[go: up one dir, main page]

EP0325701B1 - Antenna structure - Google Patents

Antenna structure Download PDF

Info

Publication number
EP0325701B1
EP0325701B1 EP88117439A EP88117439A EP0325701B1 EP 0325701 B1 EP0325701 B1 EP 0325701B1 EP 88117439 A EP88117439 A EP 88117439A EP 88117439 A EP88117439 A EP 88117439A EP 0325701 B1 EP0325701 B1 EP 0325701B1
Authority
EP
European Patent Office
Prior art keywords
heat
antenna
cavities
supporting structure
antenna structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88117439A
Other languages
German (de)
French (fr)
Other versions
EP0325701A1 (en
Inventor
Rudolf Dr.-Ing. Zahn
Günter Dr.-Ing. Helwig
Hans-Wolfgang Dr. rer. nat. Schröder
Christian Dipl.-Ing. Borgwardt
Albert Dipl.-Ing. Braig
Kay Dipl.-Ing. Dittrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier GmbH
Original Assignee
Dornier GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier GmbH filed Critical Dornier GmbH
Publication of EP0325701A1 publication Critical patent/EP0325701A1/en
Application granted granted Critical
Publication of EP0325701B1 publication Critical patent/EP0325701B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/02Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the invention relates to a supporting structure of an active antenna for aerospace applications according to the preamble of the claim.
  • the weight factor is of crucial importance for aerospace applications.
  • high dimensional stability is always required for both applications. This means that the antenna must be resistant to deformation against loads (aerodynamic loads, acceleration at start), against low-frequency vibrations or the thermal loads that occur in space.
  • a device for cooling an electronic circuit in which a support structure in box construction with cavities is provided, through which a cooling medium (liquid, gas) is passed.
  • the cooling circuit increases the weight of the device.
  • the object of the invention is to build an antenna corresponding to the preamble of the claim more easily.
  • heat-conducting layers in the supporting structure can take place by integrating or forming heat-conducting layers, which also consist of fiber-reinforced materials such as CFRP, in the supporting structure.
  • the previously common heat-dissipating elements such as heat pipes, Doppler plates or radiation surfaces, are no longer required, which saves weight.
  • the heat conduction is increased by wide stiffening webs and continuous fibers. A distribution of "hot" components over the entire antenna area promotes radiation at a relatively uniform temperature. By coating with thermal lacquer, the heat exchange by radiation within the hollow spaces between the webs can be increased.
  • the integration can also go so far that entire high-frequency components are integrated into the supporting structure.
  • an entire microstrip antenna in mesa or trough construction is integrated into the structure.
  • the microstrip or antenna dielectric can be made of fiber-reinforced plastic of high strength and rigidity (for example made of polyethylene-fiber-reinforced polyethylene) and itself form an outside of the box, which is then self-supporting.
  • the invention is illustrated by a figure.
  • the figure shows an embodiment of an antenna for a synthetic aperture radar (SAR) with its carrier.
  • the antenna here consists of the antenna outer layer 1 with radiator elements (patches), an electrically insulating substrate 2 (with ⁇ r ⁇ 1), in which leads (microstrips) are integrated, and an electrically conductive base plate 3.
  • the electrical connection between the radiator element and the The supply can take place, for example, by locally increasing ⁇ r in the substrate 2 in the area between these two elements.
  • the supporting structure 4 is realized here in a box construction with the cavities 5. Electrical modules 6 and electronic boards 7 can be contained in the cavities 5.
  • the supporting structure 4 is made of carbon fiber reinforced plastic, which is metallized on its upper side for electrical shielding.
  • the heat-emitting components such as the electrical modules 6 and the electronic boards 7, are preferably distributed over the entire antenna area and are connected in a heat-conducting manner to the carriers which lead to the antenna front.
  • the arrows shown in structure 4 show the flow of heat through the carrier material 4 made of thermally conductive plastic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Description

Die Erfindung betrifft eine tragende Struktur einer aktiven Antenne für Luft-und Raumfahrtanwendungen nach dem Oberbegriff des Anspruchs.The invention relates to a supporting structure of an active antenna for aerospace applications according to the preamble of the claim.

Für Luft- und Raumfahrtanwendungen kommt dem Faktor des Gewichts eine entscheidende Bedeutung zu. Für beide Anwendungen ist daneben stets eine hohe Dimensionsstabilität gefordert. Das heißt, die Antenne muß gegenüber den Lasten (aerodynamische Lasten, Beschleunigung beim Start), gegenüber niederfrequenten Schwingungen oder den thermischen Belastungen, wie sie im Weltall auftreten, verformungsstabil sein.The weight factor is of crucial importance for aerospace applications. In addition, high dimensional stability is always required for both applications. This means that the antenna must be resistant to deformation against loads (aerodynamic loads, acceleration at start), against low-frequency vibrations or the thermal loads that occur in space.

Aus der US 3,528,492 ist eine aktive Antenne mit in die Struktur integrierten wärmeleitfähigen Elementen bekannt, die den Oberbegriff des Anspruchs bildet. Die beim Betrieb entstehende Wärme wird von einer Kühlflüssigkeit aufgenommen und abgeführt. Dieser Kühlkreislauf erhöht das Gewicht der Antenne.An active antenna with thermally conductive elements integrated into the structure is known from US Pat. No. 3,528,492 , which forms the preamble of the claim. The heat generated during operation is absorbed and removed by a coolant. This cooling circuit increases the weight of the antenna.

Aus der EP 48 938 A1 ist es bekannt, zur Ableitung der Wärme von elektronischen Bauelementen Kühlbleche vorzusehen. Diese erhöhen das Gewicht der Vorrichtung.From EP 48 938 A1 it is known to provide cooling plates for dissipating the heat from electronic components. These increase the weight the device.

Aus der EP 83 538 A1 ist eine Vorrichtung zur Kühlung einer elektronischen Schaltung bekannt, bei der eine Tragestruktur in Kastenbauweise mit Hohlräumen vorgesehen ist, durch die ein Kühlmedium (Flüssigkeit, Gas) geleitet wird. Der Kühlkreislauf erhöht das Gewicht der Vorrichtung.From EP 83 538 A1 a device for cooling an electronic circuit is known, in which a support structure in box construction with cavities is provided, through which a cooling medium (liquid, gas) is passed. The cooling circuit increases the weight of the device.

Aufgabe der Erfindung ist es, eine dem Oberbegriff des Anspruchs entsprechende Antenne leichter zu bauen.The object of the invention is to build an antenna corresponding to the preamble of the claim more easily.

Diese Aufgabe wird erfindungsgemäß gelöst von einer Antenne mit den kennzeichnenden Merkmalen des Anspruchs, bei der die Wärme durch die Struktur zur Antennenvorderseite geleitet und von dort abgestrahlt wird.This object is achieved according to the invention by an antenna with the characterizing features of the claim, in which the heat is conducted through the structure to the front of the antenna and radiated from there.

Die Integration wärmeleitender Schichten in die tragende Struktur kann dadurch erfolgen, daß wärmeleitende Schichten, die ebenfalls aus faserverstärkten Materialien wie CFK bestehen, in die tragende Struktur integriert werden oder diese bilden. Die bisher üblichen wärmeabführenden Elemente, wie Wärmerohre, Dopplerbleche oder Strahlungsflächen entfallen, wodurch Gewicht gespart wird. Durch breite Versteifungsstege und durchgehende Fasern wird die Wärmeleitung erhöht. Eine Verteilung "heißer" Bauteile über die ganze Antennenfläche fördert die Abstrahlung bei relativ gleichmaßiger Temperatur. Durch Beschichtung mit Thermallack kann der Wärmeaustausch durch Strahlung innerhalb der hohlen Räume zwischen den Stegen vergrößert werden.The integration of heat-conducting layers in the supporting structure can take place by integrating or forming heat-conducting layers, which also consist of fiber-reinforced materials such as CFRP, in the supporting structure. The previously common heat-dissipating elements, such as heat pipes, Doppler plates or radiation surfaces, are no longer required, which saves weight. The heat conduction is increased by wide stiffening webs and continuous fibers. A distribution of "hot" components over the entire antenna area promotes radiation at a relatively uniform temperature. By coating with thermal lacquer, the heat exchange by radiation within the hollow spaces between the webs can be increased.

Die Integration kann auch soweit gehen, daß ganze Hochfrequenzkomponenten in die tragende Struktur integriert werden. Als Beispiel wird eine ganze Mikrostripantenne in Mesa- oder Wannenbauweise in die Struktur integriert. In dieser Ausführung kann das Mikrostrip- oder Antennendielektrikum in faserverstärktem Kunststoff hoher Festigkeit und Steifigkeit ausgeführt sein (zum Beispiel aus polyethylenfaserverstärktem Polyethylen) und selbst eine Außenseite des, sich dann selber tragenden, Hohlkastens bilden.The integration can also go so far that entire high-frequency components are integrated into the supporting structure. As an example, an entire microstrip antenna in mesa or trough construction is integrated into the structure. In this embodiment, the microstrip or antenna dielectric can be made of fiber-reinforced plastic of high strength and rigidity (for example made of polyethylene-fiber-reinforced polyethylene) and itself form an outside of the box, which is then self-supporting.

Die Erfindung wird anhand von einer Figur näher erläutert.The invention is illustrated by a figure.

Die Figur zeigt eine Ausführung einer Antenne für ein Synthetik-Apertur-Radar (SAR) mit ihrem Träger. Die Antenne besteht hier aus der Antennenaußenschicht 1 mit Strahlerelementen (patches), einem elektrisch isolierenden Substrat 2 (mit εr ≈ 1), in das Zuleitungen (Mikrostrips) integriert sind und einer elektrisch leitenden Grundplatte 3. Die elektrische Verbindung zwischen dem Strahlerelement und der Zuleitung kann zum Beispiel durch lokale Erhöhung von εr im Substrat 2 im Bereich zwischen diesen beiden Elementen erfolgen. Die tragende Struktur 4 ist hier in Kastenbauweise mit den Hohlräumen 5 realisiert. In den Hohlräumen 5 können elektrische Module 6 und Elektronikplatinen 7 enthalten sein. Die tragende Struktur 4 ist hier aus kohlefaserverstärktem Kunststoff ausgeführt, der an seiner Oberseite zur elektrischen Abschirmung metallisiert ist. Die wärmeabgebenden Bauteile wie die elektrischen Module 6 und die Elektronikplatinen 7 sind bevorzugt über die gesamte Antennenfläche verteilt und an den Trägern, die zur Antennenvorderseite führen, wärmeleitend angeschlossen. Die in der Struktur 4 gezeigten Pfeile zeigen den Fluß der Wärme durch das aus wärmeleitendem Kunststoff hergestellte Trägermaterial 4.The figure shows an embodiment of an antenna for a synthetic aperture radar (SAR) with its carrier. The antenna here consists of the antenna outer layer 1 with radiator elements (patches), an electrically insulating substrate 2 (with ε r ≈ 1), in which leads (microstrips) are integrated, and an electrically conductive base plate 3. The electrical connection between the radiator element and the The supply can take place, for example, by locally increasing ε r in the substrate 2 in the area between these two elements. The supporting structure 4 is realized here in a box construction with the cavities 5. Electrical modules 6 and electronic boards 7 can be contained in the cavities 5. The supporting structure 4 is made of carbon fiber reinforced plastic, which is metallized on its upper side for electrical shielding. The heat-emitting components, such as the electrical modules 6 and the electronic boards 7, are preferably distributed over the entire antenna area and are connected in a heat-conducting manner to the carriers which lead to the antenna front. The arrows shown in structure 4 show the flow of heat through the carrier material 4 made of thermally conductive plastic.

Claims (1)

  1. Supporting structure (4) for an active antenna for use in air or space travel and having heat-conductive components integrated in the structure (4), characterised by:
    - a box-like construction of fibre-reinforced plastics material with cavities (5) in which heat-emitting electronic structural components (6, 7) are located; and
    - carriers between the cavities (5) which are made of heat-conductive plastics material such that resultant heat is led to the front of the antenna.
EP88117439A 1987-11-13 1988-10-19 Antenna structure Expired - Lifetime EP0325701B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873738506 DE3738506A1 (en) 1987-11-13 1987-11-13 ANTENNA STRUCTURE
DE3738506 1987-11-13

Publications (2)

Publication Number Publication Date
EP0325701A1 EP0325701A1 (en) 1989-08-02
EP0325701B1 true EP0325701B1 (en) 1993-08-25

Family

ID=6340386

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88117439A Expired - Lifetime EP0325701B1 (en) 1987-11-13 1988-10-19 Antenna structure

Country Status (4)

Country Link
US (1) US4987425A (en)
EP (1) EP0325701B1 (en)
JP (1) JPH01155702A (en)
DE (1) DE3738506A1 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2659501B1 (en) * 1990-03-09 1992-07-31 Alcatel Espace HIGH EFFICIENCY PRINTED ACTIVE ANTENNA SYSTEM FOR AGILE SPATIAL RADAR.
US5128689A (en) * 1990-09-20 1992-07-07 Hughes Aircraft Company Ehf array antenna backplate including radiating modules, cavities, and distributor supported thereon
IT1241834B (en) * 1990-11-22 1994-02-01 Sma Segnalamento Marittimo Ed VEHICLE RADAR SENSOR FOR SHORT DISTANCE APPLICATIONS
FR2672438B1 (en) * 1991-02-01 1993-09-17 Alcatel Espace NETWORK ANTENNA IN PARTICULAR FOR SPATIAL APPLICATION.
DE69230048T2 (en) * 1991-07-15 2000-01-05 Matsushita Electric Works, Ltd. Low noise down converter block for use in a plane antenna for double polarized electromagnetic waves
US5247309A (en) * 1991-10-01 1993-09-21 Grumman Aerospace Corporation Opto-electrical transmitter/receiver module
US5327152A (en) * 1991-10-25 1994-07-05 Itt Corporation Support apparatus for an active aperture radar antenna
JP2606521Y2 (en) * 1992-02-27 2000-11-27 株式会社村田製作所 Antenna device
US5438697A (en) * 1992-04-23 1995-08-01 M/A-Com, Inc. Microstrip circuit assembly and components therefor
US5349362A (en) * 1992-06-19 1994-09-20 Forbes Mark M Concealed antenna applying electrically-shortened elements and durable construction
US5255738A (en) * 1992-07-16 1993-10-26 E-Systems, Inc. Tapered thermal substrate for heat transfer applications and method for making same
US5325103A (en) * 1992-11-05 1994-06-28 Raytheon Company Lightweight patch radiator antenna
SE470520B (en) * 1992-11-09 1994-06-27 Ericsson Telefon Ab L M Radio module included in a primary radio station and radio structure containing such modules
US5293171A (en) * 1993-04-09 1994-03-08 Cherrette Alan R Phased array antenna for efficient radiation of heat and arbitrarily polarized microwave signal power
US5442366A (en) * 1993-07-13 1995-08-15 Ball Corporation Raised patch antenna
FR2710195B1 (en) * 1993-09-14 1995-10-13 Thomson Csf Antenna-electronic circuit assembly.
JP3185513B2 (en) * 1994-02-07 2001-07-11 株式会社村田製作所 Surface mount antenna and method of mounting the same
JP3141692B2 (en) * 1994-08-11 2001-03-05 松下電器産業株式会社 Millimeter wave detector
US5969680A (en) * 1994-10-11 1999-10-19 Murata Manufacturing Co., Ltd. Antenna device having a radiating portion provided between a wiring substrate and a case
US5608414A (en) * 1995-06-30 1997-03-04 Martin Marietta Corp. Heat rejecting spacecraft array antenna
SE504950C2 (en) * 1995-09-29 1997-06-02 Ericsson Telefon Ab L M Device for cooling electronic devices
US5870063A (en) * 1996-03-26 1999-02-09 Lockheed Martin Corp. Spacecraft with modular communication payload
US5666128A (en) * 1996-03-26 1997-09-09 Lockheed Martin Corp. Modular supertile array antenna
US5911454A (en) * 1996-07-23 1999-06-15 Trimble Navigation Limited Microstrip manufacturing method
US6356512B1 (en) * 1998-07-20 2002-03-12 Asulab S.A. Subassembly combining an antenna and position sensors on a same support, notably for a horological piece
JP3739230B2 (en) * 1999-04-26 2006-01-25 株式会社日立製作所 High frequency communication equipment
NL1012278C2 (en) * 1999-06-09 2000-12-12 Libertel Netwerk Bv Antenna module.
US20040217472A1 (en) * 2001-02-16 2004-11-04 Integral Technologies, Inc. Low cost chip carrier with integrated antenna, heat sink, or EMI shielding functions manufactured from conductive loaded resin-based materials
JP3801884B2 (en) * 2001-07-23 2006-07-26 株式会社日立製作所 High frequency transmitter / receiver
US6825817B2 (en) * 2002-08-01 2004-11-30 Raytheon Company Dielectric interconnect frame incorporating EMI shield and hydrogen absorber for tile T/R modules
US7456789B1 (en) * 2005-04-08 2008-11-25 Raytheon Company Integrated subarray structure
US7511664B1 (en) 2005-04-08 2009-03-31 Raytheon Company Subassembly for an active electronically scanned array
US7391382B1 (en) 2005-04-08 2008-06-24 Raytheon Company Transmit/receive module and method of forming same
US7545323B2 (en) * 2005-10-31 2009-06-09 The Boeing Company Phased array antenna systems and methods
DE102006005902B4 (en) * 2006-02-09 2007-12-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Multilayer composite material structure and method for the production of this
JP5123493B2 (en) * 2006-05-30 2013-01-23 新光電気工業株式会社 Wiring substrate and semiconductor device
DE102007040011B4 (en) * 2007-08-24 2015-12-10 Bayerische Motoren Werke Aktiengesellschaft Use of net-like arranged, electrically conductive fibers, which are integrated into a component made of a fiber composite material
DE102010039709A1 (en) * 2010-08-24 2012-01-19 Continental Automotive Gmbh Antenna module for a vehicle
EP3200278B1 (en) * 2014-09-25 2021-05-12 Nec Corporation Antenna system
US10062950B2 (en) * 2016-04-20 2018-08-28 Chih-Yuan Wang Heat dissipater with an antenna structure
US11382205B2 (en) * 2020-09-16 2022-07-05 Aptiv Technologies Limited Heatsink shield with thermal-contact dimples for thermal-energy distribution in a radar assembly
CN113955081B (en) * 2021-09-24 2023-11-28 中国航空工业集团公司西安飞机设计研究所 Aircraft battery cabin structure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528492A (en) * 1967-04-03 1970-09-15 Texas Instruments Inc Solid state modular microwave system and cooling means therefor
DE2743647C3 (en) * 1977-09-28 1980-04-10 Siemens Ag, 1000 Berlin Und 8000 Muenchen Arrangement for cooling components in electrical communications and measurement technology
LU83439A1 (en) * 1980-09-25 1981-10-29 Siemens Ag HOUSELESS, VERTICAL PLUG-IN SINGLE-IN-LINE SWITCHING MODULE
US4396936A (en) * 1980-12-29 1983-08-02 Honeywell Information Systems, Inc. Integrated circuit chip package with improved cooling means
FR2519508A1 (en) * 1981-12-31 1983-07-08 Thomson Csf COOLING DEVICE FOR PRINTED CIRCUIT BOARD AND METHOD FOR MANUFACTURING SUCH DEVICE
US4628407A (en) * 1983-04-22 1986-12-09 Cray Research, Inc. Circuit module with enhanced heat transfer and distribution
JPS6010806A (en) * 1983-06-30 1985-01-21 Natl Space Dev Agency Japan<Nasda> Microstrip array antenna
US4682269A (en) * 1984-10-11 1987-07-21 Teradyne, Inc. Heat dissipation for electronic components on a ceramic substrate
EP0213426A1 (en) * 1985-08-30 1987-03-11 Siemens Aktiengesellschaft Casing with a lower and an upper cap for an electrical circuit element
US4771294A (en) * 1986-09-10 1988-09-13 Harris Corporation Modular interface for monolithic millimeter wave antenna array

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IBM TECHNICAL DISCLOSURE BULLETIN, Band 29, Nr. 1, Juni 1986, Seiten 219, 220, Armonk, New York, USA; "Air Turbulator / Resistor Card" *
PATENT ABSTRACTS OF JAPAN Band 6, Nr. 173 (E-129)(1051) 7.September 1982; & JP - A - 57 091 002 (MITSUBISHI DENKI K.K.) 07.06.1982 *

Also Published As

Publication number Publication date
JPH01155702A (en) 1989-06-19
US4987425A (en) 1991-01-22
DE3738506A1 (en) 1989-06-01
DE3738506C2 (en) 1991-05-02
EP0325701A1 (en) 1989-08-02

Similar Documents

Publication Publication Date Title
EP0325701B1 (en) Antenna structure
DE112020003635T5 (en) re-entry flow cold plate
DE69421953T2 (en) Phase-controlled antenna for effective radiation of microwaves and heat
EP0231456B1 (en) Process and device for the transfer of waste heat by at least one element of an electrical assembly
DE3738513C2 (en)
DE4121534C2 (en) Cooler
DE60202476T2 (en) PCB WITH AN INSULATED METALLIC SUBSTRATE WITH AN INTEGRATED COOLING SYSTEM
DE102014214209B4 (en) Cooling device for targeted cooling of electronic and / or electrical components, converters with such a cooling device and electric or hybrid vehicle with such a converter
DE112021006439T5 (en) Coated powder patch
DE102013207804A1 (en) POWER MODULE WITH DIRECTLY CONNECTED, HEAT-LEADING STRUCTURES
EP3095714A1 (en) Modular satellite
DE69506957T2 (en) Heat-emitting component made of highly oriented graphite
DE3940521A1 (en) COLD AREA SYSTEM FOR COOLING ELECTRONIC COMPONENTS
DE4221455A1 (en) Modular heating element - comprises and crosspieces of conductive fibre-reinforced plastics
US11153965B1 (en) Integrated vapor chamber printed circuit board (PCB) assembly
US20020041486A1 (en) Apparatus and system for cooling electronic circuitry, heat sinks, and related components
EP1058491A3 (en) Printed wiring board structure with integral metal matrix composite core
EP0844808B1 (en) Printed circuit board device
ITRM940013U1 (en) PROGRESSIVE WAVE PIPE COOLING DEVICE MOUNTED IN A GEOSSTATIONARY SATELLITE THAT INCLUDES THE APPLICATION.
DE19630002B4 (en) An electronic heat radiating member and a method of manufacturing a heat radiating member
WO2024120960A1 (en) Inductive charging device
DE102010016644A1 (en) Evaporator for evaporation of liquid coolant, has housing which has inlet opening for liquid coolant and outlet opening for evaporated coolant
EP0268935B1 (en) Vertically pluggable single-in-line circuit module
DE3780352T2 (en) HOUSING THAT PROVIDES THERMAL STABILIZATION OF SYSTEMS, ESPECIALLY THE ELECTRONIC COMPONENTS CONTAINED IN THE HOUSING.
DE69031323T2 (en) Semiconductor device with a packaging structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB IT NL SE

17P Request for examination filed

Effective date: 19891102

17Q First examination report despatched

Effective date: 19920305

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930902

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88117439.5

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020925

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020930

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021002

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021009

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051019