[go: up one dir, main page]

EP0254985A1 - Générateur de vapeur avec foyer à lit fluidisé circulant à pression atmosphérique ou suralimenté et méthode de réglage - Google Patents

Générateur de vapeur avec foyer à lit fluidisé circulant à pression atmosphérique ou suralimenté et méthode de réglage Download PDF

Info

Publication number
EP0254985A1
EP0254985A1 EP87110332A EP87110332A EP0254985A1 EP 0254985 A1 EP0254985 A1 EP 0254985A1 EP 87110332 A EP87110332 A EP 87110332A EP 87110332 A EP87110332 A EP 87110332A EP 0254985 A1 EP0254985 A1 EP 0254985A1
Authority
EP
European Patent Office
Prior art keywords
heating surface
fluidized bed
steam generator
superheater heating
bed cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87110332A
Other languages
German (de)
English (en)
Inventor
Josef Hönig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Inova Steinmueller GmbH
Original Assignee
L&C Steinmueller GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L&C Steinmueller GmbH filed Critical L&C Steinmueller GmbH
Publication of EP0254985A1 publication Critical patent/EP0254985A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/22Drums; Headers; Accessories therefor
    • F22B37/227Drums and collectors for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements or dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements or dispositions of combustion apparatus with combustion in a fluidized bed
    • F22B31/0084Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements or dispositions of combustion apparatus with combustion in a fluidized bed with recirculation of separated solids or with cooling of the bed particles outside the combustion bed

Definitions

  • the invention relates to a steam generator with circulating atmospheric or pressure-charged fluidized bed combustion, consisting of a fluidized bed combustion chamber, at least one separator, at least one downstream of the separator and with a partial flow of the separated solids separated by the separator fluid bed cooler and a waste heat boiler train, in which feed water preheater, superheater, evaporator - and intermediate superheater heating surfaces are arranged, at least one evaporator heating surface being arranged in the swirl combustion chamber and at least one intermediate superheater heating surface in a fluid bed cooler and an adjustable by-pass line being provided parallel to at least one heating surface.
  • Such a steam generator is known from EP-PS 68 301.
  • an evaporator heating surface with a bypass line connected in parallel is provided in a fluid bed cooler, and only heating surfaces for the reheating are arranged in another fluid bed cooler.
  • the heating of the ZÜ steam is regulated via the bed temperature, which in turn is different from that of the Fluid bed cooler recycled ash flow is affected.
  • At least one superheater heating surface is arranged in the fluidized bed cooler together with the reheater heating surface and an adjustable bypass line is assigned to the reheater heating surface.
  • the fluid bed cooler can achieve excellent control dynamics even with large and rapid load changes, and secondly the heat absorption distribution between the heating surfaces in the fluid bed cooler can be influenced by means of the bypass line.
  • the bypass flow in the reheater heating surface in the fluid bed cooler changes the internal heat transfer coefficient on the one hand and the logarithmic temperature difference on the other. There is an almost linear relationship between the heat flow transferred and the bypass flow.
  • the heat balance in the firing loop and the heat distribution between the firing loop and the waste heat boiler train can be influenced by changing the ash flow passed through the fluidized bed cooler, while the ZÜ outlet temperature is maintained by adjusting the bypass line accordingly.
  • the fluid bed cooler can lag somewhat behind the fluidized bed temperature, so that condensation and water jets can occur in the reheater heating surface. This is also avoided by the arrangement according to the invention.
  • a further second superheater heating surface upstream of the first superheater heating surface is provided in the fluidized bed cooler, an overflow wall being arranged between the two superheater heating surfaces in order to improve the thermal coupling between the intermediate superheater heating surface and the first superheater heating surface. This coupling is further improved if these two heating surfaces are interleaved.
  • the intermediate superheater heating surface arranged in the fluid bed cooler is in the Abhitzekesselzug arranged second reheater heating surface is connected upstream.
  • the size of the bypass flow is dependent on the warm-up span for the same control capacity of the reheater outlet temperature.
  • the bypass flow is smallest when the entire reheater heating surface is in the fluid bed cooler. It is therefore advantageous if the entire reheater heating surface is divided between the fluidized bed cooler and the waste heat boiler train in the manner described above.
  • a bypass line is also assigned to this reheater heating surface in order to be able to influence the heat distribution on the reheater heating surfaces on the one hand and the heat distribution between the combustion loop and the boiler train on the other hand.
  • the mixing section preferably consists of an outer jacket and a venturi-like insert welded into the outer jacket on one side, the hot steam flowing axially through the venturi-like insert, and the cold steam being introduced into an annular space between the outer jacket and the outer surface of the insert and out through an annular gap the annulus enters the hot steam.
  • the invention is also directed to a method for regulating the steam generator.
  • the process according to the invention is characterized in that when the partial ash flow supplied to the fluid bed cooler is increased, the bypass line assigned to the reheater heating surface is opened further and is closed further as the ash flow decreases.
  • the steam generator has a swirl combustion chamber (1), to which fuel, optionally additive, primary air and secondary air is added in a manner that is not explained in more detail.
  • the solids discharged from the swirl combustion chamber (1) with the flue gas are separated in a separator (2).
  • the separated solids are fed via a solids line (3) to a three-way distributor (4), which distributes the solids to two solids lines (5) and (6), one of which is in a fluid bed cooler (7) and the other in the vortex combustion chamber (1) opens.
  • Solids cooled in the fluid bed cooler (7) are also fed to the vortex combustion chamber (1) via a line (8).
  • the gas emerging from the separator (2) enters a waste heat boiler train (9) at a temperature of, for example, 850 ° C. and leaves the waste heat boiler train (9) at its lower end.
  • Feed water is supplied via a line (10) and preheated in a first feed water preheater heating surface (11) designed as a bulkhead heating surface and then in a feed water preheating heating surface (12) designed as a wall heating surface.
  • the preheated water is fed via a line (13) to an evaporator heating surface (14), which is preferably designed as a wall tube heating surface, of the vortex combustion chamber (1).
  • the heating surface (14) is connected to a separating bottle (16) via a line (15). Separated water is returned via a line (17) with a pump (18) to the entrance of the preheating surface (11).
  • Steam is fed from the separating bottle (16) via a line (19) to a first superheater heating surface (20) constructed from support tubes.
  • the steam flows from the superheater heating surface (20) via a line (21) into a superheater heating surface (22) arranged in the fluidized bed cooler, from there via a line (24) optionally provided with an injection cooler (23) into a further superheater heating surface (25) the fluid bed cooler.
  • the steam superheated in this way is fed via a line (26), which may have an injection cooler (27), to a last superheater heating surface (28), which is arranged as a bulkhead heating surface in the upper end of the waste heat boiler train (9) and flows from there to an unillustrated one Turbine.
  • the steam for intermediate superheating is fed via a line (29) to an intermediate superheater heating surface (30) which is arranged in the waste heat boiler train (9) in the manner shown in FIG.
  • a line (32) having a mixing section (31) the steam heated in the heating surface (30) is fed via a three-way valve (33) to a further reheater heating surface (34) in the fluidized bed cooler (7).
  • the heating surfaces (25) and (34) are interleaved and are in the fluid bed cooler (7) from the superheater heating surface (22) separated by an overflow wall (35).
  • the solid line (5) opens into the fluidized bed cooler (7) in the area of the heating surfaces (25/34) nested with one another.
  • the superheated steam is returned to the turbine via a line (37) having a mixing section (36).
  • a line (37) having a mixing section (36).
  • the three-way valve (33) is connected to the mixing section (36) via a bypass line (40).
  • bypass control is also preferred for the superheater heating surface (30).
  • an inlet temperature of 850 ° C. should be maintained over the entire load range at the flue gas inlet to the waste heat boiler train (9), while a constant reheater outlet temperature of 535 ° C. is to be maintained. If less heat is now absorbed via the evaporator heating surface (14), the flue gas temperature at the entrance of the waste heat boiler train (9) can rise. To prevent this, the distributor (4) is adjusted so that more solid is fed via line (5) to the fluid bed cooler (7).
  • the three-way valve (33) is adjusted so that a corresponding partial flow of the steam brought in from the heating surface (30) is fed via line (40) to the mixing section (36), so that the desired reheat temperature at the outlet of the mixing section (36) is maintained.
  • the entire load range it can be ensured in a simple manner that both the reheater outlet temperature and the flue gas inlet temperature at the inlet of the Waste heat boiler train (9) can be kept substantially constant.
  • the mixing section has an outer jacket (42) into which the hot steam enters (from the bottom in FIG. 2).
  • a venturi-like insert (43) is arranged in the outer casing in such a way that an annular space (44) is formed between the inner surface of the outer casing and the outer surface of the insert.
  • the diameter of the inlet (43a) of the insert (43) is selected so that the annular space (44) communicates with the interior of the jacket via an annular gap (44a).
  • the outlet (43b) is sealed and welded to the inner surface of the outer jacket.
  • the steam flow to be bypassed is fed to the annular space (44) via an inlet connection (45) connected to the bypass line and leaves it through the annular gap (44a) in counterflow to the hot steam and is mixed into the latter with deflection.
  • the jacket (42) and the connecting piece (45) are preferably formed in one piece as a T-piece. With the arrangement, the colder vapor can be mixed in without thermal shocks and negligible thermal stresses on the insert and / or outer jacket. A pressure drop is largely avoided by using a venturi-like insert (43).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
EP87110332A 1986-07-26 1987-07-17 Générateur de vapeur avec foyer à lit fluidisé circulant à pression atmosphérique ou suralimenté et méthode de réglage Withdrawn EP0254985A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863625373 DE3625373A1 (de) 1986-07-26 1986-07-26 Dampferzeuger mit zirkulierender atmosphaerischer oder druckaufgeladener wirbelschichtfeuerung, sowie verfahren zu seiner regelung
DE3625373 1986-07-26

Publications (1)

Publication Number Publication Date
EP0254985A1 true EP0254985A1 (fr) 1988-02-03

Family

ID=6306072

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87110332A Withdrawn EP0254985A1 (fr) 1986-07-26 1987-07-17 Générateur de vapeur avec foyer à lit fluidisé circulant à pression atmosphérique ou suralimenté et méthode de réglage

Country Status (8)

Country Link
US (1) US4748940A (fr)
EP (1) EP0254985A1 (fr)
JP (1) JPS63259302A (fr)
AU (1) AU7612387A (fr)
DD (1) DD261401A5 (fr)
DE (1) DE3625373A1 (fr)
PL (1) PL266977A1 (fr)
ZA (1) ZA875392B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2767380A1 (fr) * 1997-08-18 1999-02-19 Gec Alsthom Stein Ind Dispositif d'echange thermique pour une chaudiere a lit fluidise circulant
DE102015213863A1 (de) 2015-07-22 2017-01-26 Technische Universität Dresden Verfahren und Anlage zur Wärmeauskopplung aus Wirbelschichten mit Wärmerohr-Wärmeübertragern in Kombination mit dem Betrieb einer Gasturbine unter effizienter Abwärmenutzung

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE462994B (sv) * 1988-01-18 1990-09-24 Abb Stal Ab Foerbraenningsanlaeggning med fluidiserande baedd daer vattenfloedet till foeraangaren kan regleras saa att vid lastbortfall ett laempligt vattenfloede erhaalles till foeraangare och oeverhettare
KR0147059B1 (ko) 1989-01-24 1998-08-17 스벤 웨스터홀름 카제 헨릭슨 순환 유동상 보일러의 증기발생기 및 이의 재열기 온도 제어방법
US4920751A (en) * 1989-01-24 1990-05-01 Pyropower Corporation System and method for reheat steam temperature control in circulating fluidized bed boilers
US5038568A (en) * 1989-11-20 1991-08-13 Pyropower Corporation System for reheat steam temperature control in circulating fluidized bed boilers
SE9000603D0 (sv) * 1990-02-20 1990-02-20 Abb Stal Ab Saett och anordning foer att reglera effektuttag fraan foerbraenning i virvelbaedd
US5273000A (en) * 1992-12-30 1993-12-28 Combustion Engineering, Inc. Reheat steam temperature control in a circulating fluidized bed steam generator
FI933961A (fi) * 1993-06-24 1994-12-25 Ahlstroem Oy Menetelmä kiintoaineiden käsittelemiseksi korkeassa lämpötilassa
US5442919A (en) * 1993-12-27 1995-08-22 Combustion Engineering, Inc. Reheater protection in a circulating fluidized bed steam generator
US5469698A (en) * 1994-08-25 1995-11-28 Foster Wheeler Usa Corporation Pressurized circulating fluidized bed reactor combined cycle power generation system
US5605118A (en) * 1994-11-15 1997-02-25 Tampella Power Corporation Method and system for reheat temperature control
US5570645A (en) * 1995-02-06 1996-11-05 Foster Wheeler Energy Corporation Fluidized bed system and method of operating same utilizing an external heat exchanger
DE10039317A1 (de) * 2000-08-11 2002-04-11 Alstom Power Boiler Gmbh Dampferzeugeranlage
DE10354136B4 (de) * 2002-11-22 2014-04-03 Alstom Technology Ltd. Zirkulierender Wirbelschichtreaktor
CA2601356C (fr) * 2005-03-10 2013-10-22 Shell Internationale Research Maatschappij B.V. Procede de demarrage d'un systeme de chauffage direct pour combustion de combustible sans flamme et chauffage direct d'un fluide de processus
DE102005036792A1 (de) * 2005-08-02 2007-02-08 Ecoenergy Gesellschaft Für Energie- Und Umwelttechnik Mbh Verfahren und Vorrichtung zur Erzeugung von überhitztem Dampf
CN101970939A (zh) * 2007-07-20 2011-02-09 国际壳牌研究有限公司 无焰燃烧加热器
US20140065559A1 (en) * 2012-09-06 2014-03-06 Alstom Technology Ltd. Pressurized oxy-combustion power boiler and power plant and method of operating the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312301A (en) * 1980-01-18 1982-01-26 Battelle Development Corporation Controlling steam temperature to turbines
DE3125849A1 (de) * 1981-07-01 1983-01-20 Deutsche Babcock Anlagen Ag, 4200 Oberhausen Dampferzeuger mit zirkulierender atmosphaerischer oder druckaufgeladener wirbelschichtfeuerung sowie verfahren zu seiner regelung
US4709663A (en) * 1986-12-09 1987-12-01 Riley Stoker Corporation Flow control device for solid particulate material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMIE INGENIEUR TECHNIK, Band 55, Nr. 2, Februar 1983, Seiten 87-93, Verlag Chemie GmbH, Nürnberg, DE; L. REH et al.: "Wirbelschicht-Prozesse für die Chemie- und Hütten-Industrie, die Energieumwandlung und den Umweltschutz" *
VGB KRAFTWERKSTECHNIK, Band 60, Nr. 5, Mai 1980, Seiten 366-376, Essen, DE; E. BITTERLICH: "Die Wirbelschicht-Technologie als Prozess zur umweltfreundlichen Energie-Erzeugung" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2767380A1 (fr) * 1997-08-18 1999-02-19 Gec Alsthom Stein Ind Dispositif d'echange thermique pour une chaudiere a lit fluidise circulant
EP0898116A1 (fr) * 1997-08-18 1999-02-24 GEC ALSTHOM Stein Industrie Dispositif d'échange thermique pour une chaudière à lit fluidisé circulant
DE102015213863A1 (de) 2015-07-22 2017-01-26 Technische Universität Dresden Verfahren und Anlage zur Wärmeauskopplung aus Wirbelschichten mit Wärmerohr-Wärmeübertragern in Kombination mit dem Betrieb einer Gasturbine unter effizienter Abwärmenutzung

Also Published As

Publication number Publication date
JPS63259302A (ja) 1988-10-26
ZA875392B (en) 1988-04-27
US4748940A (en) 1988-06-07
AU7612387A (en) 1988-01-28
DD261401A5 (de) 1988-10-26
PL266977A1 (en) 1988-08-04
DE3625373A1 (de) 1988-02-04

Similar Documents

Publication Publication Date Title
EP0254985A1 (fr) Générateur de vapeur avec foyer à lit fluidisé circulant à pression atmosphérique ou suralimenté et méthode de réglage
EP0206066B1 (fr) Dispositif de combustion à lit fluidisé circulant
AT401418B (de) Verfahren und vorrichtung zur steuerung der funktion eines wirbelschichtreaktors mit zirkulierender wirbelschicht
EP0068301B2 (fr) Générateur de vapeur avec foyer à lit fluidisé circulant, à pression atmosphérique ou suralimenté
DE2420322A1 (de) Anlage zum brennen von koernigem oder pulverfoermigem material
EP0152529A2 (fr) Générateur de vapeur avec combustion en lit fluidisé stationnaire
DE1147239B (de) Dampferzeuger mit mindestens zwei Brennkammersystemen
DE69733812T2 (de) Heizkessel
DE69002758T2 (de) System und verfahren für die regelung der temperatur des heizdampfes bei zirkulierenden wirbelbetten.
DD296542A5 (de) Feuerung, insbesondere wirbelschichtfeuerung
DE3208467A1 (de) Konvektionserhitzer zum erhitzen von fluida, wie z.b. eine aufschlaemmung oder dergleichen
EP0274637B1 (fr) Générateur de vapeur à lit fluidisé circulant
DE2737992A1 (de) Verfahren und vorrichtung zur verarbeitung von zementmaterialien fuer die herstellung von portlandzement
DE19943665B4 (de) Verfahren zur Kühlung eines Rostes für einen Feuerraum mittels Wasser sowie Rost zur Verbrennung von Feststoffen
DE68902394T2 (de) Kraftanlage zum verbrennen von brennstoff in einer wirbelschicht bei ueberdruck.
DE558731C (de) Luftvorwaermer fuer stufenweise Luftvorwaermung, insbesondere fuer hohe Vorwaermung der Zusatzluft
DE9420492U1 (de) Anordnung zur Nutzung der im Rauchgas eines kohlegefeuerten Dampferzeugers enthaltenen Wärme
DE3136480A1 (de) Verfahren und anordnung zum wiederaufheizen von nassentschwefelten rauchgasen
EP0618404B1 (fr) Procédé et installation pour la génération de vapeur dans une centrale de puissance et de chaleur
DE3638766C2 (fr)
DE102004020223B4 (de) Verfahren und Einrichtung zur Verbesserung des Wirkungsgrades von Kesselanlagen
DE4218016A1 (de) Verfahren und Vorrichtung zur Regelung der Rauchgastemperatur am Austritt eines Dampferzeugers
EP2564117B1 (fr) Générateur de vapeur
DE1259003B (de) Kesselanlage mit regenerativer Vorwaermung der Verbrennungs- und der Muehlenluft
DE2533169A1 (de) Anlage zur herstellung von zement im trockenverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB LI NL SE

17P Request for examination filed

Effective date: 19880328

17Q First examination report despatched

Effective date: 19890602

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19891013

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOENIG, JOSEF