EP0325701B1 - Antenna structure - Google Patents
Antenna structure Download PDFInfo
- Publication number
- EP0325701B1 EP0325701B1 EP88117439A EP88117439A EP0325701B1 EP 0325701 B1 EP0325701 B1 EP 0325701B1 EP 88117439 A EP88117439 A EP 88117439A EP 88117439 A EP88117439 A EP 88117439A EP 0325701 B1 EP0325701 B1 EP 0325701B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- antenna
- cavities
- supporting structure
- antenna structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010276 construction Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims description 2
- 239000000969 carrier Substances 0.000 claims description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- 238000001816 cooling Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 3
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/28—Adaptation for use in or on aircraft, missiles, satellites, or balloons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/02—Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0087—Apparatus or processes specially adapted for manufacturing antenna arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
Definitions
- the invention relates to a supporting structure of an active antenna for aerospace applications according to the preamble of the claim.
- the weight factor is of crucial importance for aerospace applications.
- high dimensional stability is always required for both applications. This means that the antenna must be resistant to deformation against loads (aerodynamic loads, acceleration at start), against low-frequency vibrations or the thermal loads that occur in space.
- a device for cooling an electronic circuit in which a support structure in box construction with cavities is provided, through which a cooling medium (liquid, gas) is passed.
- the cooling circuit increases the weight of the device.
- the object of the invention is to build an antenna corresponding to the preamble of the claim more easily.
- heat-conducting layers in the supporting structure can take place by integrating or forming heat-conducting layers, which also consist of fiber-reinforced materials such as CFRP, in the supporting structure.
- the previously common heat-dissipating elements such as heat pipes, Doppler plates or radiation surfaces, are no longer required, which saves weight.
- the heat conduction is increased by wide stiffening webs and continuous fibers. A distribution of "hot" components over the entire antenna area promotes radiation at a relatively uniform temperature. By coating with thermal lacquer, the heat exchange by radiation within the hollow spaces between the webs can be increased.
- the integration can also go so far that entire high-frequency components are integrated into the supporting structure.
- an entire microstrip antenna in mesa or trough construction is integrated into the structure.
- the microstrip or antenna dielectric can be made of fiber-reinforced plastic of high strength and rigidity (for example made of polyethylene-fiber-reinforced polyethylene) and itself form an outside of the box, which is then self-supporting.
- the invention is illustrated by a figure.
- the figure shows an embodiment of an antenna for a synthetic aperture radar (SAR) with its carrier.
- the antenna here consists of the antenna outer layer 1 with radiator elements (patches), an electrically insulating substrate 2 (with ⁇ r ⁇ 1), in which leads (microstrips) are integrated, and an electrically conductive base plate 3.
- the electrical connection between the radiator element and the The supply can take place, for example, by locally increasing ⁇ r in the substrate 2 in the area between these two elements.
- the supporting structure 4 is realized here in a box construction with the cavities 5. Electrical modules 6 and electronic boards 7 can be contained in the cavities 5.
- the supporting structure 4 is made of carbon fiber reinforced plastic, which is metallized on its upper side for electrical shielding.
- the heat-emitting components such as the electrical modules 6 and the electronic boards 7, are preferably distributed over the entire antenna area and are connected in a heat-conducting manner to the carriers which lead to the antenna front.
- the arrows shown in structure 4 show the flow of heat through the carrier material 4 made of thermally conductive plastic.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Manufacturing & Machinery (AREA)
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Support Of Aerials (AREA)
Description
Die Erfindung betrifft eine tragende Struktur einer aktiven Antenne für Luft-und Raumfahrtanwendungen nach dem Oberbegriff des Anspruchs.The invention relates to a supporting structure of an active antenna for aerospace applications according to the preamble of the claim.
Für Luft- und Raumfahrtanwendungen kommt dem Faktor des Gewichts eine entscheidende Bedeutung zu. Für beide Anwendungen ist daneben stets eine hohe Dimensionsstabilität gefordert. Das heißt, die Antenne muß gegenüber den Lasten (aerodynamische Lasten, Beschleunigung beim Start), gegenüber niederfrequenten Schwingungen oder den thermischen Belastungen, wie sie im Weltall auftreten, verformungsstabil sein.The weight factor is of crucial importance for aerospace applications. In addition, high dimensional stability is always required for both applications. This means that the antenna must be resistant to deformation against loads (aerodynamic loads, acceleration at start), against low-frequency vibrations or the thermal loads that occur in space.
Aus der US 3,528,492 ist eine aktive Antenne mit in die Struktur integrierten wärmeleitfähigen Elementen bekannt, die den Oberbegriff des Anspruchs bildet. Die beim Betrieb entstehende Wärme wird von einer Kühlflüssigkeit aufgenommen und abgeführt. Dieser Kühlkreislauf erhöht das Gewicht der Antenne.An active antenna with thermally conductive elements integrated into the structure is known from US Pat. No. 3,528,492 , which forms the preamble of the claim. The heat generated during operation is absorbed and removed by a coolant. This cooling circuit increases the weight of the antenna.
Aus der EP 48 938 A1 ist es bekannt, zur Ableitung der Wärme von elektronischen Bauelementen Kühlbleche vorzusehen. Diese erhöhen das Gewicht der Vorrichtung.From EP 48 938 A1 it is known to provide cooling plates for dissipating the heat from electronic components. These increase the weight the device.
Aus der EP 83 538 A1 ist eine Vorrichtung zur Kühlung einer elektronischen Schaltung bekannt, bei der eine Tragestruktur in Kastenbauweise mit Hohlräumen vorgesehen ist, durch die ein Kühlmedium (Flüssigkeit, Gas) geleitet wird. Der Kühlkreislauf erhöht das Gewicht der Vorrichtung.From EP 83 538 A1 a device for cooling an electronic circuit is known, in which a support structure in box construction with cavities is provided, through which a cooling medium (liquid, gas) is passed. The cooling circuit increases the weight of the device.
Aufgabe der Erfindung ist es, eine dem Oberbegriff des Anspruchs entsprechende Antenne leichter zu bauen.The object of the invention is to build an antenna corresponding to the preamble of the claim more easily.
Diese Aufgabe wird erfindungsgemäß gelöst von einer Antenne mit den kennzeichnenden Merkmalen des Anspruchs, bei der die Wärme durch die Struktur zur Antennenvorderseite geleitet und von dort abgestrahlt wird.This object is achieved according to the invention by an antenna with the characterizing features of the claim, in which the heat is conducted through the structure to the front of the antenna and radiated from there.
Die Integration wärmeleitender Schichten in die tragende Struktur kann dadurch erfolgen, daß wärmeleitende Schichten, die ebenfalls aus faserverstärkten Materialien wie CFK bestehen, in die tragende Struktur integriert werden oder diese bilden. Die bisher üblichen wärmeabführenden Elemente, wie Wärmerohre, Dopplerbleche oder Strahlungsflächen entfallen, wodurch Gewicht gespart wird. Durch breite Versteifungsstege und durchgehende Fasern wird die Wärmeleitung erhöht. Eine Verteilung "heißer" Bauteile über die ganze Antennenfläche fördert die Abstrahlung bei relativ gleichmaßiger Temperatur. Durch Beschichtung mit Thermallack kann der Wärmeaustausch durch Strahlung innerhalb der hohlen Räume zwischen den Stegen vergrößert werden.The integration of heat-conducting layers in the supporting structure can take place by integrating or forming heat-conducting layers, which also consist of fiber-reinforced materials such as CFRP, in the supporting structure. The previously common heat-dissipating elements, such as heat pipes, Doppler plates or radiation surfaces, are no longer required, which saves weight. The heat conduction is increased by wide stiffening webs and continuous fibers. A distribution of "hot" components over the entire antenna area promotes radiation at a relatively uniform temperature. By coating with thermal lacquer, the heat exchange by radiation within the hollow spaces between the webs can be increased.
Die Integration kann auch soweit gehen, daß ganze Hochfrequenzkomponenten in die tragende Struktur integriert werden. Als Beispiel wird eine ganze Mikrostripantenne in Mesa- oder Wannenbauweise in die Struktur integriert. In dieser Ausführung kann das Mikrostrip- oder Antennendielektrikum in faserverstärktem Kunststoff hoher Festigkeit und Steifigkeit ausgeführt sein (zum Beispiel aus polyethylenfaserverstärktem Polyethylen) und selbst eine Außenseite des, sich dann selber tragenden, Hohlkastens bilden.The integration can also go so far that entire high-frequency components are integrated into the supporting structure. As an example, an entire microstrip antenna in mesa or trough construction is integrated into the structure. In this embodiment, the microstrip or antenna dielectric can be made of fiber-reinforced plastic of high strength and rigidity (for example made of polyethylene-fiber-reinforced polyethylene) and itself form an outside of the box, which is then self-supporting.
Die Erfindung wird anhand von einer Figur näher erläutert.The invention is illustrated by a figure.
Die Figur zeigt eine Ausführung einer Antenne für ein Synthetik-Apertur-Radar (SAR) mit ihrem Träger. Die Antenne besteht hier aus der Antennenaußenschicht 1 mit Strahlerelementen (patches), einem elektrisch isolierenden Substrat 2 (mit εr ≈ 1), in das Zuleitungen (Mikrostrips) integriert sind und einer elektrisch leitenden Grundplatte 3. Die elektrische Verbindung zwischen dem Strahlerelement und der Zuleitung kann zum Beispiel durch lokale Erhöhung von εr im Substrat 2 im Bereich zwischen diesen beiden Elementen erfolgen. Die tragende Struktur 4 ist hier in Kastenbauweise mit den Hohlräumen 5 realisiert. In den Hohlräumen 5 können elektrische Module 6 und Elektronikplatinen 7 enthalten sein. Die tragende Struktur 4 ist hier aus kohlefaserverstärktem Kunststoff ausgeführt, der an seiner Oberseite zur elektrischen Abschirmung metallisiert ist. Die wärmeabgebenden Bauteile wie die elektrischen Module 6 und die Elektronikplatinen 7 sind bevorzugt über die gesamte Antennenfläche verteilt und an den Trägern, die zur Antennenvorderseite führen, wärmeleitend angeschlossen. Die in der Struktur 4 gezeigten Pfeile zeigen den Fluß der Wärme durch das aus wärmeleitendem Kunststoff hergestellte Trägermaterial 4.The figure shows an embodiment of an antenna for a synthetic aperture radar (SAR) with its carrier. The antenna here consists of the antenna
Claims (1)
- Supporting structure (4) for an active antenna for use in air or space travel and having heat-conductive components integrated in the structure (4), characterised by:- a box-like construction of fibre-reinforced plastics material with cavities (5) in which heat-emitting electronic structural components (6, 7) are located; and- carriers between the cavities (5) which are made of heat-conductive plastics material such that resultant heat is led to the front of the antenna.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873738506 DE3738506A1 (en) | 1987-11-13 | 1987-11-13 | ANTENNA STRUCTURE |
DE3738506 | 1987-11-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0325701A1 EP0325701A1 (en) | 1989-08-02 |
EP0325701B1 true EP0325701B1 (en) | 1993-08-25 |
Family
ID=6340386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88117439A Expired - Lifetime EP0325701B1 (en) | 1987-11-13 | 1988-10-19 | Antenna structure |
Country Status (4)
Country | Link |
---|---|
US (1) | US4987425A (en) |
EP (1) | EP0325701B1 (en) |
JP (1) | JPH01155702A (en) |
DE (1) | DE3738506A1 (en) |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2659501B1 (en) * | 1990-03-09 | 1992-07-31 | Alcatel Espace | HIGH EFFICIENCY PRINTED ACTIVE ANTENNA SYSTEM FOR AGILE SPATIAL RADAR. |
US5128689A (en) * | 1990-09-20 | 1992-07-07 | Hughes Aircraft Company | Ehf array antenna backplate including radiating modules, cavities, and distributor supported thereon |
IT1241834B (en) * | 1990-11-22 | 1994-02-01 | Sma Segnalamento Marittimo Ed | VEHICLE RADAR SENSOR FOR SHORT DISTANCE APPLICATIONS |
FR2672438B1 (en) * | 1991-02-01 | 1993-09-17 | Alcatel Espace | NETWORK ANTENNA IN PARTICULAR FOR SPATIAL APPLICATION. |
DE69230048T2 (en) * | 1991-07-15 | 2000-01-05 | Matsushita Electric Works, Ltd. | Low noise down converter block for use in a plane antenna for double polarized electromagnetic waves |
US5247309A (en) * | 1991-10-01 | 1993-09-21 | Grumman Aerospace Corporation | Opto-electrical transmitter/receiver module |
US5327152A (en) * | 1991-10-25 | 1994-07-05 | Itt Corporation | Support apparatus for an active aperture radar antenna |
JP2606521Y2 (en) * | 1992-02-27 | 2000-11-27 | 株式会社村田製作所 | Antenna device |
US5438697A (en) * | 1992-04-23 | 1995-08-01 | M/A-Com, Inc. | Microstrip circuit assembly and components therefor |
US5349362A (en) * | 1992-06-19 | 1994-09-20 | Forbes Mark M | Concealed antenna applying electrically-shortened elements and durable construction |
US5255738A (en) * | 1992-07-16 | 1993-10-26 | E-Systems, Inc. | Tapered thermal substrate for heat transfer applications and method for making same |
US5325103A (en) * | 1992-11-05 | 1994-06-28 | Raytheon Company | Lightweight patch radiator antenna |
SE470520B (en) * | 1992-11-09 | 1994-06-27 | Ericsson Telefon Ab L M | Radio module included in a primary radio station and radio structure containing such modules |
US5293171A (en) * | 1993-04-09 | 1994-03-08 | Cherrette Alan R | Phased array antenna for efficient radiation of heat and arbitrarily polarized microwave signal power |
US5442366A (en) * | 1993-07-13 | 1995-08-15 | Ball Corporation | Raised patch antenna |
FR2710195B1 (en) * | 1993-09-14 | 1995-10-13 | Thomson Csf | Antenna-electronic circuit assembly. |
JP3185513B2 (en) * | 1994-02-07 | 2001-07-11 | 株式会社村田製作所 | Surface mount antenna and method of mounting the same |
JP3141692B2 (en) * | 1994-08-11 | 2001-03-05 | 松下電器産業株式会社 | Millimeter wave detector |
US5969680A (en) * | 1994-10-11 | 1999-10-19 | Murata Manufacturing Co., Ltd. | Antenna device having a radiating portion provided between a wiring substrate and a case |
US5608414A (en) * | 1995-06-30 | 1997-03-04 | Martin Marietta Corp. | Heat rejecting spacecraft array antenna |
SE504950C2 (en) * | 1995-09-29 | 1997-06-02 | Ericsson Telefon Ab L M | Device for cooling electronic devices |
US5870063A (en) * | 1996-03-26 | 1999-02-09 | Lockheed Martin Corp. | Spacecraft with modular communication payload |
US5666128A (en) * | 1996-03-26 | 1997-09-09 | Lockheed Martin Corp. | Modular supertile array antenna |
US5911454A (en) * | 1996-07-23 | 1999-06-15 | Trimble Navigation Limited | Microstrip manufacturing method |
US6356512B1 (en) * | 1998-07-20 | 2002-03-12 | Asulab S.A. | Subassembly combining an antenna and position sensors on a same support, notably for a horological piece |
JP3739230B2 (en) * | 1999-04-26 | 2006-01-25 | 株式会社日立製作所 | High frequency communication equipment |
NL1012278C2 (en) * | 1999-06-09 | 2000-12-12 | Libertel Netwerk Bv | Antenna module. |
US20040217472A1 (en) * | 2001-02-16 | 2004-11-04 | Integral Technologies, Inc. | Low cost chip carrier with integrated antenna, heat sink, or EMI shielding functions manufactured from conductive loaded resin-based materials |
JP3801884B2 (en) * | 2001-07-23 | 2006-07-26 | 株式会社日立製作所 | High frequency transmitter / receiver |
US6825817B2 (en) * | 2002-08-01 | 2004-11-30 | Raytheon Company | Dielectric interconnect frame incorporating EMI shield and hydrogen absorber for tile T/R modules |
US7456789B1 (en) * | 2005-04-08 | 2008-11-25 | Raytheon Company | Integrated subarray structure |
US7511664B1 (en) | 2005-04-08 | 2009-03-31 | Raytheon Company | Subassembly for an active electronically scanned array |
US7391382B1 (en) | 2005-04-08 | 2008-06-24 | Raytheon Company | Transmit/receive module and method of forming same |
US7545323B2 (en) * | 2005-10-31 | 2009-06-09 | The Boeing Company | Phased array antenna systems and methods |
DE102006005902B4 (en) * | 2006-02-09 | 2007-12-13 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Multilayer composite material structure and method for the production of this |
JP5123493B2 (en) * | 2006-05-30 | 2013-01-23 | 新光電気工業株式会社 | Wiring substrate and semiconductor device |
DE102007040011B4 (en) * | 2007-08-24 | 2015-12-10 | Bayerische Motoren Werke Aktiengesellschaft | Use of net-like arranged, electrically conductive fibers, which are integrated into a component made of a fiber composite material |
DE102010039709A1 (en) * | 2010-08-24 | 2012-01-19 | Continental Automotive Gmbh | Antenna module for a vehicle |
EP3200278B1 (en) * | 2014-09-25 | 2021-05-12 | Nec Corporation | Antenna system |
US10062950B2 (en) * | 2016-04-20 | 2018-08-28 | Chih-Yuan Wang | Heat dissipater with an antenna structure |
US11382205B2 (en) * | 2020-09-16 | 2022-07-05 | Aptiv Technologies Limited | Heatsink shield with thermal-contact dimples for thermal-energy distribution in a radar assembly |
CN113955081B (en) * | 2021-09-24 | 2023-11-28 | 中国航空工业集团公司西安飞机设计研究所 | Aircraft battery cabin structure |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3528492A (en) * | 1967-04-03 | 1970-09-15 | Texas Instruments Inc | Solid state modular microwave system and cooling means therefor |
DE2743647C3 (en) * | 1977-09-28 | 1980-04-10 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Arrangement for cooling components in electrical communications and measurement technology |
LU83439A1 (en) * | 1980-09-25 | 1981-10-29 | Siemens Ag | HOUSELESS, VERTICAL PLUG-IN SINGLE-IN-LINE SWITCHING MODULE |
US4396936A (en) * | 1980-12-29 | 1983-08-02 | Honeywell Information Systems, Inc. | Integrated circuit chip package with improved cooling means |
FR2519508A1 (en) * | 1981-12-31 | 1983-07-08 | Thomson Csf | COOLING DEVICE FOR PRINTED CIRCUIT BOARD AND METHOD FOR MANUFACTURING SUCH DEVICE |
US4628407A (en) * | 1983-04-22 | 1986-12-09 | Cray Research, Inc. | Circuit module with enhanced heat transfer and distribution |
JPS6010806A (en) * | 1983-06-30 | 1985-01-21 | Natl Space Dev Agency Japan<Nasda> | Microstrip array antenna |
US4682269A (en) * | 1984-10-11 | 1987-07-21 | Teradyne, Inc. | Heat dissipation for electronic components on a ceramic substrate |
EP0213426A1 (en) * | 1985-08-30 | 1987-03-11 | Siemens Aktiengesellschaft | Casing with a lower and an upper cap for an electrical circuit element |
US4771294A (en) * | 1986-09-10 | 1988-09-13 | Harris Corporation | Modular interface for monolithic millimeter wave antenna array |
-
1987
- 1987-11-13 DE DE19873738506 patent/DE3738506A1/en active Granted
-
1988
- 1988-10-19 EP EP88117439A patent/EP0325701B1/en not_active Expired - Lifetime
- 1988-11-14 JP JP63287500A patent/JPH01155702A/en active Pending
- 1988-11-14 US US07/271,037 patent/US4987425A/en not_active Expired - Lifetime
Non-Patent Citations (2)
Title |
---|
IBM TECHNICAL DISCLOSURE BULLETIN, Band 29, Nr. 1, Juni 1986, Seiten 219, 220, Armonk, New York, USA; "Air Turbulator / Resistor Card" * |
PATENT ABSTRACTS OF JAPAN Band 6, Nr. 173 (E-129)(1051) 7.September 1982; & JP - A - 57 091 002 (MITSUBISHI DENKI K.K.) 07.06.1982 * |
Also Published As
Publication number | Publication date |
---|---|
JPH01155702A (en) | 1989-06-19 |
US4987425A (en) | 1991-01-22 |
DE3738506A1 (en) | 1989-06-01 |
DE3738506C2 (en) | 1991-05-02 |
EP0325701A1 (en) | 1989-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0325701B1 (en) | Antenna structure | |
DE112020003635T5 (en) | re-entry flow cold plate | |
DE69421953T2 (en) | Phase-controlled antenna for effective radiation of microwaves and heat | |
EP0231456B1 (en) | Process and device for the transfer of waste heat by at least one element of an electrical assembly | |
DE3738513C2 (en) | ||
DE4121534C2 (en) | Cooler | |
DE60202476T2 (en) | PCB WITH AN INSULATED METALLIC SUBSTRATE WITH AN INTEGRATED COOLING SYSTEM | |
DE102014214209B4 (en) | Cooling device for targeted cooling of electronic and / or electrical components, converters with such a cooling device and electric or hybrid vehicle with such a converter | |
DE112021006439T5 (en) | Coated powder patch | |
DE102013207804A1 (en) | POWER MODULE WITH DIRECTLY CONNECTED, HEAT-LEADING STRUCTURES | |
EP3095714A1 (en) | Modular satellite | |
DE69506957T2 (en) | Heat-emitting component made of highly oriented graphite | |
DE3940521A1 (en) | COLD AREA SYSTEM FOR COOLING ELECTRONIC COMPONENTS | |
DE4221455A1 (en) | Modular heating element - comprises and crosspieces of conductive fibre-reinforced plastics | |
US11153965B1 (en) | Integrated vapor chamber printed circuit board (PCB) assembly | |
US20020041486A1 (en) | Apparatus and system for cooling electronic circuitry, heat sinks, and related components | |
EP1058491A3 (en) | Printed wiring board structure with integral metal matrix composite core | |
EP0844808B1 (en) | Printed circuit board device | |
ITRM940013U1 (en) | PROGRESSIVE WAVE PIPE COOLING DEVICE MOUNTED IN A GEOSSTATIONARY SATELLITE THAT INCLUDES THE APPLICATION. | |
DE19630002B4 (en) | An electronic heat radiating member and a method of manufacturing a heat radiating member | |
WO2024120960A1 (en) | Inductive charging device | |
DE102010016644A1 (en) | Evaporator for evaporation of liquid coolant, has housing which has inlet opening for liquid coolant and outlet opening for evaporated coolant | |
EP0268935B1 (en) | Vertically pluggable single-in-line circuit module | |
DE3780352T2 (en) | HOUSING THAT PROVIDES THERMAL STABILIZATION OF SYSTEMS, ESPECIALLY THE ELECTRONIC COMPONENTS CONTAINED IN THE HOUSING. | |
DE69031323T2 (en) | Semiconductor device with a packaging structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19891102 |
|
17Q | First examination report despatched |
Effective date: 19920305 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): FR GB IT NL SE |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930902 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 88117439.5 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020925 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020930 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20021002 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20021009 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040501 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20031019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040630 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20040501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051019 |