments have a longitudinal rib in the central circumferential area to increase the bending stiffness.
  • the advantage of a longitudinal rib construction is that it is the caliber-reduced intermediate area of the sabot between the front guide flange and the rear are used incompletely for the transmission of axial force (introduction of thrust) and thus longitudinal ribs represent for the most part a "dead mass".
  • the machining of a sabot with a longitudinal rib is very cost-intensive, especially if the longitudinal ribs also have a diagonal or helical course (e.g. B. DE-A 37 04 027).
  • expensive, specially shaped special tools are required.
  • Characteristic of a conventional two-flange drive cage with a rotationally symmetrical cross section as shown in FIG. 1 is a rotationally symmetrical conical or cylindrical cross-sectional reduction between the front flange and the rear pressure flange, following the front radius of the rear pressure flange.
  • a significantly greater reduction in cross-section in the area behind the front guide flange would be possible, since here hardly any thrust forces are introduced from the sabot into the penetrator.
  • the relatively large cross-sectional area is required in this area, however, in order to give the sabot segments the necessary bending stiffness during the detachment process after leaving the pipe mouth.
  • Conventional two-flange drive cages therefore disadvantageously have an excessive weight, in particular in the area behind the front guide flange.
  • the overall cross section of the sabot at least in a portion of its length, ie a polygon according to claim 1 has an almost triangular or according to claim 17 an almost square cross-sectional shape in which a tangent that can be applied at any point on the periphery of the sabot does not pass through the sabot cross-sectional area.
  • this enables cost-effective series production with simple processing steps.
  • a correspondingly created tangent always runs through the cross-sectional area, so that machining is only possible with appropriately shaped special tools and requires a large number of machining steps.
  • the radial distance Ri in the sabot cross-sectional area from the central longitudinal axis A to the outer circumference of the sabot at the outer segment separating surfaces is smallest and in the middle circumferential area of a sabot segment between the two outer segment separating surfaces, so that by mass distribution or Redistribution of area from the peripheral areas on the outer segment separating surfaces of a sabot segment in the direction of the central peripheral area (Tk-segment back) gives an increase in the bending stiffness and the bending resistance moment to a value which is at least as great as the bending stiffness of a comparison driving cage with a approx. 25% larger circular cross-sectional area.
  • the bending stiffness of the sabot with a polygonal or almost triangular cross-sectional shape is greater by a factor of at least 1.3 than the bending stiffness of a theoretical sabot with an equally large circular cross-sectional area.
  • the reference numeral 10 is a conventional two-flange sabot with front guide flange 12 and rear pressure flange 14 z. B. in caliber 120 mm for a sub-caliber wing-stabilized balancing projectile 30 made of tungsten heavy metal of high slenderness. Between the sabot 10 and the balancing projectile 30 there is a conventional positive-locking zone (not shown) (with thread or ring grooves).
  • the front guide flange 12 has an air pocket 16 and a circumferential guide band 18 on the front; the rear pressure flange 14 is also provided with a guide band 20 and gas sealing band 22 in the caliber-sized circumferential region.
  • the rotationally symmetrical sabot 10 consists of three sabot segments 26, 27, 28 with flat segment separating surfaces 31, 32, 33 in between (FIG. 1a). Between the front guide flange 12 and the rear pressure flange 14, the sabot 10 is designed with a reduced diameter or has a cylindrical / conical cross-section reduction following the rounding radius 34 of the pressure flange 14. In the non-caliber area 36 in the longitudinal extension of the sabot 10, a further or greater reduction in cross-sectional area down to the front guide flange 12 would be possible for reasons of the firing strength of the sabot when passing through the pipe, since for this area 36 only a very low material utilization is given with a conventional design.
  • the sabot 10 in this area 36 must have a still relatively large cross-sectional area.
  • Shelling results have shown that rotationally symmetrical sabot cages, in which the cross-sectional area in area 36 was further reduced, led to an uncontrolled breakage of the sabot cage segments during detachment in area 36 behind the front guide flange 12.
  • the aim of the development of sabots of sub-caliber balancing bullets is to minimize the sabot mass in order to transfer a maximum of kinetic energy to the penetrator during pipe passage.
  • the sabot is released, caused by the air flow forces acting on the air pocket 16 of the front guide flange 12.
  • Figure 2 shows the process of sabot removal in a slim balancing projectile after leaving the gun barrel muzzle.
  • Phi ( ⁇ ) 20 ° to 30 °.
  • This rotary movement is caused by the air flow forces acting on the sabot, in particular in the area of the front air pocket.
  • Phi ( ⁇ ) only the dynamic pressure in the air pocket 16 acts, symbolically represented here by the resulting air force F L.
  • This air force in conjunction with the inertial forces of a sabot segment result in the bending moment curve shown qualitatively in FIG. 2.
  • Characteristic of this course is the very steep increase in the bending moment M b in the area 36 of the sabot directly behind the front guide flange 12. Therefore, the cross sections of the sabot segments are very vulnerable to breakage, as the results of bombardment have confirmed many times. For safe transmission of bending moments during detachment, a sabot segment in this area therefore requires a cross-sectional area that has a sufficiently large surface moment and bending resistance moment.
  • FIGS. 3a, 3b and 3c exemplarily show different cross-sections of sabot segments 42, 44, 46.
  • the focus is labeled S.
  • the area torque I is a measure of the bending stiffness of the respective cross section of a sabot segment.
  • the linear relationship applies: the larger the surface moment I, the less the deflection of the sabot segment when detached.
  • the bending resistance moment W b is a measure for the maximum material stress of a cross section under bending load.
  • a linear relationship also applies here: the greater the section modulus W b , the lower the maximum bending stress in cross section for a given bending moment.
  • the bending stresses occur in the cross-sectional area above the center of gravity axis 40 in the form of axial compressive stresses, while in the lower cross-sectional area - viewed in the longitudinal direction of the sabot cage - axial tensile stresses occur.
  • the maximum bending stresses occur in the edge fibers of the cross section at a maximum distance from the center of gravity axis 40.
  • the superscript indices "o" and “u” relate the specified bending resistance moments W b to the upper and lower edge fibers of the respective sabot segment cross-section. Accordingly, the upper section modulus W b o is a measure of the maximum axial compressive stress in the shoulder of the sabot segment cross section, while the lower section modulus W b u represents a measure of the maximum tensile stress in the form-locking area of the sabot cross section at the two outer segment boundaries occurs. If the lower bending resistance torque is too small, a crack is initiated in the sabot cage detachment due to the bending tensile stress in the notch base of a thread.
  • the cross section 1 represents the rotationally symmetrical sabot segment 42 according to FIG. 3a
  • the cross section 2 the reduced rotationally symmetrical sabot segment 44 according to FIG. 3b
  • the cross section 3 the first inventive sabot segment 46 according to FIG. 3c
  • the cross section 4 shows a further sabot segment 47 according to the invention in a total area representation according to FIG. 4a
  • the cross section 5 a modified sabot cage segment 48 according to the invention in a total area representation according to FIG. 4b.
  • the cross section 1 in FIG. 3a shows the cross-sectional area of a sabot segment in the area 36 of the in FIG 1 shown known sabot 10 of the latest design.
  • This cross section 1 has sufficiently large section modulus to reliably absorb the bending moment in the sabot detachment.
  • the circular cross-section 2 according to FIG. 3b with an approximately 25% smaller area would be required.
  • Such a large reduction in area would result in an enormous weight saving on the sabot, but the bending resistance moments of the rotationally symmetrical cross section 2 (FIG. 3b) are much too small and lead to the uncontrolled rupture of the sabot segments 44 during the detachment process, as bombardment results have clearly confirmed.
  • the principle of the solution according to the invention is now based on the use, preferably in the area 36 of a sabot segment 46 that is prone to bending or breaking, of novel cross-sections of a comparatively smaller area with a sufficiently large area torque and bending moment.
  • Cross sections 3, 4 and 5 in Figures 3c, 4a and 4b show sabot segments according to the present invention. They are no longer rotationally symmetrical and, in comparison to the conventional circular cross sections 1 and 2 in FIGS. 3a and 3b, are distinguished by a compact larger profile height and in each case two flat peripheral surfaces 64, 66. In this case, a tangent 54 that can be applied to any point of the sabot circumference 56 does not pass through the sabot cross-sectional area 50 (see FIG. 6). All of the sabot segments according to the invention listed here have a cross-sectional area that is approximately 25% smaller than the comparison cross-section 1 in FIG. 3a.
  • Driving cages according to the invention according to FIG. 5, FIG. 6, FIG. 7, FIG. 9, FIGS. 10 and 11 have already been manufactured in the 120 mm caliber and have been successfully fired. Due to the triangular or polygonal cross-sectional design of the sabot segments according to the invention, such a sabot is about 100 g or about 6% lighter than a comparable modern sabot of conventional design with a rotationally symmetrical cross section.
  • the driving cage segment according to FIG. 3c with cross section 3 is, for example, 7.4% more rigid than the comparative cross section 1 (FIG. 3a) and even has a 5.2% greater bending resistance moment in the tensile stress range of the thread, which is at risk of cracking.
  • the sabot segments according to cross-section 4 (FIG. 4a) and cross-section 5 (FIG. 4b) are distinguished by the fact that the outer profile edges are inclined by 30 ° to the center line of the cross-section or, in other words, in cross-sectional view the flat peripheral surfaces of each sabot cage close -Segment 47 in the back area between the segment separating surfaces 61, 62 an angle of exactly 60 ° and are thus at right angles to the respectively adjacent segment separating surface 61, 62.
  • the geometric peculiarity of the sabot segment profile shown in FIG. 4b according to cross section 5 is that the profile flanks or flat peripheral surfaces do not differ in comparison to cross section 3 and 4 (FIG. 3c, FIG. 4a) cut more in one point.
  • the shoulder of this cross-sectional profile therefore no longer consists of just one point, but of an arc 58.
  • the advantage of this sabot segment construction compared to cross-section 4 is above all the significantly improved upper bending moment. It is only 0.8% smaller than that of the comparison cross section 1 in FIG. 3a.
  • FIG. 1 Another triangular or polygonal sabot cross section that is favorable in terms of production technology is shown in FIG.
  • slightly outwardly curved or curved circumferential surfaces 68, 70 are provided, while a strongly curved or rounded circumferential region 58 is arranged in the back area between these circumferential surfaces.
  • the advantage of this rounded design lies in the possibility of manufacturing technology to be able to manufacture this sabot as an inexpensive "turned part" on an eccentric lathe.
  • the principle of the solution according to the invention is based on using non-rotationally symmetrical cross sections with a smaller area but a larger area torque and bending resistance moment in comparison to conventional rotationally symmetrical cross sections, in particular in the bendable sabot segment area behind the front guide flange of the sabot.
  • the triangular cross-sectional surface design of the sabot according to the invention can be used in all non-caliber areas, in particular for sabots with a large length, such as.
  • B. sabot cages for two tandem projectiles arranged one behind the other the non-rotationally symmetrical cross section can also be provided in the elongated tapered rear part behind the pressure flange in order to increase the bending stiffness there as well.
  • the sabot configurations according to the invention shown in the drawings FIG. 5, 9, 10 and 11 have a constant cross-sectional area in the entire non-rotationally symmetrical sabot area. Since, during firing during the passage of the pipe, the axial forces to be transmitted from the sabot segment for increasing acceleration and support of the penetrator increase with increasing distance from the front guide flange 12 to the rear, it makes sense to design the area of the sabot at risk of bending with a profile according to the invention as in FIG. 5a is shown, the cross-sectional area of which increases continuously starting from the front guide flange 12 in the direction of the rear pressure flange 14.
  • FIGS. 9, 10 and 11 show in perspective or side view in partial section the sabot 60 according to the invention with the sabot segment cross-sectional area shown in FIG. 3c (cross section 3).
  • a significant reduction in mass (dead load component) of a sabot can be achieved with a substantial increase in its bending stiffness, as described.
  • a simple and inexpensive series production is made possible.
  • the application of the invention is conceivable for all possible weapons with small or large calibers as well as with drawn or smooth tubes from which sabot projectiles can be fired.
  • the profiles according to the invention can be used not only with two-flange drive cages, but also with single-flange drive cages.
  • a further sabot 60 according to the invention is shown in FIG.
  • the triangular cross-sectional area is formed not only in the front length region 36 between the front guide flange 12 and the rear pressure flange 14, but also in the rear rear part 24 behind the pressure flange 14.
  • the arrangement of a polygonal cross-sectional shape 72 on the rear part 24 of the sabot 60 also results in an increase in bending stiffness in this area without an additional increase in mass.
  • the curvature of the outer surface 70 of the polygonal cross-sectional shape 72 is curved slightly convexly outwards.
  • the reference number 80 denotes the original circumferential surface, 82 indicating the maximum distance a between the curved outer surface 70 of the cross-sectional shape 72, and 74 the maximum distance b of the curved outer surface 70 from a straight line 76 connecting the corner points 78.
  • the principle of the smallest possible curvature of the outer surface 70 is expressed geometrically in that b ⁇ a.
  • FIG. 14 shows the cross section of the sabot 60 shown in FIG. 12. While the cross-sectional shape according to the invention shown in FIG. 13 characterizes the area in the rear part 24 behind the pressure flange 14, FIG. 14 shows the cross section in the middle back area 36 between the front guide flange 12 and the rear one Pressure flange 14.
  • the cross section as shown in FIG. 13, can thus also be applied to the central back region 36 of the sabot 60, and the cross section shown in FIG. 14 can accordingly also be arranged on the rear part 24 behind the pressure flange 14. Furthermore, there is the possibility that the two cross-sectional shapes 72, 72 'shown in FIGS. 13 and 14 merge into one another.
  • the reference numeral 72 denotes the polygonal cross-sectional shape, which is modified here in such a way that the adjacent slightly curved outer surfaces 70 do not directly adjoin one another, but are each separated from one another by a narrow piece of the arcuate outer surface 58.
  • the center of this circular arc-shaped outer surface 58 with the radius R pol lies in the center A of the total cross-sectional surface 72 'of the sabot 60 corresponds to the intersection of the three segment separating surfaces 31, 32, 33.
  • the reference character c in FIG. 14 denotes the length 86 of the segment separating surfaces 31, 32, 33.
  • the circumferential length 84 of the arc-shaped outer surface 58 is smaller than the length c, 86 of the segment separating surfaces 31, 32, 33.
  • the outer surface 70 is as small as possible.
  • a, 82 'again represent the maximum distance between the curved outer surface 70 of the cross-sectional shape 72' and the circumference 80.
  • the straight line 76 in this illustration connects the corner points 78 '.
  • Each curved peripheral surface 70 has two corner points 78 'with the adjacent circular arc segments 58. These are connected to each other by straight line 76.
  • the maximum distance from this straight line 76 to the curved outer surface 70 is identified by b, 74 '.
  • the smallest possible curvature is determined geometrically, as in FIG. 13, by the fact that b ⁇ a.
  • FIG. 15 shows the cross section of a sabot 88, which is divided into four sabot segments 90.
  • the essentially square cross-sectional shape can also be applied to a partial area of the length extension of a four-part sabot 88 using simple turning techniques.
  • the four outer surfaces 70 'of this square cross-sectional shape are slightly convexly curved outwards. As described with reference to FIGS.
  • the curvature of the curved outer surfaces 70 ' is also as small as possible here and in turn is determined geometrically by the fact that the maximum distance b between the straight line 76 connecting the corner points 78 ′′ to the curved outer surface 70 is less than or equal to the maximum distance a between the curved outer surface 70 ′ and the original circular circumferential surface 80.
  • the four segment separating surfaces of the sabot segments 90 are arranged such that the radial distance from the central longitudinal axis A to the curved outer surface 70 ′ is the smallest at the segment separating surfaces.
  • FIG. 16 modifies FIG. 15 in such a way that each sabot segment 90 has, in cross-sectional view, a narrow piece of circular-arc-shaped outer surface 58 'between the two adjacent slightly curved outer surfaces 70'.
  • the center of this circular arc-shaped outer surface 58 'with the radius R qua lies in the center A of the total cross-sectional area of the sabot 88. This center again corresponds to the intersection of the segment separating surfaces.
  • This embodiment in particular has a very slight curvature of the outer surface 70 '.
  • FIGS. 15 and 16 can be converted into one another.
  • the distance b in Figure 15 is specified by the lathe used.
  • the curvature of the outer surfaces 70 ' can be varied by the eccentricity of the lathe.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

Die Erfindung betrifft einen segmentierten abwerfbaren Treibkäfig für ein unterkalibriges Wuchtgeschoß gemäß den Merkmalen im Oberbegriff des Patentanspruches 1.The invention relates to a segmented dropable sabot for a sub-caliber balancing projectile according to the features in the preamble of claim 1.

Ein derartiger herkömmlicher Zweiflansch-Treibkäfig (Push-Pull-Treibkäfig) mit vorderseitigem kalibergroßen Führungsflansch und rückwärtigem kalibergroßen Druckflansch und über seine gesamte Länge mit rotationssymmetrischem Querschnitt ist in Figur 1 dargestellt. Zweiflansch-Treibkäfige mit wenigstens einer Längsrippe auf dem Rücken eines Treibkäfigsegmentes zwischen vorderem Führungsflansch und hinterem Druckflansch sind z. B. aus der US-A-4,326,464 oder der DE-A-37 04 027 bekannt.
Weiterhin sind übliche Einflansch-Treibkäfige (Pull-Treibkäfig) mit vorderseitigem Druck- und Führungsflansch und rückwärtigen gasdurchlässigen Führungsstegen z. B. aus der DE-A-28 36 963 (korrespondierend dazu US-A-4,542,696) bekannt. Auch hierbei weisen die Treibkäfigsegmente im mittleren Umfangsbereich eine Längsrippe zur Erhöhung der Biegesteifigkeit auf.
Der Vorteil einer Längsrippenkonstruktion besteht darin, daß sie dem kaliberverkleinerten Zwischenbereich des Treibkäfigs zwischen vorderem Führungsflansch und hinterem unvollständig zur Axialkraftübertragung (Schubkrafteinleitung) herangezogen werden und somit stellen Längsrippen hierbei zum größten Teil eine "tote Masse" dar. Außerdem ist die spanende Fertigung eines Treibkäfigs mit Längsrippe sehr kostenintensiv, insbesondere wenn die Längsrippen auch noch einen diagonalen bzw. schraubenförmigen Verlauf aufweisen (z. B. DE-A 37 04 027). Zur Herstellung der Längsrippen bzw. zur Ausarbeitung des Zwischenmaterials sind teure, besonders geformte Spezialwerkzeuge erforderlich.
Such a conventional two-flange drive cage (push-pull drive cage) with a caliber-sized guide flange on the front and a caliber-sized pressure flange at the rear and over its entire length with a rotationally symmetrical cross section is shown in FIG. Two-flange sabot cages with at least one longitudinal rib on the back of a sabot segment between the front guide flange and the rear pressure flange are, for. B. from US-A-4,326,464 or DE-A-37 04 027 known.
Furthermore, common single-flange sabot (pull sabot) with front pressure and guide flange and rear gas-permeable guide webs z. B. from DE-A-28 36 963 (corresponding to US-A-4,542,696) known. Here, too, the sabot segments have a longitudinal rib in the central circumferential area to increase the bending stiffness.
The advantage of a longitudinal rib construction is that it is the caliber-reduced intermediate area of the sabot between the front guide flange and the rear are used incompletely for the transmission of axial force (introduction of thrust) and thus longitudinal ribs represent for the most part a "dead mass". In addition, the machining of a sabot with a longitudinal rib is very cost-intensive, especially if the longitudinal ribs also have a diagonal or helical course (e.g. B. DE-A 37 04 027). To produce the longitudinal ribs or to work out the intermediate material, expensive, specially shaped special tools are required.

Charakteristisch für einen herkömmlichen Zweiflansch-Treibkäfig mit rotationssymmetrischem Querschnitt gemäß Darstellung in Figur 1 ist eine zwischen Vorderflansch und rückwärtigem Druckflansch verlaufende rotationssymmetrische kegelförmige bzw. zylindrische Querschnittsreduzierung im Anschluß an den vorderseitigen Ausrundungsradius des hinteren Druckflansches. Aus Gründen der Abschußfestigkeit beim Rohrdurchgang wäre eine wesentlich stärkere Querschnittsreduzierung im Bereich hinter dem vorderen Führungsflansch möglich, da hier kaum noch Schubkräfte vom Treibkäfig in den Penetrator eingeleitet werden. Die relativ große Querschnittsfläche ist in diesem Bereich jedoch erforderlich, um den Treibkäfigsegmenten die notwendige Biegesteifigkeit beim Ablösevorgang nach Verlassen der Rohrmündung zu verleihen. Herkömmliche Zweiflansch-Treibkäfige weisen demnach in nachteiliger Weise ein überhöhtes Gewicht insbesondere im Bereich hinter dem vorderen Führungsflansch auf.Characteristic of a conventional two-flange drive cage with a rotationally symmetrical cross section as shown in FIG. 1 is a rotationally symmetrical conical or cylindrical cross-sectional reduction between the front flange and the rear pressure flange, following the front radius of the rear pressure flange. For reasons of firing resistance when passing through the pipe, a significantly greater reduction in cross-section in the area behind the front guide flange would be possible, since here hardly any thrust forces are introduced from the sabot into the penetrator. The relatively large cross-sectional area is required in this area, however, in order to give the sabot segments the necessary bending stiffness during the detachment process after leaving the pipe mouth. Conventional two-flange drive cages therefore disadvantageously have an excessive weight, in particular in the area behind the front guide flange.

Es ist Aufgabe der Erfindung, einen gattungsmäßigen Treibkäfig anzugeben, bei dem eine Erhöhung der Biegesteifigkeit bei gleichzeitiger Massereduzierung sowie eine kostengünstige Serienfertigung des Treibkäfigs ermöglicht wird.It is an object of the invention to provide a generic sabot in which an increase in the bending stiffness with a simultaneous reduction in mass and an inexpensive series production of the sabot is made possible.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Gesamtquerschnitt des Treibkäfigs wenigstens in einem Teilbereich seiner Längenerstreckung eine polygonartige d.h. gemäß Anspruch 1 eine nahezu dreieckartige oder gemäß Anspruch 17 eine nahezu quadratische Querschnittsform aufweist, bei der eine an jedem Punkt des Treibkäfigumfanges anlegbare Tangente die Treibkäfig-Querschnittsfläche nicht durchläuft. Insbesondere hierdurch wird eine kostengünstige Serienfertigung mit einfachen Bearbeitungsschritten möglich. Bei herkömmlichen Treibkäfigen mit Längsrippe läuft eine entsprechend angelegte Tangente immer durch die Querschnittsfläche, so daß eine spanende Bearbeitung nur mit entsprechend geformten Spezialwerkzeugen möglich ist und eine Vielzahl von Bearbeitungsschritten erforderlich macht. Bei dem erfindungsgemäßen dreiecksförmigen Treibkäfig ist der radiale Abstand Ri in der Treibkäfig-Querschnittsfläche von der zentralen Längsachse A bis zum Außenumfang des Treibkäfigs an den äußeren Segmenttrennflächen am kleinsten und im mittleren Umfangsbereich eines Treibkäfigsegmentes zwischen den beiden äußeren Segmenttrennflächen am größten, so daß durch Masseverteilung bzw. Flächenumverteilung aus den Umfangsbereichen an den äußeren Segmenttrennflächen eines Treibkäfigsegmentes in Richtung auf den mittleren Umfangsbereich (Tk-Segment-Rücken) eine Erhöhung der Biegesteifigkeit sowie des Biegewiderstandsmomentes auf einen Wert gegeben ist, der wenigstens so groß ist wie die Biegesteifigkeit eines Vergleichstreibkäfigs mit einer um ca. 25 % größeren Kreisquerschnittsfläche.
Dadurch wird vorteilhafterweise erreicht, daß die Biegesteifigkeit des Treibkäfigs mit polygonartiger bzw. nahezu dreieckartiger Querschnittsform um einen Faktor von wenigstens 1,3 größer ist als die Biegesteifigkeit eines theoretischen Treibkäfigs mit gleichgroßer kreisrunder Querschnittsfläche. Mit der Erfindung wird eine Massereduzierung des Treibkäfigs und eine Verminderung der Treibkäfig-Querschnittsfläche auf das beim Abschuß im Rohr notwendige Maß bei gleichzeitig größerem Biegewiderstandsmoment ermöglicht. Ein derartiger Treibkäfig ist fertigungstechnisch sehr kostengünstig, insbesondere bei Serienfertigung herzustellen.
This object is achieved in that the overall cross section of the sabot at least in a portion of its length, ie a polygon according to claim 1 has an almost triangular or according to claim 17 an almost square cross-sectional shape in which a tangent that can be applied at any point on the periphery of the sabot does not pass through the sabot cross-sectional area. In particular, this enables cost-effective series production with simple processing steps. In conventional sabots with a longitudinal rib, a correspondingly created tangent always runs through the cross-sectional area, so that machining is only possible with appropriately shaped special tools and requires a large number of machining steps. In the triangular sabot according to the invention, the radial distance Ri in the sabot cross-sectional area from the central longitudinal axis A to the outer circumference of the sabot at the outer segment separating surfaces is smallest and in the middle circumferential area of a sabot segment between the two outer segment separating surfaces, so that by mass distribution or Redistribution of area from the peripheral areas on the outer segment separating surfaces of a sabot segment in the direction of the central peripheral area (Tk-segment back) gives an increase in the bending stiffness and the bending resistance moment to a value which is at least as great as the bending stiffness of a comparison driving cage with a approx. 25% larger circular cross-sectional area.
It is thereby advantageously achieved that the bending stiffness of the sabot with a polygonal or almost triangular cross-sectional shape is greater by a factor of at least 1.3 than the bending stiffness of a theoretical sabot with an equally large circular cross-sectional area. With the invention, a reduction in mass of the sabot and a reduction of the sabot cross-sectional area to that necessary when firing in the tube Made possible with a larger bending moment. Such a drive cage is very inexpensive to manufacture, especially in series production.

Die Erfindung wird nachfolgend anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert und beschrieben.The invention is explained and described in more detail below with reference to exemplary embodiments shown in the drawings.

Es zeigen:

Figur 1 und Figur 1a:
einen herkömmlichen Zweiflansch-Treibkäfig mit rotationssymmetrischem Querschnitt,
Figur 2:
den qualitativen Biegemomentenverlauf in einem Treibkäfigsegment während des Ablösevorganges,
Figur 3a, 3b und 3c:
verschiedene Querschnittsflächen von Treibkäfigsegmenten zur Veranschaulichung der Erfindung in Fig. 3c,
Figur 4a und Figur 4b:
weitere Querschnittsformen von erfindungsgemäßen Treibkäfigen,
Figur 5 und Figur 5a:
einen Längsschnitt durch einen erfindungsgemäßen Treibkäfig,
Figur 6 und Figur 7:
Querschnitte durch den erfindungsgemäßen Treibkäfig aus Figur 5 gemäß Schnittlinie VI/VI und VII/VII,
Figur 8:
ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Treibkäfig-Querschnittes,
Figur 9:
eine perspektivische Ansicht eines erfindungsgemäßen Treibkäfigs,
Figur 10 und Figur 11:
Seitenansichten eines erfindungsgemäßen Treibkäfigs in Teildarstellung,
Figur 12:
ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Treibkäfigs in Längsschnittdarstellung,
Figur 13 und Figur 14:
weitere Ausführungsbeispiele von erfindungsgemäßen Querschnittsformen gemäß Schnittlinien XIII/XIII und XIV/XIV in Fig. 12,
Figur 15 und Figur 16:
weitere erfindungsgemäße Ausführungsbeispiele von vierteiligen Treibkäfigen in Querschnittsdarstellung.
Show it:
Figure 1 and Figure 1a:
a conventional two-flange sabot with a rotationally symmetrical cross-section,
Figure 2:
the qualitative bending moment curve in a sabot segment during the detachment process,
Figures 3a, 3b and 3c:
different cross-sectional areas of sabot segments to illustrate the invention in Fig. 3c,
4a and 4b:
further cross-sectional shapes of sabots according to the invention,
Figure 5 and Figure 5a:
2 shows a longitudinal section through a sabot according to the invention,
Figure 6 and Figure 7:
Cross sections through the sabot according to the invention from Figure 5 according to section line VI / VI and VII / VII,
Figure 8:
another embodiment of a sabot cross-section according to the invention,
Figure 9:
2 shows a perspective view of a sabot according to the invention,
Figure 10 and Figure 11:
Partial side views of a sabot according to the invention,
Figure 12:
another embodiment of a sabot according to the invention in longitudinal section,
Figure 13 and Figure 14:
further exemplary embodiments of cross-sectional shapes according to the invention in accordance with section lines XIII / XIII and XIV / XIV in FIG. 12,
Figure 15 and Figure 16:
further exemplary embodiments of four-part driving cages according to the invention in cross-sectional representation.

In Figur 1 ist mit der Bezugsziffer 10 ein herkömmlicher Zweiflansch-Treibkäfig mit vorderem Führungsflansch 12 und hinterem Druckflansch 14 z. B. im Kaliber 120 mm für ein unterkalibriges flügelstabilisiertes Wuchtgeschoß 30 aus Wolframschwermetall von hohem Schlankheitsgrad dargestellt. Zwischen Treibkäfig 10 und Wuchtgeschoß 30 ist eine nicht näher dargestellte übliche Formschlußzone (mit Gewinde- oder Ringrillen) vorgesehen. Der vordere Führungsflansch 12 weist vorderseitig eine Lufttasche 16 und ein umlaufendes Führungsband 18 auf; der hintere Druckflansch 14 ist im kalibergroßen Umfangsbereich gleichfalls mit einem Führungsband 20 und Gasabdichtungsband 22 versehen. Nach hinten weisend schließt sich ein konisch zulaufendes Heckteil 24 an den Druckflansch 14 an.
Üblicherweise besteht der rotationssymmetrische Treibkäfig 10 aus drei Treibkäfig-Segmenten 26, 27, 28 mit dazwischenliegenden ebenen Segmenttrennflächen 31, 32, 33 (Figur 1a). Zwischen dem vorderen Führungsflansch 12 und hinteren Druckflansch 14 ist der Treibkäfig 10 im Durchmesser verringert ausgebildet bzw. weist eine zylinderförmige/konusförmige Querschnittsreduzierung im Anschluß an den Ausrundungsradius 34 des Druckflansches 14 auf. Im nicht kalibergroßen Bereich 36 in Längserstreckung des Treibkäfigs 10 wäre aus Gründen der Abschußfestigkeit des Treibkäfigs beim Rohrdurchgang eine weitere bzw. stärkere Querschnittsflächenreduzierung bis hin zum vorderen Führungsflansch 12 möglich, da für diesen Bereich 36 bei konventioneller Ausgestaltung nur eine recht geringe Werkstoffauslastung gegeben ist. Aus Gründen einer ausreichenden Biegesteifigkeit bei der Treibkäfigablösung und damit zur Vermeidung von ungleichmäßigen und unkontrollierbaren Störeinflüssen auf den Penetrator muß der Treibkäfig 10 in diesem Bereich 36 jedoch eine noch relativ große Querschnittsfläche aufweisen. Beschußergebnisse haben gezeigt, daß rotationssymmetrische Treibkäfige, bei denen die Querschnittsfläche im Bereich 36 weiter verkleinert wurde, zu einem unkontrolliertem Bruch der Treibkäfig-Segmente bei der Ablösung im Bereich 36 hinter dem vorderen Führungsflansch 12 geführt haben.
In Figure 1, the reference numeral 10 is a conventional two-flange sabot with front guide flange 12 and rear pressure flange 14 z. B. in caliber 120 mm for a sub-caliber wing-stabilized balancing projectile 30 made of tungsten heavy metal of high slenderness. Between the sabot 10 and the balancing projectile 30 there is a conventional positive-locking zone (not shown) (with thread or ring grooves). The front guide flange 12 has an air pocket 16 and a circumferential guide band 18 on the front; the rear pressure flange 14 is also provided with a guide band 20 and gas sealing band 22 in the caliber-sized circumferential region. A rear part 24, which tapers conically, adjoins the pressure flange 14.
Usually, the rotationally symmetrical sabot 10 consists of three sabot segments 26, 27, 28 with flat segment separating surfaces 31, 32, 33 in between (FIG. 1a). Between the front guide flange 12 and the rear pressure flange 14, the sabot 10 is designed with a reduced diameter or has a cylindrical / conical cross-section reduction following the rounding radius 34 of the pressure flange 14. In the non-caliber area 36 in the longitudinal extension of the sabot 10, a further or greater reduction in cross-sectional area down to the front guide flange 12 would be possible for reasons of the firing strength of the sabot when passing through the pipe, since for this area 36 only a very low material utilization is given with a conventional design. For reasons of sufficient flexural rigidity in the sabot detachment and thus to avoid uneven and uncontrollable interferences on the penetrator, the sabot 10 in this area 36 must have a still relatively large cross-sectional area. Shelling results have shown that rotationally symmetrical sabot cages, in which the cross-sectional area in area 36 was further reduced, led to an uncontrolled breakage of the sabot cage segments during detachment in area 36 behind the front guide flange 12.

Ziel der Entwicklung von Treibkäfigen unterkalibriger Wuchtgeschosse ist die Minimierung der Treibkäfigmasse, um beim Rohrdurchgang eine maximale kinetische Energie auf den Penetrator zu übertragen. Nach dem Verlassen des Rohres erfolgt die Treibkäfigablösung, hervorgerufen durch die an der Lufttasche 16 des vorderen Führungsflansches 12 angreifenden Luftströmungskräfte. Je geringer die Treibkäfigmasse und vor allem je geringer das Massenträgheitsmoment der Treibkäfig-Segmente um ihre hintere Abrollkante ist, desto schneller erfolgt der Ablösevorgang und desto geringer ist der kinetische Energieverlust des Penetrators. Dies gilt insbesondere, wenn im vorderen Teil des Treibkäfigs Masse eingespart werden kann. Denn diese Masse hat den längsten Hebelarm und besitzt damit den größten Anteil am Massenträgheitsmoment bezogen auf die hintere Abrollkante (Schwenkpunkt der Treibkäfig-Segmente).The aim of the development of sabots of sub-caliber balancing bullets is to minimize the sabot mass in order to transfer a maximum of kinetic energy to the penetrator during pipe passage. After leaving the pipe, the sabot is released, caused by the air flow forces acting on the air pocket 16 of the front guide flange 12. The lower the sabot mass and, above all, the lower the moment of inertia of the sabot segments around its rear rolling edge, the faster the detachment process and the lower the kinetic energy loss of the penetrator. This is especially true if in the front part of the Sabotage mass can be saved. Because this mass has the longest lever arm and thus has the largest share of the mass moment of inertia in relation to the rear rolling edge (pivot point of the sabot segments).

Figur 2 zeigt den Vorgang der Treibkäfigablösung bei einem schlanken Wuchtgeschoß nach dem Verlassen der Waffenrohrmündung. In einem angelegten Koordinatensystem mit Auftragung des Biegemomentes Mb über der Länge des Treibkäfigs führt der Treibkäfig bis zu einem Öffnungswinkel von Phi (φ) = 20° bis 30° eine reine Drehbewegung um seine hintere Abrollkante 38 aus. Diese Drehbewegung wird durch die am Treibkäfig, insbesondere im Bereich der vorderen Lufttasche angreifenden Luftströmungskräfte hervorgerufen. Für kleine Öffnungswinkel Phi (φ) wirkt nur der Staudruck in der Lufttasche 16, hier symbolisch dargestellt durch die resultierende Luftkraft FL. Diese Luftkraft in Verbindung mit den Massenträgheitskräften eines Treibkäfig-Segmentes haben den in Figur 2 qualitativ eingezeichneten Biegemomentenverlauf zur Folge. Charakteristisch für diesen Verlauf ist der sehr steile Anstieg des Biegemomentes Mb im Bereich 36 des Treibkäfigs direkt hinter dem vorderen Führungsflansch 12. Deshalb sind dort die Querschnitte der Treibkäfig-Segmente sehr stark bruchgefährdet, wie Beschußergebnisse vielfach bestätigt haben. Zur sicheren Biegemomentenübertragung bei der Ablösung benötigt ein Treibkäfig-Segment in diesem Bereich daher eine Querschnittsfläche, die ein genügend großes Flächenmoment und Biegewiderstandsmoment aufweist.Figure 2 shows the process of sabot removal in a slim balancing projectile after leaving the gun barrel muzzle. In an applied coordinate system with the application of the bending moment M b over the length of the sabot, the sabot performs a pure rotary movement around its rear rolling edge 38 up to an opening angle of Phi (φ) = 20 ° to 30 °. This rotary movement is caused by the air flow forces acting on the sabot, in particular in the area of the front air pocket. For small opening angles Phi (φ), only the dynamic pressure in the air pocket 16 acts, symbolically represented here by the resulting air force F L. This air force in conjunction with the inertial forces of a sabot segment result in the bending moment curve shown qualitatively in FIG. 2. Characteristic of this course is the very steep increase in the bending moment M b in the area 36 of the sabot directly behind the front guide flange 12. Therefore, the cross sections of the sabot segments are very vulnerable to breakage, as the results of bombardment have confirmed many times. For safe transmission of bending moments during detachment, a sabot segment in this area therefore requires a cross-sectional area that has a sufficiently large surface moment and bending resistance moment.

In den Figuren 3a, 3b und 3c sind exemplarisch verschiedenartige Querschnitte von Treibkäfig-Segmenten 42, 44, 46 angeführt. Für jeden dieser Querschnitte sind nachfolgend das entsprechende Flächenmoment I und das Biegewiderstandsmoment Wb um die gestrichelt eingezeichnete Schwerpunktachse 40 angegeben bzw. tabellarisch gegenübergestellt. Der Schwerpunkt ist jeweils mit S bezeichnet. Das Flächenmoment I ist ein Maß für die Biegesteifigkeit des jeweiligen Querschnittes eines Treibkäfig-Segmentes. Es gilt der lineare Zusammenhang: je größer das Flächenmoment I, desto geringer die Durchbiegung des Treibkäfig-Segmentes bei der Ablösung. Das Biegewiderstandsmoment Wb ist ein Maß für die maximale Werkstoffbeanspruchung eines Querschnittes unter Biegebelastung. Auch hier gilt ein linearer Zusammenhang: je größer das Widerstandsmoment Wb, desto geringer ist bei gegebenem Biegemoment die maximale Biegespannung im Querschnitt. Hervorgerufen durch die Biegebelastung eines Treibkäfig-Segmentes bei der Ablösung treten die Biegespannungen im Querschnittsbereich oberhalb der Schwerpunktachse 40 in Form von axialen Druckspannungen auf, während sich im unteren Querschnittsbereich - in Treibkäfiglängsrichtung betrachtet - axiale Zugspannungen einstellen. Die maximalen Biegespannungen treten in den Randfasern des Querschnittes mit maximalem Abstand zur Schwerpunktachse 40 auf. Die hochgestellten Indizes "o" und "u" beziehen die angegebenen Biegewiderstandsmomente Wb also auf die obere und untere Randfaser des jeweiligen Treibkäfigsegment-Querschnittes. Demzufolge ist das obere Widerstandsmoment Wb o ein Maß für die maximale axiale Druckspannung in der Schulter des Treibkäfigsegment-Querschnittes, während das untere Widerstandsmoment Wb u ein Maß für die maximale Zugspannung darstellt, die im Formschlußbereich des Treibkäfig-Querschnittes an den beiden äußeren Segmentgrenzen auftritt. Ist das untere Biegewiderstandsmoment zu klein, wird bei der Treibkäfigablösung durch die Biegezugspannung im Kerbgrund eines Gewindes ein Riß eingeleitet, der zum Bruch des Treibkäfig-Segmentes im Bereich 36 hinter dem vorderen Führungsflansch 12 führt. Ist demgegenüber aber das obere Biegewiderstandsmoment zu klein, tritt durch Plastifizierung lediglich eine Umlagerung der Druckspannungsspitzen in der Schulter des jeweiligen Treibkäfigsegment-Querschnittes auf; es kann dadurch aber kein Bruch erfolgen.FIGS. 3a, 3b and 3c exemplarily show different cross-sections of sabot segments 42, 44, 46. For each of these cross sections are below the corresponding area torque I and the bending resistance moment W b about the dashed center of gravity axis 40 indicated or compared in a table. The focus is labeled S. The area torque I is a measure of the bending stiffness of the respective cross section of a sabot segment. The linear relationship applies: the larger the surface moment I, the less the deflection of the sabot segment when detached. The bending resistance moment W b is a measure for the maximum material stress of a cross section under bending load. A linear relationship also applies here: the greater the section modulus W b , the lower the maximum bending stress in cross section for a given bending moment. Caused by the bending load of a sabot segment during detachment, the bending stresses occur in the cross-sectional area above the center of gravity axis 40 in the form of axial compressive stresses, while in the lower cross-sectional area - viewed in the longitudinal direction of the sabot cage - axial tensile stresses occur. The maximum bending stresses occur in the edge fibers of the cross section at a maximum distance from the center of gravity axis 40. The superscript indices "o" and "u" relate the specified bending resistance moments W b to the upper and lower edge fibers of the respective sabot segment cross-section. Accordingly, the upper section modulus W b o is a measure of the maximum axial compressive stress in the shoulder of the sabot segment cross section, while the lower section modulus W b u represents a measure of the maximum tensile stress in the form-locking area of the sabot cross section at the two outer segment boundaries occurs. If the lower bending resistance torque is too small, a crack is initiated in the sabot cage detachment due to the bending tensile stress in the notch base of a thread. which leads to the breakage of the sabot segment in the area 36 behind the front guide flange 12. If, on the other hand, the upper bending resistance moment is too small, plasticization merely results in a rearrangement of the compressive stress peaks in the shoulder of the respective sabot segment cross-section; however, it cannot break.

In den als Anlage beigefügten Berechnungsbeispielen stellt der Querschnitt 1 das rotationssymmetrische Treibkäfig-Segment 42 gemäß Figur 3a, der Querschnitt 2 das verkleinerte rotationssymmetrische Treibkäfig-Segment 44 gemäß Figur 3b, der Querschnitt 3 das erste erfindungsgemäße Treibkäfig-Segment 46 gemäß Figur 3c, der Querschnitt 4 ein weiteres erfindungsgemäßes Treibkäfig-Segment 47 in Gesamtflächendarstellung gemäß Figur 4a und der Querschnitt 5 ein abgeändertes erfindungsgemäßes Treibkäfig-Segment 48 in Gesamtflächendarstellung gemäß Figur 4b dar. Der Querschnitt 1 in Figur 3a zeigt die Querschnittsfläche eines Treibkäfig-Segmentes im Bereich 36 des in Figur 1 dargestellten bekannten Treibkäfigs 10 modernster Bauart. Dieser Querschnitt 1 besitzt ausreichend große Widerstandsmomente, um das Biegemoment bei der Treibkäfigablösung sicher aufzunehmen. Um beim Abschuß die während des Rohrdurchgangs auftretenden Axialkräfte zur Penetratorbeschleunigung zu übertragen, wäre lediglich der kreisringförmige Querschnitt 2 gemäß Figur 3b mit einer um ca. 25 % geringeren Fläche erforderlich. Eine derart große Flächenreduzierung hätte zwar eine enorme Gewichtseinsparung am Treibkäfig zur Folge, aber die Biegewiderstandsmomente des rotationssymmetrischen Querschnittes 2 (Figur 3b) sind viel zu klein und führen zum unkontrollierten Bruch der Treibkäfig-Segmente 44 beim Ablösevorgang, wie Beschußergebnisse eindeutig bestätigt haben.In the calculation examples attached, the cross section 1 represents the rotationally symmetrical sabot segment 42 according to FIG. 3a, the cross section 2 the reduced rotationally symmetrical sabot segment 44 according to FIG. 3b, the cross section 3 the first inventive sabot segment 46 according to FIG. 3c, the cross section 4 shows a further sabot segment 47 according to the invention in a total area representation according to FIG. 4a and the cross section 5 a modified sabot cage segment 48 according to the invention in a total area representation according to FIG. 4b. The cross section 1 in FIG. 3a shows the cross-sectional area of a sabot segment in the area 36 of the in FIG 1 shown known sabot 10 of the latest design. This cross section 1 has sufficiently large section modulus to reliably absorb the bending moment in the sabot detachment. In order to transmit the axial forces occurring during the passage of the pipe to accelerate the penetrator, only the circular cross-section 2 according to FIG. 3b with an approximately 25% smaller area would be required. Such a large reduction in area would result in an enormous weight saving on the sabot, but the bending resistance moments of the rotationally symmetrical cross section 2 (FIG. 3b) are much too small and lead to the uncontrolled rupture of the sabot segments 44 during the detachment process, as bombardment results have clearly confirmed.

Das erfindungsgemäße Lösungsprinzip beruht nun darauf, vorzugsweise im biege- bzw. bruchgefährdeten Bereich 36 eines Treibkäfig-Segmentes 46 neuartige Querschnitte vergleichsweise kleinerer Fläche mit ausreichend großem Flächenmoment und Biegewiderstandsmoment zu verwenden.The principle of the solution according to the invention is now based on the use, preferably in the area 36 of a sabot segment 46 that is prone to bending or breaking, of novel cross-sections of a comparatively smaller area with a sufficiently large area torque and bending moment.

Die Querschnitte 3, 4 und 5 in Figur 3c, 4a und 4b zeigen Treibkäfig-Segmente gemäß der vorliegenden Erfindung. Sie sind nicht mehr rotationssymmetrisch und zeichnen sich im Vergleich zu den herkömmlichen kreisförmigen Querschnitten 1 und 2 in Figur 3a und 3b durch eine kompakte größere Profilhöhe und jeweils zwei ebene Umfangsflächen 64, 66 aus. Hierbei durchläuft eine an jeden Punkt des Treibkäfigumfanges 56 anlegbare Tangente 54 nicht die Treibkäfig-Querschnittsfläche 50 (siehe Fig. 6). Alle hier aufgeführten erfindungsgemässen Treibkäfig-Segmente weisen eine um ca. 25 % geringere Querschnittsfläche als der Vergleichsquerschnitt 1 in Figur 3a auf.Cross sections 3, 4 and 5 in Figures 3c, 4a and 4b show sabot segments according to the present invention. They are no longer rotationally symmetrical and, in comparison to the conventional circular cross sections 1 and 2 in FIGS. 3a and 3b, are distinguished by a compact larger profile height and in each case two flat peripheral surfaces 64, 66. In this case, a tangent 54 that can be applied to any point of the sabot circumference 56 does not pass through the sabot cross-sectional area 50 (see FIG. 6). All of the sabot segments according to the invention listed here have a cross-sectional area that is approximately 25% smaller than the comparison cross-section 1 in FIG. 3a.

Erfindungsgemäße Treibkäfige gemäß Figur 5, Figur 6, Figur 7, Figur 9, Figur 10 und 11 wurden im Kaliber 120 mm bereits gefertigt und mit Erfolg verschossen. Aufgrund der erfindungsgemäßen dreieckförmigen bzw. polygonförmigen Querschnittsgestaltung der Treibkäfig-Segmente ist ein derartiger Treibkäfig um ca. 100 g bzw. ca. 6 % leichter als ein vergleichbarer moderner Treibkäfig herkömmlicher Bauart mit rotationssymmetrischem Querschnitt.
Das Treibkäfig-Segment gemäß Figur 3c mit Querschnitt 3 ist gegenüber dem Vergleichsquerschnitt 1 (Figur 3a) beispielsweise um 7,4 % biegesteifer und hat sogar im rißgefährdeten Zugspannungsbereich des Gewindes ein um 5,2 % größeres Biegewiderstandsmoment.
Noch günstiger stellen sich die Verhältnisse bei dem in Querschnitt 4 (Figur 4a) dargestellten Treibkäfigsegment-Querschnitt dar. Dieses Profil ist um 65,2 % deutlich biegesteifer als der Vergleichsquerschnitt 1 (Figur 3a). Der ursprünglich rißgefährdete Gewindebereich ist bei diesem Profil wegen des um 37,7 % größeren unteren Biegewiderstandsmomentes völlig unkritisch geworden.
Driving cages according to the invention according to FIG. 5, FIG. 6, FIG. 7, FIG. 9, FIGS. 10 and 11 have already been manufactured in the 120 mm caliber and have been successfully fired. Due to the triangular or polygonal cross-sectional design of the sabot segments according to the invention, such a sabot is about 100 g or about 6% lighter than a comparable modern sabot of conventional design with a rotationally symmetrical cross section.
The driving cage segment according to FIG. 3c with cross section 3 is, for example, 7.4% more rigid than the comparative cross section 1 (FIG. 3a) and even has a 5.2% greater bending resistance moment in the tensile stress range of the thread, which is at risk of cracking.
The situation is even more favorable with the sabot segment cross section shown in cross section 4 (FIG. 4a). This profile is clear by 65.2% more rigid than the comparison cross-section 1 (Figure 3a). The thread area, which was originally prone to cracking, has become completely uncritical in this profile because of the 37.7% lower bending moment.

Fertigungstechnisch zeichnen sich die Treibkäfig-Segmente gemäß Querschnitt 4 (Figur 4a) und Querschnitt 5 (Figur 4b) dadurch aus, daß die äußeren Profilkanten um 30° zur Mittellinie des Querschnittes geneigt sind oder anders ausgedrückt, in Querschnittsbetrachtung schließen die ebenen Umfangsflächen eines jeden Treibkäfig-Segmentes 47 im Rükkenbereich zwischen den Segmenttrennflächen 61, 62 einen Winkel von genau 60° ein und stehen damit rechtwinklig zur jeweils angrenzenden Segmenttrennfläche 61, 62. Für die Fertigung bedeutet dies, daß der gesamte Treibkäfig im Bereich der erfindungsgemäßen Querschnittsform in nur drei Fräsebenen spanend bearbeitet werden muß sofern zwei benachbarte ebene Umfangsflächen 56 von zwei benachbarten Treibkäfig-Segmenten 47 entlang der dazwischenliegenden Segmenttrennlinie 62 in Umfangsrichtung gerade bzw. eben ineinander übergehen (Fig. 4a). Beim Querschnitt 3 (Figur 3c) wären es sechs Fräsebenen für den Fall, daß zwei benachbarte ebene Umfangsflächen von zwei benachbarten Treibkäfig-Segmenten entlang der dazwischenliegenden Segmenttrennlinie 32 in Umfangsrichtung unter einem Winkel von kleiner 30° ineinander übergehen bzw. aneinandergrenzen (Fig. 6). Für diese Fräsvorgänge der ebenen Umfangsflächen können einfache billige zylindrische Walzenfräser verwendet werden.From a manufacturing point of view, the sabot segments according to cross-section 4 (FIG. 4a) and cross-section 5 (FIG. 4b) are distinguished by the fact that the outer profile edges are inclined by 30 ° to the center line of the cross-section or, in other words, in cross-sectional view the flat peripheral surfaces of each sabot cage close -Segment 47 in the back area between the segment separating surfaces 61, 62 an angle of exactly 60 ° and are thus at right angles to the respectively adjacent segment separating surface 61, 62. For production, this means that the entire sabot in the area of the cross-sectional shape according to the invention cuts in only three milling planes If two adjacent flat circumferential surfaces 56 of two adjacent sabot segments 47 along the intervening segment dividing line 62 in the circumferential direction must merge straight or evenly into one another (FIG. 4a). In cross section 3 (FIG. 3 c) there would be six milling planes in the event that two adjacent flat peripheral surfaces of two adjacent sabot segments along the intervening segment dividing line 32 merge or adjoin one another in the circumferential direction at an angle of less than 30 ° (FIG. 6) . Simple cheap cylindrical cylindrical milling cutters can be used for these milling operations on the flat peripheral surfaces.

Die geometrische Besonderheit des in Figur 4b gezeigten Treibkäfigsegment-Profiles gemäß Querschnitt 5 ist, daß sich die Profilflanken bzw. ebenen Umfangsflächen im Vergleich zum Querschnitt 3 und 4 (Figur 3c, Figur 4a) nicht mehr in einem Punkt schneiden. Die Schulter dieses Querschnittsprofiles besteht also nicht mehr aus nur einem Punkt, sondern aus einem Kreisbogen 58. Der Vorteil dieser Treibkäfigsegment-Konstruktion gegenüber Querschnitt 4 (Figur 4a) ist vor allem das deutlich verbesserte obere Biegewiderstandsmoment. Es ist hierbei lediglich um 0,8 % kleiner als das des Vergleichsquerschnittes 1 in Figur 3a.The geometric peculiarity of the sabot segment profile shown in FIG. 4b according to cross section 5 is that the profile flanks or flat peripheral surfaces do not differ in comparison to cross section 3 and 4 (FIG. 3c, FIG. 4a) cut more in one point. The shoulder of this cross-sectional profile therefore no longer consists of just one point, but of an arc 58. The advantage of this sabot segment construction compared to cross-section 4 (FIG. 4a) is above all the significantly improved upper bending moment. It is only 0.8% smaller than that of the comparison cross section 1 in FIG. 3a.

Ein weiterer fertigungstechnisch günstiger dreieckförmiger bzw. polygonförmiger Treibkäfig-Querschnitt ist in Figur 8 dargestellt. Hierbei sind anstelle der ebenen Umfangsflächen leicht nach außen gewölbte bzw. gekrümmte Umfangsflächen 68, 70 vorgesehen während im Rückenbereich zwischen diesen Umfangsflächen ein stark gekrümmter bzw. abgerundeter Umfangsbereich 58 angeordnet ist. Der Vorteil dieser gerundeten Ausgestaltungsform liegt in der fertigungstechnischen Möglichkeit, diesen Treibkäfig als kostengünstiges "Drehteil" auf einer Exzenter-Drehbank herstellen zu können.Another triangular or polygonal sabot cross section that is favorable in terms of production technology is shown in FIG. Here, instead of the flat circumferential surfaces, slightly outwardly curved or curved circumferential surfaces 68, 70 are provided, while a strongly curved or rounded circumferential region 58 is arranged in the back area between these circumferential surfaces. The advantage of this rounded design lies in the possibility of manufacturing technology to be able to manufacture this sabot as an inexpensive "turned part" on an eccentric lathe.

Wie bereits beschrieben, beruht das erfindungsgemäße Lösungsprinzip darauf, insbesondere in dem biegegefährdeten Treibkäfigsegmentbereich hinter dem vorderen Führungsflansch des Treibkäfigs nichtrotationssymmetrische Querschnitte mit kleinerer Fläche jedoch größerem Flächenmoment und Biegewiderstandsmoment im Vergleich zu herkömmlichen rotationssymmetrischen Querschnitten zu verwenden.As already described, the principle of the solution according to the invention is based on using non-rotationally symmetrical cross sections with a smaller area but a larger area torque and bending resistance moment in comparison to conventional rotationally symmetrical cross sections, in particular in the bendable sabot segment area behind the front guide flange of the sabot.

Prinzipiell kann die erfindungsgemäße dreiecksförmige Querschnittsflächengestaltung des Treibkäfigs in allen nichtkalibergroßen Bereichen angewendet werden, dies insbesondere bei Treibkäfigen mit großer Längenerstreckung, wie z. B. Treibkäfige für zwei hintereinander angeordnete Tandem-Geschosse, wobei der nicht rotationssymmetrische Querschnitt auch im langgestreckten konisch zulaufenden Heckteil hinter dem Druckflansch vorgesehen sein kann um auch dort die Biegesteifigkeit zu erhöhen.In principle, the triangular cross-sectional surface design of the sabot according to the invention can be used in all non-caliber areas, in particular for sabots with a large length, such as. B. sabot cages for two tandem projectiles arranged one behind the other, the non-rotationally symmetrical cross section can also be provided in the elongated tapered rear part behind the pressure flange in order to increase the bending stiffness there as well.

Bei dem in Figur 5 dargestellten erfindungsgemäßen Treibkäfig ist es jedoch aus Gründen der Abschußfestigkeit beim Rohrdurchgang nicht sinnvoll, die erfindungsgemäßen Stegprofile im gesamten Längenbereich des Treibkäfigs zwischen vorderem Führungsflansch 12 und hinterem Druckflansch 14 anzuordnen. Die Rotationssymmetrie im Bereich des Ausrundungsradius 34 vor dem Druckflansch 14 sollte in jedem Fall erhalten bleiben. Für die in Figur 5 definierte Länge L als der Abstand zwischen Druckflansch 14 und Beginn des nichtrotationssymmetrischen Querschnittsprofils im Sinne dieser Erfindung soll gelten: L größer gleich D/5 (mit D gleich Kaliberdurchmesser) L ≧ D/5. Der Pfeil 52 gibt die Schußrichtung der Treibkäfiganordnung an.In the sabot according to the invention shown in FIG. 5, however, for reasons of firing resistance when passing through the pipe, it does not make sense to arrange the web profiles according to the invention in the entire length range of the sabot between the front guide flange 12 and the rear pressure flange 14. The rotational symmetry in the region of the fillet radius 34 in front of the pressure flange 14 should be preserved in any case. For the length L defined in FIG. 5 as the distance between the pressure flange 14 and the beginning of the non-rotationally symmetrical cross-sectional profile in the sense of this invention, the following applies: L greater than D / 5 (with D equal to caliber diameter) L ≧ D / 5. The arrow 52 indicates the firing direction of the sabot arrangement.

Die in den Zeichnungen Figur 5, Figur 9, Figur 10 und Figur 11 dargestellten erfindungsgemäße Treibkäfigkonfigurationen haben im gesamten nichtrotationssymmetrischen Treibkäfigbereich eine konstante Querschnittsfläche. Da beim Abschuß während des Rohrdurchganges mit zunehmendem Abstand vom vorderen Führungsflansch 12 nach hinten die vom Treibkäfig-Segment zu übertragenden Axialkräfte zur Beschleunigung und Stützung des Penetrators stetig anwachsen, ist es durchaus sinnvoll, den biegegefährdeten Bereich des Treibkäfigs mit einem erfindungsgemäßen Profil wie in Figur 5a dargestellt ist auszubilden, dessen Querschnittsfläche von dem vorderen Führungsflansch 12 ausgehend in Richtung auf den hinteren Druckflansch 14 stetig zunimmt. Dabei können die ebenen Umfangsflächen 64, 66 der Treibkäfig-Segmente leicht schräg zur Längsachse A verlaufen und der abgerundete Zwischenbereich 58 zwischen zwei ebenen Umfangsflächen - sofern er vorgesehen ist - würde sich dementsprechend von vorne nach hinten verbreitern.
Die Figuren 9, 10 und 11 zeigen zur Veranschaulichung in perspektivischer bzw. Seitenansicht im Teilschnitt den gebauten erfindungsgemäßen Treibkäfig 60 mit der in Fig. 3c (Querschnitt 3) dargestellten Treibkäfigsegment-Querschnittsfläche.
The sabot configurations according to the invention shown in the drawings FIG. 5, 9, 10 and 11 have a constant cross-sectional area in the entire non-rotationally symmetrical sabot area. Since, during firing during the passage of the pipe, the axial forces to be transmitted from the sabot segment for increasing acceleration and support of the penetrator increase with increasing distance from the front guide flange 12 to the rear, it makes sense to design the area of the sabot at risk of bending with a profile according to the invention as in FIG. 5a is shown, the cross-sectional area of which increases continuously starting from the front guide flange 12 in the direction of the rear pressure flange 14. The flat circumferential surfaces 64, 66 of the sabot segments can run slightly obliquely to the longitudinal axis A and the rounded intermediate region 58 between two flat circumferential surfaces - if it is provided - would accordingly widen from front to back.
FIGS. 9, 10 and 11 show in perspective or side view in partial section the sabot 60 according to the invention with the sabot segment cross-sectional area shown in FIG. 3c (cross section 3).

Mit der Erfindung läßt sich also wie geschildert eine erhebliche Massereduzierung (Totlastanteil) eines Treibkäfigs bei gleichzeitiger wesentlicher Erhöhung seiner Biegesteifigkeit erzielen. Eine einfache und kostengünstige Serienfertigung wird ermöglicht. Die Anwendung der Erfindung ist für alle möglichen Waffen mit Kleinoder Großkaliber sowie mit gezogenen oder glatten Rohren denkbar, aus denen Treibkäfiggeschosse verschossen werden können. Die erfindungsgemäßen Profile können nicht nur bei Zwei-Flansch-Treibkäfigen, sondern auch bei Ein-Flansch-Treibkäfigen verwendet werden.With the invention, a significant reduction in mass (dead load component) of a sabot can be achieved with a substantial increase in its bending stiffness, as described. A simple and inexpensive series production is made possible. The application of the invention is conceivable for all possible weapons with small or large calibers as well as with drawn or smooth tubes from which sabot projectiles can be fired. The profiles according to the invention can be used not only with two-flange drive cages, but also with single-flange drive cages.

In Figur 12 ist ein weiterer erfindungsgemäßer Treibkäfig 60 dargestellt. Hierbei ist die dreieckförmige Querschnittsfläche nicht nur in dem vorderen Längenbereich 36 zwischen dem vorderen Führungsflansch 12 und dem hinteren Druckflansch 14, sondern auch noch im hinteren Heckteil 24 hinter dem Druckflansch 14 ausgebildet. Die Anordnung einer polygonalen Querschnittsform 72 auf dem Heckteil 24 des Treibkäfigs 60 bewirkt auch in diesem Bereich eine Biegesteifigkeitserhöhung ohne zusätzliche Massenerhöhung.A further sabot 60 according to the invention is shown in FIG. Here, the triangular cross-sectional area is formed not only in the front length region 36 between the front guide flange 12 and the rear pressure flange 14, but also in the rear rear part 24 behind the pressure flange 14. The arrangement of a polygonal cross-sectional shape 72 on the rear part 24 of the sabot 60 also results in an increase in bending stiffness in this area without an additional increase in mass.

Bei der in der Figur 13 dargestellten Querschnittsform des Treibkäfigs 60 ist die Krümmung der Außenfläche 70 der polygonförmigen Querschnittsform 72 geringfügig konvex nach außen gewölbt.In the cross-sectional shape of the sabot 60 shown in FIG. 13, the curvature of the outer surface 70 of the polygonal cross-sectional shape 72 is curved slightly convexly outwards.

Die Bezugsziffer 80 kennzeichnet die ursprüngliche Kreisumfangsfläche, wobei 82 die maximale Entfernung a zwischen der gewölbten Außenfläche 70 der Querschnittsform 72 angibt, und 74 den maximalen Abstand b der gewölbten Außenfläche 70 zu einer die Eckpunkte 78 verbindenden Gerade 76 kennzeichnet. Das Prinzip einer möglichst geringen Wölbung der Außenfläche 70 äußerst sich geometrisch darin, daß b ≦ a ist.The reference number 80 denotes the original circumferential surface, 82 indicating the maximum distance a between the curved outer surface 70 of the cross-sectional shape 72, and 74 the maximum distance b of the curved outer surface 70 from a straight line 76 connecting the corner points 78. The principle of the smallest possible curvature of the outer surface 70 is expressed geometrically in that b ≦ a.

Figur 14 zeigt den Querschnitt des in Figur 12 dargestellten Treibkäfigs 60. Während die in der Figur 13 dargestellte erfindungsgemäße Querschnittsform den Bereich im Heckteil 24 hinter dem Druckflansch 14 charakterisiert, zeigt Figur 14 den Querschnitt im mittleren Rückenbereich 36 zwischen dem vorderen Führungsflansch 12 und dem hinteren Druckflansch 14.FIG. 14 shows the cross section of the sabot 60 shown in FIG. 12. While the cross-sectional shape according to the invention shown in FIG. 13 characterizes the area in the rear part 24 behind the pressure flange 14, FIG. 14 shows the cross section in the middle back area 36 between the front guide flange 12 and the rear one Pressure flange 14.

Diese beiden Ausführungsbeispiele sind darüber hinaus auch gegeneinander austauschbar. Der Querschnitt, wie in der Figur 13 dargestellt, kann somit auch auf den mittleren Rückenbereich 36 des Treibkäfigs 60 aufgebracht werden, und der in der Figur 14 dargestellte Querschnitt kann dementsprechend auch auf dem Heckteil 24 hinter dem Druckflansch 14 angeordnet sein. Des weiteren ist die Möglichkeit gegeben, daß beide in den Figuren 13 und 14 dargestellten Querschnittsformen 72, 72' ineinander übergehen.These two exemplary embodiments are also interchangeable. The cross section, as shown in FIG. 13, can thus also be applied to the central back region 36 of the sabot 60, and the cross section shown in FIG. 14 can accordingly also be arranged on the rear part 24 behind the pressure flange 14. Furthermore, there is the possibility that the two cross-sectional shapes 72, 72 'shown in FIGS. 13 and 14 merge into one another.

Die Bezugsziffer 72' kennzeichnet die polygonförmige Querschnittsform, die hier dahingehend modifiziert ist, daß die benachbarten leicht gekrümmten Außenflächen 70 nicht direkt aneinandergrenzen, sondern jeweils durch ein schmales Stück der kreisbogenförmigen Außenfläche 58 voneinander getrennt sind. Der Mittelpunkt dieser kreisbogenförmigen Außenfläche 58 mit dem Radius Rpol liegt im Zentrum A der Gesamtquerschnittsfläche 72' des Treibkäfigs 60, der dem Schnittpunkt der drei Segment-Trennflächen 31, 32, 33 entspricht. Das Bezugszeichen c kennzeichnet in der Figur 14 die Länge 86 der Segment-Trennflächen 31, 32, 33. Die Umfangslänge 84 der kreisbogenförmigen Außenfläche 58 ist dabei kleiner als die Länge c, 86 der Segment-Trennflächen 31, 32, 33. Die Krümmung einer Außenfläche 70 ist wie bereits in der Figur 13 dargestellt möglichst gering. Dabei stellen a, 82' wiederum den maximalen Abstand zwischen der gekrümmten Außenfläche 70 der Querschnittsform 72' und dem Kreisumfang 80 dar. Die Gerade 76 verbindet in dieser Darstellung die Eckpunkte 78'. Gegenüber der Figur 13, in der drei Eckpunkte 78 vorliegen, erhält man bei diesem Querschnitt sechs Eckpunkte 78' dadurch, daß die gewölbten Außenflächen 70 nicht direkt aneinandergrenzen, sondern durch Kreisbogensegmente 58 voneinander getrennt sind. Jede gekrümmte Umfangsfläche 70 weist jeweils zwei Eckpunkte 78′ mit den benachbarten Kreisbogensegmenten 58 auf. Diese werden durch die Gerade 76 miteinander verbunden. Der maximale Abstand von dieser Geraden 76 zur gekrümmten Außenfläche 70 wird durch b, 74' gekennzeichnet. Eine möglichst geringe Krümmung wird auch hier - wie in Figur 13 - geometrischdadurch bestimmt, daß b ≦ a ist.The reference numeral 72 'denotes the polygonal cross-sectional shape, which is modified here in such a way that the adjacent slightly curved outer surfaces 70 do not directly adjoin one another, but are each separated from one another by a narrow piece of the arcuate outer surface 58. The center of this circular arc-shaped outer surface 58 with the radius R pol lies in the center A of the total cross-sectional surface 72 'of the sabot 60 corresponds to the intersection of the three segment separating surfaces 31, 32, 33. The reference character c in FIG. 14 denotes the length 86 of the segment separating surfaces 31, 32, 33. The circumferential length 84 of the arc-shaped outer surface 58 is smaller than the length c, 86 of the segment separating surfaces 31, 32, 33. The curvature of one As already shown in FIG. 13, the outer surface 70 is as small as possible. In this case, a, 82 'again represent the maximum distance between the curved outer surface 70 of the cross-sectional shape 72' and the circumference 80. The straight line 76 in this illustration connects the corner points 78 '. Compared to FIG. 13, in which there are three corner points 78, six corner points 78 'are obtained with this cross section in that the curved outer surfaces 70 do not directly adjoin one another, but are separated from one another by circular arc segments 58. Each curved peripheral surface 70 has two corner points 78 'with the adjacent circular arc segments 58. These are connected to each other by straight line 76. The maximum distance from this straight line 76 to the curved outer surface 70 is identified by b, 74 '. The smallest possible curvature is determined geometrically, as in FIG. 13, by the fact that b ≦ a.

Die Figur 15 zeigt den Querschnitt eines Treibkäfigs 88, der eine Teilung in vier Treibkäfig-Segmente 90 aufweist. Die im wesentlichen quadratische Querschnittsform läßt sich ebenfalls mit Hilfe einfacher drehtechnischer Verfahren auf einen Teilbereich der Längenerstreckung eines viergeteilten Treibkäfigs 88 aufbringen.
Die vier Außenflächen 70' dieser quadratischen Querschnittsform sind leicht konvex nach außen gewölbt. Wie anhand der Figuren 13 und 14 beschrieben, ist auch hier die Wölbung der gekrümmten Außenflächen 70' möglichst gering und wiederum geometrisch dadurch bestimmt, daß der maximale Abstand b zwischen der die Eckpunkte 78'' verbindenden Gerade 76 zu der gekrümmten Außenfläche 70 kleiner gleich ist dem maximalen Abstand a der gekrümmten Außenfläche 70' zur ursprünglichen Kreisumfangsfläche 80. Die vier Segment-Trennflächen der Treibkäfig-Segmente 90 sind so angeordnet, daß der radiale Abstand von der zentralen Längsachse A bis zur gekrümmten Außenfläche 70' an den Segment-Trennflächen am kleinsten ist.
FIG. 15 shows the cross section of a sabot 88, which is divided into four sabot segments 90. The essentially square cross-sectional shape can also be applied to a partial area of the length extension of a four-part sabot 88 using simple turning techniques.
The four outer surfaces 70 'of this square cross-sectional shape are slightly convexly curved outwards. As described with reference to FIGS. 13 and 14, the curvature of the curved outer surfaces 70 'is also as small as possible here and in turn is determined geometrically by the fact that the maximum distance b between the straight line 76 connecting the corner points 78 ″ to the curved outer surface 70 is less than or equal to the maximum distance a between the curved outer surface 70 ′ and the original circular circumferential surface 80. The four segment separating surfaces of the sabot segments 90 are arranged such that the radial distance from the central longitudinal axis A to the curved outer surface 70 ′ is the smallest at the segment separating surfaces.

Die Figur 16 modifiziert die Figur 15 dahingehend, daß jedes Treibkäfig-Segment 90 in Querschnittsbetrachtung zwischen den beiden benachbarten leicht gewölbten Außenflächen 70' ein schmales Stück kreisbogenförmiger Außenfläche 58' aufweist. Der Mittelpunkt dieser kreisbogenförmigen Außenfläche 58' mit dem Radius Rqua liegt im Zentrum A der Gesamtquerschnittsfläche des Treibkäfigs 88. Dieser Mittelpunkt entspricht wiederum dem Schnittpunkt der Segment-Trennflächen. Insbesondere diese Ausführungsform weist eine sehr geringe Krümmung der Außenfläche 70' auf.FIG. 16 modifies FIG. 15 in such a way that each sabot segment 90 has, in cross-sectional view, a narrow piece of circular-arc-shaped outer surface 58 'between the two adjacent slightly curved outer surfaces 70'. The center of this circular arc-shaped outer surface 58 'with the radius R qua lies in the center A of the total cross-sectional area of the sabot 88. This center again corresponds to the intersection of the segment separating surfaces. This embodiment in particular has a very slight curvature of the outer surface 70 '.

Die in den Figuren 15 und 16 dargestellten Querschnitte sind ineinander überführbar. Der Abstand b in Figur 15 wird durch die verwendete Drehmaschine vorgegeben. Die Krümmung der Außenflächen 70' kann durch die Exzentrizität der Drehmaschine variiert werden.The cross sections shown in FIGS. 15 and 16 can be converted into one another. The distance b in Figure 15 is specified by the lathe used. The curvature of the outer surfaces 70 'can be varied by the eccentricity of the lathe.

Definitionen:Definitions:

f i := A i -A₁ A₁ ; t i := I i -I₁ I₁ ; q i := W b,i - W b,1 W b,1 ; i=2,3,4,5

Figure imgb0001
f i : = A i -A₁ A₁ ; t i : = I. i -I₁ I₁ ; q i : = W bi - W b, 1 W b, 1 ; i = 2,3,4,5
Figure imgb0001
Figure imgb0002
Figure imgb0002

Claims (19)

  1. Segmented discardable sabot (60), particularly one of considerable length, for a sub-calibre penetrator projectile (30) with a high degree of slenderness, with at least two sabot segments (26, 28) with at least two plane-parallel separating surfaces (32,33) and with at least one large-calibre gas-sealing pressure flange part (14), measures being taken in those zones (36) of the sabot which are not of large calibre to increase the flexural strength, characterised by the fact that the overall cross section (50) of the sabot (60), at least over part of its length, has a substantially triangular cross-sectional shape in which a tangent (54) which can be placed against every point on the sabot periphery (56) does not pass the cross sectional surface (50) of the sabot (Fig. 3c, 4a, 4b, 6, 7, 8).
  2. Sabot in accordance with Claim 1, characterised by the fact that in the triangular cross-sectional shape the radial distance (Ri) from the central longitudinal axis (A) to the outer periphery (56) of the sabot (60) is at a minimum on the outer segment separating surfaces (61,62,63) and the radial distance (Ra) in the median peripheral zone of a sabot segment (46,47,48) is at a maximum between the two outer segment separating surfaces (61,62,63), while by mass distribution or cross-sectional surface redistribution, from the peripheral zones of the outer segment separating surfaces (61,62,63) of a sabot segment (46), with a circular cross-sectional surface of the same size, in the direction of the median peripheral range, an increase of the flexural strength as well as of the flexural resistance moment is provided to a value which is at least as great as the flexural strength of a comparable sabot with a circular cross-sectional surface about 25% greater (Fig. 3a, 3b, 3c, 4a, 4b).
  3. Sabot in accordance with Claim 1 or 2, characterised by the fact that the flexural strength of the sabot with a polygonal or approximately triangular cross-sectional form is greater by a factor of at least 1.3 than the flexural strength of the theoretical sabot with a circular cross-sectional surface of the same size (Fig. 3b and 3c).
  4. Sabot in accordance with Claim 1, 2 or 3, characterised by the fact that each sabot segment (46) has at least two plane peripheral surfaces (64,66) (Figure 3c, 4b).
  5. Sabot in accordance with Claim 1, 2 or 4, characterised by the fact that two adjacent plane peripheral surfaces of two adjacent sabot segments continue in or are contiguous with each other along the segment separating line (32) in the peripheral direction at an angle of less than 30° (Fig. 6).
  6. Sabot in accordance with Claim 1, 2, 3 or 4, characterised by the fact that two adjacent plane peripheral surfaces (56) of two adjacent sabot segments (47) continue over a straight or plane course in each other along the segment separating line (62) in the peripheral direction.
  7. Sabot in accordance with one of the foregoing Claims 1 to 6, characterised by the fact that, as viewed in cross section, the plane peripheral surfaces (56) of each sabot segment (47), in the rear zone between the segment separating surfaces (61,62), enclose an angle of 60° and are at right angles to the adjacent segment separating surface (61,62) (Fig. 4a).
  8. Sabot in accordance with one of the foregoing Claims 1 to 7, characterised by the fact that between the plane peripheral surfaces (64,66) of each sabot segment (48), in the rear zone, a bevelled or rounded peripheral zone (58) is provided (Figure 4b).
  9. Sabot in accordance with one of the foregoing Claims 1 to 8, characterised by the fact that in place of the plane peripheral surfaces, peripheral surfaces (68,70) are provided which curve slightly outwards, while in the rear zone between the slightly curved peripheral surfaces (68,70) a distinctly curved or rounded peripheral zone (58) is provided (Figure 8).
  10. Sabot in accordance with one of the foregoing Claims 1 to 9, characterised by the fact that the triangular cross-sectional form is only provided in a certain zone (36) of the length of the sabot (60), between the front guide flange (12) and the rear pressure flange (14), this longitudinal zone (36) being directly connected up to the front guide flange (12) while the remaining zone, of smaller calibre diameter, is formed in a rotationally symmetrical manner in front of the pressure flange (14) (Fig. 5).
  11. Sabot in accordance with Claim 10, characterised by the fact that the longitudinal zone (36) with the triangular cross-sectional surface amounts to less than 80% and preferably to about 60% of the distance between the front guide flange (12) and the rear pressure flange (14) (Fig. 5).
  12. Sabot in accordance with one of the foregoing Claims 1 to 11, characterised by the fact that the plane peripheral surfaces (64) of a sabot segment (46) slant slightly in relation to the longitudinal axis (A) (Fig. 5a).
  13. Sabot in accordance with one of the foregoing Claims 1 to 12, characterised by the fact that the three external surfaces (70) of the triangular cross-sectional shape of the sabot are slightly convex towards the outside, resulting in a polygonal overall cross section.
  14. Sabot in accordance with Claim 13, characterised by the fact that the convexity of curvature of an external surface (70) of the polygonal cross-sectional shape (72) is made as small as possible and satisfies the geometrical conditions (b ≦ a) wherein B is equal to the maximum distance (74) of the convex external surface (70) from a straight line (76) between the two outer corners (78) of the convex external surface (70) while a is equal to the maximum distance (82) between the convex external surface (70) and the original circular peripheral surface (80).
  15. Sabot in accordance with Claim 13 or 14, characterised by the fact that each sabot segment (42,44,46) as viewed in cross section, in the median rear zone (84) between the two adjacent slightly curved external surfaces (70), has a narrow portion or arcuate external surface (58) of which the radius (Rpol has its origin in the centre (A) of the overall cross-sectional surface of the sabot (60,72) (at the same point of intersection of the segment separating surfaces).
  16. Sabot in accordance with Claim 15, characterised by the fact that for any sabot cross section the length of the portion of arcuate external surface (58), as viewed in the peripheral direction, is less than or equal to the length C (86) of the segment separating surface (31,32,33).
  17. Segmented ejectable sabot (88), particularly of considerable length, for a sub-calibre penetrator projectile with a high degree of slenderness, with at least two sabot segments with adjacent plane-parallel segment separating surfaces and with at least one gas-sealing pressure flange part of large calibre, measures being taken in those zones of the sabot which are of large calibre to increase the flexural strength, characterised by the fact that the overall cross section of the sabot (88), when subdivided into four sabot segments (90), has at least over part of its length a substantially square cross-sectional form, in which a tangent n which can be placed against a point on the periphery of the sabot does not pass through the cross section surface of the sabot.
  18. Sabot in accordance with Claim 17, characterised by the fact that the four external surfaces (70) of the square cross-sectional shape are slightly convex towards the outside.
  19. Sabot in accordance with Claim 17 or 18, characterised by the fact that each sabot segment (90), as viewed in cross section, in the median rear zone between the two adjacent slightly convex external surfaces (70'), has a small portion of arcuate external surface (58) of which the radius (Rqua) has its origin in the centre (A) of the overall cross-sectional surface of the sabot (88).
EP90104244A 1989-06-21 1990-03-06 Sabot Expired - Lifetime EP0403730B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3920254 1989-06-21
DE19893920254 DE3920254A1 (en) 1989-06-21 1989-06-21 Sabot for sub-calibre penetration projectile
DE4005127 1990-02-17
DE4005127A DE4005127A1 (en) 1989-06-21 1990-02-17 DRIVING CAGE

Publications (3)

Publication Number Publication Date
EP0403730A2 EP0403730A2 (en) 1990-12-27
EP0403730A3 EP0403730A3 (en) 1991-04-17
EP0403730B1 true EP0403730B1 (en) 1993-07-28

Family

ID=25882164

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90104244A Expired - Lifetime EP0403730B1 (en) 1989-06-21 1990-03-06 Sabot

Country Status (3)

Country Link
US (1) US5025731A (en)
EP (1) EP0403730B1 (en)
DE (2) DE4005127A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4206217C2 (en) * 1992-02-28 1997-08-14 Rheinmetall Ind Ag Sub-caliber balancing projectile
FR2740213B1 (en) * 1995-10-19 1997-12-05 France Etat ARROW-TYPE KINETIC ENERGY PROJECTILE
USH1999H1 (en) * 1999-03-03 2001-11-06 The United States Of America As Represented By The Secretary Of The Army Tuning saboted projectile performance through bourrelet modification
DE10157668B4 (en) * 2001-11-24 2014-05-22 Rheinmetall Waffe Munition Gmbh bullet
FR2835602B1 (en) * 2002-02-04 2006-11-10 Giat Ind Sa SABOT FOR MUNITION ARROW
FR2842898B1 (en) * 2002-07-24 2006-11-24 Giat Ind Sa SABOT FOR PROJECTILE UNDER SIZE AND PROJECTILE EQUIPPED WITH SUCH A SABOT
DE102005055503A1 (en) 2005-11-18 2007-05-24 Rheinmetall Waffe Munition Gmbh Segmented two-flange sabot
DE102013000180B3 (en) * 2013-01-07 2014-04-03 Diehl Bgt Defence Gmbh & Co. Kg Securing device for an igniter of a subcaliber projectile and Entsicherungsverfahren therefor
DE102020115703B4 (en) * 2020-06-15 2024-02-22 Rheinmetall Waffe Munition Gmbh sabot

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3038382A (en) * 1958-09-26 1962-06-12 William R Noyes Bore riders for launching of projectiles
NL137889C (en) * 1967-07-28
US3601061A (en) * 1967-08-31 1971-08-24 Trw Inc Ammunition for high firing rate, light gas hypervelocity gun
US3847082A (en) * 1969-08-29 1974-11-12 Pacific Technica Corp Spin stabilized, discarding sabot projectile
DE2836963A1 (en) * 1978-08-24 1984-03-08 Rheinmetall GmbH, 4000 Düsseldorf AMMUNITION UNIT FOR TUBE ARMS
US4326464A (en) * 1979-12-10 1982-04-27 The United States Of America As Represented By The Secretary Of The Army Gusset discarding sabot munition
DE3704027A1 (en) * 1987-02-10 1988-08-18 Diehl Gmbh & Co Discarding sabot

Also Published As

Publication number Publication date
EP0403730A3 (en) 1991-04-17
US5025731A (en) 1991-06-25
DE59002077D1 (en) 1993-09-02
DE4005127A1 (en) 1991-08-22
EP0403730A2 (en) 1990-12-27

Similar Documents

Publication Publication Date Title
DE4307090B4 (en) Nut, especially wheel nut
DE3991343C1 (en) Deformation bullet, ammunition equipped therewith, and method for the production of the bullet
DE2552665C3 (en) A mandrel that can be rotated quickly around its axis for forming a hole in a metal plate or the wall of a metal pipe
WO1990011458A1 (en) Self-tapping drill screw
EP1864736B1 (en) Thread tapping tool with edge transition
DE102005014422A1 (en) Drill
EP0403730B1 (en) Sabot
EP3690260A1 (en) Semi-hollow rivet, a punch rivet connection comprising at least two components with the aid of the semi-hollow rivet and a method for connecting the components with the semi-hollow rivet
EP0895573B1 (en) Expansion projectile
DE3424597C1 (en) Arrangement for braking a sabot
DE1475043B1 (en) Drill bit for self-drilling screws and method for making the same
WO1982002579A1 (en) Housable nut
EP0112437B1 (en) Tool for an exact as well as a fine machining of cylindrical section openings
DE4206217C2 (en) Sub-caliber balancing projectile
EP3331658A1 (en) Replaceable cutting head, tool shank, and shank-mounted tool
EP0483660A2 (en) Calibrated rivet for highly stressed rivet assemblies
EP0209099B1 (en) Stator for a helical gear pump
DE3920254C2 (en)
EP0989381B1 (en) Subcalibre projectile
DE4012154A1 (en) SUB-CALIBRARY FLOOR WITH DRIVE CAGE
DE69914272T2 (en) Set consisting of segments for the manufacture of a floor driving cage
EP0626558A1 (en) Sabot for a sub-calibre projectile
DE102019102380A1 (en) Full punch rivet, a punch rivet connection from at least two components using the full punch rivet and a method for connecting the components to the full punch rivet
DE102019116125A1 (en) Projectile, in particular deformation and / or partially fragmentation projectile, and method for producing a projectile
DE4307092A1 (en) Wheel nut with integral flange - has concave flange face and is solid-shaped, e.g. by cold or hot-pressing and has clamping portion with tapering bore and slots

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19910306

17Q First examination report despatched

Effective date: 19921022

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHEINMETALL GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REF Corresponds to:

Ref document number: 59002077

Country of ref document: DE

Date of ref document: 19930902

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930810

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040302

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040303

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040305

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040310

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051130