EP0253227B1 - Vorrichtung zum Programmieren einer nichtflüchtigen Speichervorrichtung für ein Uhrwerk - Google Patents
Vorrichtung zum Programmieren einer nichtflüchtigen Speichervorrichtung für ein Uhrwerk Download PDFInfo
- Publication number
- EP0253227B1 EP0253227B1 EP87109566A EP87109566A EP0253227B1 EP 0253227 B1 EP0253227 B1 EP 0253227B1 EP 87109566 A EP87109566 A EP 87109566A EP 87109566 A EP87109566 A EP 87109566A EP 0253227 B1 EP0253227 B1 EP 0253227B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- frequency
- timepiece
- voltage
- period
- predetermined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000015654 memory Effects 0.000 title claims abstract description 42
- 230000004075 alteration Effects 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 5
- 230000005764 inhibitory process Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 19
- 239000010453 quartz Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 230000008901 benefit Effects 0.000 description 5
- 238000013475 authorization Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 241001080024 Telles Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04D—APPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
- G04D7/00—Measuring, counting, calibrating, testing or regulating apparatus
- G04D7/002—Electrical measuring and testing apparatus
- G04D7/003—Electrical measuring and testing apparatus for electric or electronic clocks
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G3/00—Producing timing pulses
- G04G3/02—Circuits for deriving low frequency timing pulses from pulses of higher frequency
- G04G3/022—Circuits for deriving low frequency timing pulses from pulses of higher frequency the desired number of pulses per unit of time being obtained by adding to or substracting from a pulse train one or more pulses
Definitions
- the present invention relates to a device for programming an electrically alterable non-volatile memory for timepieces, said part comprising an oscillator, a frequency divider with several stages, the rate of division of which is to be adjusted by alteration of a number k of pulses delivered by a stage of the divider, the number k being representative of the frequency difference existing between the frequency of the oscillator and a standard frequency and being in a binary form written in the memory not volatile to modify, at regular intervals, the content of certain determined stages of the divider, a stepping motor receiving driving pulses coming from the divider to display the time in analogical manner and a housing for receiving a supply battery.
- the cited patent proposes, on the one hand, to eliminate certain operations for adjusting the frequency of the quartz and consequently to lower its cost price while improving its stability and, on the other hand, to remove any electronic system from adjustment (trimmer) at the time base.
- the divider has auxiliary electrical inputs whose logic state determines the division ratio
- the timepiece includes a memory, connected to these auxiliary inputs, for retaining in coded form the information determining the division ratio by acting on these auxiliary inputs.
- the system which has just been briefly described requires a relatively complex arrangement of the integrated circuit incorporated in the watch.
- it includes a whole timed sequence circuit for programming control which starts when the power is brought to 6.3 volts. It also requires several detectors of different voltage levels.
- the present invention provides an internal circuit to the watch which is simpler, which lowers the cost and increases its reliability.
- the complexity of the programming circuits is transferred above all to an accessory external to the watch, which in itself poses no problem and rids the timepiece of a large number of elements or components that are only used when of programming. To do this, the means which appear in the claims are used.
- FIG. 1 is a schematic representation of the device used according to the invention.
- the timepiece 1 is here a wristwatch comprising a case 2, hands 3 driven by a stepping motor not shown and a battery housing 4 normally intended to receive a power source.
- the watch also includes an integrated electronic circuit 5 powered by contacts 6 and 6 'leading to the battery housing.
- the connector is provided with terminals 9 and 9 'which come into contact with contacts 6 and 6' of the watch.
- the connector is connected to a measuring and adjusting device 10 by a cable 11.
- the device 10 is connected to the industrial network by the cord 12.
- the frequency of the internal oscillator of the watch can be measured by means of inductive or capacitive sensors which pick up the engine advance steps or the vibrations emitted by the quartz of the timepiece.
- Quartz is generally cut so that its frequency is higher than the standard frequency, although there are systems where the frequency of the quartz is kept lower than the standard frequency.
- the frequency divider is then adjusted by altering its division rate represented by a number k of pulses delivered by a stage of the divider.
- pulses will be suppressed, which leads to the well-known inhibition systems.
- less common we will add missing pulses. All the description which follows is based on the inhibition system, but the invention could be extended to the pulse addition system by analogy.
- the number of bits is 6 which also indicates the number of divisors by 2 which will be affected by the correction.
- the programming device comprises first means 14 controlled by the end of a driving pulse produced by the watch motor to introduce into certain determined stages of the divider of said watch a binary state corresponding to the number k of pulses measured by the device 10, and second means 5 to block the content of said stages as soon as the binary state in question is reached, then to write said content in the non-volatile memory.
- This programming phase can be followed by a control phase in fast mode which makes it possible to check that the memory has indeed been programmed by the desired binary value.
- the timepiece is removed from its setting, then fitted with a battery. From this moment the watch operates normally and the inhibition is executed with the periodicity which has been chosen.
- FIG. 2 is a detailed diagram of the electronic circuit contained inside the watch, that is circuit 5 shown diagrammatically in FIG. 1.
- a quartz 20 driving an oscillator 21 supplying a frequency at 32,768 Hz. This frequency is divided several times.
- the frequency at 1 Hz drives a driver circuit 31 which in turn controls the stepping motor M which thus advances by one step per second.
- the outputs Q1 to Q6 of each of the stages 24 to 29 are connected to the corresponding recording inputs of an electrically alterable non-volatile memory at 6 bits 32. All the elements of the circuit 5 are supplied by the voltage + V / -V in from the external circuit 14 linked to the connector 8.
- the memory 32 is well known from the state of the art. A detailed description can be found, for example, in the book “Jeck der annometrie” volume 33, 1982, pages 47 to 55 under the title: “Non-volatile EEPROM memories, application to digital adjustment of a watch to quartz”. Suffice it to recall here that this type of memory can be programmed by the data present at its inputs by raising for a certain time (approximately 250 ms) its supply voltage at the same time as it is supplied to its PRGM input a registration authorization signal. The supply voltage required for registration is here of the order of 6V. Note that the memory is provided with internal amplifiers which raise this voltage to a value greater than 25V.
- the authorization signal is itself supplied by a voltage detector 33, the output of which is 0 if the applied voltage is below a certain threshold and 1 if this voltage is above this threshold.
- the detector 33 can be a comparator, for example an operational circuit.
- the threshold is fixed at 3.5V, which means that the detector supplies a signal 0 when the supply voltage is at low level (for example 1.5V) and a signal 1 when this voltage is at high level (for example 6V).
- FIG. 2 also shows that the output signal PRGM of the detector 33 is connected via an inverter 34 to a first input of an AND gate 35, the second input of this gate receiving pulses at 8 kHz from of the divider 23.
- the output of the AND gate 35 is connected to the input of the chain of dividers 24 to 29.
- FIG. 3 is a detailed diagram of the electronic circuit contained in the measuring device, outside the watch, that is circuit 14 shown diagrammatically in FIG. 1.
- This circuit is equipped with a quartz time base 60 which delivers a frequency roughly tuned to the frequency of the watch's oscillator, here 32 kHz.
- the signal at 32 kHz is applied to a first divider by 4 referenced 61 and which supplies a signal at 8 kHz.
- the signal at 8 kHz in turn attacks a six-stage divider or down memory or memory 62 to 67 of the same binary weight as the six-stage divider 24 to 29 contained in the watch circuit.
- Each stage of the down-counter has an input S (set) through which a binary value supplied by a corresponding AND gate 68 to 73 can be entered.
- the first input of each of the AND gates leads to a switch 74 to 79 whose terminals switching are connected respectively to the. + and - of a DC power supply V.
- the position of each of the switches is representative of the number k itself representative of the frequency difference between the frequency of the watch oscillator and a frequency standard, this difference being measured by the apparatus 10 in FIG. 1 as explained above.
- the second inputs of AND gates 68 to 73 are connected together and receive an output signal from a flip-flop D 80 whose input D is connected to the value + V.
- the clock input CI of the flip-flop 80 receives the output signal from an OR gate 81 itself provided with three inputs 82, 83 and 84.
- the internal circuit 5 of the watch is supplied by terminals 9 and 9 ′, ie by a first power source at 1.5V through a switch 86, or by a second power source at 6V through a switch 87. In series in this supply there is a resistance Rm.
- the input 84 of the OR gate 81 receives it , through the inverter 85, a signal 92 representative of the current Imot in the motor coil when the latter is supplied.
- FIG. 3 also shows that the output 90 of the down-counting divider 62 to 67 is connected both to the input R of the flip-flop 80, to the input of a monostable flip-flop 89 and to the input S of an RS 88 flip-flop.
- the output of the monostable 89 is connected to the R input of the RS 88 flip-flop whose output 0 controls the switch 86 and whose output Q controls the switch 87.
- the flip- flop 88 thus plays the role of a switch enabling the circuit 5 of the watch to be supplied either with a low level voltage (1.5V) or with a high level voltage (6V) via the switch 87.
- the apparatus 10 measures the frequency difference existing between the frequency of the watch oscillator and the standard frequency. This difference is expressed by a number k which is in binary form. Let 21 be this number which is written 101010 in 6-bit binary notation. This binary value is present in circuit 14 thanks to switches 74 to 79 positioned as illustrated in FIG. 3.
- the binary state introduced into the dividers 24 to 29 (Q1 to Q6) of the circuit 5 corresponds to the emission of the pulse 91 from the last down-counter 67 of the circuit 14. It s' So now acts to block the content of the dividers 24 to 29 which corresponds to the binary number to be introduced into the non-volatile memory 32. To do this, the pulse 91 is introduced at the input S of the RS 88 flip-flop. moment its output Ci goes to zero and its output Q goes to 1 which has the effect of supplying circuit 5 of the watch with a high level voltage (6V) by the switch 87 which is activated.
- 6V high level voltage
- This high-level voltage has the effect of providing a signal 1 at the output of the voltage detector 33 (PRGM) which blocks the AND gate 35 by the inverter 34.
- PRGM voltage detector 33
- the non-volatile memory 32 is then supplied with a high level voltage and is thus predisposed to accept the writing of the binary value present at the outputs Q1 to Q6 of the dividers 24 to 29.
- This writing requires a certain time which can be estimated at around 250 ms.
- the duration of this registration period Ti is determined by the monostable flip-flop 89 contained in the external circuit 14 and which is controlled by the rising edge 94 of the pulse 91.
- the flip-flop 89 therefore starts its counting time Ti at the same time as the high level voltage is applied to the memory 32.
- the end of the period Ti resets the flip-flop 88 which toggles which has the effect of opening the switch 87 and closing the switch 86. From this instant, circuit 5 of the watch is again supplied with the low-level voltage of 1.5V and the programming phase is completed (PRGM signal at zero).
- the programming phase which has been described above takes as reference the current caused by the driving pulse making the motor advance by one step. For this, only the battery terminals are necessary. If we had access to the motor terminals M1 and M2, we could use the same device as shown in Figure 3. In this case the motor terminals would be connected to additional inputs 97 and 98 of circuit 14, these terminals being connected respectively to inputs 82 and 83 of the OR circuit 81, the operation of the entire device remaining exactly the same.
- the non-volatile memory programming device which has just been described in detail constitutes the main object of the present invention.
- the internal circuit of the watch enabling this programming is sufficient with a single additional element in addition to the conventional elements present when it comes to inhibition: the voltage level detector 33.
- the access to the battery terminals is sufficient to program the memory and this at the cost of an internal circuit whose complexity is reduced to its simplest expression.
- the watch When the watch's power supply battery is reinstalled in its housing, the watch works normally with the inhibition imposed on it by the binary number written in the memory and this with a periodicity which has been discussed above.
- the manner in which inhibition is carried out is known from the state of the art and is therefore not part of the present invention. However, it is believed that it should be described here for the sake of presenting a description which is complete and complete.
- FIG. 5 presents on the first line the alternating driving pulses M1 and M2 and emitted every second.
- Line 2 shows an inhibition authorization signal (ENINH) triggered every 60 seconds by a driving pulse M1.
- Line 3 is the actual inhibition signal that is created while the ENINH signal lasts.
- the dividers 24 to 29 are supplied through the AND gate 35 which is conducting for the pulses at 8 kHz designated by 8kP and delivered by the divider 23.
- the divider 23 also supplies pulses at 8 kHz designated by 8kPl which are always inserted between the 8kP pulses.
- the signal of 1 s which appears at the output of the divider 30 is applied to the input of the divider by 60 referenced 52.
- the output of this divider produces every 60 seconds a pulse designated by 60sP which is applied to the input of the AND gate 48.
- the gate 48 allows the 60sP pulse to pass and, through the OR circuit 50, causes the flip-flop RS 51 to toggle whose output Q goes to 1.
- the signals of lines A and B are produced by the divider 30 and are decoding signals making it possible to fix the moment when the signal ENINH must be activated by signed by 128HP, but only once every 60 seconds, the signal ENINH.
- This signal is applied to an input of AND gate 47 and predisposes said gate to be on when all of its other inputs are at 1.
- the upper inputs of AND gate 47 are connected to outputs Q1 to Q6 of dividers 24 to 29 and pass all at 1 just before the next 128HP pulse marked with dotted lines in FIG. 6 appears.
- an 8kP1 intermediate pulse is emitted and the AND gate 47 is on and produces the inhibition pulse INH.
- the non-volatile memory presents at its outputs Q1 M to Q6M the binary value which has been programmed there according to the process indicated above. This value is carried over to the first inputs of the AND circuits 40 to 45.
- the binary value, chosen at 101010 is carried over to the inputs R1 to R6 of the dividers 24 to 29 and modifies the content of said dividers as indicated in the diagram in FIG. 6.
- inhibition pulse INH is used to reset the RS 51 flip-flop to zero, which ends the signal ENINH.
- the programming phase can be followed by a control phase in quick mode to check whether the memory has been programmed at the desired binary value. This constitutes a characteristic dependent on the invention.
- the device comprise third means, implemented after the application of the first and second means previously discussed, to check that the division rate corresponds to the number k introduced into memory.
- these third means comprise a detector sensitive to the return of the voltage to its low level at the end of the period Ti to accelerate, for a predetermined period Tf, the motor to a speed v faster than that used to display the time, and the adjustment of the division rate at a speed v / 2, which thus allows the alternation of intervals between driving pulses with and without adjustment to measure the difference in frequency existing between the frequency of l watch oscillator and standard frequency.
- the diagram in FIG. 7 schematically explains the phase of operation in fast mode.
- FAST fast mode signal
- the motor receives pulses (MOT) at 32 Hz and the signal authorizing the inhibition (ENINH), as well as the inhibition signal which is linked to it ( INH), are emitted at a speed twice as slow, ie 16 Hz.
- ENINH the inhibition signal which is linked to it
- INH inhibition signal which is linked to it
- the circuit inside watch 5 includes a flip-flop D 55 as well as an AND gate 56 arranged as shown in FIG. 2.
- the signals at 32 and at 16 Hz are taken from the divider by 128 referenced 30.
- the signal at 32 Hz is sent to the driver circuit 31 and excites the motor at this speed when the FAST signal is present.
- the signal at 16 Hz is sent to an input of the AND gate 56, a gate which plays exactly the same role as the AND gate 48 for the signal at 60 seconds 60sP.
- the AND gate 48 is blocked by the inverter 49.
- the signals ENINH and INH are created at the speed of 16 Hz and at a time fixed by the signals A and B as was the case for the normal execution phase of inhibition.
- the FAST signal begins when the supply voltage has returned to its low level, at the end of the programming period Ti.
- the detector 33 emits a signal received by the input CI of the flip-flop 55, the output Q of which passes to the high potential of its input D.
- the signal FAST is thus present at the output Q of the flip -flop 55 and allows the control phase in rapid mode described above.
- This control phase will last a period Tf, for example 4 times 1/32 of a second.
- the period Tf is ended by a reset signal RAZ of the input R of the flip-flop 55. This signal can be taken from the combination of signals present in the divider at 128 referenced 30. As soon as the signal FAST is canceled, the watch circuit operates in normal mode.
- FIG. 8 shows that the circuit authorizing the control phase in rapid mode can be used to advantage for control purposes only during a revision of the watch for example.
- the time constant of the monostable 89 of the external circuit 14 is considerably shortened, so that the period Ti has insufficient duration to start the programming phase.
- the falling edge of the pulse Ti which has previously been brought to a voltage greater than that of the triggering of the voltage detector 33 of the internal circuit 5, immediately starts the control phase in fast mode (FAST).
- the frequency difference is then measured by the QUIS device of which we have already spoken. If this difference is correct, we will stop there. If this is not the case, a new programming phase is started.
- a period Ti composed of a rise time of 300lis reaching 4V, followed immediately by a fall time of 3OOgs also, is perfectly suited to the only rapid control process.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electric Clocks (AREA)
- Electromechanical Clocks (AREA)
- Read Only Memory (AREA)
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH277386A CH664868GA3 (de) | 1986-07-10 | 1986-07-10 | |
CH2773/86 | 1986-07-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0253227A1 EP0253227A1 (de) | 1988-01-20 |
EP0253227B1 true EP0253227B1 (de) | 1989-11-29 |
Family
ID=4241288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87109566A Expired EP0253227B1 (de) | 1986-07-10 | 1987-07-03 | Vorrichtung zum Programmieren einer nichtflüchtigen Speichervorrichtung für ein Uhrwerk |
Country Status (6)
Country | Link |
---|---|
US (1) | US4763309A (de) |
EP (1) | EP0253227B1 (de) |
JP (1) | JP2519464B2 (de) |
CH (1) | CH664868GA3 (de) |
DE (1) | DE3761065D1 (de) |
HK (1) | HK2295A (de) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01220036A (ja) * | 1988-02-29 | 1989-09-01 | Fujitsu Ltd | ファイル検索方式 |
US5253229A (en) * | 1988-04-06 | 1993-10-12 | Seiko Epson Corporation | Electronic timepiece including integrated circuitry |
JPH0752632Y2 (ja) * | 1988-04-06 | 1995-11-29 | セイコーエプソン株式会社 | 電子時計用回路 |
JPH0729513Y2 (ja) * | 1988-04-06 | 1995-07-05 | セイコーエプソン株式会社 | 電子時計用回路 |
US5255247A (en) * | 1988-04-06 | 1993-10-19 | Seiko Epson Corporation | Electronic timepiece including integrated circuitry |
JPH01282491A (ja) * | 1988-05-07 | 1989-11-14 | Seiko Epson Corp | 補償回路 |
US5289452A (en) * | 1988-06-17 | 1994-02-22 | Seiko Epson Corporation | Multifunction electronic analog timepiece |
JP3019324B2 (ja) * | 1988-06-17 | 2000-03-13 | セイコーエプソン株式会社 | アナログ電子時計用ic及びアナログ電子時計 |
US5327404A (en) * | 1990-11-27 | 1994-07-05 | Vlsi Technology, Inc. | On-chip frequency trimming method for real-time clock |
JPH04319694A (ja) * | 1991-04-19 | 1992-11-10 | Seikosha Co Ltd | 時刻補正データメモリ付時計装置 |
WO1994016366A1 (en) | 1993-01-08 | 1994-07-21 | Citizen Watch Co., Ltd. | Data transmission/reception system of electronic timepiece |
US6545950B1 (en) | 2000-05-16 | 2003-04-08 | Ericsson Inc. | Methods, systems, wireless terminals, and computer program products for calibrating an electronic clock using a base reference signal and a non-continuous calibration reference signal having greater accuracy than the base reference signal |
ATE474251T1 (de) * | 2000-11-29 | 2010-07-15 | Eta Sa Mft Horlogere Suisse | Uhrwerk welches vorrichtungen enthält,die elektrischen zugang zu elektrischen oder elektronischen unterteilen dieses uhrwerks erlauben |
EP1425757B1 (de) * | 2001-08-13 | 2018-09-05 | EM Microelectronic-Marin SA | Programmierung einer elektronischen vorrichtung mit einem nichtflüchtigen speicher insbesondere zur einstellung der eigenschaften eines oszillators |
US7369462B2 (en) * | 2001-09-21 | 2008-05-06 | Quartex, Division Of Primex, Inc. | Wireless synchronous time system with solar powered transceiver |
US7411869B2 (en) * | 2001-09-21 | 2008-08-12 | Quartex, Division Of Primex, Inc. | Wireless synchronous time system |
US20030169641A1 (en) * | 2002-03-08 | 2003-09-11 | Quartex A Division Of Primex, Inc. | Time keeping system with automatic daylight savings time adjustment |
CA2460995A1 (en) * | 2001-09-21 | 2003-03-27 | Quartex, Inc. | Time keeping system with automatic daylight savings time adjustment |
US6873573B2 (en) * | 2001-09-21 | 2005-03-29 | Quartex, Inc. | Wireless synchronous time system |
US20030169642A1 (en) * | 2002-03-08 | 2003-09-11 | Quartex, Inc., A Division Of Primex, Inc. | Time keeping system with automatic daylight savings time adjustment |
US7387433B2 (en) * | 2005-02-05 | 2008-06-17 | Linx Technology Limited | Integrated circuit chip for analogue electronic watch applications |
EP1890204B1 (de) | 2006-08-16 | 2011-11-02 | ETA SA Manufacture Horlogère Suisse | Elektronisches Uhrwerk mit einem Resonator |
EP1962156A1 (de) | 2007-02-22 | 2008-08-27 | EM Microelectronic-Marin SA | Verfahren zum Zugriff auf einen nichtflüchtigen Speicher für eine Uhr |
DE102008032124A1 (de) * | 2008-07-08 | 2010-01-14 | Bernd Gehring | Vorrichtung zum Stellen einer Uhr |
JP2013034174A (ja) * | 2011-06-28 | 2013-02-14 | Seiko Instruments Inc | 電子機器 |
EP2916193B1 (de) | 2014-03-06 | 2016-07-27 | EM Microelectronic-Marin SA | Zeitbasis, die einen oszillator, eine frequenzteilerschaltung und einen schaltkreis zur taktpulshemmung umfasst |
EP3168695B1 (de) * | 2015-11-13 | 2021-03-10 | ETA SA Manufacture Horlogère Suisse | Testverfahren für ganggenauigkeit einer quartzuhr |
EP3379347B1 (de) * | 2017-03-20 | 2020-01-01 | ETA SA Manufacture Horlogère Suisse | Verfahren zur regulierung der gangfrequenz einer elektronischen uhr |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4147022A (en) * | 1975-12-24 | 1979-04-03 | Citizen Watch Company Limited | Electronic timepiece |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH1337A (de) * | 1889-08-27 | 1889-11-09 | Alfred Mendel | Neues Kummet |
CH554015A (de) * | 1971-10-15 | 1974-09-13 | ||
US4074514A (en) * | 1972-08-24 | 1978-02-21 | Dynacore, S.A. | Isochronous period generator having means for adjusting the isochronous period |
CH610473B5 (en) * | 1972-08-24 | 1979-04-30 | Dynacore Sa | Generator of isochronous reference periods which can be used for measuring time and can be readjusted, and use of this generator |
JPS587190B2 (ja) * | 1973-12-05 | 1983-02-08 | セイコーエプソン株式会社 | スイシヨウドケイ |
CH593513B5 (de) * | 1974-08-30 | 1977-12-15 | Ebauches Sa | |
CH632379B (fr) * | 1979-10-25 | Ebauches Sa | Mouvement de montre electronique. | |
US4290130A (en) * | 1979-12-21 | 1981-09-15 | Timex Corporation | Digital frequency trimmed electronic timepiece |
JPS57117184A (en) * | 1981-01-13 | 1982-07-21 | Citizen Watch Co Ltd | Non-volatile memory circuit for portable electronic device |
JPS6038671A (ja) * | 1983-08-10 | 1985-02-28 | Nec Corp | Esr測定自動化システム |
-
1986
- 1986-07-10 CH CH277386A patent/CH664868GA3/fr not_active IP Right Cessation
-
1987
- 1987-07-03 EP EP87109566A patent/EP0253227B1/de not_active Expired
- 1987-07-03 DE DE8787109566T patent/DE3761065D1/de not_active Expired - Lifetime
- 1987-07-09 US US07/071,503 patent/US4763309A/en not_active Expired - Lifetime
- 1987-07-10 JP JP62171315A patent/JP2519464B2/ja not_active Expired - Lifetime
-
1995
- 1995-01-05 HK HK2295A patent/HK2295A/xx not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4147022A (en) * | 1975-12-24 | 1979-04-03 | Citizen Watch Company Limited | Electronic timepiece |
Also Published As
Publication number | Publication date |
---|---|
US4763309A (en) | 1988-08-09 |
EP0253227A1 (de) | 1988-01-20 |
JP2519464B2 (ja) | 1996-07-31 |
CH664868GA3 (de) | 1988-04-15 |
DE3761065D1 (de) | 1990-01-04 |
JPS6329291A (ja) | 1988-02-06 |
HK2295A (en) | 1995-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0253227B1 (de) | Vorrichtung zum Programmieren einer nichtflüchtigen Speichervorrichtung für ein Uhrwerk | |
EP0083303B1 (de) | Quarzzeitbezugssignalgenerator mit Temperaturkompensation und Uhr mit diesem Signalgenerator | |
EP0806710B1 (de) | Stabilisation einer elektronischen Schaltung zur Regelung des mechanischen Gangwerks einer Zeitmessvorrichtung | |
EP0171635B1 (de) | Vorrichtung und Verfahren zur Erkennung der Rotorposition eines Schrittmotors | |
EP0231451B1 (de) | Elektronische Uhr mit zwei Motoren, die einen ewigen Kalender enthält | |
FR2752070A1 (fr) | Piece d'horlogerie electronique comportant une generatrice entrainee par un barillet a ressort | |
EP0057663B1 (de) | Steuervorrichtung für einen Schrittmotor | |
EP0712641B1 (de) | Verfahren zum Einstellen eines elektrischen Parameters einer implantierbaren Vorrichtung und Vorrichtung zur Durchführung des Verfahrens | |
EP0052884A1 (de) | Eine Teilerschaltung mit einstellbarem Teilerverhältnis aufweisende Uhr | |
EP0031077B1 (de) | Interaktive Vorrichtung zum Einführen von Daten in kleine Instrumente, insbesondere in Uhren | |
CH673198B5 (de) | ||
FR2472220A1 (fr) | Procede d'ajustement numerique de la frequence d'un oscillateur dans un dispositif electronique de mesure du temps | |
EP0077293B1 (de) | Verfahren und Vorrichtung zur Steuerung eines Schrittmotors in einem Uhrwerk | |
EP0135104B1 (de) | Verfahren und Vorrichtung zum Ansteuern eines Schrittmotors | |
EP0137093A2 (de) | Verfahren zur Messung der in die Wicklung eines Schrittmotors durch Drehung seines Rotors induzierten Spannung | |
EP0064025B1 (de) | Elektronische Uhr mit unbewegbarer Steuervorrichtung | |
EP0247418B1 (de) | Ewige Kalenderuhr mit zwei Motoren | |
EP2130097B1 (de) | Verfahren zum zugreifen einen nichtflüchtigen speicher für eine uhr | |
WO2002050617A1 (fr) | Montre electronique analogique ayant un dispositif de remise a l'heure suite a une insuffisance d'alimentation | |
CH621027B5 (de) | ||
EP0069372A1 (de) | Verfahren zur Steuerung des Ganges einer Uhr und Uhr nach diesem Verfahren | |
EP0881768A1 (de) | System und Verfahren zur Filterung eines Impulssignals | |
EP0327989B1 (de) | Regelkreis für einen Schrittmotor, insbesondere für Uhren | |
CH227070A (de) | Verfahren zur Herstellung eines linearen Polyesters. | |
FR2484103A1 (fr) | Procede pour ajuster le rapport de division d'un diviseur de frequence et garde-temps adapte a ce procede |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19880407 |
|
17Q | First examination report despatched |
Effective date: 19890518 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 3761065 Country of ref document: DE Date of ref document: 19900104 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010628 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020703 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020703 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060630 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060728 Year of fee payment: 20 |