EP0393422B1 - Spinning in water-vapour of segmented polyurethane-urea elastomers - Google Patents
Spinning in water-vapour of segmented polyurethane-urea elastomers Download PDFInfo
- Publication number
- EP0393422B1 EP0393422B1 EP90106457A EP90106457A EP0393422B1 EP 0393422 B1 EP0393422 B1 EP 0393422B1 EP 90106457 A EP90106457 A EP 90106457A EP 90106457 A EP90106457 A EP 90106457A EP 0393422 B1 EP0393422 B1 EP 0393422B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spinning
- shaft
- steam
- cabinet
- elastomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009987 spinning Methods 0.000 title claims description 109
- 229920001971 elastomer Polymers 0.000 title claims description 40
- 239000000806 elastomer Substances 0.000 title claims description 40
- 229920003226 polyurethane urea Polymers 0.000 title claims description 13
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 32
- 239000002904 solvent Substances 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 20
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 16
- 238000000578 dry spinning Methods 0.000 claims description 8
- 229920003225 polyurethane elastomer Polymers 0.000 claims description 4
- 125000004427 diamine group Chemical group 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 36
- -1 Carbodihydrazide Chemical class 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 8
- 239000000835 fiber Substances 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 150000004985 diamines Chemical group 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000013557 residual solvent Substances 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 125000005442 diisocyanate group Chemical group 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 229920002334 Spandex Polymers 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- GEQHKFFSPGPGLN-UHFFFAOYSA-N cyclohexane-1,3-diamine Chemical compound NC1CCCC(N)C1 GEQHKFFSPGPGLN-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 239000004759 spandex Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- 235000014692 zinc oxide Nutrition 0.000 description 2
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 description 2
- XKQMKMVTDKYWOX-UHFFFAOYSA-N 1-[2-hydroxypropyl(methyl)amino]propan-2-ol Chemical compound CC(O)CN(C)CC(C)O XKQMKMVTDKYWOX-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Chemical class 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- HJCUTNIGJHJGCF-UHFFFAOYSA-N acridan acid Natural products C1=CC=C2CC3=CC=CC=C3NC2=C1 HJCUTNIGJHJGCF-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical compound [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- XEVRDFDBXJMZFG-UHFFFAOYSA-N carbonyl dihydrazine Chemical compound NNC(=O)NN XEVRDFDBXJMZFG-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- SCKHCCSZFPSHGR-UHFFFAOYSA-N cyanophos Chemical compound COP(=S)(OC)OC1=CC=C(C#N)C=C1 SCKHCCSZFPSHGR-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- DUIOPKIIICUYRZ-UHFFFAOYSA-N semicarbazide Chemical compound NNC(N)=O DUIOPKIIICUYRZ-UHFFFAOYSA-N 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/70—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/04—Dry spinning methods
Definitions
- the invention relates to a method for spinning segmented polyurethane urea elastomers in dry spinning chimneys while introducing certain amounts of superheated steam.
- the process allows an extraordinary increase in the spinning performance per shaft as well as an increase in the spinning speed, in particular in the case of medium and coarse titers, at high spinning shaft temperatures and without undesired change, in some cases even with a significant improvement in the thread properties of the filament yarns obtained.
- the new process in particular also prevents tendencies of the spinning solvents to decompose at high temperatures in air (otherwise necessary for extensive spinning solvent removal at high spinning speeds) without the use of inert gases as spinning air media.
- the new process also enables the spinning of (multi) filament yarns with higher single filament titers, which contributes to improving the stability of the filament yarns against external influences and degradation influences.
- Highly elastic PU elastomer threads are mainly manufactured using wet and, in particular, dry spinning processes.
- highly viscous solutions of the elastomers in dimethylformamide or dimethylacetamide are spun through multi-hole nozzles into heated spinning shafts, to which hot air is additionally fed (cf. H. Oertel, in synthetic fibers, publisher: B. v Falkai, Verlag Chemie Weinheim 1981, pp. 180 to 190 and H. Gall / KH Wolf in Kunststoff Handbuch, Vol. 7, Polyurethane, 1983, C. Hanser-Verlag, pp. 611 to 627).
- the temperature of the spinning solution, the temperature in the spinning shaft, the temperature of the additionally supplied hot air and the take-off speed, and the geometric dimensions of the spinning shafts essentially determine the drying of the filaments with the solvents being largely removed.
- Japanese Patent 44-896 (1969) describes a dry spinning process for glycol chain-extended polyurethane elastomers based on higher molecular weight polyesters, diisocyanates and ethylene glycol, dissolved in a mixture of methyl isobutyl ketone / DMF or tetrahydrofuran as a solvent, these polyurethanes being spun in a spinning shaft of at least 150 ° C with introduction above the spinneret from 1 to 30 m3 / h superheated steam at 150 to 400 ° C and at moderate take-off speeds (low spinning performance).
- Such threads show practically the same properties in comparison to threads spun without water vapor.
- Volatile solvents such as tetrahydrofuran are used or are also used.
- Glycol-extended polyurethane elastomers of this type cannot be spun at elevated shaft temperatures and at the same time high temperatures of gaseous spinning media; they tear off or are stretched thermoplastic with an undesirable change in the elastic properties.
- the spinning capacities described by the Japanese process still remain very unsatisfactory for such glycol-extended polyurethanes.
- the object of the invention is to provide an improved dry spinning process, according to which the polyurethane urea (PUH -) elastomers, based on diamine chain extension of NCO prepolymers, are made practically completely from highly polar solvents such as dimethylformamide and especially dimethylacetamide, with high spinning performance and without the risk can be spun from decomposition of the spinning solvent at high temperatures to PUH elastomer threads, which now have only a low content of spinning solvent, have a good raw color and also have improved elastic properties compared to threads spun from hot air.
- the inventive task should be as possible without changing the existing one Spinning shafts (especially their length) can be achieved.
- the invention relates to an improved dry spinning process of polyurethane elastomer fibers using superheated steam as the spinning medium, characterized in that Polyurethane urea elastomers which have been produced by diamine chain extension of NCO prepolymers, from their solutions in dimethylformamide or (preferably) dimethylacetamide via a spinneret hot at least 100 ° C at spinning solution temperatures in the nozzle of at least 100 ° C, preferably 105 to 125 ° C, in a heated spinning shaft of at least 160 ° C shaft wall temperature, for example 160 to 238 ° C, preferably 170 to 230 ° C, and in particular 175 to 225 ° C, and in the case of shaft diameters up to 28 cm at least 20 kg / h, preferably 25 to 50 kg / h, particularly preferably 30 to 45 kg / h, superheated steam of greater than 250 ° C., preferably 275 to 400 ° C., in particular 280 to 325 ° C (measured
- polyurethane urea elastomer threads can be spun in excellent economy, spinning shaft performance and quality.
- these polyurethane urea elastomer threads surprisingly do not show the sharp decrease in extensibility and undesirably high module values of the threads in comparison to the usual spinning speeds (for example of about 200 m / min), but surprisingly an increase in the elongation at break compared to similar spinning conditions in hot air (if such a spinning is possible at all with hot air).
- One of the causes may be the interaction between water (steam) and the polyurea hard segments in the PUH elastomers at the high spinning temperatures, while the residual solvent contents remaining at the same time have a reduced solvation effect, but this is only a tentative interpretation of the unexpected results.
- the steam spinning process according to the invention is very particularly advantageous for coarser titers (about ⁇ 500 dtex, preferably ⁇ 1000 dtex) and for relatively coarser filament individual titers (from about 10 to 25 dtex, which are weak with one another in the final state of the elastomer filament yarns glued ("coalesced") single filaments (see literature).
- coarse titers about ⁇ 500 dtex, preferably ⁇ 1000 dtex
- relatively coarser filament individual titers from about 10 to 25 dtex, which are weak with one another in the final state of the elastomer filament yarns glued ("coalesced") single filaments (see literature).
- coarse titers had to be spun at a relatively slow speed and reduced power (see comparative example) in order to obtain adequate drying out on the one hand and not too strong a prior orientation (reduced extensibility) on the other.
- the take-off speeds have increased to at least twice (!)
- the take-off speed for example from about 250 to 280 m / min to 500 to 600 m / min and thus with at least twice the shaft capacity
- the same type of spinning apparatus shaft length equal, shaft diameter equal, spinning hot air media quantity approximately the same, spinning solution temperature identical
- the same PUH elastomer solutions are spun without the thread characteristics being undesirably changed if a sufficient amount is overheated Steam is used instead of hot air as a hot spinning medium.
- the residual content of spinning solvent dimethylacetamide compared to hot air is from about 1.5 to 3% by weight or higher, to ⁇ 1.5% by weight, mostly even ⁇ 1.0% by weight, although the spinning performance was increased considerably and although high filament single titer or total titer were spun.
- the method according to the invention is particularly suitable for medium and coarse titers (approx. 250 to 560 dtex; or> 560 dtex, in particular> 800 dtex) and in particular for thicker individual filaments, e.g. ⁇ 8 dtex, advantageous because threads with a low residual solvent content are obtained even under these difficult conditions.
- the process according to the invention is also of great advantage for the fine titer elastomer threads, whereby it turns out to be essential to spin such fine titer at relatively high temperatures - without risk of decomposition of the solvents dimethylformamide and especially dimethylacetamide - and thus to achieve economical production performance and a substantially increased spinning speed .
- This is particularly the case with spinning processes where 4, 8, 16 or even 24 thread groups (for example each of 3 to 6 individual filaments consisting) be spun from a single dry spinning shaft.
- the new process also enables product-saving and ecologically better spinning conditions to be achieved.
- All diamine chain-extended, segmented PUH elastomers are suitable as polyurethane urea elastomer threads. They are made from NCO prepolymers with about 1.5 to 4% by weight of the NCO end groups and diamines as chain extenders. Aliphatic, cycloaliphatic or araliphatic diamines or their mixtures are used as diamines in the narrower sense, e.g.
- Monoamines can also be used in small amounts as chain terminators / chain regulators.
- the diamines in the broader sense also include hydrazine and dihydrazide compounds, e.g. Carbodihydrazide, hydrazide semicarbazide, semicarbazide carbazine ester and the like. Links.
- the NCO prepolymers are made from higher molecular weight diols, e.g. polyesters (including polylactones), polyethers, preferably polyoxytetramethylene diols, polyether esters etc., with a molecular weight of about 1000 to 4000, by reaction with excess amounts (e.g. 1.5 to 2.5 mol) of diisocyanates such as 4,4'-diphenylmethane diisocyanate (MDI), tolylene diisocyanate or 1,3-cyclohexane diisocyanate, produced in the melt or preferably in solvents.
- diisocyanates such as 4,4'-diphenylmethane diisocyanate (MDI), tolylene diisocyanate or 1,3-cyclohexane diisocyanate
- MDI 4,4'-diphenylmethane diisocyanate
- NCO prepolymers with about 1.5 to 2.9% NCO, or 1.6 to 2.5% NCO and MDI as di
- NCO prepolymer formation e.g. N-methyldiethanolamine or N-methyl-bis- ( ⁇ -hydroxypropyl) amine.
- the NCO prepolymer (solution) s can be reacted continuously or batchwise with the diamine compounds in highly polar solvents such as dimethylformamide or dimethylacetamide, the NCO / NH2 equivalent ratios being approximately between 0.9 and 1.1.
- the polyurethane urea elastomer spinning solutions generally have viscosities of about 50 to 250, preferably 70 to 180 Pas at room temperature.
- the concentrations are generally between 20 to 35% by weight, preferably 22 to 30% by weight.
- the spinning solutions can contain conventional additives and stabilizers, e.g. white pigments such as titanium dioxide (rutile or anatase), zinc oxides of any purity, zinc sulfide, color pigments or dyes, stabilizers and anti-aging agents, UV stabilizers, non-stick agents such as magnesium stearate and / or zinc stearate (e.g. 0.1 to 0.8% by weight - or any mixtures thereof), zinc oxides, optionally containing up to 4% other oxides such as magnesium oxide or magnesium carbonate, flow improvers such as silicone oils (polydimethylsiloxanes) or soluble polyoxyalkylene / dimethylsiloxane copolymers. Suitable substances are often named here in the literature.
- the elastomer solutions are filtered and fed to the individual spinning chutes.
- the solutions Before being introduced into the spinnerets, the solutions must be preheated so that they heat up to at least 100 ° C within the spinnerets, although temperatures of 90 to 95 ° C are sufficient when the solution is supplied and the remaining heat supply exceeds that in the high temperature range ( Spinning air / steam / shaft heating) is effective to keep the solution temperature and nozzle surface temperature at over 100 ° C to just below the boiling point of the dimethylformamide / dimethylacetamide solvent, preferably 105 to 135 ° C, it is more reliable to maintain the solution temperature during the supply Einitati 100 ° C. This can e.g. over short preheating sections and circulation via static mixer elements.
- the nozzles to be used are also installed in a preheated state ⁇ 100 ° C to prevent condensation of water vapor during spinning.
- spinning shafts with a length of 5 to 15 m, preferably 7 to 12 m, and diameters of 25 to 70, preferably 27 to 55 cm, are used as spinning shafts.
- the spinning chutes can be heated over their entire length or at partial lengths, if necessary with different temperatures.
- the steam is supplied by a steam heater, which is located at a certain distance from the spinning chimneys. There, in general, somewhat higher temperatures are generated in the steam in order - depending on the insulation / removal etc. - to have the temperatures mentioned on the spinning shaft.
- the quantities are e.g. certain about pinholes.
- the temperatures of the steam are determined approximately at the level of the spinnerets.
- the amount of 50 m3 / h superheated steam has a flow rate of 812 m / h (0.225 m / sec).
- the ratio H represents the quotient from the enlarged shaft cross-section to the shaft cross-section of 615 cm2 (28 cm shaft diameter).
- the amount of steam is preferred only to a portion of this ratio H, e.g. 0.1 H to 0.8 H (i.e. only a 10% to 80% increase beyond the amount of steam with the "normal" spinning shaft diameter of 28 cm).
- the increase in the amount of steam is only 0.2 H to 0.6 H.
- the smaller value of x.H is selected especially for the larger shaft diameters.
- the amount of steam is generally reduced to the lowest value necessary for the process set. If the elastomer solution throughput (shaft capacity) and the shaft cross-section are increased at the same time, more steam will tend to be used than if only the shaft cross-section was increased.
- a polyester with terminal hydroxyl groups and an average molecular weight of 2,000 (OH number of 56) was obtained by reacting 10 kg of adipic acid with 8.1 kg of 1,6-hexanediol and 7.1 kg of 2,2-dimethyl-propanediol-1. 3 (neopentyl glycol) prepared in the usual way.
- a homogeneous, clear elastomer solution with a solids content of 22% by weight and a solution viscosity of 92.6 Pas was obtained.
- 4% by weight of titanium dioxide, 0.3% by weight of magnesium stearate and 1% of the silicone oil Baysilon® M100 (Bayer AG) were added to the viscous polymer solution.
- the solution was further mixed with 1% Cyanox® 1790 (stabilizer of the formula 2,4,6-tris (2,4,6-trimethyl-3-hydroxybenzyl) isocyanurate).
- a 22% by weight polyurethane urea elastomer solution in dimethylacetamide was spun on a 8.8 m long spinning shaft with an inner diameter of 28 cm from a 96 hole nozzle with a 0.3 mm hole diameter to give elastomer threads with 1200 dtex fineness.
- the threads were drawn off under the spinning shaft at a first godet at 375 m / min, taken over from a second godet at 390 m / min and wound onto spools at a winding speed of 450 m / min.
- the spinning shaft (wall heating) temperature was 200 ° C. It was spun at 56 Nm3 / h hot air at 380 ° C. Solution lines and spinning head were preheated to 110 ° C.
- the 22% by weight PUH elastomer solution in dimethylacetamide described above was spun into threads on an 8.8 m long spinning shaft with a cross section of 28 cm from a 96 hole nozzle with a hole diameter of 0.3 mm. 300 cm3 of spinning solution (approx. 100 ° C.) per minute were pressed through the nozzle.
- the speed of godet 1) was 415 m / min, of godet 2) 435 m / min and the winding speed was 500 m / min.
- the spinning shaft temperature (shaft heating) was 200 ° C. It was spun with 40 kg / h of superheated steam at 400 ° C. (measured on the steam heater / 310 to 320 ° steam temperature near the nozzle). Solution lines and spinning head were preheated to 110 ° C.
- the PUH elastomer solution mentioned was spun in dimethylacetamide with 353 cm 3 spinning solution at 110 ° C. per minute.
- the speed of godet 1) was 410 m / min, of godet 2) 545 m / min and the winding speed was increased to 600 m / min. It was spun with 45 kg / h of steam at 400 ° C. (on a steam heater / correspondingly 320 ° near the nozzle).
- the shaft temperature was 225 ° C.
- the speed was increased from godet 1) to 585 m / min, from godet 2) to 610 m / min and the winding speed to 700 m / min and the amount of elastomer solution passed through was increased to 414 cm 3 / min.
- the other spinning parameters were kept unchanged. Threads of 916 dtex fineness were obtained.
- the fiber technology properties largely corresponded to the values from Example 3 / first part of the test, the residual spinning solvent content in the threads was only 0.96% by weight, despite the increased spinning performance.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Polyurethanes Or Polyureas (AREA)
Description
Gegenstand der Erfindung ist ein Verfahren zur Verspinnung von segmentierten Polyurethanharnstoff-Elastomeren in Trockenspinnschächten unter Einleiten bestimmter Mengen an überhitztem Wasserdampf. Das Verfahren erlaubt eine außerordentliche Steigerung der Spinnleistung pro Schacht sowie Erhöhung der Spinngeschwindigkeit, insbesondere bei Mittel- und Grobtitern, bei hohen Spinnschachttemperaturen und ohne unerwünschte Veränderung, zum Teil sogar unter deutlicher Verbesserung von Fadeneigenschaften der erhaltenen Filamentgarne. Das neue Verfahren verhindert insbesondere auch Zersetzungsneigungen der Spinnlösungsmittel bei (sonst für eine weitgehende Spinnlösungsmittelentfernung bei hohen Spinngeschwindigkeiten notwendigen) hohen Temperaturen in Luft, ohne daß inerte Gase als Spinnluftmedien eingesetzt werden müssen. Das neue Verfahren ermöglicht weiterhin das Erspinnen von (Multi)Filament-Garnen mit höheren Einzelfilamenttitern, was zur Verbesserung der Stabilität der Filamentgarne gegen äußere Einwirkungen und Abbaueinflüsse beiträgt.The invention relates to a method for spinning segmented polyurethane urea elastomers in dry spinning chimneys while introducing certain amounts of superheated steam. The process allows an extraordinary increase in the spinning performance per shaft as well as an increase in the spinning speed, in particular in the case of medium and coarse titers, at high spinning shaft temperatures and without undesired change, in some cases even with a significant improvement in the thread properties of the filament yarns obtained. The new process in particular also prevents tendencies of the spinning solvents to decompose at high temperatures in air (otherwise necessary for extensive spinning solvent removal at high spinning speeds) without the use of inert gases as spinning air media. The new process also enables the spinning of (multi) filament yarns with higher single filament titers, which contributes to improving the stability of the filament yarns against external influences and degradation influences.
Hochelastische PU-Elastomerfäden (Spandex- bzw. Elasthan-Fäden) werden überwiegend nach Naß- und insbesondere Trockenspinnverfahren hergestellt. Dazu werden hochviskose Lösungen der Elastomeren in Dimethylformamid oder Dimethylacetamid durch Mehrlochdüsen in beheizte Spinnschächte gesponnen, denen zusätzlich Heißluft zugegeführt wird (vgl. H. Oertel, in Synthesefasern, Herausgeber: B. v Falkai, Verlag Chemie Weinheim 1981, S. 180 bis 190 und H. Gall/K.H. Wolf in Kunststoffhandbuch, Bd. 7, Polyurethane, 1983, C.Hanser-Verlag, S. 611 bis 627).Highly elastic PU elastomer threads (spandex or spandex threads) are mainly manufactured using wet and, in particular, dry spinning processes. For this purpose, highly viscous solutions of the elastomers in dimethylformamide or dimethylacetamide are spun through multi-hole nozzles into heated spinning shafts, to which hot air is additionally fed (cf. H. Oertel, in synthetic fibers, publisher: B. v Falkai, Verlag Chemie Weinheim 1981, pp. 180 to 190 and H. Gall / KH Wolf in Kunststoff Handbuch, Vol. 7, Polyurethane, 1983, C. Hanser-Verlag, pp. 611 to 627).
Temperatur der Spinnlösung, Temperatur im Spinnschacht, Temperatur der zusätzlich zugeführten Heißluft und die Abzugsgeschwindigkeit, sowie die geometrischen Abmessungen der Spinnschächte bestimmen im wesentlichen die Austrocknung der Filamente unter weitgehender Entfernung der Lösungsmittel.The temperature of the spinning solution, the temperature in the spinning shaft, the temperature of the additionally supplied hot air and the take-off speed, and the geometric dimensions of the spinning shafts essentially determine the drying of the filaments with the solvents being largely removed.
Es hat sich jedoch herausgestellt, daß der vollständigen Entfernung der Lösungsmittel technologische Grenzen vielfältiger Art gesetzt sind. So tritt bei zu hohen Temperaturen in Nähe der Düsen - sei es durch zu hohe Lösungstemperatur oder zu hohe Umgebungstemperatur - ein Abreißen der Lösungsspinnstrahlen kurz unterhalb der Spinndüsenaustrittslöcher ein, insbesondere wenn die Abzugsgeschwindigkeiten hoch sind. Eine Erhöhung der Abzugsgeschwindigkeit ist aus wirtschaftlichen Gründen grundsätzlich höchst wünschenswert, jedoch wird diese Maßnahme bisher begrenzt durch eine zu hohe Vororientierung der Fäden, was sich u.a. in sehr steilen Kraftdehnungsdiagrammen bei (zu) starker Verminderung der Bruchdehnungsgrenzen bemerkbar macht.However, it has been found that there are various technological limits to the complete removal of the solvents. If the temperatures near the nozzles are too high - whether due to the solution temperature being too high or the ambient temperature too high - the solution spinning jets will tear off just below the spinneret outlet holes, especially if the take-off speeds are high. An increase in the take-off speed is fundamentally highly desirable for economic reasons, but this measure has so far been limited by the pre-orientation of the threads being too high, which can be seen in very steep force expansion diagrams with (too) strong reduction in the elongation at break limits.
Eine Erhöhung der Spinnlufttemperatur ist in der Praxis aus vorab diskutierten Gründen, jedoch auch wegen thermischer Verfärbung der Fäden und wegen einer thermischen Instabilität der Spinnlösungsmittel begrenzt. So hat sich gezeigt, daß Dimethylacetamid, aber auch Dimethylformamid, sich bei Spinnlufttemperaturen von oberhalb etwa 300°C bis 350°C, verstärkt oberhalb 350°C im Schacht in zunehmendem Maße zersetzt und die Ausbeute an wiedergewinnbaren Lösungsmitteln sinkt. Somit sind die Temperaturen zwangsläufig nach oben begrenzt. Verwendet man Stickstoff oder Verbrennungsgase ("Kemp"-Gas) anstelle von Luft als heiße Spinnluftkomponente, so läßt sich zwar die (oxidative) Abbau-Reaktion vermindern, doch steigen die Kosten und Aufwand beträchtlich an.An increase in the spinning air temperature is limited in practice for reasons previously discussed, but also because of thermal discoloration of the threads and because of a thermal instability of the spinning solvents. It has been shown that dimethylacetamide, but also dimethylformamide, increasingly decomposes in the shaft at spinning air temperatures of above about 300 ° C. to 350 ° C., increasingly above 350 ° C., and the yield of recoverable solvents decreases. Thus, the temperatures are inevitably capped. If nitrogen or combustion gases ("Kemp" gas) are used instead of air as the hot spinning air component, the (oxidative) degradation reaction can be reduced, but the costs and effort increase considerably.
Ein weiteres, technisch und umwelttechnologisch wichtiges Problem ist das Verbleiben von zuviel Lösungsmittel im ersponnenen Elastomerfaden, insbesondere bei Mittel- und Grobtitern.Another, technically and environmentally important problem is that too much solvent remains in the spun elastomer thread, especially for medium and coarse titers.
In der Japanischen Patentschrift 44-896 (1969) wurde ein Trockenspinnprozeß für Glykol-kettenverlängerte Polyurethan-Elastomere auf Basis höhermolekularer Polyester, Diisocyanaten und Ethylenglykol, gelöst in einer Mischung aus Methylisobutylketon/DMF bzw. aus Tetrahydrofuran als Lösungsmittel beschrieben, wobei diese Polyurethane durch Verspinnen in einem Spinnschacht von wenigstens 150°C unter Einführung oberhalb der Spinndüse von 1 bis 30 m³/h überhitzten Wasserdampfes bei 150 bis 400°C und bei mäßigen Abzugsgeschwindigkeiten (kleiner Spinnleistung) erhalten werden. Derartige Fäden zeigen praktisch gleiche Eigenschaften im Vergleich zu wasserdampffrei gesponnenen Fäden. Es werden leichtflüchtige Lösungsmittel wie Tetrahydrofuran verwendet oder mitverwendet. Derartige, glykolverlängerte Polyurethan-Elastomere lassen sich nicht bei erhöhten Schachttemperaturen und gleichzeitig hohen Temperaturen gasförmiger Spinnmedien verspinnen; sie reißen ab oder werden thermoplastisch verstreckt unter unerwünschter Änderung der elastischen Eigenschaften. Die nach dem japanischen Verfahren beschriebenen Spinnleistungen bleiben für solche glykolverlängerten Polyurethane noch immer sehr unbefriedigend.Japanese Patent 44-896 (1969) describes a dry spinning process for glycol chain-extended polyurethane elastomers based on higher molecular weight polyesters, diisocyanates and ethylene glycol, dissolved in a mixture of methyl isobutyl ketone / DMF or tetrahydrofuran as a solvent, these polyurethanes being spun in a spinning shaft of at least 150 ° C with introduction above the spinneret from 1 to 30 m³ / h superheated steam at 150 to 400 ° C and at moderate take-off speeds (low spinning performance). Such threads show practically the same properties in comparison to threads spun without water vapor. Volatile solvents such as tetrahydrofuran are used or are also used. Glycol-extended polyurethane elastomers of this type cannot be spun at elevated shaft temperatures and at the same time high temperatures of gaseous spinning media; they tear off or are stretched thermoplastic with an undesirable change in the elastic properties. The spinning capacities described by the Japanese process still remain very unsatisfactory for such glycol-extended polyurethanes.
Aufgabe der Erfindung ist, ein verbessertes Trockenspinnverfahren anzugeben, nach welchem auch die Polyurethanharnstoff(PUH-)-Elastomeren, basierend auf Diamin-Kettenverlängerung von NCO-Prepolymeren, praktisch vollständig aus hochpolaren Lösungsmitteln wie Dimethylformamid und insbesondere Dimethylacetamid, mit hohen Spinnleistungen und ohne die Gefahr von Zersetzungen des Spinnlösungsmittels bei den hohen Temperaturen zu PUH-Elastomerfäden versponnen werden können, welche nurmehr einen geringen Gehalt an Spinnlösungsmittel aufweisen, einen guten Rohton besitzen und zudem in ihren elastischen Eigenschaften verbesserte Werte gegenüber aus Heißluft ersponnenen Fäden aufweisen. Die erfinderische Aufgabe soll dabei möglichst ohne Änderung der vorhandenen Spinnschächte (insbesondere ihrer Länge) erzielt werden. Mit den in der oben zitierten Japanischen Patentschrift 44 896 angegebenen Dampfmengen von 1 bis 30 m³/h, entsprechend etwa 0,5 kg/h bei 150°C bis 13,6 kg/h bei 150°C an überhitztem Dampf von 150 bis 400°C, war mit den erfindungsgemäß zu verwendenden PUH-Elastomerlösungen und bei der in unseren Versuchen vorliegenden Schachtgeometrie (Schachtquerschnittsfläche 0,0615 m² - Schachtdurchmesser = 28 cm) kein Spinnen möglich. Erfindungsgemäß werden deutlich höhere Mengen an Dampf benötigt, vorzugsweise mehr als 50 m³/h, entsprechend mindestens 20 kg/h, vorzugsweise mehr als 30 kg/h Dampf von 250 bis 400°C. Nur unter dieser drastischen Erhöhung der eingeführten Dampfmenge von bevorzugt 30 bis 45 kg/h von überhitztem Dampf von 240 bis 400°C, entsprechend
30 kg/h bei 250°C = 75 m³/h (bei der entsprechenden Temperatur)
45 kg/h bei 250°C = 112,5 m³/h
30 kg/h bei 400°C = 96 m³/h
45 kg/h bei 400°C = 144 m³/h
können die erfindungsgemäß zu verwendenden Polyurethan-Harnstoffe effektiv versponnen werden, im Gegensatz zu den in der Japanischen Patentschrift genannten Mengen von 1 bis 30 m³/h bei 150°C bis 400°C, maximal 0,3 bis 13,6 kg/h Dampf.The object of the invention is to provide an improved dry spinning process, according to which the polyurethane urea (PUH -) elastomers, based on diamine chain extension of NCO prepolymers, are made practically completely from highly polar solvents such as dimethylformamide and especially dimethylacetamide, with high spinning performance and without the risk can be spun from decomposition of the spinning solvent at high temperatures to PUH elastomer threads, which now have only a low content of spinning solvent, have a good raw color and also have improved elastic properties compared to threads spun from hot air. The inventive task should be as possible without changing the existing one Spinning shafts (especially their length) can be achieved. With the steam quantities of 1 to 30 m³ / h specified in the above-cited Japanese Patent 44 896, corresponding to approximately 0.5 kg / h at 150 ° C. to 13.6 kg / h at 150 ° C. of superheated steam from 150 to 400 ° C, with the PUH elastomer solutions to be used according to the invention and with the shaft geometry present in our tests (shaft cross-sectional area 0.0615 m² - shaft diameter = 28 cm), no spinning was possible. According to the invention, significantly higher amounts of steam are required, preferably more than 50 m³ / h, corresponding to at least 20 kg / h, preferably more than 30 kg / h steam from 250 to 400 ° C. Only under this drastic increase in the amount of steam introduced, preferably from 30 to 45 kg / h of superheated steam from 240 to 400 ° C., accordingly
30 kg / h at 250 ° C = 75 m³ / h (at the appropriate temperature)
45 kg / h at 250 ° C = 112.5 m³ / h
30 kg / h at 400 ° C = 96 m³ / h
45 kg / h at 400 ° C = 144 m³ / h
The polyurethane-ureas to be used according to the invention can be effectively spun, in contrast to the amounts of 1 to 30 m³ / h mentioned in the Japanese patent specification at 150 ° C. to 400 ° C., maximum 0.3 to 13.6 kg / h steam .
Gegenstand der Erfindung ist ein verbessertes Trockenspinnverfahren von Polyurethan-Elastomerfasern unter Verwendung von überhitztem Wasserdampf als Spinnmedium, dadurch gekennzeichnet, daß
Polyurethanharnstoff-Elastomere, welche durch Diamin-Kettenverlängerung von NCO-Prepolymeren hergestellt worden sind,
aus ihren Lösungen in Dimethylformamid oder (bevorzugt) Dimethylacetamid
über eine mindestens 100°C heiße Spinndüse bei Spinnlösungstemperaturen in der Düse von mindestens 100°C, bevorzugt 105 bis 125°C,
in einen beheizten Spinnschacht von mindestens 160°C Schachtwand-Temperatur, z.B. 160 bis 238°C, vorzugsweise 170 bis 230°C, und insbesondere 175 bis 225°C, eingesponnen werden,
und dabei bei Schachtdurchmessern bis 28 cm mindestens 20 kg/h, vorzugsweise 25 bis 50 kg/h, besonders bevorzugt 30 bis 45 kg/h, überhitzter Wasserdampf von größer 250°C, vorzugsweise 275 bis 400°C, insbesondere 280 bis 325°C (gemessen auf Höhe der Spinndüse in der Schachtmitte bei freier Strömung) als heißes Spinnmedium eingeführt werden, und bei größeren Schachtdurchmessern vorzugsweise mit Dampfmengen, welche um das Verhältnis H der Schachtquerschnitte, besonders nur 0,1 H bis 0,8 H, insbesondere nur 0,2 bis 0,6 H vermehrte Dampfmengen, als heißes Spinnmedium eingeführt werden,
am Ende des Spinnschachtes Spinnmedium und Spinnlösungsmittel einer Wiedergewinnung zugeführt werden, und eine Abzugsgeschwindigkeit der Fäden aus dem Schacht von mindestens 250 m/min, z.B. mindestens 400 m/min und bevorzugt 500 bis 1500 m/min, insbesondere 500 bis 1200 m/min,
eingehalten werden.The invention relates to an improved dry spinning process of polyurethane elastomer fibers using superheated steam as the spinning medium, characterized in that
Polyurethane urea elastomers which have been produced by diamine chain extension of NCO prepolymers,
from their solutions in dimethylformamide or (preferably) dimethylacetamide
via a spinneret hot at least 100 ° C at spinning solution temperatures in the nozzle of at least 100 ° C, preferably 105 to 125 ° C,
in a heated spinning shaft of at least 160 ° C shaft wall temperature, for example 160 to 238 ° C, preferably 170 to 230 ° C, and in particular 175 to 225 ° C,
and in the case of shaft diameters up to 28 cm at least 20 kg / h, preferably 25 to 50 kg / h, particularly preferably 30 to 45 kg / h, superheated steam of greater than 250 ° C., preferably 275 to 400 ° C., in particular 280 to 325 ° C (measured at the level of the spinneret in the middle of the shaft with free flow) are introduced as hot spinning medium, and for larger shaft diameters preferably with amounts of steam which are around the ratio H of the shaft cross sections, in particular only 0.1 H to 0.8 H, in particular only 0.2 to 0.6 H increased amounts of steam, are introduced as hot spinning medium,
at the end of the spinning shaft, spin medium and spinning solvent are fed for recovery, and a withdrawal speed of the threads from the shaft of at least 250 m / min, for example at least 400 m / min and preferably 500 to 1500 m / min, in particular 500 to 1200 m / min,
be respected.
Nach dem erfindungsgemäßen Verfahren können Polyurethanharnstoff-Elastomerfäden (PUH-Fäden) in hervorragender Wirtschaftlichkeit, Spinnschachtleistung und Qualität ersponnen werden. Trotz der zum Teil sehr hohen Spinngeschwindigkeiten (z.B. ≧500, z.B. bis 1500 m/min) zeigen diese Polyurethanharnstoff-Elastomerfäden überraschenderweise nicht den starken Rückgang der Dehnbarkeit und unerwünscht hohe Modulwerte der Fäden im Vergleich zu den üblichen Spinngeschwindigkeiten (z.B. von etwa 200 m/min), sondern überraschenderweise eher eine Erhöhung der Bruchdehnung gegenüber gleichartigen Spinnbedingungen in Heißluft (sofern mit Heißluft überhaupt eine solche Verspinnung möglich ist). Möglicherweise liegt eine der Ursachen in der Wechselwirkung zwischen Wasser(dampf) und den Polyharnstoff-Hartsegmenten in den PUH-Elastomeren bei den hohen Spinntemperaturen, bei gleichzeitig verminderter Solvatationswirkung verbleibender Restlösungsmittelgehalte vor, doch ist dies nur eine versuchsweise Deutung der unerwarteten Befunde.According to the method according to the invention, polyurethane urea elastomer threads (PUH threads) can be spun in excellent economy, spinning shaft performance and quality. Despite the sometimes very high spinning speeds (for example zB 500, for example up to 1500 m / min), these polyurethane urea elastomer threads surprisingly do not show the sharp decrease in extensibility and undesirably high module values of the threads in comparison to the usual spinning speeds (for example of about 200 m / min), but surprisingly an increase in the elongation at break compared to similar spinning conditions in hot air (if such a spinning is possible at all with hot air). One of the causes may be the interaction between water (steam) and the polyurea hard segments in the PUH elastomers at the high spinning temperatures, while the residual solvent contents remaining at the same time have a reduced solvation effect, but this is only a tentative interpretation of the unexpected results.
Ganz besonders vorteilhaft ist das erfindungsgemäße Dampfspinnverfahren bei gröberen Titern (etwa ≧500 dtex, vorzugsweise ≧1000 dtex) und bei relativ gröberen Filament-Einzeltitern (von etwa 10 bis 25 dtex der miteinander im Endzustand der Elastomer-Filamentgarne schwach verklebten ("coalesced") Einzelfilamente (siehe Literatur). Solche Grobtiter mußten bislang mit relativ langsamer Geschwindigkeit und verminderter Leistung (siehe Vergleichsbeispiel) gesponnen werden, um einerseits eine hinreichende Austrocknung, andererseits eine nicht zu starke Vororientierung (verringerte Dehnbarkeit) zu erhalten.The steam spinning process according to the invention is very particularly advantageous for coarser titers (about ≧ 500 dtex, preferably ≧ 1000 dtex) and for relatively coarser filament individual titers (from about 10 to 25 dtex, which are weak with one another in the final state of the elastomer filament yarns glued ("coalesced") single filaments (see literature). Until now, such coarse titers had to be spun at a relatively slow speed and reduced power (see comparative example) in order to obtain adequate drying out on the one hand and not too strong a prior orientation (reduced extensibility) on the other.
Trotz der langsamen Spinngeschwindigkeiten verblieben in Trockenspinnprozessen des Standes der Technik bei gröberen Titern, jedoch immer unerwünscht hohe Gehalte (z.B. 1,5 bis 3 Gew.-% DMA) an Lösungsmitteln in den Fäden und mußten gegebenenfalls durch weitere Nachbehandlungsschritte abgesenkt werden.Despite the slow spinning speeds in the prior art dry spinning processes with coarser titers, however, undesirably high contents (e.g. 1.5 to 3% by weight DMA) of solvents remained in the threads and had to be reduced if necessary by further post-treatment steps.
Wie aus Vergleichsversuchen hervorgeht, können nach dem erfindungsgemäß beanspruchten Verfahren, z.B. bei den besonders kritischen Grobtitern (ca. 1300 dtex), trotz Steigerung der Abzugsgeschwindigkeiten auf mindestens die doppelte (!) Abzugsgeschwindigkeit (z.B. von etwa 250 bis 280 m/min auf 500 bis 600 m/min und somit mit mindestens doppelter Schachtleistung), gleichartiger Spinnapparatur (Schachtlänge gleich, Schachtdurchmesser gleich, Spinnheißluftmedienmenge etwa gleich, Spinnlösungstemperatur gleich), die gleichen PUH-Elastomerlösungen versponnen werden, ohne daß die Fadencharakteristiken unerwünscht verändert werden, wenn man ausreichende Menge überhitzten Wasserdampfes anstelle von Heißluft als heißes Spinnmedium verwendet. Darüber hinaus ist der Restgehalt an Spinnlösungsmittel Dimethylacetamid gegenüber Heißluft von etwa 1,5 bis 3 Gew.-% oder höher, auf ≦1,5 Gew.-%, zumeist sogar ≦1,0 Gew.-%, abgesenkt, obwohl die Spinnleistung erheblich erhöht wurde und obwohl hohe Filament-Einzeltiter bzw. Gesamttiter ersponnen wurden.As can be seen from comparative experiments, according to the process claimed according to the invention, for example in the case of the particularly critical coarse titers (approx. 1300 dtex), the take-off speeds have increased to at least twice (!) The take-off speed (for example from about 250 to 280 m / min to 500 to 600 m / min and thus with at least twice the shaft capacity), the same type of spinning apparatus (shaft length equal, shaft diameter equal, spinning hot air media quantity approximately the same, spinning solution temperature identical), the same PUH elastomer solutions are spun without the thread characteristics being undesirably changed if a sufficient amount is overheated Steam is used instead of hot air as a hot spinning medium. In addition, the residual content of spinning solvent dimethylacetamide compared to hot air is from about 1.5 to 3% by weight or higher, to ≦ 1.5% by weight, mostly even ≦ 1.0% by weight, although the spinning performance was increased considerably and although high filament single titer or total titer were spun.
Besonders überraschend ist dabei, daß in der Dampfatmosphäre bei den hohen Temperaturen die Thermozersetzungserscheinung der Lösungsmittel, z.B. Dimethylacetamid, erheblichst reduziert sind und der Gehalt und die Zahl an verschiedenen Zersetzungsprodukten (auf etwa 1/3) und die Menge an Zersetzungsprodukten außerordentlich stark reduziert ist (z.B. um den Faktor 50 weniger), obwohl eigentlich zu erwarten gewesen war, daß Wasser(dampf) unter diesen hohen Temperaturen eine sehr merkliche Hydrolyse von Dimethylformamid oder Dimethylacetamid bewirken sollte.It is particularly surprising that in the steam atmosphere at high temperatures the thermal decomposition of the solvents, e.g. Dimethylacetamide, are considerably reduced and the content and the number of different decomposition products (to about 1/3) and the amount of decomposition products is extremely greatly reduced (e.g. by a factor of 50 less), although it was actually expected that water (steam ) should cause a very noticeable hydrolysis of dimethylformamide or dimethylacetamide at these high temperatures.
Untersuchungen der Spinnabluft hinter dem Spinnkühler, in dem das Spinngas und das im Spinnschacht verdampfte Spinnlösungsmittel kondensiert werden, führten im Falle des Vergleichsbeispiels mit Spinnluft von 400°C (ohne Dampf) als Spinngasmedium und Dimethylformamid als Spinnlösungsmittel zu folgenden Mengen (in mg/l Spinnkühlergemisch, d.h. im Lösungsmittelkondensat) an Zersetzungsprodukten:
Formaldehyd = 2 bis 3 mg/l
Ameisensäure = 170 bis 172 mg/l
Dimethylamin = 12 bis 13 mg/l
plus weitere Abwandlungsprodukte.Examinations of the spinning exhaust air behind the spinning cooler, in which the spinning gas and the spinning solvent evaporated in the spinning shaft are condensed, led in the case of the comparative example with spinning air of 400 ° C. (without steam) as spinning gas medium and dimethylformamide as spinning solvent to the following amounts (in mg / l spinning cooler mixture , ie in the solvent condensate) on decomposition products:
Formaldehyde = 2 to 3 mg / l
Formic acid = 170 to 172 mg / l
Dimethylamine = 12 to 13 mg / l
plus other modification products.
Im Falle von überhitztem Wasserdampf (40 kg/h bei 400°C), anstelle von Luft gleicher Temperatur als Spinngasmedium, werden folgende Mengen an Zersetzungsprodukten analytisch nachgewiesen:
Formaldehyd = ≦ 2 mg/l
Ameisensäure = 9 bis 17 mg/l
Dimethylamin = ≦ 1 mg/l
praktisch ohne weitere Abwandlungsprodukte.In the case of superheated steam (40 kg / h at 400 ° C), instead of air of the same temperature as the spin gas medium, the following quantities of decomposition products are analytically detected:
Formaldehyde = ≦ 2 mg / l
Formic acid = 9 to 17 mg / l
Dimethylamine = ≦ 1 mg / l
practically without further modification products.
Wie man den vergleichenden Messungen entnehmen kann, ist die Zahl an Zersetzungsprodukten im Falle des Spinnens mit überhitztem Wasserdampf mindestens um den Faktor 10 gegenüber dem Luftspinnen verringert. Dies ist von erheblicher ökologischer Bedeutung.As can be seen from the comparative measurements, the number of decomposition products in the case of spinning with superheated steam is reduced by at least a factor of 10 compared to air spinning. This is of considerable ecological importance.
Wie bereits festgestellt, ist das erfindungsgemäße Verfahren besonders für Mittel- und Grobtiter (ca. 250 bis 560 dtex; bzw. >560 dtex, insbesondere >800 dtex) und insbesondere bei stärkeren Einzelfilamenten, z.B. ≧8 dtex, von Vorteil, da auch unter diesen erschwerten Bedingungen Fäden mit niedrigem Lösungsmittelrestgehalt erhalten werden.As already stated, the method according to the invention is particularly suitable for medium and coarse titers (approx. 250 to 560 dtex; or> 560 dtex, in particular> 800 dtex) and in particular for thicker individual filaments, e.g. ≧ 8 dtex, advantageous because threads with a low residual solvent content are obtained even under these difficult conditions.
Doch auch für die Feintiter-Elastomerfäden ist das erfindungsgemäße Verfahren von hohem Vorteil, wobei sich als wesentlich herausstellt, derartige Feintiter bei relativ hohen Temperaturen - ohne Zersetzungsgefahr der Lösungsmittel Dimethylformamid und insbesondere Dimethylacetamid - zu erspinnen und somit zu wirtschaftlichen Produktionsleistungen und wesentlich erhöhter Spinngeschwindigkeit zu kommen. Dies ist insbesondere bei Spinnverfahren der Fall, wo 4, 8, 16 oder gar 24 Fadengruppen (beispielsweise jeweils aus 3 bis 6 Einzelfilamenten bestehend) aus einem einzigen Trockenspinnschacht gesponnen werden. Neben dem hohen wirtschaftlichen Effekt der Spinnleistung werden in dem neuen Verfahren jedoch auch produktsparende und ökologisch bessere Spinnbedingungen realisierbar.However, the process according to the invention is also of great advantage for the fine titer elastomer threads, whereby it turns out to be essential to spin such fine titer at relatively high temperatures - without risk of decomposition of the solvents dimethylformamide and especially dimethylacetamide - and thus to achieve economical production performance and a substantially increased spinning speed . This is particularly the case with spinning processes where 4, 8, 16 or even 24 thread groups (for example each of 3 to 6 individual filaments consisting) be spun from a single dry spinning shaft. In addition to the high economic effect of spinning performance, the new process also enables product-saving and ecologically better spinning conditions to be achieved.
Als Polyurethanharnstoff-Elastomerfäden kommen alle Diamin-kettenverlängerten, segmentiert aufgebauten PUH-Elastomeren (siehe eingangs zitierte Literatur) in Betracht. Sie werden aus NCO-Prepolymeren mit etwa 1,5 bis 4 Gew.-% der NCO-Endgruppen und Diaminen als Kettenverlängerern hergestellt. Als Diamine im engeren Sinne werden dabei aliphatische, cycloaliphatische oder araliphatische Diamine oder ihre Mischungen verwendet, z.B. Ethylendiamin, 1,2-Propylendiamin, Trimethylendiamin, H₂N.CH₂.C(CH₃)₂.CH₂.NH₂, 1,3-Diaminocyclohexan, Isophorondiamin, m-Xylylendiamin und viele weitere Diamine, bevorzugt jedoch Ethylendiamin als Hauptkomponente, gegebenenfalls in Mischung bis etwa 30 Mol-% an 1,2-Propylendiamin, 1,3-Diaminocyclohexan, Piperazin u.a.. In geringen Mengen können Monoamine als Kettenabbrecher/Kettenregler mitverwendet werden. Die Diamine im weiteren Sinne umfassen auch Hydrazin, sowie Dihydrazid-Verbindungen, z.B. Carbodihydrazid, Hydrazid-semicarbazide, Semicarbazid-carbazinester u.ä. Verbindungen.All diamine chain-extended, segmented PUH elastomers (see literature cited at the beginning) are suitable as polyurethane urea elastomer threads. They are made from NCO prepolymers with about 1.5 to 4% by weight of the NCO end groups and diamines as chain extenders. Aliphatic, cycloaliphatic or araliphatic diamines or their mixtures are used as diamines in the narrower sense, e.g. Ethylene diamine, 1,2-propylene diamine, trimethylene diamine, H₂N.CH₂.C (CH₃) ₂.CH₂.NH₂, 1,3-diaminocyclohexane, isophorone diamine, m-xylylenediamine and many other diamines, but preferably ethylenediamine as the main component, optionally in a mixture of about 30 mol% of 1,2-propylenediamine, 1,3-diaminocyclohexane, piperazine, etc. Monoamines can also be used in small amounts as chain terminators / chain regulators. The diamines in the broader sense also include hydrazine and dihydrazide compounds, e.g. Carbodihydrazide, hydrazide semicarbazide, semicarbazide carbazine ester and the like. Links.
Die NCO-Prepolymeren werden aus höhermolekularen Diolen, z.B. Polyestern (inklusive Polylactonen), Polyethern, vorzugsweise Polyoxytetramethylendiolen, Polyetherestern etc., vom Molekulargewicht etwa 1000 bis 4000, durch Umsetzung mit überschüssigen Mengen (z.B. 1,5 bis 2,5 Mol) an Diisocyanaten wie z.B. 4,4′-Diphenylmethandiisocyanat (MDI), Toluylendiisocyanat oder 1,3-Cyclohexandiisocyanat, in der Schmelze oder bevorzugt in Lösungsmitteln hergestellt. Bevorzugt sind NCO-Prepolymeren mit etwa 1,5 bis 2,9 % NCO, bzw- 1,6 bis 2,5 % NCO und MDI als Diisocyanat.The NCO prepolymers are made from higher molecular weight diols, e.g. polyesters (including polylactones), polyethers, preferably polyoxytetramethylene diols, polyether esters etc., with a molecular weight of about 1000 to 4000, by reaction with excess amounts (e.g. 1.5 to 2.5 mol) of diisocyanates such as 4,4'-diphenylmethane diisocyanate (MDI), tolylene diisocyanate or 1,3-cyclohexane diisocyanate, produced in the melt or preferably in solvents. NCO prepolymers with about 1.5 to 2.9% NCO, or 1.6 to 2.5% NCO and MDI as diisocyanate are preferred.
Gegebenenfalls können weitere Komponenten bei der NCO-Prepolymerbildung mitverwendet werden, z.B. N-Methyldiethanolamin oder N-Methyl-bis-(β-hydroxypropyl)-amin.If necessary, further components can be used in the NCO prepolymer formation, e.g. N-methyldiethanolamine or N-methyl-bis- (β-hydroxypropyl) amine.
Die NCO-Prepolymer(lösung)en können kontinuierlich oder diskontinuierlich mit den Diamin-Verbindungen in hochpolaren Lösungsmitteln wie Dimethylformamid oder Dimethylacetamid umgesetzt werden, wobei die NCO/NH₂-Äquivalentverhältnisse etwa zwischen 0,9 und 1,1 liegen.The NCO prepolymer (solution) s can be reacted continuously or batchwise with the diamine compounds in highly polar solvents such as dimethylformamide or dimethylacetamide, the NCO / NH₂ equivalent ratios being approximately between 0.9 and 1.1.
Ausgangsstoffe und Verfahren sind aus einer Vielzahl von Veröffentlichungen und Patenten über Elastomerfäden bekannt und können zur Herstellung der Polyurethanharnstoff-Elastomerlösung im Sinne des Verfahrens Verwendung finden. Die Polyurethanharnstoff-Elastomer-Spinnlösungen haben im allgemeinen Viskositäten von etwa 50 bis 250, vorzugsweise 70 bis 180 Pas bei Raumtemperatur. Die Konzentrationen liegen im allgemeinen zwischen 20 bis 35 Gew.-%, vorzugsweise 22 bis 30 Gew.-%.Starting materials and processes are known from a large number of publications and patents on elastomer threads and can be used to produce the polyurethane urea elastomer solution in the sense of the process. The polyurethane urea elastomer spinning solutions generally have viscosities of about 50 to 250, preferably 70 to 180 Pas at room temperature. The concentrations are generally between 20 to 35% by weight, preferably 22 to 30% by weight.
Die Spinnlösungen können übliche Additive und Stabilisatoren enthalten, z.B. Weißpigmente wie Titandioxid (Rutil oder Anatas), Zinkoxide beliebiger Reinheit, Zinksulfid, Farbpigmente oder Farbstoffe, Stabilisatoren und Alterungsschutzmittel, UV-Stabilisatoren, Antihaftmittel wie Magnesiumstearat und/oder Zinkstearat (z.B. 0,1 bis 0,8 Gew.-% - oder beliebige Mischungen daraus), Zinkoxiden, gegebenenfalls bis 4 % andere Oxide wie Magnesiumoxid, oder Magnesiumcarbonat enthaltend, Fließverbesserer wie Silikonöle (Polydimethylsiloxane) oder lösliche Polyoxyalkylen/Dimethylsiloxan-Mischpolymere. Geeignete Substanzen sind auch hier in der Literatur vielfach benannt.The spinning solutions can contain conventional additives and stabilizers, e.g. white pigments such as titanium dioxide (rutile or anatase), zinc oxides of any purity, zinc sulfide, color pigments or dyes, stabilizers and anti-aging agents, UV stabilizers, non-stick agents such as magnesium stearate and / or zinc stearate (e.g. 0.1 to 0.8% by weight - or any mixtures thereof), zinc oxides, optionally containing up to 4% other oxides such as magnesium oxide or magnesium carbonate, flow improvers such as silicone oils (polydimethylsiloxanes) or soluble polyoxyalkylene / dimethylsiloxane copolymers. Suitable substances are often named here in the literature.
Die Elastomerlösungen werden filtriert und den einzelnen Spinnschächten zugeführt. Die Lösungen müssen vor der Einführung in die Spinndüsen soweit vorerwärmt werden, so daß sie sich innerhalb der Spinndüsen auf wenigstens 100°C erwärmen Obwohl bereits Temperaturen bei der Zuführung der Lösung von 90 bis 95°C ausreichen und die restliche Wärmezufuhr über die im Hochtemperaturbereich (Spinnluft/Dampf/Schachtheizung) wirksam wird, um die Lösungstemperatur und Düsenoberflächentemperatur auf über 100°C bis knapp unterhalb der Siedetemperatur der Lösungsmittel Dimethylformamid/Dimethylacetamid, bevorzugt 105 bis 135°C, zu halten, ist es verfahrenssicherer, die Lösungstemperatur bei der Zuführung auf ≧100°C einzustellen. Dies kann z.B. über kurze Vorwärmestrecken und Umwälzung über statische Mischerelemente geschehen. Die einzusetzenden Düsen werden ebenfalls in vorgewärmtem Zustand ≧100°C montiert, um eine Kondensation von Wasserdampf bei der Ausspinnung zu verhindern.The elastomer solutions are filtered and fed to the individual spinning chutes. Before being introduced into the spinnerets, the solutions must be preheated so that they heat up to at least 100 ° C within the spinnerets, although temperatures of 90 to 95 ° C are sufficient when the solution is supplied and the remaining heat supply exceeds that in the high temperature range ( Spinning air / steam / shaft heating) is effective to keep the solution temperature and nozzle surface temperature at over 100 ° C to just below the boiling point of the dimethylformamide / dimethylacetamide solvent, preferably 105 to 135 ° C, it is more reliable to maintain the solution temperature during the supply Einzustellen 100 ° C. This can e.g. over short preheating sections and circulation via static mixer elements. The nozzles to be used are also installed in a preheated state ≧ 100 ° C to prevent condensation of water vapor during spinning.
Als Spinnschächte werden übliche beheizte Schächte mit einer Länge von 5 bis 15 m, vorzugsweise 7 bis 12 m, und Durchmessern von 25 bis 70, vorzugsweise 27 bis 55 cm, verwendet. Die Spinnschächte können auf der ganzen Länge oder auf Teillängen, gegebenenfalls mit unterschiedlichen Temperaturen, beheizt werden.Conventional heated shafts with a length of 5 to 15 m, preferably 7 to 12 m, and diameters of 25 to 70, preferably 27 to 55 cm, are used as spinning shafts. The spinning chutes can be heated over their entire length or at partial lengths, if necessary with different temperatures.
Die Zuführung des Dampfes erfolgt von einem Dampferhitzer, der in gewissem Abstand von den Spinnschächten angebracht ist. Dort werden im allgemeinen noch etwas höhere Temperaturen im Dampf erzeugt, um - abhängig von Isolierung/Entfernung usw. -am Spinnschacht die genannten Temperaturen aufzuweisen. Die Mengen werden z.B. über Lochblenden bestimmte. Die Temperaturen des Dampfes werden in etwa auf Höhe der Spinndüsen bestimmt. Die Menge des Dampfes, die in den Spinnschacht eingeführt wird, hängt vom Querschnitt des Spinnschachtes und in gewissen, geringeren Anteilen von der Menge der eingeführten Spinnlösung (der Menge des Spinnlösungsmittels im Schacht) ab. Bei einem Schacht von einem Querschnitt (d = 28 cm) von 615 cm² ergibt z.B. die Menge von 50 m³/h überhitzter Dampf eine Strömungsgeschwindigkeit von 812 m/h (0,225 m/sek). Bei Übergang auf andere Schachtquerschnitte ist die Dampfmenge gegebenenfalls entsprechend dem Verhältnis (H) der Schachtquerschnitte anzupassen, falls dies notwendig erscheint. Das Verhälntis H stellt dabei den Quotienten aus vergrößertem Schachtquerschnitt zum Schachtquerschnitt von 615 cm² (28 cm Schachtdurchmesser) dar. Bevorzugt wird die Dampfmenge nur zu einem Anteil dieses Verhältnisses H, z.B. 0,1 H bis 0,8 H (d.h. nur 10 % bis 80 % Steigerung über die Dampfmenge beim "Normal"-Spinnschachtdurchmesser von 28 cm hinaus) erhöht. Insbesondere beträgt die Erhöhung der Dampfmenge nur 0,2 H bis 0,6 H. Der kleinere Wert von x.H wird insbesondere bei den größeren Schachtdurchmessern ausgewählt.The steam is supplied by a steam heater, which is located at a certain distance from the spinning chimneys. There, in general, somewhat higher temperatures are generated in the steam in order - depending on the insulation / removal etc. - to have the temperatures mentioned on the spinning shaft. The quantities are e.g. certain about pinholes. The temperatures of the steam are determined approximately at the level of the spinnerets. The amount of steam that is introduced into the spinning shaft depends on the cross-section of the spinning shaft and, to a certain extent, on the amount of spinning solution introduced (the amount of spinning solvent in the shaft). For a shaft with a cross section (d = 28 cm) of 615 cm², e.g. the amount of 50 m³ / h superheated steam has a flow rate of 812 m / h (0.225 m / sec). When changing to other shaft cross-sections, the amount of steam may have to be adjusted according to the ratio (H) of the shaft cross-sections, if this appears necessary. The ratio H represents the quotient from the enlarged shaft cross-section to the shaft cross-section of 615 cm² (28 cm shaft diameter). The amount of steam is preferred only to a portion of this ratio H, e.g. 0.1 H to 0.8 H (i.e. only a 10% to 80% increase beyond the amount of steam with the "normal" spinning shaft diameter of 28 cm). In particular, the increase in the amount of steam is only 0.2 H to 0.6 H. The smaller value of x.H is selected especially for the larger shaft diameters.
Die Dampfmenge wird dabei aus wirtschaftlichen Gründen generell auf den niedrigsten, verfahrensnotwendigen Wert eingestellt. Bei gleichzeitiger Erhöhung des Elastomerlösungsdurchsatzes (Schachtleistung) und des Schachtquerschnittes wird man tendenziell mehr Dampf verwenden als bei alleiniger Vergrößerung des Schachtquerschnittes.For economic reasons, the amount of steam is generally reduced to the lowest value necessary for the process set. If the elastomer solution throughput (shaft capacity) and the shaft cross-section are increased at the same time, more steam will tend to be used than if only the shaft cross-section was increased.
Ein Polyester mit endständigen Hydroxylgruppen von einem mittleren Molekulargewicht von 2.000 (OH-Zahl von 56) wurde durch Umsetzen von 10 kg Adipinsäure mit 8,1 kg Hexandiol-1,6 und 7,1 kg 2,2-Dimethyl-propandiol-1,3 (Neopentylglykol) in üblicher Weise hergestellt. 10 kg dieses Polyesters wurden zusammen mit 190 g N,N-Bis(β-hydroxypropyl)methylamin, 2.600 g 4,4-Diphenylmethandiisocyanat (enthaltend 0,6 % 2,4-Diphenylmethandiisocyanat) und 3,2 kg Dimethylacetamid unter Rühren 100 min auf 50 bis 54°C erwärmt, bis der NCO-Gehalt des Prepolymeren 2,66 Gew.-% (bezogen auf Feststoff) betrug. 245 g Ethylendiamin wurden in 43,45 kg Dimethylacetamid gelöst, in einem Kessel vorgelegt und mit 270 g festem CO₂ versetzt, so daß sich eine Carbamatsuspension bildete. Zu dieser frisch gebildeten Suspension wurden unter intensivem Rühren 16 kg Prepolymerlösung (wie oben hergestellt) gegeben. Man erhielt eine homogene, klare Elastomerlösung mit einem Feststoffgehalt von 22 Gew.-% und eine Lösungsviskosität von 92,6 Pas. Zu der viskosen Polymerlösung wurden, bezogen auf PU-Feststoff, 4 Gew.-% Titandioxid, 0,3 Gew.-% Magnesiumstearat und 1 % des Siliconöls Baysilon® M100 (Bayer AG) zugesetzt. Die Lösung wurde weiterhin mit 1 % Cyanox® 1790 (Stabilisator der Formel 2,4,6-Tris-(2,4,6-trimethyl-3-hydroxybenzyl)-isocyanurat) versetzt.A polyester with terminal hydroxyl groups and an average molecular weight of 2,000 (OH number of 56) was obtained by reacting 10 kg of adipic acid with 8.1 kg of 1,6-hexanediol and 7.1 kg of 2,2-dimethyl-propanediol-1. 3 (neopentyl glycol) prepared in the usual way. 10 kg of this polyester together with 190 g of N, N-bis (β-hydroxypropyl) methylamine, 2,600 g of 4,4-diphenylmethane diisocyanate (containing 0.6% 2,4-diphenylmethane diisocyanate) and 3.2 kg of dimethylacetamide with stirring for 100 min heated to 50 to 54 ° C until the NCO content of the prepolymer was 2.66% by weight (based on solids). 245 g of ethylenediamine were dissolved in 43.45 kg of dimethylacetamide, placed in a kettle and mixed with 270 g of solid CO₂, so that a carbamate suspension was formed. 16 kg of prepolymer solution (as prepared above) were added to this freshly formed suspension with vigorous stirring. A homogeneous, clear elastomer solution with a solids content of 22% by weight and a solution viscosity of 92.6 Pas was obtained. 4% by weight of titanium dioxide, 0.3% by weight of magnesium stearate and 1% of the silicone oil Baysilon® M100 (Bayer AG) were added to the viscous polymer solution. The solution was further mixed with 1% Cyanox® 1790 (stabilizer of the formula 2,4,6-tris (2,4,6-trimethyl-3-hydroxybenzyl) isocyanurate).
Eine 22 gew.-%ige Polyurethanharnstoff-Elastomerlösung in Dimethylacetamid (siehe Herstellungsvorschrift) wurde auf einem 8,8 m langem Spinnschacht mit einem Innendurchmesser von 28 cm aus einer 96 Lochdüsen mit 0,3 mm Lochdurchmesser zu Elastomerfäden mit 1200 dtex Feinheit versponnen. Die Fäden wurden unter dem Spinnschacht an einer ersten Galette bei 375 m/min abgezogen, von einer zweiten Galette mit 390 m/min übernommen und mit einer Aufwickelgeschwindigkeit von 450 m/min auf Spulen gewickelt. Die Spinnschacht(wandheiz)temperatur lag bei 200°C. Es wurde mit 56 Nm³/h Heißluft von 380°C gesponnen. Lösungsleitungen und Spinnkopf waren auf 110°C vortemperiert.A 22% by weight polyurethane urea elastomer solution in dimethylacetamide (see production instructions) was spun on a 8.8 m long spinning shaft with an inner diameter of 28 cm from a 96 hole nozzle with a 0.3 mm hole diameter to give elastomer threads with 1200 dtex fineness. The threads were drawn off under the spinning shaft at a first godet at 375 m / min, taken over from a second godet at 390 m / min and wound onto spools at a winding speed of 450 m / min. The spinning shaft (wall heating) temperature was 200 ° C. It was spun at 56 Nm³ / h hot air at 380 ° C. Solution lines and spinning head were preheated to 110 ° C.
An den gesponnenen Elastomerfilamentgarnen wurden folgende fasertechnologischen Werte ermittelt:
In einem weiteren Versuchsteil wurde versucht, durch Erhöhung der Schachttemperatur von 200 auf 220°C und in weiteren Versuchsteilen die weitere Erhöhung der Temperatur von 380°C auf 400°C (gemessen am Austritt des Lufterhitzers) das Spinnlösungsmittel vollständiger auszutreiben. In allen Fällen rissen die Fäden nach den Temperaturerhöhungen ab und zeigten beginnende Vergilbungen. Offensichtlich wurde die Grenze der thermischen Belastbarkeit der Fäden überschritten.In a further part of the experiment, attempts were made to increase the shaft temperature from 200 to 220 ° C. and in further parts of the experiment to further increase the temperature from 380 ° C to 400 ° C (measured at the outlet of the air heater) to expel the spinning solvent more completely. In all cases, the threads broke after the temperature rises and showed the beginning of yellowing. Obviously the limit of the thermal resistance of the threads was exceeded.
Die oben beschriebene, 22 gew.-%ige PUH-Elastomerlösung in Dimethylacetamid wurde auf einem 8,8 m langem Spinnschacht mit Querschnitt 28 cm aus einer 96 Lochdüse mit 0,3 mm Lochdurchmesser zu Fäden versponnen. Es wurden dabei 300 cm³ Spinnlösung (ca. 100°C) pro Minute durch die Düse gedrückt. Die Geschwindigkeit von Galette 1) betrug 415 m/min, von Galette 2) 435 m/min und die Aufwickelgeschwindigkeit 500 m/min. Die Spinnschachttemperatur (Schachtheizung) lag bei 200°C. Es wurde mit 40 kg/h überhitztem Dampf von 400°C (gemessen am Dampferhitzer/310 bis 320° Dampftemperatur in Düsennähe) gesponnen. Lösungsleitungen und Spinnkopf waren auf 110°C vortemperiert.The 22% by weight PUH elastomer solution in dimethylacetamide described above was spun into threads on an 8.8 m long spinning shaft with a cross section of 28 cm from a 96 hole nozzle with a hole diameter of 0.3 mm. 300 cm³ of spinning solution (approx. 100 ° C.) per minute were pressed through the nozzle. The speed of godet 1) was 415 m / min, of godet 2) 435 m / min and the winding speed was 500 m / min. The spinning shaft temperature (shaft heating) was 200 ° C. It was spun with 40 kg / h of superheated steam at 400 ° C. (measured on the steam heater / 310 to 320 ° steam temperature near the nozzle). Solution lines and spinning head were preheated to 110 ° C.
An den gesponnenen Elastomerfilamentgarnen wurden folgende fasertechnologischen Werte ermittelt:
Die 22 gew.-%ige Lösung, wie beschrieben, wurde auf dem genannten Schacht und mit den gleichartigen Düsen versponnen. Es wurden dabei 325 cm³ Spinnlösung von ca. 110°C pro Minute durch die Düse gedrückt. Die Geschwindigkeit von Galette 1) betrug wiederum 415 m/min, von Galette 2) 435 m/min. Die Aufwickelgeschwindigkeit wurde jedoch auf 550 m/min erhöht. Alle anderen Spinndaten wurden gemäß Beispiel 1 unverändert beibehalten.The 22% by weight solution, as described, was spun on the shaft mentioned and using the same type of nozzles. 325 cm³ of spinning solution at approx. 110 ° C per minute were pressed through the nozzle. The speed of godet 1) was again 415 m / min, of godet 2) 435 m / min. However, the winding speed was increased to 550 m / min. All other spinning data were kept unchanged according to Example 1.
An den gesponnnen Elastomerfilamentgarnen wurden folgende fasertechnologischen Werte gemessen:
Wie man den Beispielen entnehmen kann, lassen sich mit dem Spinnmedium überhitztem Dampf anstelle von Luft höhere Spinngeschwindigkeiten bei deutlich niedrigeren Gehalten an Restlösungsmitteln in den Elastomerfäden bei verbesserten fasertechnologischen Daten erzielen. Mit dem hier aufgezeigten Verfahren lassen sich somit deutlich höhere Spinnschachtleistungen verwirklichen. Es wird eine Zunahme der Höchstzugkraft der Elastomerfäden um 30 bis 50 % gegenüber dem Vergleichsbeispiel erhalten. Die Ursache ist nicht genau bekannt, muß jedoch auf den veränderten Mechanismen der Lösungsmittelentfernung beruhen. Die bedeutend bessere Restlösungsmittelentfernung aus den Elastomerfilamentfäden trotz kürzerer Verweilzeiten im Spinnschacht ist von großer praktisch/technologischer Bedeutung. Neben den ökonomischen Vorteilen werden wie bereits erwähnt auch deutliche ökologische Fortschritte in Bezug auf Art und Menge an Zersetzungsprodukten in der Spinnabluft erzielt.As can be seen from the examples, with the spin medium superheated steam instead of air, higher spinning speeds can be achieved with significantly lower contents of residual solvents in the elastomer threads with improved fiber technology data. With the procedure shown here it can be clearly seen realize higher spinning shaft capacities. An increase in the maximum tensile strength of the elastomer threads by 30 to 50% compared to the comparative example is obtained. The cause is not exactly known, but must be based on the changed mechanisms of solvent removal. The significantly better residual solvent removal from the elastomer filament threads despite shorter dwell times in the spinning shaft is of great practical / technological importance. In addition to the economic advantages, as already mentioned, significant ecological advances are also made in terms of the type and amount of decomposition products in the spinning exhaust air.
Wie in Beispiel 1 und 2 wurde die genannte PUH-Elastomerlösung in Dimethylacetamid mit 353 cm³ Spinnlösung von 110°C pro Minute versponnen. Die Geschwindigkeit der Galette 1) betrug 410 m/min, von Galette 2) 545 m/min und die Aufwickelgeschwindigkeit wurde auf 600 m/min gesteigert. Es wurde mit 45 kg/h Dampf von 400°C (am Dampferhitzer/entsprechend 320° in Düsennähe) gesponnen. Die Schachttemperatur betrug 225°C. An den so gesponnenen Elastomerfilamentgarnen wurden folgende fasertechnologischen Werte ermittelt:
In einer Versuchsabwandlung wurde die Geschwindigkeit von Galette 1) auf 585 m/min, von Galette 2) auf 610 m/min und die Aufwickelgeschwindigkeit auf 700 m/min gesteigert und die durchgesetzte Elastomerlösungsmenge auf 414 cm³/min erhöht. Die anderen Spinnparameter wurden unverändert beibehalten. Es wurden Fäden von 916 dtex Feinheit erhalten. Die fasertechnologischen Eigenschaften entsprachen weitgehend den Werten aus Beispiel 3/erster Versuchsteil, der Spinnlösungsmittelrestgehalt in den Fäden war nur 0,96 Gew.-%, trotz der erhöhten Spinnleistung.In a test variant, the speed was increased from godet 1) to 585 m / min, from godet 2) to 610 m / min and the winding speed to 700 m / min and the amount of elastomer solution passed through was increased to 414 cm 3 / min. The other spinning parameters were kept unchanged. Threads of 916 dtex fineness were obtained. The fiber technology properties largely corresponded to the values from Example 3 / first part of the test, the residual spinning solvent content in the threads was only 0.96% by weight, despite the increased spinning performance.
Claims (1)
- Improved dry spinning process for the production of polyurethane elastomer fibres using superheated steam as the spinning medium, characterised in that
polyurethane-urea elastomers, which were produced by diamine chain extension of NCO prepolymers,
are spun from the solutions thereof in dimethylformamide or (preferably) dimethylacetamide
via a hot spinneret at not less than 100°C and at spinning solution temperatures in the nozzle of at least 100°C, preferably of 105 to 125°C,
into a heated spinning cabinet at a spinning cabinet wall temperature of at least 160°C, preferably of 160 to 238°C,
and during this operation, at cabinet diameters of up to 28 cm, at least 20 kg/h, preferably 25 to 50 kg/h, particularly preferably 30 to 45 kg/h of superheated steam at a temperature of above 250°C, preferably of 275 to 400°C, in particular of 280 to 325°C, and, at greater cabinet diameters, quantities of steam which are optionally increased by the ratio H of the cabinet cross-sections, preferably only by a factor of 0.1 H to 0.8 H, in particular only by 0.2 to 0.6 H, are introduced as a hot spinning medium,
at the end of the spinning cabinet the spinning medium and spinning solvent are passed into a recovery stage,
and a take-off speed of the filaments from the cabinet of at least 250 m/min, preferably of at least 400 m/min
is maintained.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3912510 | 1989-04-17 | ||
DE3912510A DE3912510A1 (en) | 1989-04-17 | 1989-04-17 | SPINNING OF SEGMENTED POLYURETHANE-UREA ELASTOMERS IN STEAM FIBER |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0393422A2 EP0393422A2 (en) | 1990-10-24 |
EP0393422A3 EP0393422A3 (en) | 1991-07-17 |
EP0393422B1 true EP0393422B1 (en) | 1995-06-14 |
Family
ID=6378808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90106457A Expired - Lifetime EP0393422B1 (en) | 1989-04-17 | 1990-04-04 | Spinning in water-vapour of segmented polyurethane-urea elastomers |
Country Status (6)
Country | Link |
---|---|
US (1) | US5057260A (en) |
EP (1) | EP0393422B1 (en) |
JP (1) | JP2909137B2 (en) |
KR (1) | KR0154332B1 (en) |
DE (2) | DE3912510A1 (en) |
ES (1) | ES2072938T3 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4330725A1 (en) * | 1993-09-10 | 1995-03-16 | Bayer Ag | Process for the production of elastane fibers by spinning a combination of PDMS and ethoxylated PDMS |
DE10258587A1 (en) * | 2002-12-16 | 2004-06-24 | Bayer Faser Gmbh | Process for the production of polyurethane urea fibers by spinning a combination of polydimethylsiloxane, alkoxylated polydimethylsiloxane and fatty acid salt |
JP4939254B2 (en) * | 2007-02-21 | 2012-05-23 | パナソニック株式会社 | Nonwoven fabric manufacturing apparatus and nonwoven fabric manufacturing method |
WO2008102538A1 (en) * | 2007-02-21 | 2008-08-28 | Panasonic Corporation | Nano-fiber manufacturing apparatus |
KR100973987B1 (en) * | 2007-12-31 | 2010-08-05 | 주식회사 효성 | Di-dyed polyurethaneurea elastic yarn and its manufacturing method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1669412A1 (en) * | 1951-01-28 | 1971-02-25 | Bayer Ag | Process for the production of rubber-elastic threads |
US3053611A (en) * | 1958-01-21 | 1962-09-11 | Inventa Ag | Process for spinning of synthetic fibers |
DE1278687B (en) * | 1959-04-17 | 1968-09-26 | Bayer Ag | Process for the production of highly elastic threads or fibers from isocyanate polyaddition products |
NL280787A (en) * | 1961-07-11 | |||
JPS44896Y1 (en) * | 1964-10-15 | 1969-01-16 | ||
US3428711A (en) * | 1966-02-01 | 1969-02-18 | Du Pont | Hindered polymeric tertiary amines as stabilizers for polyurethanes |
GB1159623A (en) * | 1966-04-05 | 1969-07-30 | Kurashiki Rayon Kk | Low Elongation Set Spandex Filaments and process for the preparation thereof |
JPS591700U (en) * | 1982-06-28 | 1984-01-07 | スズキ株式会社 | Joint structure in outboard motors |
-
1989
- 1989-04-17 DE DE3912510A patent/DE3912510A1/en not_active Withdrawn
-
1990
- 1990-04-04 EP EP90106457A patent/EP0393422B1/en not_active Expired - Lifetime
- 1990-04-04 DE DE59009228T patent/DE59009228D1/en not_active Expired - Fee Related
- 1990-04-04 ES ES90106457T patent/ES2072938T3/en not_active Expired - Lifetime
- 1990-04-04 US US07/504,491 patent/US5057260A/en not_active Expired - Fee Related
- 1990-04-17 JP JP2099471A patent/JP2909137B2/en not_active Expired - Lifetime
- 1990-04-17 KR KR1019900005298A patent/KR0154332B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
ES2072938T3 (en) | 1995-08-01 |
JP2909137B2 (en) | 1999-06-23 |
JPH02293413A (en) | 1990-12-04 |
KR900016512A (en) | 1990-11-13 |
DE3912510A1 (en) | 1990-10-18 |
EP0393422A2 (en) | 1990-10-24 |
DE59009228D1 (en) | 1995-07-20 |
US5057260A (en) | 1991-10-15 |
KR0154332B1 (en) | 1998-12-01 |
EP0393422A3 (en) | 1991-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69637284T2 (en) | IMPROVEMENTS OF SULPHONATE GROUPS CONTAINING POLYESTERS THAT ARE ADJUSTABLE WITH BASIC COLORS | |
DE10220380B4 (en) | Polyethylene naphthalate fiber with high strength | |
DE1494692A1 (en) | Process for the production of shaped articles from solutions of completely aromatic polyamides | |
DE60319286T2 (en) | Low shrinkage polyamide fiber and non-woven fabric made from this fiber | |
DE3334070C2 (en) | ||
EP0407901A2 (en) | Process for the fabrication of polyethylene fibres by the high speed spinning of ultra-high molecular weight polyethylene | |
DE3932958A1 (en) | PROCESS FOR PREPARING LIGHT- AND EXHAUST-RESISTANT PUH-ELASTOMER FAEDES AND FILMS AND ELASTOMER FAEDES OF CORRESPONDING COMPOSITION | |
EP0393422B1 (en) | Spinning in water-vapour of segmented polyurethane-urea elastomers | |
DE3932948A1 (en) | METHOD FOR PRODUCING SEGMENTED POLYURETHANE-UREA ELASTOMER SOLUTIONS, AND FAEDES AND FILMS THEREOF | |
DE2161967C3 (en) | Process for the production of a wire from high molecular weight, linear polyesters | |
DE19805153A1 (en) | Biodegradable coating agents | |
DE1660434A1 (en) | Process for the continuous production of spandex threads | |
EP0643159A1 (en) | Process for the production of spandex fibres containing a combination of polydimethylsiloxane and ethoxylated polydimethylsiloxane | |
EP1607499A1 (en) | Chlorine resistant elastane fibres protected against color change | |
EP0756026A1 (en) | Process for manufacturing divisible thanelast-yarns | |
EP1431429A1 (en) | Process for the production of polyurethane-urea fibres containing a combination of polydimethylsiloxanes, alkoxylated polydimethylsiloxanes and fatty acid salts | |
DE69202863T2 (en) | STABILIZED POLYURETHANE SOLUTION AND SPANDEX FIBERS. | |
DE4446339C1 (en) | Reducing viscosity of polyurethane spinning solns. | |
DE19951067A1 (en) | Polyester fibers with reduced tendency to pilling and process for their production | |
EP0967306A1 (en) | Monofilament based on polyethylene-2.6-naphthalate | |
EP0295271B1 (en) | Polyurethane elastomer thread and its use | |
EP0283831A1 (en) | Process for producing yarns by melt-spinning polyethylene terephthalate | |
DE1803432A1 (en) | Manufacture of high strength polyamide or polyester | |
DE10201834B4 (en) | Production of dimensionally stable polyester threads | |
DE1719548A1 (en) | Process for the production of elastic woven cloths and knitted goods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900404 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE ES FR GB IT NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE ES FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19941115 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 59009228 Country of ref document: DE Date of ref document: 19950720 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950622 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2072938 Country of ref document: ES Kind code of ref document: T3 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020315 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020404 Year of fee payment: 13 Ref country code: ES Payment date: 20020404 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020411 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020430 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031101 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030404 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20031101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050404 |