[go: up one dir, main page]

EP0280835A1 - Hohlbohrer - Google Patents

Hohlbohrer Download PDF

Info

Publication number
EP0280835A1
EP0280835A1 EP19870810686 EP87810686A EP0280835A1 EP 0280835 A1 EP0280835 A1 EP 0280835A1 EP 19870810686 EP19870810686 EP 19870810686 EP 87810686 A EP87810686 A EP 87810686A EP 0280835 A1 EP0280835 A1 EP 0280835A1
Authority
EP
European Patent Office
Prior art keywords
cutting segments
surface layer
hollow drill
diamond grain
carrier body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19870810686
Other languages
English (en)
French (fr)
Inventor
Helmut Vollmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hilti AG
Original Assignee
Hilti AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hilti AG filed Critical Hilti AG
Publication of EP0280835A1 publication Critical patent/EP0280835A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/02Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing
    • B28D1/04Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs
    • B28D1/041Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs with cylinder saws, e.g. trepanning; saw cylinders, e.g. having their cutting rim equipped with abrasive particles
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/48Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of core type

Definitions

  • the invention relates to a hollow drill with a hollow cylindrical carrier body, on the drilling direction side open end of which the end face and the circumferential contour of the carrier body projecting cutting segments containing diamond grain are arranged.
  • a hollow drill with cutting segments containing diamond grain is known from AT-PS 373 196.
  • the cutting segments sit on the end face of a hollow cylindrical support body and have an end face pointing in the direction of drilling and an outer contour curved in a circular arc in the axial projection of the hollow drill and concentrically projecting over the circumferential contour of the support body.
  • the diamond grain which is distributed in an embedding material, is not only inside the cutting segments, but is partly exposed to the end face and the outer contour.
  • the cutting segments with the end face remove material from the material to be machined, for example concrete, natural stone, brick, to create a borehole.
  • the outer contour of the cutting segments slides along the wall of the borehole that is being created, thereby causing the hollow drill bit to be guided laterally.
  • This not only results in axial shortening, but also in radial cutting of the cutting segments from the outer contour.
  • the radial cutting of the cutting segments takes place to such a high degree that after just a few drilling operations, only holes with a greatly reduced diameter are created.
  • the drill holes intended to receive them must therefore only be subject to slight fluctuations in diameter. So the acceptable deviation from the ideal diameter is in the range of tenths of a millimeter. Approximately half of this deviation alone takes up the manufacturing tolerances of the hollow drill, so that there is only a very small margin available for the permissible radial removal of the cutting segments.
  • the invention has for its object to provide a hollow drill with cutting segments containing diamond grain, with which a large number of holes can be made with high diameter accuracy.
  • the object is achieved in that the cutting segments have a surface layer which extends concentrically to the circumferential contour of the carrier body and has a higher diamond grain concentration than the remaining area of the cutting segments.
  • the surface layer with an increased diamond grain concentration extends at least over a part of the outer contour of the cutting segments that projects beyond the peripheral contour of the carrier body. Due to the higher diamond grain concentration, the wear resistance of the surface layer is significantly higher than the wear resistance of the remaining area of the cutting segments. This leads to more extensive radial dimensional accuracy of the cutting segments, so that a large number of drill holes with high diameter accuracy can be produced.
  • Particularly high wear resistance is preferably achieved in that the extent of the surface layer measured in the circumferential direction corresponds to that of the cutting segments.
  • the extent of the surface layer measured in the axial direction of the drill also corresponds to that of the cutting segments according to a further proposal of the invention.
  • the extent of the surface layer measured in the axial direction of the drill exceeds the extent of the cutting segments measured in the axial direction and projecting beyond the end face of the carrier body. This design is particularly suitable for workpieces with high strength to improve the radial dimensional accuracy of the cutting segments.
  • the section of the surface layer set back relative to the end face of the carrier body can be fixed on the circumferential contour of the carrier body or can be supported and held by an extension connected to the remaining area of the cutting segments.
  • the recessed section of the surface layer can ensure high radial dimensional accuracy of the cutting segments up to the complete axial shortening of the part of the cutting segments projecting beyond the end face of the carrier body.
  • the diamond grain concentration in the surface layer preferably corresponds to two to five times the diamond grain concentration in the remaining region of the cutting segments.
  • the surface layer advantageously has a thickness of 0.2 to 1 mm. In addition to sufficient wear resistance of the surface layer, this ensures that the surface layer together with the end face of the cutting segments is gradually removed axially without the surface layer adversely affecting the drilling behavior.
  • the hollow drill designated as a whole by 1, consists of a hollow cylindrical carrier body 2 with a drive shaft 3 molded onto the end facing away from the drilling direction and project radially beyond the circumferential contour of the carrier body 2.
  • the cutting segments 4 have an end face 6 pointing in the drilling direction and a surface layer 7 which extends concentrically to the circumferential contour of the carrier body 2 and which also extends counter to the drilling direction and then to the end face 5 along the circumferential contour of the carrier body 2 with a section 8.
  • the Cutting segments 4 consist of an embedding material, for example cobalt with metallic additives such as copper, tin, zinc, tungsten, in which diamond grain 9 is embedded in a spatially distributed manner.
  • the diamond grain concentration is two to five times the remaining area of the cutting segments 4, as shown in FIG. 2.
  • the thickness of the surface layer 7 is 0.2 to 1 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Drilling Tools (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Earth Drilling (AREA)

Abstract

Der Hohlbohrer (1) verfügt über einen hohlzylindrischen Trägerkörper (2) und über Schneidsegmente (4), die aus einem Einbettungsmaterial und in diesem gehaltertem Diamantkorn (9) bestehen. Die von der Achse des Trägerkörpers (2) abgewandte Oberflächenschicht (7) der Schneidsegmente (4) weist eine gegenüber dem übrigen Bereich der Schneidsegmente (4) höhere Diamantkorn-Konzentration auf. Dadurch wird die Schaffung einer grossen Anzahl von Bohrlöchern mit hoher Durchmessergenauigkeit gewährleistet.

Description

  • Die Erfindung betrifft einen Hohlbohrer mit einem hohl­zylindrischen Trägerkörper, an dessen bohrrichtungsseitigem offenen Ende die Stirnseite und die Umfangskontur des Träger­körpers überragende, Diamantkorn enthaltende Schneidsegmente angeordnet sind.
  • Aus der AT-PS 373 196 ist ein Hohlbohrer mit Diamantkorn enthaltenden Schneidsegmenten bekannt. Die Schneidsegmente sitzen auf der Stirnseite eines hohlzylindrischen Träger­körpers und verfügen über eine in Bohrrichtung weisende Stirnfläche sowie über eine in der Axialprojektion des Hohl­bohrers kreisbogenförmig gekrümmte, die Umfangskontur des Trägerkörpers konzentrisch überragende Aussenkontur. Das in einem Einbettungsmaterial verteilt gelagerte Diamantkorn befindet sich nicht nur im Innern der Schneidsegmente, son­dern liegt teilweise zur Stirnfläche und zur Aussenkontur hin frei.
  • Im Arbeitseinsatz des Hohlbohrers tragen die Schneidsegmente mit der Stirnfläche zur Schaffung eines Bohrloches kreis­ringförmig Material vom Bearbeitungsgut, zB Beton, Natur­stein, Ziegel, ab. Die Aussenkontur der Schneidsegmente gleitet dabei entlang der Wandung des entstehenden Bohr­loches, wodurch eine seitliche Führung des Hohlbohrers be­wirkt wird. So kommt es im Arbeitseinsatz verschleissbedingt nicht nur zur axialen Verkürzung, sondern auch zum radialen Abbau der Schneidsegmente von der Aussenkontur her. Der radiale Abbau der Schneidsegmente erfolgt dabei in einem so hohen Masse, dass schon nach wenigen Bohrvorgängen nur mehr Bohrlöcher mit stark verkleinertem Durchmesser entstehen.
  • Diese Massabweichung ist unerheblich, wenn die Bohrlöcher beispielsweise nur zum Durchführen von Rohren oder durch Nebeneinanderreihung solcher Bohrlöcher zur Herstellung eines Durchbruches dienen sollen. Dagegen sind Bohrlöcher mit solcherart verkleinertem Durchmesser für die Aufnahme mechanischer Dübel ungeeignet, da die Dübel in die Bohrlöcher nur erschwert oder gar nicht einführbar sind. Es ist aber auch nicht möglich, zur Umgehung dieses Problems Hohlbohrer mit einem im Neuzustand vergrösserten Bohrdurchmesser zu verwenden, da so vorerst übergrosse Bohrlöcher entstehen würden, was wiederum den Verankerungswert der Dübel beein­trächtigt.
  • Zur Gewährleistung guter Einführbarkeit und hoher Veranke­rungswerte von Dübeln dürfen die zu deren Aufnahme vorge­sehenen Bohrlöcher demgemäss nur geringen Durchmesser­schwankungen unterliegen. So bewegt sich die akzeptable Abweichung vom idealen Durchmesser im Bereich von Zehntel­millimetern. Circa die Hälfte dieser Abweichung nehmen allein die Herstellungstoleranzen des Hohlbohrers in An­spruch, so dass für den zulässigen radialen Abbau der Schneidsegmente nur noch ein sehr kleiner Spielraum zur Verfügung steht.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Hohlbohrer mit Diamantkorn enthaltenden Schneidsegmenten zu schaffen, mit dem sich eine grosse Anzahl Bohrlöcher von hoher Durch­messergenauigkeit herstellen lässt.
  • Erfindungsgemäss wird die Aufgabe dadurch gelöst, dass die Schneidsegmente eine sich konzentrisch zur Umfangskontur des Trägerkörpers erstreckende Oberflächenschicht mit einer gegen­über dem übrigen Bereich der Schneidsegmente höheren Diamant­korn-Konzentration aufweisen.
  • Die Oberflächenschicht mit erhöhter Diamantkorn-Konzen­tration erstreckt sich zumindest über einen Teil der die Um­fangskontur des Trägerkörpers überragenden Aussenkontur der Schneidsegmente. Die Verschleissfestigkeit der Oberflächen­schicht liegt aufgrund der höheren Diamantkorn- Konzen­tration erheblich über der Verschleissfestigkeit des übrigen Bereiches der Schneidsegmente. Dies führt zu weitgehender radialer Masshaltigkeit der Schneidsegmente, so dass eine grosse Anzahl Bohrlöcher von hoher Durchmessergenauigkeit hergestellt werden kann.
  • Besonders hohe Verschleissfestigkeit wird vorzugsweise er­zielt, indem die in Umfangsrichtung gemessene Erstreckung der Oberflächenschicht derjenigen der Schneidsegmente ent­spricht.
  • Zur Erhöhung der Verschleissfestigkeit entspricht ferner die in Achsrichtung des Bohrers gemessene Erstreckung der Ober­flächenschicht, nach einem weiteren Vorschlag der Erfindung, derjenigen der Schneidsegmente.
  • In Weiterbildung der Erfindung übersteigt die in Achsrich­tung des Bohrers gemessene Erstreckung der Oberflächen­schicht die in Achsrichtung gemessene, die Stirnseite des Trägerkörpers überragende Erstreckung der Schneidsegmente. Insbesondere für Bearbeitungsgut mit hoher Festigkeit eignet sich diese Ausbildung zur Verbesserung der radialen Mass­haltigkeit der Schneidsegmente.
  • Der gegenüber der Stirnseite des Trägerkörpers zurückver­setzte Abschnitt der Oberflächenschicht kann auf der Umfangs­kontur des Trägerkörpers festgelegt oder durch einen mit dem übrigen Bereich der Schneidsegmente verbundenen Fortsatz hinterstützt und gehalten sein. Durch einen solchen entgegen der Bohrrichtung sich an die Stirnseite des Trägerkörpers anschliessenden Abschnitt der Oberflächenschicht wird die der seitlichen Führung des Hohlbohrers dienende Oberflächen­schicht insgesamt grossflächiger, woraus sich eine Steue­rungsmöglichkeit bezüglich der erforderlichen Diamantkorn-­Konzentration in der Oberflächenschicht insgesamt ergibt. Vor allem kann durch den zurückversetzten Abschnitt der Oberflächenschicht bis zur vollständigen axialen Verkürzung des die Stirnseite des Trägerkörpers überragenden Teiles der Schneidsegmente hohe radiale Masshaltigkeit der Schneid­segmente gewährleistet werden.
  • Vorzugsweise entspricht die Diamantkorn-Konzentration in der Oberflächenschicht dem Zwei- bis Fünffachen der Diamantkorn-­Konzentration im übrigen Bereich der Schneidsegmente. Mit höherer Festigkeit des Bearbeitungsgutes wird eine höhere, in der voran angegebenen Bandbreite liegende Diamantkorn-Kon­zentration gewählt.
  • Mit Vorteil weist die Oberflächenschicht eine Dicke von 0,2 bis 1 mm auf. Damit wird nebst ausreichender Verschleiss­festigkeit der Oberflächenschicht gewährleistet, dass die Oberflächenschicht zusammen mit der Stirnfläche der Schneid­segmente sukzessive axial mitabgetragen wird, ohne dass die Oberflächenschicht das Bohrverhalten nachteilig beeinflusst.
  • Die Erfindung wird nachstehend anhand einer Zeichnung, die ein Ausführungsbeispiel wiedergibt, näher erläutert. Es zeigen:
    • Fig. 1 einen Hohlbohrer in perspektivischer Darstellung;
    • Fig. 2 eine vergrösserte Detail-Ansicht auf die Stirnseite des Hohlbohrers gemäss Fig. 1.
  • Der insgesamt mit 1 bezeichnete Hohlbohrer besteht aus einem hohlzylindrischen Trägerkörper 2 mit einem an dem der Bohr­richtung abgewandten Ende angeformten Antriebsschaft 3. Auf dem in Bohrrichtung weisenden offenen Ende des Trägerkörpers 2 sitzen vier insgesamt mit 4 bezeichnete Schneidsegmente, welche die Stirnseite 5 des Trägerkörpers 2 axial und die Umfangskontur des Trägerkörpers 2 radial überragen.
  • Die Schneidsegmente 4 verfügen über eine in Bohrrichtung weisende Stirnfläche 6 und über eine sich konzentrisch zur Umfangskontur des Trägerkörpers 2 erstreckende Oberflächen­schicht 7, welche sich auch entgegen der Bohrrichtung, an­schliessend an die Stirnseite 5 entlang der Umfangskontur des Trägerkörpers 2 mit einem Abschnitt 8 erstreckt. Die Schneidsegmente 4 bestehen aus einem Einbettungsmaterial, zB Kobalt mit metallischen Zusätzen wie Kupfer, Zinn, Zink, Wolfram, in welchem Diamantkorn 9 räumlich verteilt einge­bettet ist. In der Oberflächenschicht 7 beträgt die Diamant­korn-Konzentration das Zwei- bis Fünffache des übrigen Be­reichs der Schneidsegmente 4, wie dies die Fig. 2 verdeut­licht. Die Dicke der Oberflächenschicht 7 beträgt 0,2 bis 1 mm.
  • Zufolge der grösseren Diamantkorn-Konzentration in der Ober­flächenschicht 7 wird hohe radiale Verschleissfestigkeit der Schneidsegmente 4 erzielt, so dass mit dem Hohlbohrer 1 eine grosse Anzahl Bohrlöcher von hoher Durchmessergenauigkeit hergestellt werden kann.

Claims (6)

1. Hohlbohrer (1) mit einem hohlzylindrischen Trägerkörper (2), an dessen bohrrichtungsseitigem offenen Ende die Stirnseite und die Umfangskontur des Trägerkörpers (2) überragende, Diamantkorn (9) enthaltende Schneidsegmente (4) angeordnet sind, dadurch gekenn­zeichnet, dass die Schneidsegmente (4) eine sich konzentrisch zur Umfangskontur des Trägerkörpers (2) erstreckende Oberflächenschicht (7) mit einer gegenüber dem übrigen Bereich der Schneidsegmente (4) höheren Diamantkorn-Konzentration aufweisen.
2. Hohlbohrer nach Anspruch 1, dadurch gekennzeichnet, dass die in Umfangsrichtung gemessene Erstreckung der Oberflächenschicht (7) derjenigen der Schneidsegmente (4) entspricht.
3. Hohlbohrer nach Anspruch 1 oder 2, dadurch gekenn­zeichnet, dass die in Achsrichtung des Bohrers (1) ge­messene Erstreckung der Oberflächenschicht (7) der­jenigen der Schneidsegmente (4) entspricht.
4. Hohlbohrer nach Anspruch 1 oder 2, dadurch gekenn­zeichnet, dass die in Achsrichtung des Bohrers ge­messene Erstreckung der Oberflächenschicht (7) die in Achsrichtung gemessene, die Stirnseite (5) des Trägerkörpers (2) überragende Erstreckung der Schneidsegmente (4) übersteigt.
5. Hohlbohrer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Diamantkorn-Konzentration in der Oberflächenschicht (7) dem Zwei- bis Fünffachen der Diamantkorn-Konzentration im übrigen Bereich der Schneidsegmente (4) entspricht.
6. Hohlbohrer nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Oberflächenschicht (7) eine Dicke von 0,2 bis 1 mm aufweist.
EP19870810686 1987-03-02 1987-11-23 Hohlbohrer Withdrawn EP0280835A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873706641 DE3706641A1 (de) 1987-03-02 1987-03-02 Hohlbohrer
DE3706641 1987-03-02

Publications (1)

Publication Number Publication Date
EP0280835A1 true EP0280835A1 (de) 1988-09-07

Family

ID=6322084

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870810686 Withdrawn EP0280835A1 (de) 1987-03-02 1987-11-23 Hohlbohrer

Country Status (4)

Country Link
EP (1) EP0280835A1 (de)
JP (1) JPS63230306A (de)
AU (1) AU1125488A (de)
DE (1) DE3706641A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0363313A2 (de) * 1988-10-05 1990-04-11 HILTI Aktiengesellschaft Hohlbohrwerkzeug für Gestein
WO1990015683A1 (de) * 1989-06-14 1990-12-27 Tyrolit Schleifmittelwerke Swarovski K.G. Hohlbohrer
EP0514822A1 (de) * 1991-05-23 1992-11-25 FRIEDRICH BUSSE DIAMANTWERKZEUGE GmbH + Co. Werkzeug für die Bearbeitung von Beton o.dgl.
EP0857552A2 (de) * 1997-01-27 1998-08-12 Tyrolit Schleifmittelwerke Swarovski KG Steinbearbeitungswerkzeug mit verbessertem Anschnittverhalten
GB2423540A (en) * 2005-02-24 2006-08-30 Marcrist Internat Ltd Core drills and cutting discs
GB2423538A (en) * 2005-02-24 2006-08-30 Marcrist Internat Ltd Core drilling segments with side protection
KR100968930B1 (ko) 2008-05-29 2010-07-14 가부시키 가이샤 미야나가 다이아몬드 코어드릴
CN102059376A (zh) * 2010-12-15 2011-05-18 杨清韩 一种圆柱体中空钻孔工具
DE202015104880U1 (de) 2015-09-15 2015-11-03 Jakob Lach Gmbh & Co. Kg Hohlbohrer
CN106424855A (zh) * 2016-12-26 2017-02-22 王文胜 一种金刚石钻头
CN110735602A (zh) * 2019-10-31 2020-01-31 广州晶体科技有限公司 一种取芯钻头
CN111042741A (zh) * 2019-12-26 2020-04-21 武汉万邦激光金刚石工具股份有限公司 多级组合式不取芯孕镶金刚石钻头

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429199A (en) * 1992-08-26 1995-07-04 Kennametal Inc. Cutting bit and cutting insert
JPH08155946A (ja) * 1994-11-30 1996-06-18 Tone Corp 内外径部強化ダイヤモンドビットおよびその製造方法
JP4785185B2 (ja) * 2005-12-27 2011-10-05 信越石英株式会社 中空脆性材料の内孔加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2167151B1 (de) * 1970-04-08 1980-05-08 Gen Electric Verfahren zum Herstellen eines diamantbestueckten Schneideinsatzes
EP0102843A2 (de) * 1982-09-06 1984-03-14 De Beers Industrial Diamond Division (Proprietary) Limited Werkzeugeinsatz
US4505251A (en) * 1982-02-08 1985-03-19 Martin Stoll Cutting segment with porous center section
DE3408092A1 (de) * 1984-03-05 1985-09-19 Hilti Ag, Schaan Hohlbohrer
US4561810A (en) * 1981-12-16 1985-12-31 General Electric Company Bi-level cutting insert
US4610579A (en) * 1984-05-31 1986-09-09 Ppg Industries, Inc. Core drill bit with dynamic cooling fluid flow control means

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2167151B1 (de) * 1970-04-08 1980-05-08 Gen Electric Verfahren zum Herstellen eines diamantbestueckten Schneideinsatzes
US4561810A (en) * 1981-12-16 1985-12-31 General Electric Company Bi-level cutting insert
US4505251A (en) * 1982-02-08 1985-03-19 Martin Stoll Cutting segment with porous center section
EP0102843A2 (de) * 1982-09-06 1984-03-14 De Beers Industrial Diamond Division (Proprietary) Limited Werkzeugeinsatz
DE3408092A1 (de) * 1984-03-05 1985-09-19 Hilti Ag, Schaan Hohlbohrer
US4610579A (en) * 1984-05-31 1986-09-09 Ppg Industries, Inc. Core drill bit with dynamic cooling fluid flow control means

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0363313A2 (de) * 1988-10-05 1990-04-11 HILTI Aktiengesellschaft Hohlbohrwerkzeug für Gestein
EP0363313A3 (en) * 1988-10-05 1990-12-27 Hilti Aktiengesellschaft Hollow stone-drilling tool
WO1990015683A1 (de) * 1989-06-14 1990-12-27 Tyrolit Schleifmittelwerke Swarovski K.G. Hohlbohrer
EP0514822A1 (de) * 1991-05-23 1992-11-25 FRIEDRICH BUSSE DIAMANTWERKZEUGE GmbH + Co. Werkzeug für die Bearbeitung von Beton o.dgl.
EP0857552A2 (de) * 1997-01-27 1998-08-12 Tyrolit Schleifmittelwerke Swarovski KG Steinbearbeitungswerkzeug mit verbessertem Anschnittverhalten
EP0857552A3 (de) * 1997-01-27 2000-02-09 Tyrolit Schleifmittelwerke Swarovski KG Steinbearbeitungswerkzeug mit verbessertem Anschnittverhalten
GB2423540A (en) * 2005-02-24 2006-08-30 Marcrist Internat Ltd Core drills and cutting discs
GB2423538A (en) * 2005-02-24 2006-08-30 Marcrist Internat Ltd Core drilling segments with side protection
GB2423537A (en) * 2005-02-24 2006-08-30 Marcrist Internat Ltd Core drills
KR100968930B1 (ko) 2008-05-29 2010-07-14 가부시키 가이샤 미야나가 다이아몬드 코어드릴
CN102059376A (zh) * 2010-12-15 2011-05-18 杨清韩 一种圆柱体中空钻孔工具
DE202015104880U1 (de) 2015-09-15 2015-11-03 Jakob Lach Gmbh & Co. Kg Hohlbohrer
CN106424855A (zh) * 2016-12-26 2017-02-22 王文胜 一种金刚石钻头
CN110735602A (zh) * 2019-10-31 2020-01-31 广州晶体科技有限公司 一种取芯钻头
CN111042741A (zh) * 2019-12-26 2020-04-21 武汉万邦激光金刚石工具股份有限公司 多级组合式不取芯孕镶金刚石钻头

Also Published As

Publication number Publication date
AU1125488A (en) 1988-09-01
DE3706641A1 (de) 1988-09-15
JPS63230306A (ja) 1988-09-26

Similar Documents

Publication Publication Date Title
EP0169402B1 (de) Gesteinsbohrer
EP0280835A1 (de) Hohlbohrer
EP0715055B1 (de) Werkzeug mit Trägerkörper und Schneidkörper
EP0378964A2 (de) Hohlbohrwerkzeug
DE102009001815A1 (de) Verfahren zur Verankerung eines Befestigungselementes in einem mineralischen Bauteil sowie Befestigungselement für mineralische Bauteile
EP2055970A2 (de) Schraube
DE3507817A1 (de) Bohrer zur erzeugung einer hinterschneidung in einer bohrung
EP0603121B1 (de) Hohlbohrkrone mit stirnseitigen Schneiden
EP0351699A2 (de) Hohlbohrwerkzeug
DE2807353A1 (de) Gesteins-bohrspitze
EP0707129A2 (de) Bohrwerkzeug mit Trägerkörper und Schneidkörpern
EP0477253B1 (de) Hohlbohrer
DE102007000607A1 (de) Gewindefurchende Schraube
EP0655547A2 (de) Gesteinsbohrmeissel mit schraubenförmigem Förderteil
EP0156762A1 (de) Hohlbohrer
EP0653544B1 (de) Spiralbohrer
EP2007539A1 (de) Verfahren zum einbringen eines tieflochs und pilotbohrer hierfür
EP0363313B1 (de) Hohlbohrwerkzeug für Gestein
EP0706870A1 (de) Hohlbohrkrone mit einem hohlzylindrischen Trägerkörper
DE2549057C2 (de) Bohreinheit
DE8221158U1 (de) Bohrwerkzeug zum erzeugen von bohrloechern mit wenigstens einer erweiterung am bohrlochgrund
DE10083312B4 (de) Dichtungsvorrichtung
DE3227767A1 (de) Bohrwerkzeug zum erzeugen von bohrloechern mit wenigstens einer erweiterung am bohrlochgrund
DE3532672A1 (de) Ring mit schicht aus reibwerkstoff auf kegelflaeche
DE6933778U (de) Spiralbohrer.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI NL SE

17P Request for examination filed

Effective date: 19880921

17Q First examination report despatched

Effective date: 19900110

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19910601

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VOLLMER, HELMUT