EP0383063B1 - Magnetanker - Google Patents
Magnetanker Download PDFInfo
- Publication number
- EP0383063B1 EP0383063B1 EP90101367A EP90101367A EP0383063B1 EP 0383063 B1 EP0383063 B1 EP 0383063B1 EP 90101367 A EP90101367 A EP 90101367A EP 90101367 A EP90101367 A EP 90101367A EP 0383063 B1 EP0383063 B1 EP 0383063B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic armature
- valve body
- valve
- magnet armature
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005291 magnetic effect Effects 0.000 claims description 24
- 239000000446 fuel Substances 0.000 claims description 12
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 230000004323 axial length Effects 0.000 claims description 4
- 238000005245 sintering Methods 0.000 claims description 4
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 230000000284 resting effect Effects 0.000 claims 1
- 239000002184 metal Substances 0.000 description 10
- 230000007704 transition Effects 0.000 description 6
- 238000003466 welding Methods 0.000 description 5
- 238000005476 soldering Methods 0.000 description 4
- 239000003302 ferromagnetic material Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/061—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
- F02M51/0625—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
- F02M51/0664—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
- F02M51/0671—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
- F02M51/0682—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/061—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
- F02M51/0625—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
- F02M51/0664—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
- H01F7/1607—Armatures entering the winding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S239/00—Fluid sprinkling, spraying, and diffusing
- Y10S239/90—Electromagnetically actuated fuel injector having ball and seat type valve
Definitions
- the invention is based on a magnetic armature according to the preamble of the main claim.
- a magnet armature known (DE-OS 34 18 761 or US-PS 46 51 931), which is made of solid material by drilling and machining surface removal, the various manufacturing steps being very cost-intensive and burrs occurring in various places must be removed.
- this known magnet armature has a relatively high weight, which results in an undesirable delay in the movement of the magnet armature when the electromagnet is excited or de-energized by the larger mass to be accelerated.
- the magnetic armature according to the invention with the characterizing features of the main claim has the advantage that it can be manufactured inexpensively in a simple manner and at the same time has flow channels for the medium to be controlled with the lowest possible weight. Deburring processes are unnecessary due to non-cutting shaping and very short response times are achieved due to the low weight when energizing or de-energizing the electromagnet.
- the magnet armature can advantageously be sawed off from a tube profiled in this way or produced by sintering.
- FIG. 1 shows an electromagnetically actuated fuel injection valve with a first exemplary embodiment of a magnet armature designed according to the invention
- FIG. 2 shows a section along the line II-II in FIG. 1
- FIG. 3 shows a partial view of a second exemplary embodiment of a magnet armature designed according to the invention
- FIG. 4 shows a section along the line IV-IV in Figure 3.
- the electromagnetically actuated valve shown in FIG. 1, for example, in the form of an injection valve for fuel as an aggregate of a fuel injection system of a mixture-compressing spark-ignition internal combustion engine has a tubular metal connecting piece 1 made of ferromagnetic material, on the lower core end 2 of which a magnet coil 3 is arranged.
- the connector 1 thus serves as the core.
- an intermediate part 6 is connected concentrically to the longitudinal valve axis 4 tightly with the connecting piece 1, for example by soldering or welding.
- the intermediate part 6 is made of non-magnetic sheet metal, which is deep-drawn and has a first connecting section 47 running coaxially with the valve longitudinal axis 4, with which it completely engages around the core end 2 and is tightly connected to it.
- a collar 48 which extends radially outward from the first connecting section 47 leads to a second connecting section 49 of the intermediate part 6, which extends coaxially to the longitudinal valve axis 4 and partially projects beyond a connecting part 39 in the axial direction and is tightly connected thereto, for example by soldering or Welding.
- the diameter of the second connecting section 49 is thus larger than the diameter of the first connecting section 47, so that in the assembled state the tubular connecting part 39 rests with an end face 50 on the collar 48.
- the first connecting section 47 encompasses a holding shoulder 51 of the core end 2, which has a smaller diameter than the connecting piece 1, and the second connecting section 49 encompasses a holding shoulder 52 of the connecting part which is also of a smaller diameter than in the adjacent area 39.
- the connecting part 39 made of ferromagnetic material has a holding bore 41 facing away from the end face 50, into which a valve seat body 8 is inserted in a sealed manner, for example by screwing, welding or soldering.
- the holding bore 41 merges into a transition bore 53, which is adjoined in the vicinity of the end face 50 by a sliding bore 54, into which a magnet armature 12 projects and through which the magnet armature 12 is guided.
- the holding bore 41 and sliding bore 54 can be produced in one clamping during production, so that bores which are aligned exactly with one another result.
- the magnet armature 12 is not by the intermediate part 6 still guided the transition bore 53 of the connecting part 39.
- the axial extent of the sliding bore 54 is small compared to the axial length of the magnet armature 12, for example approximately 1/15 of the length of the magnet armature.
- the metal valve seat body 8 has a fixed valve seat 9 facing the core end 2 of the connecting piece 1.
- the series of connecting pieces 1, intermediate part 6, connecting part 39 and valve seat body 8 represents a rigid metal unit.
- a valve body 10 projecting into the transition bore 53 is inserted and connected, which has a thin-walled round connecting pipe 36 and comprises a valve closing member 14 which is connected to the other end of the connecting tube 36 facing the valve seat 9 and may, for example, have the shape of a sphere, a hemisphere or some other shape.
- the other end of the return spring 18 projects into a flow bore 21 of the connecting piece 1 and lies there against a tubular adjusting bush 22 which is screwed or pressed into the flow bore 21, for example, to adjust the spring tension.
- At least a part of the connecting piece 1 and the magnetic coil 3 in their entire axial length are enclosed by a plastic jacket 24, which also encloses at least a part of the intermediate part 6 and the connecting tube 36.
- the plastic jacket 24 can be achieved by pouring or extrusion coating with plastic.
- an electrical connector 26 is formed on the plastic casing 24, via which the electrical contact of the magnet coil 3 and thus its excitation takes place.
- the magnet coil 3 is surrounded by at least one guide element 28 serving as a ferromagnetic element for guiding the magnetic field lines, which is made of ferromagnetic material and extends in the axial direction over the entire length of the magnet coil 3 and at least partially surrounds the magnet coil 3 in the circumferential direction.
- at least one guide element 28 serving as a ferromagnetic element for guiding the magnetic field lines, which is made of ferromagnetic material and extends in the axial direction over the entire length of the magnet coil 3 and at least partially surrounds the magnet coil 3 in the circumferential direction.
- the guide element 28 is designed in the form of a bracket with a curved central region 29 which is adapted to the contour of the magnetic coil and which only partially surrounds the magnetic coil 3 in the circumferential direction and has end sections 31 which extend inwards in the radial direction and which have the connecting piece 1 and the other Merging connecting part 39 partially encompassing one shell end 32 running in the axial direction.
- 1 shows a valve with two guide elements 28, which can be arranged opposite one another. It may also be expedient for spatial reasons to let the electrical connector 26 run in a plane that is rotated by 90 °, that is to say perpendicular to a plane through the guide elements 28.
- a radially penetrating slot 37 is provided, which extends over the entire length of the connecting tube 36 and through which the fuel flowing from the magnet armature 12 into an inner channel 38 of the connecting tube 36 into the transition bore 53 and from there to Valve seat 9 can reach, downstream of which at least one spray opening 17 is formed in the valve seat body 8, via which the fuel is sprayed into an intake manifold or a cylinder of an internal combustion engine.
- connection between the connecting tube 36 and the magnet armature 12 and the valve closing member 14 is advantageously carried out by welding or soldering.
- the pipe wall from the inner channel 38 to In this exemplary embodiment, the penetrating slot 37 runs in a plane passing through the longitudinal axis 4 of the valve from one end to the other end of the connecting pipe 36.
- the slot 37 represents a large-area hydraulic flow cross-section, through which the fuel flows very quickly from the inner channel 38 into the transition bore 53 and thus can get to the valve seat 9.
- the thin-walled connecting tube 36 ensures maximum stability with the lowest weight.
- connection tube 36 can be produced in such a way that sheet metal sections with a rectangular shape are produced from a metal sheet having the thickness of the tube wall, for example by stamping, the one side lengths of which are the length of the connection tube 36 to be produced in the axial direction and the other side lengths of which are approximately the circumference of the connection tube to be produced correspond. Then each sheet metal section is rolled or bent into the shape of the desired connecting tube 36, for example with the aid of a mandrel. The two longitudinal end faces of the sheet metal section forming the connecting tube 36 form the slot 37 in that they lie opposite one another at a distance.
- the connecting pipe 36 with a plurality of flow openings 56, which distribute the pipe wall approximately symmetrically, also in the axial direction penetrate the connecting tube 36.
- Either the flow openings 56 are obtained in that the sheet metal sections 55 are produced from already perforated sheets, or the flow openings 56 are produced at the same time as the sheet metal sections 55 are produced.
- the flow openings 56 can run in such a way that the fuel emerging in the transition bore 53 exits radially or is given a swirl.
- the flow openings 56 can also be inclined in the direction of the valve seat 9.
- the hollow magnetic armature 12 has a circumference which is profiled in a wave shape over its entire length in such a way that so-called wave troughs 60 and wave peaks projecting beyond it alternate on the connecting tube 36 which is part of the valve body 10 61 are formed.
- the wave crests 61 have an essentially circular outer surface 62, by means of which the magnet armature 12 is slidably mounted in the sliding bore 54.
- the troughs 60 of the magnet armature 12 have inner surfaces 63 which form the fastening opening 13 and bear against the connecting tube 36 of the valve body 10 and are connected to the latter, for example, by laser welding.
- the wave crests 61 have inner surfaces 64 facing the connecting tube 36, which are at a distance from the connecting tube 36 in the radial direction, so that flow cross sections 65 each extending in the axial direction are formed between the inner surfaces 64 of the wave crests 61 of the magnet armature 12 and the connecting tube 36.
- three wave troughs 60 and three wave crests 61 are provided on the magnet armature 12.
- the number of wave troughs 60 and wave crests 61 and thus the shape of the profile of the circumference of the magnet armature 12 can be changed and adapted to the requirements of the respective electromagnetically actuated valve.
- the magnet armature 12 according to the invention can be produced, for example, by sintering, by deforming an annular tube having the required length of the magnet armature 12, or by means of a profiled tube from which the magnet armature 12 is separated in the required length.
- the wave-shaped profile of the armature 12 also enables creation of flow cross sections 65, over which and over the outer circumference of the troughs 60 fuel can flow freely past the magnet armature 12, even if the valve body 10 should be designed as a solid body instead of the connecting tube 36. In any case, the wall of the hollow armature 12 should have the smallest possible thickness in order to keep the weight of the magnet armature 12 as low as possible.
- the parts that remain the same and have the same effect as in the first exemplary embodiment according to FIGS. 1 and 2 are identified by the same reference numerals.
- the magnet armature 12 according to FIGS. 3 and 4 only has an area 70 surrounding the valve body 10 in the form of its connecting tube 36, which is profiled in an undulating manner and alternates in accordance with the exemplary embodiment according to FIGS. 1 and 2 has wave troughs 60 abutting the connecting tube 36 and wave crests 61 projecting beyond them in the radial direction.
- the inner surfaces 63 of the wave troughs 60 also abut the periphery of the connecting tube 36 and are connected to it.
- the remaining area 71 of the magnet armature, which extends in the direction of the core end 2, is tubular with an annular cross section and has a clear width 72 which is larger than the diameter of the fastening opening 13.
- the region 71 preferably projects into the sliding bore 54.
- the exemplary embodiment of the magnet armature 12 shown in FIGS. 3 and 4 likewise has a small wall thickness and can either be produced by sintering or by deforming a tube having the required length of the magnet armature 12 in the region 70 for producing the undulating circumferential region of the magnet armature 12 for attachment to the connecting pipe 36.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Composite Materials (AREA)
- Fuel-Injection Apparatus (AREA)
- Magnetically Actuated Valves (AREA)
- Electromagnets (AREA)
Description
- Die Erfindung geht aus von einem Magnetanker nach der Gattung des Hauptanspruchs. Es ist schon ein Magnetanker bekannt (DE-OS 34 18 761 bzw. US-PS 46 51 931), der aus massivem Material durch Bohren und spanendes Oberflächenabtragen hergestellt wird, wobei die verschiedenen Herstellungsschritte sehr kostenintensiv sind und dabei an den verschiedensten Stellen entstandene Grate entfernt werden müssen. Zusätzlich weist dieser bekannte Magnetanker ein relativ hohes Gewicht auf, wodurch sich beim Erregen oder Entregen des Elektromagneten durch die zu beschleunigende größere Masse eine unerwünschte Verzögerung in der Bewegung des Magnetankers ergibt.
- Der erfindungsgemäße Magnetanker mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß er sich auf einfache Art und Weise kostengünstig herstellen läßt und bei geringstmöglichem Eigengewicht zugleich Strömungskanäle für das zu steuernde Medium aufweist. Dabei werden durch spanlose Formgebung Entgratungsvorgänge unnötig und infolge des geringen Gewichtes beim Erregen bzw. Entregen des Elektromagneten sehr kurze Ansprechzeiten erreicht.
- Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Magnetankers möglich.
- Besonders vorteilhaft ist es, den Umfang des Magnetankers über seine gesamte axiale Länge wellenförmig profiliert auszubilden und die Wellenberge mit einer im wesentlichen kreisförmigen Außenfläche zu versehen. Hierdurch kann in vorteilhafter Weise der Magnetanker von einem in dieser Weise profilierten Rohr abgesägt werden oder durch Sintern hergestellt werden.
- Vorteilhaft ist es auch, den Magnetanker durch Verformen aus einem kreisringförmigen Rohr herzustellen.
- Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein elektromagnetisch betätigbares Kraftstoffeinspritzventil mit einem ersten Ausführungsbeispiel eines erfindungsgemäß ausgebildeten Magnetankers, Figur 2 einen Schnitt entlang der Linie II-II in Figur 1, Figur 3 in Teilansicht ein zweites Ausführungsbeispiel eines erfindungsgemäß ausgebildeten Magnetankers, Figur 4 einen Schnitt entlang der Linie IV-IV in Figur 3.
- Das in der Figur 1 beispielsweise dargestellte elektromagnetisch betätigbare Ventil in Form eines Einspritzventiles für Kraftstoff als Aggregat einer Kraftstoffeinspritzanlage einer gemischverdichtenden fremdgezündeten Brennkraftmaschine hat einen rohrförmigen metallenen Anschlußstutzen 1 aus ferromagnetischem Material, auf dessen unterem Kernende 2 eine Magnetspule 3 angeordnet ist. Der Anschlußstutzen 1 dient somit zugleich als Kern. Anschließend an das Kernende 2 des Anschlußstutzens 1 ist konzentrisch zur Ventillängsachse 4 dicht mit dem Anschlußstutzen 1 ein Zwischenteil 6 verbunden, beispielsweise durch Verlöten oder Verschweißen. Das Zwischenteil 6 ist aus nichtmagnetischem Blech gefertigt, das tiefgezogen ist und koaxial zur Ventillängsachse 4 verlaufend einen ersten Verbindungsabschnitt 47 hat, mit dem es vollständig das Kernende 2 umgreift und mit diesem dicht verbunden ist. Ein sich vom ersten Verbindungsabschnitt 47 radial nach außen erstreckender Kragen 48 führt zu einem zweiten Verbindungsabschnitt 49 des Zwischenteiles 6, der sich koaxial zur Ventillängsachse 4 verlaufend erstreckt und in axialer Richtung ein Verbindungsteil 39 teilweise überragt und mit diesem dicht verbunden ist, beispielsweise durch Verlöten oder Verschweißen. Der Durchmesser des zweiten Verbindungsabschnittes 49 ist somit größer als der Durchmesser des ersten Verbindungsabschnittes 47, so daß im montierten Zustand das rohrförmige Verbindungsteil 39 mit einer Stirnfläche 50 am Kragen 48 anliegt. Um kleine Außenmaße des Ventiles zu ermöglichen, umgreift der erste Verbindungsabschnitt 47 einen Halteabsatz 51 des Kernendes 2, der einen geringeren Durchmesser als der Anschlußstutzen 1 hat, und der zweite Verbindungsabschnitt 49 umgreift einen ebenfalls mit geringerem Durchmesser als im angrenzenden Bereich ausgebildeten Halteabsatz 52 des Verbindungsteiles 39.
- Das aus ferromagnetischem Material gefertigte Verbindungsteil 39 hat der Stirnfläche 50 abgewandt eine Haltebohrung 41, in die ein Ventilsitzkörper 8 dicht eingesetzt ist, beispielsweise durch eine Verschraubung, Verschweißung oder Verlötung. Die Haltebohrung 41 geht in eine Übergangsbohrung 53 über, an die sich in der Nähe der Stirnfläche 50 eine Gleitbohrung 54 anschließt, in die ein Magnetanker 12 ragt und durch die der Magnetanker 12 geführt wird. Somit können Haltebohrung 41 und Gleitbohrung 54 in einer Aufspannung bei der Fertigung hergestellt werden, so daß sich sehr genau zueinander fluchtende Bohrungen ergeben. Der Magnetanker 12 wird weder durch das Zwischenteil 6 noch die Übergangsbohrung 53 des Verbindungsteiles 39 geführt. Die axiale Erstreckung der Gleitbohrung 54 ist im Vergleich zur axialen Länge des Magnetankers 12 gering, beispielsweise etwa 1/15 der Länge des Magnetankers.
- Dem Anschlußstutzen 1 abgewandt weist der metallene Ventilsitzkörper 8 dem Kernende 2 des Anschlußstutzens 1 zugewandt einen festen Ventilsitz 9 auf. Die Aneinanderreihung von Anschlußstutzen 1, Zwischenteil 6, Verbindungsteil 39 und Ventilsitzkörper 8 stellt eine starre metallene Einheit dar. In eine Befestigungsöffnung 13 des Magnetankers 12 ist ein Ende eines in die Übergangsbohrung 53 ragenden Ventilkörpers 10 eingesetzt und verbunden, der ein dünnwandiges rundes Verbindungsrohr 36 sowie ein Ventilschließglied 14 umfaßt, das mit dem dem Ventilsitz 9 zugewandten anderen Ende des Verbindungsrohres 36 verbunden ist und beispielsweise die Form einer Kugel, einer Halbkugel oder eine andere Form haben kann.
- Dem Ventilschließglied 14 abgewandt ragt in die Befestigungsöffnung 13 des Magnetankers 12 eine Rückstellfeder 18, die sich mit ihrem einen Ende an einer Stirnfläche des Verbindungsrohres 36 abstützt. Das andere Ende der Rückstellfeder 18 ragt in eine Strömungsbohrung 21 des Anschlußstutzens 1 und liegt dort an einer rohrförmigen Verstellbuchse 22 an, die zur Einstellung der Federspannung beispielsweise in die Strömungsbohrung 21 eingeschraubt oder eingepreßt ist. Mindestens ein Teil des Anschlußstutzens 1 und die Magnetspule 3 in ihrer gesamten axialen Länge sind durch eine Kunststoffummantelung 24 umschlossen, die auch wenigstens noch einen Teil des Zwischenteils 6 und des Verbindungsrohres 36 umschließt. Die Kunststoffummantelung 24 kann durch Ausgießen oder Umspritzen mit Kunststoff erzielt werden. An der Kunststoffummantelung 24 ist zugleich ein elektrischer Anschlußstecker 26 angeformt, über den die elektrische Kontaktierung der Magnetspule 3 und damit deren Erregung erfolgt.
- Die Magnetspule 3 ist von wenigstens einem als ferromagnetisches Element zur Führung der Magnetfeldlinien dienenden Leitelement 28 umgeben, das aus ferromagnetischem Material hergestellt ist und sich in axialer Richtung über die gesamte Länge der Magnetspule 3 erstreckt und die Magnetspule 3 in Umfangsrichtung wenigstens teilweise umgibt.
- Das Leitelement 28 ist in Form eines Bügels ausgebildet, mit einem an die Kontur der Magnetspule angepaßten gewölbten Mittelbereich 29, der nur teilweise in Umfangsrichtung die Magnetspule 3 umgibt und sich in radialer Richtung nach innen erstreckende Endabschnitte 31 hat, die den Anschlußstutzen 1 und andererseits das Verbindungsteil 39 teilweise umgreifend in jeweils ein in axialer Richtung verlaufendes Schalenende 32 übergehen. In Figur 1 ist ein Ventil mit zwei Leitelementen 28 dargestellt, die einander gegenüberliegend angeordnet sein können. Es kann auch aus räumlichen Gründen zweckmäßig sein, den elektrischen Anschlußstecker 26 in einer Ebene verlaufen zu lassen, die um 90° verdreht ist, also senkrecht auf einer Ebene durch die Leitelemente 28 steht.
- In der Rohrwand des Verbindungsrohres 36 ist ein die Rohrwand radial durchdringender Schlitz 37 vorgesehen, der sich über die gesamte Länge des Verbindungsrohres 36 erstreckt und durch den der vom Magnetanker 12 in einen Innenkanal 38 des Verbindungsrohres 36 zuströmende Kraftstoff in die Übergangsbohrung 53 und von dort zum Ventilsitz 9 gelangen kann, stromabwärts dessen im Ventilsitzkörper 8 wenigstens eine Abspritzöffnung 17 ausgebildet ist, über die der Kraftstoff in ein Saugrohr oder einen Zylinder einer Brennkraftmaschine abgespritzt wird.
- Die Verbindung zwischen Verbindungsrohr 36 und Magnetanker 12 sowie Ventilschließglied 14 erfolgt in vorteilhafter Weise durch Verschweißen bzw. Verlöten. Der die Rohrwand vom Innenkanal 38 nach außen durchdringende Schlitz 37 verläuft bei diesem Ausführungsbeispiel in einer durch die Ventillängsachse 4 gehenden Ebene von einem zum anderen Ende des Verbindungsrohres 36. Der Schlitz 37 stellt dabei einen großflächigen hydraulischen Strömungsquerschnitt dar, über den der Kraftstoff sehr schnell aus dem Innenkanal 38 in die Übergangsbohrung 53 und damit zum Ventilsitz 9 gelangen kann. Das dünnwandige Verbindungsrohr 36 gewährleistet bei geringstem Gewicht größte Stabilität.
- Die Herstellung des Verbindungsrohres 36 kann derart erfolgen, daß aus einem die Dicke der Rohrwandung aufweisenden Metallblech Blechabschnitte mit rechteckiger Form beispielsweise durch Stanzen hergestellt werden, deren eine Seitenlängen der Länge des herzustellenden Verbindungsrohres 36 in axialer Richtung und deren andere Seitenlängen etwa dem Umfang des herzustellenden Verbindungsrohres entsprechen. Danach wird jeder Blechabschnitt etwa unter Zuhilfenahme eines Dornes in die Form des gewünschten Verbindungsrohres 36 gerollt bzw. gebogen. Dabei bilden die beiden in Längsrichtung verlaufenden Stirnflächen des das Verbindungsrohr 36 bildenden Blechabschnittes den Schlitz 37, indem sie mit Abstand einander gegenüberliegen. Um eine unerwünschte Beeinflussung der Strahlform des aus der Abspritzöffnung 17 abgespritzten Kraftstoffes durch den zum Ventilsitz 9 eventuell unsymmetrisch strömenden Kraftstoff zu vermeiden ist es vorteilhaft, das Verbindungsrohr 36 mit mehreren Strömungsöffnungen 56 zu versehen, die etwa symmetrisch, auch in axialer Richtung, verteilt die Rohrwand des Verbindungsrohres 36 durchdringen.
- Entweder werden die Strömungsöffnungen 56 dadurch erhalten, daß die Blechabschnitte 55 aus bereits perforierten Blechen hergestellt werden, oder die Strömungsöffnungen 56 werden zugleich mit der Herstellung der Blechabschnitte 55 erzeugt. Die Strömungsöffnungen 56 können so verlaufen, daß der in die Übergangsbohrung 53 austretende Kraftstoff radial austritt oder einen Drall aufgeprägt erhält. Dabei können die Strömungsöffnungen 56 auch in Richtung zum Ventilsitz 9 hin geneigt verlaufen.
- Bei dem Ausführungsbeispiel nach Figur 1 und Figur 2 hat der erfindungsgemäße hohle Magnetanker 12 einen Umfang, der wellenförmig über seine gesamte Länge derart profiliert ist, daß abwechselnd an dem Verbindungsrohr 36, das Teil des Ventilkörpers 10 ist, anliegende sogenannte Wellentäler 60 und darüber hinausragende Wellenberge 61 gebildet werden. Die Wellenberge 61 haben dabei eine im wesentlichen kreisförmige Außenfläche 62, mittels welcher der Magnetanker 12 in der Gleitbohrung 54 gleitbar gelagert ist. Die Wellentäler 60 des Magnetankers 12 weisen Innenflächen 63 auf, die die Befestigungsöffnung 13 bilden und an dem Verbindungsrohr 36 des Ventilkörpers 10 anliegen und mit diesem beispielsweise durch Laserschweißen verbunden sind. Die Wellenberge 61 haben dem Verbindungsrohr 36 zugewandte Innenflächen 64, die gegenüber dem Verbindungsrohr 36 in radialer Richtung einen Abstand haben, so daß zwischen den Innenflächen 64 der Wellenberge 61 des Magnetankers 12 und dem Verbindungsrohr 36 jeweils in axialer Richtung verlaufende Strömungsquerschnitte 65 gebildet werden.
- Bei dem in den Figuren 1 und 2 dargestellten Ausführungsbeispiel sind an dem Magnetanker 12 jeweils drei Wellentäler 60 und drei Wellenberge 61 vorgesehen. Die Anzahl der Wellentäler 60 und der Wellenberge 61 und damit die Form der Profilierung des Umfanges des Magnetankers 12 kann geändert und an die Erfordernisse des jeweiligen elektromagnetisch betätigten Ventiles angepaßt werden. Der erfindungsgemäße Magnetanker 12 kann beispielsweise durch Sintern, durch Verformung eines die erforderliche Länge des Magnetankers 12 aufweisenden kreisringförmigen Rohres oder mittels eines profilierten Rohres hergestellt werden, von dem in der erforderlichen Länge der Magnetanker 12 abgetrennt wird. Bei allen diesen Herstellungsverfahren ist die zerspanende Bearbeitung auf ein Mindestmaß verringert oder ganz vermieden, so daß ein Entgraten nur in einem geringen Umfang oder gar nicht erfolgen braucht. Die wellenförmige Profilierung des Magnetankers 12 ermöglicht zugleich die Schaffung von Strömungsquerschnitten 65, über die und über den Außenumfang der Wellentäler 60 Kraftstoff ungehindert am Magnetanker 12 vorbeiströmen kann, auch wenn anstelle des Verbindungsrohres 36 der Ventilkörper 10 als Vollkörper ausgebildet sein sollte. In jedem Falle soll die Wandung des hohlen Magnetankers 12 eine möglichst geringe Dicke aufweisen, um das Gewicht des Magnetankers 12 möglichst gering zu halten.
- Bei dem zweiten Ausführungsbeispiel eines erfindungsgemäßen Magnetankers sind die gegenüber dem ersten Ausführungsbeispiel nach den Figuren 1 und 2 gleichbleibenden und gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet. Abweichend von dem Ausführungsbeispiel nach den Figuren 1 und 2 weist der Magnetanker 12 nach den Figuren 3 und 4 lediglich einen den Ventilkörper 10 in Form seines Verbindungsrohres 36 umgebenden Bereich 70 auf, der wellenförmig profiliert ist und entsprechend dem Ausführungsbeispiel nach den Figuren 1 und 2 abwechselnd an dem Verbindungsrohr 36 anliegende Wellentäler 60 und in radialer Richtung darüber hinausragende Wellenberge 61 aufweist. In diesem Bereich 70 des Magnetankers 12 liegen ebenfalls die Innenflächen 63 der Wellentäler 60 am Umfang des Verbindungsrohres 36 an und sind mit diesem verbunden. Der sich in Richtung zum Kernende 2 erstreckende verbleibende Bereich 71 des Magnetankers ist rohrförmig mit kreisringförmigem Querschnitt ausgebildet und hat eine Lichte Weite 72, die größer als der Durchmesser der Befestigungsöffnung 13 ist. Vorzugsweise ragt der Bereich 71 in die Gleitbohrung 54.
- Das in den Figuren 3 und 4 dargestellte Ausführungsbeispiel des Magnetankers 12 weist ebenfalls eine geringe Wanddicke auf und kann entweder durch Sintern hergestellt werden, oder durch Verformung eines die erforderliche Länge des Magnetankers 12 aufweisenden Rohres in dem Bereich 70 zur Herstellung des wellenförmigen Umfangsbereiches des Magnetankers 12 zur Befestigung an dem Verbindungsrohr 36.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3904447A DE3904447A1 (de) | 1989-02-15 | 1989-02-15 | Magnetanker |
DE3904447 | 1989-02-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0383063A1 EP0383063A1 (de) | 1990-08-22 |
EP0383063B1 true EP0383063B1 (de) | 1992-04-22 |
Family
ID=6374077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90101367A Expired - Lifetime EP0383063B1 (de) | 1989-02-15 | 1990-01-24 | Magnetanker |
Country Status (6)
Country | Link |
---|---|
US (1) | US4946132A (de) |
EP (1) | EP0383063B1 (de) |
JP (1) | JP3112080B2 (de) |
KR (2) | KR970009536B1 (de) |
BR (1) | BR9000661A (de) |
DE (2) | DE3904447A1 (de) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3925212C2 (de) * | 1989-07-29 | 1997-03-27 | Bosch Gmbh Robert | Elektromagnetisch betätigbares Ventil |
DE4008675A1 (de) * | 1990-03-17 | 1991-09-19 | Bosch Gmbh Robert | Elektromagnetisch betaetigbares ventil |
US5199648A (en) * | 1991-03-20 | 1993-04-06 | Zexel Corporation | Fuel injection valve |
DE4111987C2 (de) * | 1991-04-12 | 1995-01-12 | Bosch Gmbh Robert | Elektromagnetventil |
US5544816A (en) * | 1994-08-18 | 1996-08-13 | Siemens Automotive L.P. | Housing for coil of solenoid-operated fuel injector |
DE19629589B4 (de) * | 1996-07-23 | 2007-08-30 | Robert Bosch Gmbh | Brennstoffeinspritzventil |
JPH1047209A (ja) * | 1996-07-29 | 1998-02-17 | Mitsubishi Electric Corp | 筒内噴射用燃料噴射弁 |
JP3913841B2 (ja) * | 1997-07-02 | 2007-05-09 | 本田技研工業株式会社 | 噴射弁 |
DE19730202A1 (de) * | 1997-07-15 | 1999-01-21 | Bosch Gmbh Robert | Elektromagnetisch betätigbares Ventil |
US5957161A (en) * | 1998-11-05 | 1999-09-28 | Borg-Warner Automotive, Inc. | Long stroke balanced solenoid |
US6283384B1 (en) * | 1999-11-23 | 2001-09-04 | Siemens Automotive Corporation | Fuel injector with weld integrity arrangement |
US6422486B1 (en) | 2000-03-31 | 2002-07-23 | Siemens Automotive Corporation | Armature/needle assembly for a fuel injector and method of manufacturing same |
AU2001280160A1 (en) * | 2000-08-28 | 2002-03-13 | Nok Corporation | Solenoid valve |
JP2002074000A (ja) | 2000-08-28 | 2002-03-12 | Sanwa Bank Ltd | 情報通信ネットワークを介した資金決済処理支援システム |
DE10143500A1 (de) * | 2001-09-05 | 2003-03-20 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
US7458530B2 (en) * | 2001-10-05 | 2008-12-02 | Continental Automotive Systems Us, Inc. | Fuel injector sleeve armature |
US6644568B1 (en) * | 2002-10-24 | 2003-11-11 | Visteon Global Technologies, Inc. | Fuel injector with spiral-wound spring adjustment tube |
EP2354528B1 (de) * | 2010-01-15 | 2012-08-29 | Continental Automotive GmbH | Ventilanordnung und Einspritzventil |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1543001A (en) * | 1923-09-05 | 1925-06-23 | Edwin G Gaynor | Magnetic core |
JPS5735570U (de) * | 1980-08-07 | 1982-02-24 | ||
DE3046890A1 (de) * | 1980-12-12 | 1982-07-15 | Robert Bosch Gmbh, 7000 Stuttgart | Elektromagnetisch betaetigbares ventil, insbesondere kraftstoffeinspritzventil fuer kraftstoffeinspritzanlagen |
US4342421A (en) * | 1981-02-23 | 1982-08-03 | General Motors Corporation | Thermostatic expansion valve for a refrigeration system |
DE3207917A1 (de) * | 1982-03-05 | 1983-09-15 | Robert Bosch Gmbh, 7000 Stuttgart | Elektromagnetisch betaetigbares ventil |
DE3418761A1 (de) * | 1984-05-19 | 1985-11-21 | Robert Bosch Gmbh, 7000 Stuttgart | Einspritzventil |
DE3600386A1 (de) * | 1986-01-09 | 1987-07-16 | Schramme Gmbh | Hubmagnet |
DE3711850A1 (de) * | 1987-04-08 | 1988-10-27 | Bosch Gmbh Robert | Elektromagnetisch betaetigbares ventil |
-
1989
- 1989-02-15 DE DE3904447A patent/DE3904447A1/de not_active Withdrawn
- 1989-11-29 US US07/442,814 patent/US4946132A/en not_active Expired - Fee Related
-
1990
- 1990-01-24 EP EP90101367A patent/EP0383063B1/de not_active Expired - Lifetime
- 1990-01-24 DE DE9090101367T patent/DE59000095D1/de not_active Expired - Lifetime
- 1990-02-06 KR KR90001386A patent/KR970009536B1/ko not_active IP Right Cessation
- 1990-02-09 JP JP02028610A patent/JP3112080B2/ja not_active Expired - Fee Related
- 1990-02-13 KR KR1019900001731A patent/KR0130464B1/ko not_active IP Right Cessation
- 1990-02-14 BR BR909000661A patent/BR9000661A/pt not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR900013197A (ko) | 1990-09-05 |
DE3904447A1 (de) | 1990-08-16 |
US4946132A (en) | 1990-08-07 |
KR900013196A (ko) | 1990-09-05 |
DE59000095D1 (de) | 1992-05-27 |
KR0130464B1 (ko) | 1998-04-09 |
JP3112080B2 (ja) | 2000-11-27 |
JPH02240476A (ja) | 1990-09-25 |
EP0383063A1 (de) | 1990-08-22 |
BR9000661A (pt) | 1991-01-15 |
KR970009536B1 (en) | 1997-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0358922B1 (de) | Elektromagnetisch betätigbares Ventil | |
EP0383063B1 (de) | Magnetanker | |
EP0937201B1 (de) | Elektromagnetisch betätigbares ventil | |
EP0720691B1 (de) | Ventilnadel für ein elektromagnetisch betätigbares ventil und verfahren zur herstellung | |
DE19641785C2 (de) | Ventilnadel für ein Einspritzventil | |
EP1508689B1 (de) | Brennstoffeinspritzventil | |
DE3843862A1 (de) | Elektromagnetisch betaetigbares ventil | |
DE4109868A1 (de) | Einstellbuchse fuer ein elektromagnetisch betaetigbares ventil und verfahren zur herstellung | |
DE3925212C2 (de) | Elektromagnetisch betätigbares Ventil | |
WO2000050766A1 (de) | Brennstoffeinspritzventil | |
WO2000050765A1 (de) | Brennstoffeinspritzventil | |
EP0717816B1 (de) | Elektromagnetisch betätigbares ventil | |
EP0383064A1 (de) | Magnetanker | |
DE19636396A1 (de) | Brennstoffeinspritzventil | |
EP0525377B1 (de) | Ventil | |
EP0937200B1 (de) | Elektromagnetisch betätigbares ventil | |
EP0925441B1 (de) | Elektromagnetisch betätigbares ventil | |
DE4108665C2 (de) | Einstellbuchse für ein elektromagnetisch betätigbares Ventil | |
EP0917623A1 (de) | Brennstoffeinspritzventil | |
DE19751847A1 (de) | Brennstoffeinspritzventil und Verfahren zur Herstellung einer Ventilnadel eines Brennstofeinspritzventils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19901217 |
|
17Q | First examination report despatched |
Effective date: 19910926 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROBERT BOSCH GMBH |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 59000095 Country of ref document: DE Date of ref document: 19920527 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20001228 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010111 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010328 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020801 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050124 |