[go: up one dir, main page]

EP0337868B1 - Procédé et dispositif de discrimination de signal - Google Patents

Procédé et dispositif de discrimination de signal Download PDF

Info

Publication number
EP0337868B1
EP0337868B1 EP19890400978 EP89400978A EP0337868B1 EP 0337868 B1 EP0337868 B1 EP 0337868B1 EP 19890400978 EP19890400978 EP 19890400978 EP 89400978 A EP89400978 A EP 89400978A EP 0337868 B1 EP0337868 B1 EP 0337868B1
Authority
EP
European Patent Office
Prior art keywords
signal
time
amplitude
distribution
amplitudes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19890400978
Other languages
German (de)
English (en)
Other versions
EP0337868A3 (en
EP0337868A2 (fr
Inventor
Michel Ruiz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telediffusion de France ets Public de Diffusion
Original Assignee
Telediffusion de France ets Public de Diffusion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telediffusion de France ets Public de Diffusion filed Critical Telediffusion de France ets Public de Diffusion
Publication of EP0337868A2 publication Critical patent/EP0337868A2/fr
Publication of EP0337868A3 publication Critical patent/EP0337868A3/fr
Application granted granted Critical
Publication of EP0337868B1 publication Critical patent/EP0337868B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals

Definitions

  • the present invention relates to discrimination between signals, in particular for recognizing the presence of a program audio-frequency signal having a determined bandwidth in an input signal capable of being affected by substantially stationary noise.
  • the invention finds a particularly important application in broadcasting or transmission networks having centers to which arrive and from which signals carrying broadcasting or television programs in more or less significant number depending on geographic location and importance of the center in the network.
  • the larger centers are generally operated by an agent on site. But others are tele-operated from a central station. In all cases, incidents occurring with signals distributed by a center must be detected as quickly as possible, so that the measures necessary to ensure continuity and quality of service can be taken.
  • a particularly serious incident is the accidental interruption of the program, which must be detected very quickly. It is also desirable to monitor the parameters influencing the quality of broadcasting and transmission throughout the routing of programs to the listener. In automated centers, verification can only be ensured by a local automated system, which, depending on its degree of development, will command the required maneuvers or will limit itself to transmitting an alarm to a central station, hence the required instructions (go to an emergency route, diversion, ...) will be provided to the local machine.
  • the usual detection criteria are based on the comparison between the amplitude of the transmitted or broadcast signal and a threshold: if the signal present has an amplitude below a certain predetermined threshold, it is considered that there is a defect and it is concluded that the absence of an audio signal if the fault persists beyond a determined period.
  • the present invention aims to provide a method and a device for recognizing the presence of a program audio-frequency signal (the term audio does not imply that these are signals representing sounds) which meet the requirements of practice better than those previously known, in particular by rendering them to a large extent free from the disadvantages of previous systems; it aims in particular to determine, with a high degree of safety, the interruptions of the program signal.
  • the invention is based on the observation that the program signals have stochastic properties which differentiate them from the noise created by the most frequent parasitic sources. For stations placed at a fixed station, for example, the noise characteristics are statistically unchanging or at least change slowly over time, unlike the characteristics of an audio-program frequency signal. In other words, noise generally has properties of ergodicity and stationarity which are not those of a useful signal.
  • the invention therefore proposes a discrimination method according to claim 1.
  • the sampling frequency is advantageously at least equal to the Shannon frequency when it is also desired to perform an analysis of the signal, for example to determine its quality.
  • the above-defined method involves a decision in the sense of statistics and uses variations in the distribution function of the amplitude values or, in a more elaborate version, variations in the distribution of these values as a decision criterion to detect the absence of a program signal, caused for example by a connection break upstream of the location where the detection is carried out.
  • the sampling frequency of the input signal can be relatively low. But it is also possible to implement the method for determining in addition a certain number of parameters representative of the quality of the signal and of its characteristics, which makes it possible in particular to determine either the alterations that the signal may undergo during its subsequent delivery to the recipient while remaining of acceptable quality, or corrections to be made. In this case, sampling should be done at least at the Shannon frequency.
  • the invention also provides a device making it possible to implement the above-defined method, according to claim 9.
  • the device is intended to continuously monitor the presence of three analog program signals and a digital signal, these numbers not being limiting.
  • Each analog signal is assigned a channel comprising, from the corresponding source, a coupler stage 10, an input stage 12 intended to ensure the impedance matching, the symmetry and the gain control of the channel, and a blocking sampler 14.
  • the input stage can moreover ensure band filtering and pre-emphasis of the audio-frequency signal when necessary. It will first be assumed that the blocking sampler operates at least at the Shannon frequency (for example at 32 kHz or 48 kHz in the case of a signal having a bandwidth between 40 Hz and 15 kHz). A lower sampling frequency can be adopted when simply trying to provide an alarm in the absence of an audio signal.
  • the output signals of the blocking samplers 14 of all the analog channels are applied to an analog multiplexer 16 which can be provided either for interleaving them, or for processing successively the different ways. They attack an analog / digital converter 18 which converts the amplitude of each sample into a byte representing this amplitude in digital form.
  • the sample-and-hold units 14, the analog multiplexer 16 and the analog / digital converter are clocked by a sequencer 20 provided with a clock and supplying, on an output 21, control signals to select one of the channels at any time.
  • the corresponding channel 22 is applied to a digital data decoder 24 providing the digital value of the amplitude of the samples in a form compatible with that provided by the analog / digital converter (CAN) 18.
  • a digital multiplexer 26 receives the digital output signals from the CAN 18 and from the decoder 24 and supplies them on a common output 28. This digital multiplexer receives control signals on the one hand from the sequencer 20, on the other hand part of the decoder 24 which performs clock recovery for this purpose. If the signals to be monitored are all analog, it is possible to dispense with components 24 and 26.
  • the processing of the signals downstream from the digital multiplexer 26 is the same regardless of the channel from which they originate and regardless of the chosen mode of detection of the absence of signal (determination of the variation in distribution of the amplitude or variation of the amplitude distribution function).
  • a sorting and storage operation is carried out, comparable to a multi-channel analysis. All the samples taken on the same channel during a constant time interval ⁇ t are divided into a certain number n of channels spaced by a determined pitch (1 dB for example) and the samples accumulated in each channel during the time ⁇ t are counted.
  • the multichannel analyzer 30 can include a set of comparators 32 and a random access memory 34. The comparators can be reduced to a programmable transcoding network.
  • Each of the n channels is assigned a corresponding address location in memory 34.
  • the zero order channel corresponds to the minimum amplitude Amin that we want to take into account.
  • Channel n-1 corresponds to the maximum amplitude Amax.
  • channel 0 52 channels spaced by 1 dB;
  • channel 0 may correspond to samples of amplitude equal to or less than -30 dBu.
  • Channel 51 will then correspond to samples of amplitude equal to or greater than +22 dBu.
  • the multichannel analysis can be carried out very simply using a programmable transcoding read-only memory 32 which corresponds, to each digital sample value, the address of one of the n channels.
  • the increment order is sent by a circuit 38 in a conventional manner.
  • each memory location contains a number indicating the number of times the signal sample has had a determined amplitude. There is thus a distribution of the amplitudes of the signal during the recording time ⁇ t, which can for example be of the type shown in FIG. 2 and this for each signal to be supervised.
  • the processing for detecting the absence of a signal is provided by a computer 36.
  • the memory 34 must be addressable in read and write by the read only memory 32, in read and write by the computer 36. It will first be assumed that the processing aims to determine the presence or absence of a signal by taking into account the distribution of the amplitudes.
  • the amplitude distribution and the average amplitude frequently vary over time.
  • the amplitude distribution and the average amplitude frequently vary over time.
  • values between 0.8 s and 5 s can be frequently adopted for the time intervals ⁇ t, advantageously approximately 1 s for spoken programs and approximately 3 s for music programs.
  • the detection by comparison of the distribution of the amplitudes could for example be done by determination, by the computer 36, of the correlation factor between several successive records, for example between two distributions stored in memory 34 for two successive time intervals ⁇ t.
  • the distribution functions F j + 1 and F j are compared. If the absolute value of difference between them (or between their representations in the form of percentages of time) is less than a determined threshold, the computer signals a fault (indication of pre-alarm). Expressed as a percentage of time, the threshold can often be 0.5%. However, it may be necessary to increase it in an environment of impulse noise up to approximately 2% to avoid absence of detection.
  • the computer proceeds to the processing of the following records to calculate F j + 1 and F j + 2 .
  • the computer 36 If the fault persists for a given time (for example ten consecutive seconds) the computer 36 emits an absence of modulation alarm.
  • the decision criterion is twofold and it is represented by the flowchart: This second, more secure solution does not significantly complicate the program and will generally be used. In both cases the value of the threshold x is kept as long as a fault is reported.
  • Figure 3 shows an example of how x is determined for a particular signal.
  • the first measurement is supposed to be made between instants t0 and t1.
  • the maximum amplitude is then A1.
  • a second embodiment making it possible to reduce the calculation time consists in calculating the percentage of time during which X has been greater than the value x over the time interval ⁇ t.
  • the successive values thus obtained are treated by the same type of comparison as F j (X) and F j + 1 (X) .
  • This function can be used to develop other types of alarm, for example an overmodulation alarm in the case where the program signal has too large an amplitude, and leads to overmodulation.
  • the computer can also be provided to differentiate a noise from a sinusoidal signal, for example from a measurement or chain alignment signal, by analyzing the distribution of the amplitudes: it suffices in this case to compare the distribution of amplitude with stored distributions corresponding to the sinusoidal signals capable of being transported.
  • the maximum amplitude of the signal can be used during the successive ⁇ t intervals as a criterion.
  • the alarm signals can be transmitted on a link of any kind, in particular wired or wireless.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

  • La présente invention concerne la discrimination entre signaux, notamment pour reconnaître la présence d'un signal audio-fréquence de programme ayant une bande passante déterminée dans un signal d'entrée susceptible d'être affecté de bruit sensiblement stationnaire.
  • L'invention trouve une application particulièrement importante dans les réseaux de diffusion ou de transmission ayant des centres vers lesquels arrivent et d'où partent des signaux véhiculant des programmes de radiodiffusion ou de télévision en nombre plus ou moins important suivant la localisation géographique et l'importance du centre dans le réseau. Les centres les plus importants sont généralement exploités par un agent sur place. Mais d'autre sont télé-exploités depuis un poste central. Dans tous les cas, des incidents survenant aux signaux distribués par un centre doivent être décelés aussi rapidement qui possible, afin que les mesures nécessaires pour assurer la continuité et la qualité du service puissent être prises.
  • Un incident particulièrement grave est l'interruption accidentelle du programme, qui doit être décelée très rapidement. Il est également souhaitable de surveiller les paramètres influant sur la qualité de la diffusion et de la transmission tout le long de l'acheminement des programmes jusque chez l'auditeur. Dans les centres automatisés, la vérification ne peut être assurée que par un automate local, qui, suivant son degré d'élaboration, commandera les manoeuvres requises ou se bornera à transmettre une alarme à un poste central d'où les instructions requises (passage sur une voie de secours, déroutage, ...) seront fournies à l'automate local.
  • Divers procédés sont actuellement utilisés pour déceler la présence d'un signal. Aucun ne permet d'atteindre parfaitement deux résultats dans une certaine mesure contradictoire, à savoir la détection de tous les incidents interrompant le programme et l'absence de fausses alarmes, et ce de façon automatique.
  • Les critères de détection habituels sont basés sur la comparaison entre l'amplitude du signal transmis ou diffusé et un seuil : si le signal présent a une amplitude inférieure à un certain seuil prédéterminé, on considère qu'il y a un défaut et on conclut à l'absence de signal audio si le défaut persiste au delà d'un délai déterminé.
  • Sur cette base, on a déjà utilisé un procédé consistant à contrôler le niveau du signal, mesuré par un voltmètre de crête ou un vu-mètre. Mais l'inertie de ces systèmes masque la présence de signaux de programme de faible énergie de sorte que l'exploitant doit vérifier la présence ou l'absence de signal par écoute ou observation directe. Et tous les procédés basés sur la comparaison entre une amplitude de signal et un seuil sont mis en défaut dans de nombreux cas : si par exemple un signal sinusoïdal de mesure ou d'alignement est transmis à la place d'un signal audio de programme, aucun défaut est détecté ; la présence de signaux de programme de faible amplitude (correspondant par exemple à des pianissimi d'orchestre) est inteprétée comme une absence de signal ; des programmes tels que les jeux radiophoniques ou les films ayant des plages longues de signaux audio-fréquence à très faible niveau peuvent également donner lieu à des alarmes intempestives. Dans le cas de signaux très pollués, le niveau de bruit peut être tel que le seuil doive être choisi à un niveau élevé et il n'est alors plus possible de déceler avec certitude la présence d'un signal. Le signal utile peut même être complètement noyé dans le bruit.
  • La présente invention vise à fournir un procédé et un dispositif de reconnaissance de la présence d'un signal audio-fréquence de programme (le terme audio n'impliquant pas qu'il s'agisse de signaux représentant des sons) répondant mieux que ceux antérieurement connus aux exigences de la pratique, notamment en les rendant dans une large mesure exempts des inconvénients des systèmes antérieurs ; elle vise particulièrement à déterminer, avec un degré de sûreté élevé, les interruptions du signal de programme. Pour cela, l'invention est fondée sur la constatation que les signaux de programme présentent des propriétés stochastiques qui les différencient du bruit créé par les sources parasites les plus fréquentes. Pour des stations placées à poste fixe par exemple, les caractères du bruit sont statistiquement invariables ou du moins évoluent lentement dans le temps, contrairement aux caractéristiques d'un signal audio-fréquence de programme. En d'autres termes, le bruit présente en général des propriétés d'ergodicité et de stationnarité qui ne sont pas celles d'un signal utile.
  • L'invention propose en conséquence un procédé de discrimination conforme à la revendication 1. La fréquence d'échantillonnage est avantageusement au moins égale à la fréquence de Shannon lorsque l'on souhaite également effectuer une analyse du signal, par exemple pour déterminer sa qualité.
  • Pour une application différente, à savoir la discrimination entre silence, parole et données transmise dans la bande vocale en téléphonie, l'article de Y. Yatsuzuka "Highly sensitive speech detector and high speed voiceband data discriminator in DSI-AD CPM system", IEEE transactions on communications, Vol. COM-30, n°4, Avril 1982, pages 739-750 décrit un procédé suivant lequel les périodes de silence sont détectées en comparant le rapport des énergies sur deux blocs consécutifs à un seuil. La présence de phonèmes non voisés est détectée par une fréquence élevée de passages à zéro.
  • Le procédé ci-dessus défini implique une décision au sens de la statistique et fait appel aux variations de la fonction de répartition des valeurs de l'amplitude ou, dans une version plus élaborée, aux variations de la distribution de ces valeurs comme critère de décision pour détecter l'absence de signal de programme, provoquée par exemple par une coupure de liaison en amont de l'emplacement où s'effectue la détection.
  • Si on cherche simplement à déceler l'absence du signal audio de programme, la fréquence d'échantillonnage du signal d'entrée peut être relativement basse. Mais il est également possible de mettre en oeuvre le procédé pour déterminer en plus un certain nombre de paramètres représentatifs de la qualité du signal et de ses caractéristiques, ce qui permet en particulier de déterminer soit les altérations que pourra subir le signal au cours de son acheminement ultérieur jusqu'au destinataire en restant de qualité acceptable, soit des corrections à lui apporter. Dans ce cas, l'échantillonnage devra être fait au moins à la fréquence de Shannon.
  • L'invention propose également un dispositif permettant de mettre en oeuvre le procédé ci-dessus défini, conforme à la revendication 9.
  • L'invention sera mieux comprise à la lecture de la description qui suit d'un mode particulier de réalisation, donné à titre d'exemple non limitatif. La description se réfère aux dessins qui l'accompagnent, dans lesquels :
    • la figure 1 est un synoptique de principe d'un dispositif suivant un mode de réalisation de l'invention ;
    • la figure 2 montre une répartition possible d'amplitudes ;
    • la figure 3 montre un mode possible de détermination de seuil.
  • Le dispositif dont la constitution de principe est montrée en figure 1 est destiné à surveiller en permanence la présence de trois signaux de programme analogiques et d'un signal numérique, ces nombres n'étant pas limitatifs.
  • A chaque signal analogique est affectée un voie comprenant, à partir de la source correspondante, un étage coupleur 10, un étage d'entrée 12 destiné à assurer l'adaptation d'impédance, la symétrie et le réglage du gain de la voie, et un échantillonneur bloqueur 14. L'étage d'entrée peut de plus assurer un filtrage de bande et une préaccentuation du signal audio-fréquence lorsque cela est nécessaire. On supposera tout d'abord que l'échantillonneur bloqueur fonctionne au moins à la fréquence de Shannon (par exemple à 32 kHz ou 48 kHz dans le cas d'un signal ayant une bande passante comprise entre 40 Hz et 15 kHz). Une fréquence d'échantillonnage plus faible peut être adoptée lorsqu'on cherche simplement à fournir une alarme en cas d'absence de signal audio.
  • Les signaux de sortie des échantillonneurs bloqueurs 14 de toutes les voies analogiques sont appliqués à un multiplexeur analogique 16 qui peut être prévu soit pour les entrelacer, soit pour traiter successivement les différentes voies. Ils attaquent un convertisseur analogique/numérique 18 qui convertit l'amplitude de chaque échantillon en un multiplet représentant cette amplitude sous forme numérique. Les échantillonneurs-bloqueurs 14, le multiplexeur analogique 16 et le convertisseur analogique/numérique sont cadencés par un séquenceur 20 muni d'une horloge et fournissant, sur une sortie 21, des signaux de commande pour sélectionner à chaque instant une des voies.
  • Dans le cas où le dispositif reçoit également un signal de données numérique, la voie correspondante 22 est appliquée à un décodeur de données numériques 24 fournissant la valeur numérique de l'amplitude des échantillons sous une forme compatible avec celle fournie par le convertisseur analogique/numérique (CAN) 18. Un multiplexeur numérique 26 reçoit les signaux numériques de sortie du CAN 18 et du décodeur 24 et les fournit sur une sortie commune 28. Ce multiplexeur numérique reçoit des signaux de commande d'une part du séquenceur 20, d'autre part du décodeur 24 qui effectue dans ce but une récupération d'horloge. Si les signaux à surveiller sont tous analogiques, il est possible de se dispenser des composants 24 et 26.
  • Le traitement des signaux en aval du multiplexeur numérique 26 est le même quelle que soit la voie d'où ils proviennent et quel que soit le mode choisi de détection de l'absence de signal (détermination de la variation de distribution de l'amplitude ou variation de la fonction de répartition de l'amplitude). Une opération de tri et de rangement est effectuée, comparable à une analyse multicanaux. Tous les échantillons prélevés sur une même voie pendant un intervalle de temps Δt constant sont répartis en un certain nombre n de canaux espacés d'un pas déterminé (1 dB par exemple) et les échantillons accumulés dans chaque canal pendant le temps Δt sont comptés. Pour cela l'analyseur multicanaux 30 peut comporter un ensemble de comparateurs 32 et une mémoire vive 34. Les comparateurs peuvent se réduire à un réseau programmable de transcodage.
  • A chacun des n canaux est affecté un emplacement d'adresse correspondant dans la mémoire 34. Le canal d'ordre zéro correspond à l'amplitude minimale Amin qu'on veut prendre en considération. Le canal n-1 correspond à l'amplitude maximale Amax. Dans le cas de signaux destinés à la transmission de programmes sonores, on pourra souvent adopter une dynamique de 52 dB, fractionnée en n = 52 canaux espacés de 1 dB ; le canal 0 pourra correspondre aux échantillons d'amplitude égale ou inférieure à -30 dBu. Le canal 51 correspondra alors aux échantillons d'amplitude égale ou supérieure à +22 dBu. Chaque fois qu'un échantillon dont l'amplitude correspond au canal d'ordre i est détecté, le contenu de la position correspondante de la mémoire d'adresse i est incrémenté d'une unité. Etant donné que les signaux d'entrée sont numériques, l'analyse multicanaux peut s'effectuer de façon très simple à l'aide d'une mémoire morte programmable de transcodage 32 qui fait correspondre, à chaque valeur numérique d'échantillon, l'adresse d'un des n canaux. L'ordre d'incrémentation est envoyé par un circuit 38 de façon classique.
  • A l'issue du temps Δt, chaque emplacement de mémoire contient un nombre indiquant le nombre de fois où l'échantillon de signal a eu une amplitude déterminée. On dispose ainsi de la distribution des amplitudes du signal pendant le temps Δt d'enregistrement, qui peut par exemple être du genre montré sur la figure 2 et ce pour chaque signal à superviser.
  • Le traitement de détection d'absence de signal (et éventuellement d'évaluation de la qualité du signal) est assuré par un calculateur 36. La mémoire 34 doit être adressable en lecture et en écriture par la mémoire morte 32, en lecture et écriture par le calculateur 36. On supposera tout d'abord que le traitement vise à déterminer la présence ou l'absence de signal par prise en considération de la distribution des amplitudes.
  • Dans le cas où le signal reçu comporte un signal utile de programme audio, la répartition d'amplitude et l'amplitude moyenne varient fréquemment dans le temps. Par exemple on peut avoir des courbes de répartition du genre désigné par I et II sur deux intervalles de temps successifs. Pour obtenir des données significatives, on pourra fréquemment adopter, pour les intervalles de temps Δt, des valeurs comprises entre 0,8 s et 5 s, avantageusement environ 1 s pour les programmes parlés et environ 3 s pour les programmes de musique.
  • La détection par comparaison de la distribution des amplitudes pourra par exemple se faire par détermination, par le calculateur 36, du facteur de corrélation entre plusieurs enregistrements successifs, par exemple entre deux répartitions stockées en mémoire 34 pour deux intervalles de temps Δt successifs.
  • Il est possible de mettre en oeuvre l'invention de façon plus simple qui par calcul d'un facteur de corrélation, par exemple par détermination du pourcentage d'échantillons dont l'amplitude dépasse un seuil pendant chaque intervalle de temps Δt (c'est-à-dire par détermination de la fraction du temps Δt pendant laquelle le signal dépasse le seuil).
  • Un premier mode de réalisation utilisant cette approche consiste à programmer le calculateur pour :
    • 1/ Déterminer la valeur maximale Aj prise par le signal dans l'intervalle de temps Δtj et la fonction de répartition Fj(X) de l'amplitude, c'est-à-dire la probabilité P pour qu'un échantillon du signal ait une amplitude dont la valeur X est inférieure à une valeur de référence donnée x, qui peut être fixée une fois pour toutes ou calculée sur chaque intervalle de temps.
      On utilisera souvent une valeur fixe lorsqu'on souhaite faire un évaluation de qualité. Par exemple on sait qu'une bande magnétique, pour ne pas donner de distorsion excessive, doit avoir un niveau de sortie absolu ne dépassant pas un seuil. Avec les bandes ayant des caractéristiques courantes on peut alors adopter x = 18 dBu. De façon similaire, pour vérifier l'absence de risque de distorsion à la sortie d'un émetteur, on peut risque de distorsion à la sortie d'un émetteur, on peut adopter un seuil de 12 dBu.
      Dans le second cas, qui sera celui de la discrimination entre signal de bruit et signal utile, la valeur de x est calculée pour chaque intervalle de temps à partir de la valeur maximale Aj de l'amplitude dans l'intervalle de temps correspondant Δj. On peut par exemple adopter, en dehors des périodes de défaut,

      x j = A j - 6 dB pour A j > -20 dBu
      Figure imgb0001

      x j = A j - 3 dB pour A j ≦ -20 dBu
      Figure imgb0002


         On maintiendra par contre xj à une valeur constante aussi longtemps que le calculateur signale un défaut, quelle que soit l'évolution de la valeur maximale A de l'amplitude.
      Dans ce cas la première étape revient à déterminer la fonction Fj(X) :
      Fj(x) = P[X < x]
      Figure imgb0003
      avec Amin ≦ x ≦ Amax P[X < x] représente, pour chaque intervalle de temps Δx, la fraction du temps pendant laquelle X est inférieur au seuil x.
      Le CAN 18 peut notamment être prévu tel que l'on ait les valeurs Amin = -30 dBu et Amax = +22 dBu mentionnées plus haut.
    • 2/ Effectuer, à la fin de l'enregistrement d'ordre j+1, les mêmes calculs que précédemment pour obtenir l'amplitude maximale Aj+1 et la fonction de répartition Fj(X).
    • 3/ Comparer les deux résultats obtenus, mémorisés en mémoire centrale du calculateur.
  • Dans un mode de mise en oeuvre simple, on compare uniquement les fonctions de répartition Fj+1 et Fj. Si la valeur absolue de différence entre elles (ou entre leurs représentations sous forme de pourcentages du temps) est inférieure à un seuil déterminé, le calculateur signale un défaut (indication de pré-alarme). Exprimé en pourcentage de temps, le seuil pourra souvent être de 0,5 %. Cependant on peut être amené à l'augmenter en ambiance de bruit impulsionnel jusqu'à 2 % environ pour éviter les absences de détection.
  • Si la différence entre Fj+1 et Fj dépasse le seuil, le calculateur passe au traitement des enregistrements suivant pour calculer Fj+1 et Fj+2.
  • Si le défaut persiste pendant un temps donné (par exemple dix secondes consécutives) le calculateur 36 émet une alarme d'absence de modulation.
  • Dans un mode de réalisation plus élaboré, le critère de décision est double et il est représenté par le logigramme :
    Figure imgb0004

       Cette seconde solution, plus sûre, ne complique pas notablement le programme et sera en générale utilisée. Dans les deux cas la valeur du seuil x est conservée aussi longtemps qu'un défaut est signalé.
  • La figure 3 montre un exemple de mode de détermination de x, pour un signal particulier. La première mesure est supposée faite entre les instants t0 et t1. L'amplitude maximale est alors A1. Le niveau de référence sélectionné est x1 = A1 - 6dB
    Figure imgb0005
    .
  • La seconde mesure, entre t1 et t2, fait apparaître que |A1 - A2| < -3 dBu
    Figure imgb0006
    : on maintient alors x à la valeur x1.
  • La mesure se poursuit ainsi faisant apparaître chaque fois un défaut. A l'instant t5 une alarme est déclenchée. A partir de cet instant, un nouveau calcul de x intervient, même en cas de modification faible de la valeur maximale de l'amplitude. La mesure effectuée sur l'intervalle de temps Δt entre t5 et t6 fait apparaître une amplitude A6. On adopte alors x6 = A6 - 6 dB
    Figure imgb0007
    .
  • Un second mode réalisation permettant de réduire le temps de calcul, consiste à calculer le pourcentage de temps pendant lequel X a été supérieur à la valeur x sur l'intervalle de temps Δt. Le calculateur est programmé de façon à calculer la fonction :

    1-F(X) = P[X > x]
    Figure imgb0008


       Les valeurs successives ainsi obtenues sont traitées par le même type de comparaison que Fj(X) et Fj+1(X).
  • La valeur de cette fonction peut être utilisée pour élaborer d'autres types d'alarme, par exemple une alarme de surmodulation dans le cas où le signal de programme a une amplitude trop forte, et conduit à une surmodulation.
  • Le calculateur peut également être prévu pour différencier un bruit d'un signal sinusoïdal, par exemple d'un signal de mesure ou d'alignement de la chaîne, en analysant la distribution des amplitudes : il suffit en effet dans ce cas de comparer la distribution d'amplitude avec des distributions mémorisées et correspondant aux signaux sinusoïdaux susceptibles d'être transportés.
  • D'autres solutions encore sont possibles : en particulier on peut utiliser l'amplitude maximale du signal pendant les intervalles Δt successifs comme critère.
  • Dans tous les cas les signaux d'alarme peuvent être transmis sur une liaison de toute nature, notamment filaire ou hertzienne.

Claims (9)

  1. Procédé de reconnaissance de la présence d'un signal instationnaire audio-fréquence de programme dans un signal d'entrée affecté de bruit sensiblement stationnaire, suivant lequel : on échantillonne le signal d'entrée ; on soumet les échantillons à une analyse d'amplitude pendant des intervalles de temps successifs de durée déterminée et suffisante pour obtenir une répartition d'amplitudes significative au cours de chaque intervalle de temps ; et on compare entre elles les répartitions des amplitudes obtenues pour des intervalles de temps successifs, ou simplement les fonctions de répartition des valeurs de l'amplitude qui les représentent, pour identifier la présence du programme en utilisant les propriétés stochastiques du signal de programme, dont la répartition d'amplitude et l'amplitude moyenne varient fréquemment dans le temps.
  2. Procédé selon la revendication 1, dans lequel l'analyse consiste à déterminer l'amplitude maximale pendant les intervalles de temps et à identifier un signal de programme par le fait que les variations de l'amplitude maximale au cours d'intervalles de temps consécutifs sont supérieures à une valeur donnée.
  3. Procédé selon la revendication 1, dans lequel la comparaison consiste à déterminer la fonction de répartition des amplitudes par analyse multi-canaux et à identifier un signal de programme par le fait que les variations de la fonction de répartition des amplitudes au cours d'intervalles de temps successifs sont supérieures à une valeur donnée.
  4. Procédé selon la revendication 3, dans lequel la fonction de répartition des amplitudes est constituée par le pourcentage de temps, au cours de chaque intervalle, pendant lequel l'amplitude est supérieure (ou inférieure) à un seuil déterminé.
  5. Procédé selon la revendication 4, dans lequel le seuil est fixe.
  6. Procédé selon la revendication 4, dans lequel le seuil est constitué, pour un intervalle de temps déterminé, par la valeur maximale de l'amplitude du signal pendant l'intervalle de temps précédent, diminué d'une valeur fixe, comprise entre 3 et 6 dB.
  7. Procédé selon la revendication 6, dans lequel la valeur du seuil est conservée en cas de détection de défaut, jusqu'à déclenchement d'une alarme consécutive à la détection d'un nombre prédéterminé de défauts sur des intervalles de temps successifs.
  8. Procédé selon l'une quelconque des revendications précédentes en vue de l'analyse de qualité du signal, dans lequel on échantillonne le signal à une fréquence au moins égale à la fréquence de Shannon.
  9. Dispositif de reconnaissance de la présence d'un signal audio-fréquence de programme ayant une bande passante déterminée dans un signal d'entrée affecté de bruit stationnaire, comprenant :
    - des moyens d'échantillonnage du signal d'entrée,
    - des moyens d'analyse multi-canaux (30) mémorisant la répartition des amplitudes du signal fourni par les moyens d'échantillonnage pendant un intervalle de temps déterminé, et
    - des moyens de calcul (36) permettant de comparer la répartition mémorisée par l'analyseur multi-canaux sur deux intervalles de temps successifs et d'émettre un signal d'alarme en cas de comparaison faisant apparaître le caractère stationnaire du signal d'entrée.
EP19890400978 1988-04-12 1989-04-10 Procédé et dispositif de discrimination de signal Expired - Lifetime EP0337868B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8804824A FR2629964B1 (fr) 1988-04-12 1988-04-12 Procede et dispositif de discrimination de signal
FR8804824 1988-04-12

Publications (3)

Publication Number Publication Date
EP0337868A2 EP0337868A2 (fr) 1989-10-18
EP0337868A3 EP0337868A3 (en) 1990-10-24
EP0337868B1 true EP0337868B1 (fr) 1993-12-15

Family

ID=9365229

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890400978 Expired - Lifetime EP0337868B1 (fr) 1988-04-12 1989-04-10 Procédé et dispositif de discrimination de signal

Country Status (3)

Country Link
EP (1) EP0337868B1 (fr)
DE (1) DE68911355T2 (fr)
FR (1) FR2629964B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570991B1 (en) 1996-12-18 2003-05-27 Interval Research Corporation Multi-feature speech/music discrimination system
AU761865B2 (en) 1999-02-05 2003-06-12 Hearworks Pty Ltd Adaptive dynamic range optimisation sound processor
US7366315B2 (en) 1999-02-05 2008-04-29 Hearworks Pty, Limited Adaptive dynamic range optimization sound processor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1044353B (it) * 1975-07-03 1980-03-20 Telettra Lab Telefon Metodo e dispositivo per il rico noscimento della presenza e.o assenza di segnale utile parola parlato su linee foniche canali fonici
JPS5876899A (ja) * 1981-10-31 1983-05-10 株式会社東芝 音声区間検出装置

Also Published As

Publication number Publication date
DE68911355T2 (de) 1994-07-21
DE68911355D1 (de) 1994-01-27
FR2629964A1 (fr) 1989-10-13
EP0337868A3 (en) 1990-10-24
FR2629964B1 (fr) 1991-03-08
EP0337868A2 (fr) 1989-10-18

Similar Documents

Publication Publication Date Title
EP1468416B1 (fr) Procede d&#39;evaluation qualitative d&#39;un signal audio numerique.
EP2419900B1 (fr) Procede et dispositif d&#39;evaluation objective de la qualite vocale d&#39;un signal de parole prenant en compte la classification du bruit de fond contenu dans le signal
FR2520912A1 (fr) Procede et appareil de reconnaissance de parole continue
EP0109037A1 (fr) Procédé et dispositif d&#39;évaluation du niveau de bruit sur une voie téléphonique
EP2042000B1 (fr) Procede et dispositif de diagnostic de l&#39;etat de fonctionnement d&#39;un systeme de sonorisation
EP0906613B1 (fr) Procede et dispositif de codage d&#39;un signal audiofrequence par analyse lpc &#34;avant&#34; et &#34;arriere&#34;
CN106534980A (zh) 音频处理系统的异常检测方法、日志记录方法及装置
EP0337868B1 (fr) Procédé et dispositif de discrimination de signal
EP0289384A1 (fr) Procédé de sélection automatique d&#39;une antenne de réception directive parmi une pluralité d&#39;antennes de réception
FR2504329A1 (fr) Recepteur multifrequence
EP3631517B1 (fr) Procédé et dispositif de traitement de signaux de flux neutronique, produit programme d&#39;ordinateur et système de contrôle-commande associés
EP1216604B1 (fr) Procede de controle en continu de la qualite des sons numeriques en distribution
FR2817096A1 (fr) Procede et systeme de detection non intrusive des defauts d&#39;un signal de parole transmis en telephonie sur reseau de transmission par paquets
EP0741471B1 (fr) Procédé et dispositif de mesure sans intrusion de la qualité de transmission d&#39;une ligne téléphonique
FR2466912A1 (fr) Procede et dispositif pour le traitement de signaux a large bande dont la dynamique est importante
EP0015363B1 (fr) Détecteur de parole à niveau de seuil variable
FR2811838A1 (fr) Dispositif et procede de mesure d&#39;erreur de bit, et support d&#39;enregistrement
EP0077248B1 (fr) Dispositif de réduction du taux de fausses alarmes, et récepteur de surveillance comportant un tel dispositif
EP0685836B1 (fr) Procédé et dispositif de prétraitement d&#39;un signal acoustique en amont d&#39;un codeur de parole
FR2944909A1 (fr) Dispositif de detection d&#39;evenements dans un flux audio
EP1168705A1 (fr) Procédé et système pour la détection de trames de parole erronées
FR2790845A1 (fr) Procede de controle de la qualite d&#39;un signal audionumerique distribue
FR2596521A1 (fr) Procede et dispositif de controle automatique de systemes tournants, notamment de roulements
WO2000054441A1 (fr) Procede de controle de la qualite d&#39;un signal audionumerique diffuse avec un programme audiovisuel
EP2093889A1 (fr) Procédé de traitement d&#39;un premier et d&#39;un deuxieme signal superposés au sein d&#39;un signal composite incident, et dispositif correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE GB LI

17P Request for examination filed

Effective date: 19901221

17Q First examination report despatched

Effective date: 19920814

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931216

REF Corresponds to:

Ref document number: 68911355

Country of ref document: DE

Date of ref document: 19940127

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: TELEDIFFUSION DE FRANCE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020327

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020404

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020412

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030410

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL