EP0296921A1 - Microwave plasma torch, device comprising such a torch and production procedure for powder operating them - Google Patents
Microwave plasma torch, device comprising such a torch and production procedure for powder operating them Download PDFInfo
- Publication number
- EP0296921A1 EP0296921A1 EP88401405A EP88401405A EP0296921A1 EP 0296921 A1 EP0296921 A1 EP 0296921A1 EP 88401405 A EP88401405 A EP 88401405A EP 88401405 A EP88401405 A EP 88401405A EP 0296921 A1 EP0296921 A1 EP 0296921A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- sleeve
- waveguide
- pipe
- coaxial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 6
- 238000005253 cladding Methods 0.000 claims abstract description 11
- 230000007704 transition Effects 0.000 claims abstract description 10
- 239000007789 gas Substances 0.000 claims description 67
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- -1 Titanium halogens Chemical class 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 150000004756 silanes Chemical class 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical class B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims 1
- 239000011819 refractory material Substances 0.000 claims 1
- 235000010599 Verbascum thapsus Nutrition 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000011863 silicon-based powder Substances 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 244000178289 Verbascum thapsus Species 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 150000001343 alkyl silanes Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/30—Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
Definitions
- the present invention relates to a microwave plasma torch as well as a device and a method for the manufacture of powder using such a torch.
- the present invention relates to a microwave plasma torch characterized in that it comprises at least one gas supply pipe; a resonant cavity forming around said pipe a sleeve open on the side of the outlet of said pipe and comprising a lateral opening; a coaxial transition structure perpendicular to the sleeve comprising on the one hand an external tube connected to the lateral opening of the sleeve and on the other hand an internal member one end of which is in contact with said pipe and the other end of which is in contact with the internal face of a waveguide and carries a transition piece disposed in the waveguide; said microwave power supply waveguide of rectangular section and perpendicular to the coaxial structure being provided with an opening where the outer tube of said structure is connected; cladding gas supply means in the waveguide and / or the coaxial structure and / or the sleeve; possibly means of agreement; and possibly plasma ignition means.
- FIGS. 1, 2 and 3 a coaxial gas supply pipe appears, the internal pipe 1 conducting the active gas introduced by the end 22 connected to a gas source, not shown. Via the transverse pipe 23 connected to a source of plasma gas not shown, the gas circulating in the outside pipe 2 arrives conductive material.
- the coaxial pipe (1,2) is surrounded by a cylindrical metallic sleeve of the same axis forming a resonance cavity 3 closed on the side of the gas inlet by an annular flange 18 fixed on the sleeve 3 by screws 19. This flange 18 is traversed by and screwed onto the hollow rod and externally threaded with a piston 9 sliding in the sleeve 3 and taken through the pipe 1,2.
- O-rings 25, 25 ′, 26 and 26 ′ ensure gas tightness.
- the sleeve 3 has a lateral opening 4 on which the metallic external tube 5 of the coaxial transition structure is fixed perpendicularly to the gasket.
- the internal metallic member 6 disposed on the axis of the coaxial structure is on the one hand in contact with the external pipe 2, the contact being produced by a removable contact piece 20 and on the other hand in contact with the internal face of the wall of the waveguide of rectangular section 8 opposite to the circular opening 27 where the outer tube 5 of the coaxial structure is connected with a gasket.
- the waveguide 8 is arranged perpendicular to the coaxial structure and to the axis of the pipe and of the sleeve 3.
- the internal member 6 is provided with a piece 7 of agreement which is not necessarily fixed.
- the waveguide 8 opens a pipe 21 for supplying sheathing gas.
- the sleeve-forming cavity 3 is extended by the sleeve 10 disposed around the pipe 1,2 and which carries a fixing flange 17.
- the central portions 24 and the lateral portions 23-23 ′ also appear on the waveguide 8, the double flanges 12-13 fixed between the flanges 28 and 29 integral with portions 23-23′ and 24 respectively. waveguide 8.
- the window structure appears, each comprising two rectangular metal flanges 12 and 13 which enclose in a recess 15 a window 11 transparent to waves, for example made of quartz.
- the flange 13 further has a groove and 16 where is disposed a rectangular metal gasket which seals the central portion 24 of the waveguide 8 with gas by contact on the flange 28.
- edges and the sharp angles are softened to avoid the arcing of the plasma.
- the flange 18 is crossed in its center only by the line 1,2 and the piston 9, inside the sleeve and without a hollow rod, is moved into the sleeve by one or more rods passing through the flange 18 .
- the introduction of sheathing gas takes place in the sleeve 3 or 10.
- the gas tightness in the torch can be ensured by a part arranged in the coaxial structure for example, the windows 12, 13 are then not necessary.
- gas sealing means are not necessary in certain applications of these torches.
- the coaxiality of the pipes 1 and 2 is ensured by means of pins or a metal spring disposed between the two pipes.
- the gas supply line is not necessarily coaxial and may consist of only one line.
- the length of lines 1 and 2 can be changed in line by sliding along the axis. These lengths and that of the sleeve can be further modified by the addition of end caps 30,31,32 screwed at their end and interchangeable.
- these tips can be chosen from a material suitable for the products treated in the torch, good conductors with a high melting point and preferably refractory for the sleeve and the outer pipe, possibly also refractory for the pipe 1 and not necessarily conductive.
- the end of the pipes 1,2 and of the sleeve 10 or of the end caps screwed at their end is rounded.
- the present invention also relates to a sealed device for the manufacture of powder which uses a torch according to the invention and further comprises a microwave generator, a microwave plasma torch, a reaction vessel, supply means. reactive gas, plasma gas and a cladding gas, means for separation of powder and gases, means for collecting powders, and means for discharging effluent gases.
- the device comprises a microwave generator 41 connected by usual means to the waveguide 48. It also includes pipes for supplying sheathing gas 42, reactive gas 47 and plasma gas 46. Means of tuning, for example pistons can be provided on the waveguide. Other usual means of agreement are also possible.
- the sleeve 40 opens and protrudes from D1 into the reaction vessel 53 of length L and of diameter D, the end opposite to a cone shape with an angle preferably approximately equal to 20 °.
- the L / D ratio is between 1.5 and 6, preferably between 2 and 4.
- the enclosure wall To avoid contamination of the powders by the material of the enclosure wall, it can be electropolished or fitted with a quartz lining.
- the reaction chamber opens into a powder and gas separator consisting of a metallic cylindrical filter 50 surrounded by a sealed sleeve 49 and connected to a gas evacuation pipe 52.
- a powder collector 51 valves and a supply 56 of purge gas and a vacuum line 55 are further provided to facilitate the change of collector without contamination of the powders.
- Other usual means for separating powder and gas can be envisaged.
- the ignition device 54 allows the plasma to be ignited by electrical contact with the gas line.
- the plasma ignition means are not necessarily chosen as shown. They can be constituted by any usual ignition means at the end of the pipe, by any external means compatible with the structure of the enclosure. It can in particular be produced by means of a metal wire introduced into the pipe 2 and removable or not once the plasma is on.
- the cladding gas can be introduced at the sleeve 40 or the cavity 43 or the coaxial (which does not appear in FIG. 5) and the plasma gas by the internal organ of the coaxial transition which in this case leads into the external pipe 2 to lead the plasma gas there.
- the torch in which the gases in the configuration shown here circulate from top to bottom can be oriented in a different way, for example oriented from bottom to top.
- the device according to the invention applies in particular to the synthesis of powder, this is why the present invention also relates to a process for the preparation of powder, characterized in that a device according to the invention is used and in that the reactive gas is chosen from silanes, ammonia, boron hydrides, tungsten and titanium halides, oxygen and gaseous organo-metals and their mixtures.
- the method according to the invention applies in particular to the preparation of silicon-based powder, namely silicon, silica, carbide and silicon nitride powder.
- the reactive gas is then according to the invention chosen from silanes and polysilanes, halogenosilanes, alkylsilanes and their mixture with oxygen and ammonia.
- the cladding gas ultimately flows, regardless of the supply line, between the sleeve and the external pipe 2.
- Any conventional cladding gas can be used, and in particular inert gases such as nitrogen or hydrogen for example.
- the plasma gas used is a conventional plasma gas, in particular argon.
- the active gas circulates in the internal pipe or in the single pipe when this embodiment is used.
- plamagen gas can be injected at ignition and then replaced by or mixed with active gas.
- the resumption of use is of the order of atmospheric pressure or higher than this, up to approximately 5 atmosphere.
- microwave By microwave is meant the band from about 400 to 12000 MHz.
- - L / D 2.5; D1 between D / 4 and 3 D / 4, preferably 0.4 D.
- - D / d1 between 40 and 150, preferably 100.
- - d1 2 mm (internal diameter of pipe 1)
- - d2 4 mm (external diameter of pipe 1)
- - d3 7.5 mm (internal diameter of pipe 2)
- - d4 12 mm (external diameter of pipe 2)
- - d5 27 mm (internal diameter of the sleeve 10)
- - d6 33 mm (external diameter of the sleeve 10)
- - line 1 has a quartz tip - line 2 has a tungsten tip - sleeve 10 has a brass tip -
- the reactor is made of 316 L stainless steel - (the internal reference temperature is 440 ° C).
- a single crystal was drawn from the powders thus obtained. Analysis of the single crystal revealed 7 1017 atom / cm3 of oxygen and 10 1017 atom / cm3 of carbon.
- the diameters d1 to d6 are defined in Figure 1.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
La présente invention concerne une torche à plasma micro-onde ainsi qu'un dispositif et un procédé pour la fabrication de poudre mettant en oeuvre une telle torche.The present invention relates to a microwave plasma torch as well as a device and a method for the manufacture of powder using such a torch.
Il est connu de préparer des poudres par réaction de gaz réactifs au sein d'un plasma, ces procédés consomment cependant en général trop d'énergie.It is known to prepare powders by reacting reactive gases within a plasma, these methods however generally consume too much energy.
La présente invention concerne une torche à plasma micro-onde caractérisé en ce qu'elle comporte au moins une conduite d'amenée de gaz ; une cavité résonnante formant autour de ladite conduite un manchon ouvert du coté de la sortie de ladite conduite et comportant une ouverture latérale ; une structure coaxiale de transition perpendiculaire au manchon comportant d'une part un tube externe raccordé à l'ouverture latérale du manchon et d'autre part un organe interne dont l'une des extrémités est au contact de ladite conduite et dont l'autre extrémité est au contact de la face interne d'un guide d'onde et porte une pièce de transition disposée dans le guide d'ondes ; ledit guide d'onde d'alimentation en énergie micro-ondes à section rectangulaire et perpendiculaire à la structure coaxiale étant pourvue d'une ouverture où est raccordé le tube externe de ladite structure ; des moyens d'alimentation en gaz de gainage dans le guide d'onde et/ou la structure coaxiale et/ou le manchon ; éventuellement des moyens d'accord ; et éventuellement des moyens d'allumage du plasma.The present invention relates to a microwave plasma torch characterized in that it comprises at least one gas supply pipe; a resonant cavity forming around said pipe a sleeve open on the side of the outlet of said pipe and comprising a lateral opening; a coaxial transition structure perpendicular to the sleeve comprising on the one hand an external tube connected to the lateral opening of the sleeve and on the other hand an internal member one end of which is in contact with said pipe and the other end of which is in contact with the internal face of a waveguide and carries a transition piece disposed in the waveguide; said microwave power supply waveguide of rectangular section and perpendicular to the coaxial structure being provided with an opening where the outer tube of said structure is connected; cladding gas supply means in the waveguide and / or the coaxial structure and / or the sleeve; possibly means of agreement; and possibly plasma ignition means.
La présente invention sera mieux comprise au regard des figures annexées sur lesquels :
- - la figure 1 représente une coupe latérale d'une torche selon l'invention dans son plan de symétrie ;
- - la figure 2 représente une vue de face de la torche ;
- - la figure 3 représente une vue de dessus de la torche ;
- - la figure 4 représente une vue en coupe de la fenêtre d'étanchéité au gaz ;
- - la figure 5 représente une vue schématique d'un dispositif selon l'invention.
- - Figure 1 shows a side section of a torch according to the invention in its plane of symmetry;
- - Figure 2 shows a front view of the torch;
- - Figure 3 shows a top view of the torch;
- - Figure 4 shows a sectional view of the gas-tight window;
- - Figure 5 shows a schematic view of a device according to the invention.
Sur les figures 1,2 et 3 apparait une conduite coaxiale d'amenée de gaz, la conduite intérieure 1 conduisant le gaz actif introduit par l'extrémité 22 reliée à une source de gaz non représentée. Par la conduite transversale 23 reliée à une source de gaz plasmagène non représenté arrive le gaz circulant dans la conduite extérieure 2 en matériau conducteur. La conduite coaxiale (1,2) est entourée d'un manchon métallique cylindrique de même axe faisant cavité de resonnance 3 fermée du coté de l'arrivée des gaz par une bride 18 annulaire fixée sur le manchon 3 par des vis 19. Cette bride 18 est traversée par et vissée sur la tige creuse et extérieurement filetée d'un piston 9 coulissant dans le manchon 3 et empruntée par la conduite 1,2. Des joints 25, 25′, 26 et 26′ toriques assurent l'étanchéité aux gaz.In FIGS. 1, 2 and 3, a coaxial gas supply pipe appears, the internal pipe 1 conducting the active gas introduced by the
Le manchon 3 comporte une ouverture latérale 4 sur laquelle est fixée perpendiculairement à joint étanche le tube externe métallique 5 de la structure de transition coaxiale. L'organe interne métallique 6 disposée sur l'axe de la structure coaxiale est d'une part au contact de la conduite externe 2, le contact étant réalisé par une pièce de contact 20 amovible et d'autre part au contact de la face interne de la paroi du guide d'ondes à section rectangulaire 8 opposée à l'ouverture 27 circulaire où est raccordée à joint étanche le tube externe 5 de la structure coaxiale. Le guide d'onde 8 est disposé perpendiculairement à la structure coaxiale et à l'axe de la conduite et du manchon 3. L'organe interne 6 est pourvu d'une pièce 7 d'accord non nécessairement fixe.The
Dans le guide d'onde 8 débouche une canalisation 21 d'amenée de gaz de gainage. La cavité formant manchon 3 est prolongée par le manchon 10 disposé autour de la conduite 1,2 et qui porte une bride 17 de fixation.In the
Sur la figure 2 apparait en outre sur le guide d'onde 8 les portions centrale 24 et les portions latérales 23-23′, les doubles brides 12-13 fixées entre les brides 28 et 29 solidaires respectivement des portions 23-23′et 24 du guide d'onde 8.In FIG. 2, the
Sur la figure 4 apparait la structure de fenêtres comportant chacune deux brides 12 et 13 rectangulaires metalliques qui enserrent dans une évidement 15 une fenêtre 11 transparente aux ondes, par exemple en quartz.In FIG. 4, the window structure appears, each comprising two
L'étanchéité en gaz est assurée par des joints 14 en silicone disposés entre la fenêtre 11 et les surfaces en regard de la bride 12 et de l'évidement de la bride 13. La bride 13 comporte en outre une gorge et 16 où est disposé un joint rectangulaire métallique qui assure l'étanchéité au gaz de la portion centrale 24 du guide d'onde 8 par contact sur la bride 28.Gas tightness is ensured by
De préférence, les arêtes et les angles vifs sont adoucis pour éviter l'arcage du plasma.Preferably, the edges and the sharp angles are softened to avoid the arcing of the plasma.
Dans une variante non représentée, la bride 18 n'est traversée en son centre que par la conduite 1,2 et le piston 9, intérieur au manchon et sans tige creuse, est déplacé dans le manchon par une ou plusieurs tiges traversant la bride 18.In a variant not shown, the
Dans une autre variante non représentée, l'introduction de gaz de gainage a lieu dans le manchon 3 ou 10. L'étanchéité au gaz dans la torche peut être assurée par une pièce disposée dans la structure coaxiale par exemple, le fenêtres 12, 13 ne sont alors par nécessaires.In another variant not shown, the introduction of sheathing gas takes place in the
En outre, les moyens d'étanchéité au gaz ne sont pas nécessaires dans certaines applications de ces torches.In addition, the gas sealing means are not necessary in certain applications of these torches.
Est nécessaire par contre, un bon contact électrique entre toutes les parties conductrices qui guident les micro-ondes. A cet effet, leur jonction parfaitement conductrice entre les parties métalliques jointes par brides peut être assurée par des joints en cuivre ou en indium.On the other hand, a good electrical contact is necessary between all the conductive parts which guide the microwaves. To this end, their perfectly conductive junction between the metal parts joined by flanges can be ensured by copper or indium seals.
Dans une variante non représentée, la coaxialité des conduites 1 et 2 est assurée au moyen de picots ou d'un ressort métallique disposé entre les deux conduites.In a variant not shown, the coaxiality of the
La conduite d'amenée de gaz n'est pas nécessairement coaxiale et peut n'être constituée que d'une conduite.The gas supply line is not necessarily coaxial and may consist of only one line.
La longueur des conduites 1 et 2 peut-être modifiée en ligne par coulissement le long de l'axe. Ces longueurs et celle du manchon peuvent être en outre modifiées par l'adjonction d'embouts 30,31,32 vissés à leur extrémité et interchangeables.The length of
Selon l'application de la torche, ces embouts peuvent être choisis dans un matériau adapté aux produits traités dans la torche, bon conducteurs à point de fusion élevé et de préférence réfractaire pour le manchon et la conduite extérieure, éventuellement aussi réfractaire pour la conduite 1 et non néecessairement conducteur.Depending on the application of the torch, these tips can be chosen from a material suitable for the products treated in the torch, good conductors with a high melting point and preferably refractory for the sleeve and the outer pipe, possibly also refractory for the pipe 1 and not necessarily conductive.
De préférence, l'extrémité des conduites 1,2 et du manchon 10 ou des embouts vissés à leur extrémité est arrondie.Preferably, the end of the
La présente invention concerne également en dispositif étanche pour la fabrication de poudre qui met en oeuvre une torche selon l'invention et comporte en outre un générateur micro-ondes, une torche à plasma micro-ondes, une enceinte réactionnelle, des moyens d'alimentation en gaz réactif, en gaz plasmagène et un gaz de gainage, des moyens de séparation de poudre et des gaz, des moyens de collection des poudres, et des moyens d'évacuation des gaz effluents.The present invention also relates to a sealed device for the manufacture of powder which uses a torch according to the invention and further comprises a microwave generator, a microwave plasma torch, a reaction vessel, supply means. reactive gas, plasma gas and a cladding gas, means for separation of powder and gases, means for collecting powders, and means for discharging effluent gases.
Outre la cavité de résonnance 43, le manchon 40 et le guide d'onde 48 qui correspondent à la cavité 3, au manchon 10 et au guide d'onde 8 représentés que les figures précédentes, le dispositif comporte un générateur de micro-ondes 41 relié par des moyens usuels au guide d'onde 48. Il comporte aussi des canalisations d'amenée de gaz de gainage 42, de gaz réactif 47 et de gaz plasmagène 46. Des moyens d'accord, par exemple des pistons peuvent être prévus sur le guide d'onde. D'autres moyens d'accord usuels sont également envisageables.In addition to the resonance cavity 43, the sleeve 40 and the
Le manchon 40 débouche et dépasse de D₁ dans l'enceinte réactionnelle 53 de longueur L et de diamètre D, dont l'extrémité opposée à une forme de cône d'angle de préférence environ égal à 20°.The sleeve 40 opens and protrudes from D₁ into the
Selon l'invention, le rapport L/D est compris entre 1,5 et 6, de préférence entre 2 et 4.According to the invention, the L / D ratio is between 1.5 and 6, preferably between 2 and 4.
Pour éviter la contamination des poudres par le matériau de la parroi de l'enceinte, celle-ci peut être électropolie ou équipée d'une doublure en quartz.To avoid contamination of the powders by the material of the enclosure wall, it can be electropolished or fitted with a quartz lining.
L'enceinte réactionnelle débouche dans un séparateur de poudre et de gaz constitué d'un filtre cylindrique métallique 50 entouré d'un manchon 49 étanche et relié à une conduite d'évacuation des gaz 52. A la sortie du filtre cylindrique 50 est disposé un collecteur de poudre 51 des vannes et une alimentation 56 de gaz de purge et une conduite de mise sous vide 55 sont en outre prévues pour faciliter le changement de collecteur sans contamination des poudres. D'autres moyens usuels de séparation de poudre et de gaz sont envisageables.The reaction chamber opens into a powder and gas separator consisting of a metallic
Le dispositif d'allumage 54 permet d'allumer le plasma par contact électrique avec la conduite de gaz.The
Le moyens d'allumage du plasma ne sont pas nécessairement choisi tels que représentés. Ils peuvent être constitués par tout moyen d'allumage usuel au niveau de l'extrémité de la conduite, par tout moyen extérieur compaptible avec la structure de l'enceinte. Il peut être en particulier réalisé au moyen d'un fil métallique introduit dans la conduite 2 et amovible ou non une fois le plasma allumé.The plasma ignition means are not necessarily chosen as shown. They can be constituted by any usual ignition means at the end of the pipe, by any external means compatible with the structure of the enclosure. It can in particular be produced by means of a metal wire introduced into the
Dans un autre mode de réalisation non représenté, le gaz de gainage peut être introduit au niveau du manchon 40 ou de la cavité 43 ou du coaxial (qui n'apparait pas sur la figure 5) et le gaz plasmagène par l'organe interne de la transition coaxiale qui débouche dans ce cas dans la conduite externe 2 pour y conduire le gaz plasmagène.In another embodiment not shown, the cladding gas can be introduced at the sleeve 40 or the cavity 43 or the coaxial (which does not appear in FIG. 5) and the plasma gas by the internal organ of the coaxial transition which in this case leads into the
Dans un autre mode de réalisation, on peut prévoir d'autres modes usuels de récupération des poudres et des gaz à la sortie de l'enceinte réactionnelle. Les gaz résiduels peuvent être séparés, détruits pour certains toxiques et recyclés pour d'autres (plasmagène, de gainage).In another embodiment, other usual methods of recovering powders and gases can be provided at the outlet of the reaction vessel. Residual gases can be separated, destroyed for some toxic and recycled for others (plasmagenic, cladding).
Dans un autre mode de fonctionnement, la torche dans lesquels les gaz dans la configuration représenté ici circulent du haut vers le bas, peut être orientée de façon différente, par exemple orientée du bas vers le haut.In another operating mode, the torch in which the gases in the configuration shown here circulate from top to bottom, can be oriented in a different way, for example oriented from bottom to top.
Le dispositif selon l'invention s'applique notamment à la synthèse de poudre, c'est pourquoi la présente invention concerne également un procédé pour la préparation de poudre caractérisé en ce que l'on utilise un dispositif selon l'invention et en ce que le gaz réactif est choisi parmi les silanes, l'ammoniac, les hydrures de bore, les halogènures de tungstène et de titane, l'oxygène et les organo métalliques gazeux et leurs mélanges.The device according to the invention applies in particular to the synthesis of powder, this is why the present invention also relates to a process for the preparation of powder, characterized in that a device according to the invention is used and in that the reactive gas is chosen from silanes, ammonia, boron hydrides, tungsten and titanium halides, oxygen and gaseous organo-metals and their mixtures.
Le procédé selon l'invention s'applique en particulier à la préparation de poudre à base de silicium, à savoir poudre de silicium, de silice, de carbure et nitrure de silicium.The method according to the invention applies in particular to the preparation of silicon-based powder, namely silicon, silica, carbide and silicon nitride powder.
Le gaz réactif est alors selon l'invention choisi parmi les silanes et polysilanes, halogeno silanes, alkylsilanes et leur mélange à l'oxygène et à l'ammoniac.The reactive gas is then according to the invention chosen from silanes and polysilanes, halogenosilanes, alkylsilanes and their mixture with oxygen and ammonia.
Le gaz de gainage circule in fine, où que soit la conduite d'alimentation, entre le manchon et la conduite externe 2. On peut utiliser tout gaz de gainage usuel, et en particulier des gaz inertes comme l'azote, ou l'hydrogène par exemple.The cladding gas ultimately flows, regardless of the supply line, between the sleeve and the
Le gaz plasmagène utilisé est un gaz plasmagène classique, en particulier l'argon.The plasma gas used is a conventional plasma gas, in particular argon.
Il est injecté et circule dans la conduite extérieure. Le gaz actif circule dans la conduite interne ou dans la conduite unique quand ce mode de réalisation est utilisé. Dans ce cas, du gaz plamagène peut être injecté à l'allumage puis remplacé par ou mélangé à du gaz actif.It is injected and circulates in the external pipe. The active gas circulates in the internal pipe or in the single pipe when this embodiment is used. In this case, plamagen gas can be injected at ignition and then replaced by or mixed with active gas.
Selon l'invention, la ression d'utilisation est de l'ordre de la pression atmosphérique ou supérieur à celle-ci, jusqu'à 5 atmosphère environ.According to the invention, the resumption of use is of the order of atmospheric pressure or higher than this, up to approximately 5 atmosphere.
Par micro-onde, on entend la bande allant d'environ 400 à 12000 MHz.By microwave is meant the band from about 400 to 12000 MHz.
La demanderesse a mis en oeuvre l'invention dans les conditions suivantes :
- L/D = 2,5 ; D₁ compris entre D/4 et 3 D/4, de préférence 0,4 D.
- D/d₁ = compris entre 40 et 150, de préférence 100.
- d₁ = 2 mm (diamètre interne de la conduite 1)
- d₂ = 4 mm (diamètre externe de la conduite 1)
- d₃ = 7,5 mm (diamètre interne de la conduite 2)
- d₄ = 12 mm (diamètre externe de la conduite 2)
- d₅ = 27 mm (diamètre interne du manchon 10)
- d₆ = 33 mm (diamètre externe du manchon 10)
- la conduite 1 a un embout en quartz
- la conduite 2 a un embout en tungstène
- le manchon 10 a un embout en laiton
- le réacteur est en inox 316 L - (la température de référence interne est 440°C).
- gaz réactif : SiH₄ 7l/mn
- gaz plasmagène : Ar 3l/mn
- gaz de gainage : N₂ 11l/mn
- puissance µ-onde 2,5 Kw
- production = 490 g/h de poudre de silicium soit un rendement énergétique de 5,15 Kwh/kg de poudre et 7,90 KWh électrique/kg de poudre (conversion 100%, rendement ou générateur 66%).The applicant has implemented the invention under the following conditions:
- L / D = 2.5; D₁ between D / 4 and 3 D / 4, preferably 0.4 D.
- D / d₁ = between 40 and 150, preferably 100.
- d₁ = 2 mm (internal diameter of pipe 1)
- d₂ = 4 mm (external diameter of pipe 1)
- d₃ = 7.5 mm (internal diameter of pipe 2)
- d₄ = 12 mm (external diameter of pipe 2)
- d₅ = 27 mm (internal diameter of the sleeve 10)
- d₆ = 33 mm (external diameter of the sleeve 10)
- line 1 has a quartz tip
-
-
- the reactor is made of 316 L stainless steel - (the internal reference temperature is 440 ° C).
- reactive gas: SiH₄ 7l / min
- plasma gas: Ar 3l / min
- cladding gas: N₂ 11l / min
- µ-wave power 2.5 Kw
- production = 490 g / h of silicon powder, ie an energy yield of 5.15 Kwh / kg of powder and 7.90 KWh of electricity / kg of powder (100% conversion, yield or generator 66%).
On a étiré un monocristal à partir des poudres obtenues ainsi. L'analyse du monocristal a révélé 7 10¹⁷ atome/cm³ d'oxygène et 10 10¹⁷ atome/cm³ de carbone.A single crystal was drawn from the powders thus obtained. Analysis of the single crystal revealed 7 10¹⁷ atom / cm³ of oxygen and 10 10¹⁷ atom / cm³ of carbon.
Avec le même réacteur et les débits suivants :
SiH₄ 9,5 l/mn
Ar 3 l/mn
N₂ 14 l/mn
pour une puissance de 3,125 KW, on a obtenu 665 g/h de poudre de silicium soit un rendement de 4,69 KWh µ-onde/kg poudre et 7,20 KW/h électrique/kg poudre (conversion 100%)With the same reactor and the following flow rates:
SiH₄ 9.5 l / min
Ar 3 l / min
N₂ 14 l / min
for a power of 3.125 KW, 665 g / h of silicon powder were obtained, ie a yield of 4.69 KWh µ-wave / kg powder and 7.20 KW / h electric / kg powder (100% conversion)
Avec le même réacteur ( et d₅ = 25 mm)
et les débits suivants :
SiH₄ : 12 l/mn
Ar : 2,5l/mn
N₂ : 12 l/mn
pour un puissance de 3,2 KW, on a obtenu 840 g/h de poudre de silicium, soit un rendement de 3,81 KWh/kg de poudre et 5,86 KWh électrique/kg poudre (conversion 98,3 %).With the same reactor (and d₅ = 25 mm)
and the following debits:
SiH₄: 12 l / min
Ar: 2.5l / min
N₂: 12 l / min
for a power of 3.2 KW, 840 g / h of silicon powder were obtained, ie a yield of 3.81 KWh / kg of powder and 5.86 KWh of electricity / kg of powder (conversion 98.3%).
Les diamètres d₁ à d₆ sont définis sur la figure 1.The diameters d₁ to d₆ are defined in Figure 1.
Claims (15)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8708096 | 1987-06-10 | ||
FR8708096A FR2616614B1 (en) | 1987-06-10 | 1987-06-10 | MICROWAVE PLASMA TORCH, DEVICE COMPRISING SUCH A TORCH AND METHOD FOR MANUFACTURING POWDER USING THE SAME |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0296921A1 true EP0296921A1 (en) | 1988-12-28 |
EP0296921B1 EP0296921B1 (en) | 1992-07-29 |
Family
ID=9351899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88401405A Expired - Lifetime EP0296921B1 (en) | 1987-06-10 | 1988-06-09 | Microwave plasma torch, device comprising such a torch and production procedure for powder operating them |
Country Status (7)
Country | Link |
---|---|
US (1) | US4924061A (en) |
EP (1) | EP0296921B1 (en) |
JP (1) | JPS63312907A (en) |
CA (1) | CA1311277C (en) |
DE (1) | DE3873193T2 (en) |
DK (1) | DK310088A (en) |
FR (1) | FR2616614B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2773299A1 (en) * | 1997-12-29 | 1999-07-02 | Air Liquide | Plasma torch with adjustable injector for gas analysis |
EP0930810A1 (en) * | 1997-12-29 | 1999-07-21 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Plasma torch with adjustable distributor and gas analysis system using such a torch |
WO1999052332A1 (en) * | 1998-04-02 | 1999-10-14 | Bluem Heinz Juergen | Plasma torch with a microwave transmitter |
WO2000035256A1 (en) * | 1998-12-07 | 2000-06-15 | Robert Bosch Gmbh | Device for producing a free cold plasma jet |
CN105898975A (en) * | 2016-06-12 | 2016-08-24 | 浙江大学 | High-power microwave plasma resonant cavity |
CN113196888A (en) * | 2018-12-19 | 2021-07-30 | 迪热克塔普拉斯股份公司 | Apparatus for treating materials with plasma |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4126216B4 (en) * | 1991-08-08 | 2004-03-11 | Unaxis Deutschland Holding Gmbh | Device for thin-film processes for the treatment of large-area substrates |
US5349154A (en) * | 1991-10-16 | 1994-09-20 | Rockwell International Corporation | Diamond growth by microwave generated plasma flame |
NO174180C (en) * | 1991-12-12 | 1994-03-23 | Kvaerner Eng | Burner insertion tubes for chemical processes |
US5565118A (en) * | 1994-04-04 | 1996-10-15 | Asquith; Joseph G. | Self starting plasma plume igniter for aircraft jet engine |
DE69733660T2 (en) * | 1996-11-04 | 2006-05-18 | Materials Modification, Inc. | MICROWAVE PLASMA CHEMICAL SYNTHESIS OF ULTRAFINE POWDER |
DE19829760B4 (en) * | 1998-07-03 | 2006-10-12 | Institut für Oberflächenmodifizierung e.V. | Coaxial microwave applicator for generating a plasma with automatic or manual adjustment |
JP2000133494A (en) | 1998-10-23 | 2000-05-12 | Mitsubishi Heavy Ind Ltd | Microwave plasma generation device and method |
KR19990068381A (en) * | 1999-05-11 | 1999-09-06 | 허방욱 | microwave plasma burner |
DE19925790A1 (en) * | 1999-06-05 | 2000-12-07 | Inst Oberflaechenmodifizierung | High rate processing of material surfaces especially in optical applications, microelectronics or in microsystems comprises using a plasma beam source |
US7510664B2 (en) * | 2001-01-30 | 2009-03-31 | Rapt Industries, Inc. | Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces |
US7591957B2 (en) * | 2001-01-30 | 2009-09-22 | Rapt Industries, Inc. | Method for atmospheric pressure reactive atom plasma processing for surface modification |
US6660177B2 (en) * | 2001-11-07 | 2003-12-09 | Rapt Industries Inc. | Apparatus and method for reactive atom plasma processing for material deposition |
EP1361437A1 (en) * | 2002-05-07 | 2003-11-12 | Centre National De La Recherche Scientifique (Cnrs) | A novel biological cancer marker and methods for determining the cancerous or non-cancerous phenotype of cells |
US20060057016A1 (en) * | 2002-05-08 | 2006-03-16 | Devendra Kumar | Plasma-assisted sintering |
US7497922B2 (en) * | 2002-05-08 | 2009-03-03 | Btu International, Inc. | Plasma-assisted gas production |
US7560657B2 (en) * | 2002-05-08 | 2009-07-14 | Btu International Inc. | Plasma-assisted processing in a manufacturing line |
AU2002325215A1 (en) * | 2002-05-08 | 2003-11-11 | Leonhard Kurz Gmbh And Co. Kg | Method of decorating large plastic 3d objects |
US20060233682A1 (en) * | 2002-05-08 | 2006-10-19 | Cherian Kuruvilla A | Plasma-assisted engine exhaust treatment |
US20060228497A1 (en) * | 2002-05-08 | 2006-10-12 | Satyendra Kumar | Plasma-assisted coating |
US7432470B2 (en) | 2002-05-08 | 2008-10-07 | Btu International, Inc. | Surface cleaning and sterilization |
US7465362B2 (en) * | 2002-05-08 | 2008-12-16 | Btu International, Inc. | Plasma-assisted nitrogen surface-treatment |
CN1304103C (en) | 2002-05-08 | 2007-03-14 | 达纳公司 | Plasma-assisted carbon structure forming |
US20060062930A1 (en) * | 2002-05-08 | 2006-03-23 | Devendra Kumar | Plasma-assisted carburizing |
US7494904B2 (en) * | 2002-05-08 | 2009-02-24 | Btu International, Inc. | Plasma-assisted doping |
US20060237398A1 (en) * | 2002-05-08 | 2006-10-26 | Dougherty Mike L Sr | Plasma-assisted processing in a manufacturing line |
US7498066B2 (en) * | 2002-05-08 | 2009-03-03 | Btu International Inc. | Plasma-assisted enhanced coating |
US20050233091A1 (en) * | 2002-05-08 | 2005-10-20 | Devendra Kumar | Plasma-assisted coating |
US7638727B2 (en) * | 2002-05-08 | 2009-12-29 | Btu International Inc. | Plasma-assisted heat treatment |
US7445817B2 (en) * | 2002-05-08 | 2008-11-04 | Btu International Inc. | Plasma-assisted formation of carbon structures |
FR2847893B1 (en) * | 2002-12-02 | 2006-05-05 | Cit Alcatel | METHOD AND DEVICE FOR PLASMA RECHARGING A PREFORM FOR OPTICAL FIBER WITH REDUCED NITROGEN OXIDES |
US7189940B2 (en) | 2002-12-04 | 2007-03-13 | Btu International Inc. | Plasma-assisted melting |
US20040173316A1 (en) * | 2003-03-07 | 2004-09-09 | Carr Jeffrey W. | Apparatus and method using a microwave source for reactive atom plasma processing |
US7371992B2 (en) | 2003-03-07 | 2008-05-13 | Rapt Industries, Inc. | Method for non-contact cleaning of a surface |
US20040216845A1 (en) * | 2003-05-02 | 2004-11-04 | Czeslaw Golkowski | Non-thermal plasma generator device |
US20060027539A1 (en) * | 2003-05-02 | 2006-02-09 | Czeslaw Golkowski | Non-thermal plasma generator device |
DE10335720B4 (en) * | 2003-08-05 | 2018-05-09 | Andreas Stihl Ag & Co. Kg | Anti-vibration element |
US7304263B2 (en) * | 2003-08-14 | 2007-12-04 | Rapt Industries, Inc. | Systems and methods utilizing an aperture with a reactive atom plasma torch |
US7297892B2 (en) * | 2003-08-14 | 2007-11-20 | Rapt Industries, Inc. | Systems and methods for laser-assisted plasma processing |
DE102004029466A1 (en) * | 2004-06-18 | 2006-01-05 | Leybold Optics Gmbh | Medieninjektor |
US20080129208A1 (en) * | 2004-11-05 | 2008-06-05 | Satyendra Kumar | Atmospheric Processing Using Microwave-Generated Plasmas |
JP4489680B2 (en) * | 2005-10-03 | 2010-06-23 | 株式会社アドテック プラズマ テクノロジー | Microwave plasma generation method and apparatus |
US7619178B2 (en) * | 2006-02-06 | 2009-11-17 | Peschel William P | Directly connected magnetron powered self starting plasma plume igniter |
KR101012345B1 (en) * | 2008-08-26 | 2011-02-09 | 포항공과대학교 산학협력단 | Low Power Portable Microwave Plasma Generator |
US9505076B2 (en) * | 2012-01-25 | 2016-11-29 | Illinois Tool Works Inc. | Auxiliary shielding gas filter for a welding apparatus |
AU2013290093B2 (en) * | 2012-07-13 | 2017-09-21 | Peter Morrisroe | Torches and methods of using them |
KR101359320B1 (en) * | 2012-12-27 | 2014-02-10 | 한국기초과학지원연구원 | Microwave-radio frequency hybrid plasm torch |
CN105072793B (en) * | 2015-07-24 | 2017-11-14 | 浙江全世科技有限公司 | A kind of microwave plasma torch device |
EP3747241A1 (en) * | 2018-02-02 | 2020-12-09 | Ionics SA | Atmospheric plasma jet having a straight cannula tube |
EP3890449A1 (en) * | 2020-04-02 | 2021-10-06 | Tofwerk AG | Microwave driven plasma ion source |
DE102021004675B4 (en) | 2021-09-17 | 2024-02-01 | Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts | Hybrid process and hybrid device for low-CO2 or CO2-free high-temperature technologies for the thermal treatment or production of inorganic materials |
DE102022122280A1 (en) | 2022-09-02 | 2024-03-07 | Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts | Combination of electric heating elements, containing a composite material, with microwave plasma burners for high temperature applications in the metallurgy, chemical and cement industries |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2336050A1 (en) * | 1973-07-14 | 1975-02-06 | Walther Dipl Phys Dr Kessler | Microwave plasma burner for spectral analysis - quartz glass sleeve around base of flame |
DE3134501A1 (en) * | 1981-09-01 | 1983-08-11 | Nikolaj Ivanovič Čebankov | Ultra high frequency plasmatron and an installation for obtaining very finely divided powder |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5211175A (en) * | 1975-07-18 | 1977-01-27 | Toshiba Corp | Activated gas reacting apparatus |
DE2716592C3 (en) * | 1976-04-15 | 1979-11-08 | Hitachi, Ltd., Tokio | Plasma etching device |
JPS5939178B2 (en) * | 1977-04-25 | 1984-09-21 | 株式会社東芝 | Activated gas generator |
US4208806A (en) * | 1978-07-30 | 1980-06-24 | Gebrueder Buehler Ag | Process for treatment of pourable materials with microwaves |
US4423303A (en) * | 1980-05-06 | 1983-12-27 | Tokyo Shibaura Denki Kabushiki Kaisha | Apparatus for treating powdery materials utilizing microwave plasma |
US4711983A (en) * | 1986-07-07 | 1987-12-08 | Gerling John E | Frequency stabilized microwave power system and method |
-
1987
- 1987-06-10 FR FR8708096A patent/FR2616614B1/en not_active Expired
-
1988
- 1988-03-02 JP JP63047673A patent/JPS63312907A/en active Pending
- 1988-06-08 DK DK310088A patent/DK310088A/en not_active Application Discontinuation
- 1988-06-09 DE DE8888401405T patent/DE3873193T2/en not_active Expired - Fee Related
- 1988-06-09 EP EP88401405A patent/EP0296921B1/en not_active Expired - Lifetime
- 1988-06-10 CA CA000569142A patent/CA1311277C/en not_active Expired - Lifetime
- 1988-06-10 US US07/204,866 patent/US4924061A/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2336050A1 (en) * | 1973-07-14 | 1975-02-06 | Walther Dipl Phys Dr Kessler | Microwave plasma burner for spectral analysis - quartz glass sleeve around base of flame |
DE3134501A1 (en) * | 1981-09-01 | 1983-08-11 | Nikolaj Ivanovič Čebankov | Ultra high frequency plasmatron and an installation for obtaining very finely divided powder |
Non-Patent Citations (1)
Title |
---|
ELEKTRONISCHE RUNDSCHAU, vol. 13, no. 11, novembre 1959, pages 404-406; W. SCHMIDT: "Der Mikrowellen-Plasmabrenner" * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2773299A1 (en) * | 1997-12-29 | 1999-07-02 | Air Liquide | Plasma torch with adjustable injector for gas analysis |
EP0930810A1 (en) * | 1997-12-29 | 1999-07-21 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Plasma torch with adjustable distributor and gas analysis system using such a torch |
US6236012B1 (en) | 1997-12-29 | 2001-05-22 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Plasma torch with an adjustable injector and gas analyzer using such a torch |
WO1999052332A1 (en) * | 1998-04-02 | 1999-10-14 | Bluem Heinz Juergen | Plasma torch with a microwave transmitter |
US6388225B1 (en) | 1998-04-02 | 2002-05-14 | Bluem Heinz-Juergen | Plasma torch with a microwave transmitter |
WO2000035256A1 (en) * | 1998-12-07 | 2000-06-15 | Robert Bosch Gmbh | Device for producing a free cold plasma jet |
US6396214B1 (en) | 1998-12-07 | 2002-05-28 | Robert Bosch Gmbh | Device for producing a free cold plasma jet |
CN105898975A (en) * | 2016-06-12 | 2016-08-24 | 浙江大学 | High-power microwave plasma resonant cavity |
CN105898975B (en) * | 2016-06-12 | 2018-07-17 | 浙江大学 | A kind of HIGH-POWERED MICROWAVES plasma resonant |
CN113196888A (en) * | 2018-12-19 | 2021-07-30 | 迪热克塔普拉斯股份公司 | Apparatus for treating materials with plasma |
Also Published As
Publication number | Publication date |
---|---|
FR2616614A1 (en) | 1988-12-16 |
DK310088D0 (en) | 1988-06-08 |
EP0296921B1 (en) | 1992-07-29 |
CA1311277C (en) | 1992-12-08 |
DE3873193D1 (en) | 1992-09-03 |
FR2616614B1 (en) | 1989-10-20 |
JPS63312907A (en) | 1988-12-21 |
US4924061A (en) | 1990-05-08 |
DK310088A (en) | 1988-12-11 |
DE3873193T2 (en) | 1993-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0296921B1 (en) | Microwave plasma torch, device comprising such a torch and production procedure for powder operating them | |
FR2591412A1 (en) | Method for the production of powders and a sealed microwave plasma reactor | |
EP1332511B1 (en) | Device for treating gas with plasma | |
US5349154A (en) | Diamond growth by microwave generated plasma flame | |
CA2370479C (en) | Plasma torch cartridge and plasma torch equipped therewith | |
EP0576869A2 (en) | Method and apparatus for injecting pulverized coal into a blast furnace | |
EP0343038A1 (en) | Surface cleaning method with a transported plasma | |
EP1049820A1 (en) | Method for epitaxial growth on a substrate | |
EP0522986A1 (en) | Apparatus and process for diamond deposition by micro wave assisted CVD | |
US4820370A (en) | Particle shielded R. F. connector for a plasma enhanced chemical vapor processor boat | |
US3950479A (en) | Method of producing hollow semiconductor bodies | |
EP0305241A1 (en) | Process and apparatus for the treatment of surfaces using an electric after-glow in a flowing gas | |
EP0112737B1 (en) | Tightness system for a chemical apparatus between an enclosure of breakable material and metallic parts | |
WO1993003209A1 (en) | Process and effusion cell for the formation of molecular beams | |
WO2022248788A1 (en) | Dielectric barrier discharge plasma reactor | |
JP3653035B2 (en) | Apparatus for forming carbon film on inner surface of plastic container and method for manufacturing inner surface carbon film-coated plastic container | |
FR2478869A1 (en) | SHF tube coaxial window - uses centre conductor and crossbeam support of same thermal expansion coefficient at its sealing temp. | |
BE515841A (en) | ||
JPH04136179A (en) | Microwave plasma cvd device | |
FR2601441A1 (en) | PLASMA ROTATING OVEN WITH MATERIAL SUPPLY TO BE TREATED WITH MECHANICAL DRIVE | |
FR2536218A1 (en) | Improvement to gas lasers. | |
LU88249A7 (en) | Method and device for injecting pulverized coal into a blast furnace crucible | |
EP1225672B1 (en) | Internal spark control device for a connection module in gas-insulated transmission line | |
EP4289233A1 (en) | Device for producing a plasma comprising a plasma-striking unit | |
FR2606395A1 (en) | Process for the preparation of submicronic oxide powders and apparatus for carrying it out |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19880613 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 19910516 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 3873193 Country of ref document: DE Date of ref document: 19920903 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19930512 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19930518 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19930519 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19930524 Year of fee payment: 6 Ref country code: CH Payment date: 19930524 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19930527 Year of fee payment: 6 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19930630 Year of fee payment: 6 |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19940609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19940610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19940630 Ref country code: CH Effective date: 19940630 Ref country code: BE Effective date: 19940630 |
|
BERE | Be: lapsed |
Owner name: S.A. L' AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION Effective date: 19940630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19950101 |
|
EUG | Se: european patent has lapsed |
Ref document number: 88401405.1 Effective date: 19950110 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19940609 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950301 |
|
EUG | Se: european patent has lapsed |
Ref document number: 88401405.1 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050609 |