[go: up one dir, main page]

EP0232762B1 - Méthode pour déterminer acoustiquement les trajectoires de projectiles et détermination de la distance minimum projectile-cible - Google Patents

Méthode pour déterminer acoustiquement les trajectoires de projectiles et détermination de la distance minimum projectile-cible Download PDF

Info

Publication number
EP0232762B1
EP0232762B1 EP87100842A EP87100842A EP0232762B1 EP 0232762 B1 EP0232762 B1 EP 0232762B1 EP 87100842 A EP87100842 A EP 87100842A EP 87100842 A EP87100842 A EP 87100842A EP 0232762 B1 EP0232762 B1 EP 0232762B1
Authority
EP
European Patent Office
Prior art keywords
target
microphones
projectile
microphone
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87100842A
Other languages
German (de)
English (en)
Other versions
EP0232762A1 (fr
Inventor
Helmut Dipl.-Ing. Negendank
Reinhard Dipl.-Ing. Wedekind
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhein-Flugzeugbau GmbH
Original Assignee
Rhein-Flugzeugbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhein-Flugzeugbau GmbH filed Critical Rhein-Flugzeugbau GmbH
Priority to AT87100842T priority Critical patent/ATE53654T1/de
Publication of EP0232762A1 publication Critical patent/EP0232762A1/fr
Application granted granted Critical
Publication of EP0232762B1 publication Critical patent/EP0232762B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J5/00Target indicating systems; Target-hit or score detecting systems
    • F41J5/06Acoustic hit-indicating systems, i.e. detecting of shock waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S367/00Communications, electrical: acoustic wave systems and devices
    • Y10S367/906Airborne shock-wave detection

Definitions

  • the invention relates to an arrangement for acoustic projectile placement measurement, in particular for moving exercise targets, with a microphone system and evaluation devices which are intended to determine the minimum projectile / target distance while eliminating runtime errors.
  • Acoustic methods for measuring floor deposition at stationary or moving targets at subsonic speed are based on the measurement of the conical shock waves generated by ultrasound-fast guns using one or more microphones.
  • the relationships between the distance microphone / shock wave generation point on the projectile path and the shock wave amplitude or the shock wave duration are known.
  • the shortest storey / target distance can be derived directly from this.
  • both the spatial and the temporal course of the floor passage must be taken into account.
  • the target movement and projectile path can be assumed as a straight line and the speeds as constant because of the brevity of this process.
  • a calculation is only possible if the spatial relationship of the floor track to the target track can be established. Two options are known for this.
  • DE-OS 31 22 644 describes a correction method for flying training targets, which is based on a weapon location and target location-related geometry. It requires specified, precisely adhered to flight courses, flight heights and flight speeds as well as control distances and floor speeds.
  • the microphones used must be installed in the center of the target and the entire arrangement must have an acoustic spherical characteristic.
  • a three-dimensional arrangement consisting of a microphone system with at least four microphones and an additional system, that is to say a total of at least five microphones, provides a target-specific geometry which enables independence from flight courses and flight heights.
  • the microphone arrangement can also be located outside the target center.
  • the object of the present invention is to provide an arrangement which excludes runtime errors with a minimum number of microphones and provides sufficient information for evaluation, such as signal amplitudes, signal duration and runtimes, so that only a small number of training parameters have to be defined before a shooting exercise. This object is achieved by the characterizing features of claim 1.
  • the measure according to the invention offers the possibility of determining the types and number of available information with the number of microphones and their geometric position to the center of the target. This means that an optimal system can be selected depending on the mechanical and functional boundary conditions of the target / microphone system unit.
  • the floor caliber used can be recognized within certain limits.
  • the shape of the Mach cone generated by the projectile is taken into account when determining the projectile hand, there is no approximation by a flat wavefront. However, the shape is idealized. Errors that are known to occur at small intervals are corrected by the evaluation computer. Isotropic properties of the microphones are still assumed. The evaluation computer also corrects actual deviations from this.
  • the microphone arrangement is assumed to be static.
  • the microphone and target center are, however, not the actual, but "arithmetical" locations that are determined from the order of the sound, from measured time differences and the target speed.
  • the shape of the Mach cone is taken into account. Only the locations calculated in this way are included in the floor path calculation.
  • the microphone M is sonicated first, microphone M 2 after the measured time difference ⁇ t m .
  • the known microphone distance M, M 2 * is then by the distance V Z.
  • Ot m V z : target speed
  • the angle of incidence ⁇ of the shock wave then applies with the speed of sound c and for the measured duration of the pulse T. Doppler corrected pulse duration to be calculated
  • the target center and two microphones are on the target movement axis Z. Because of its rotational symmetry, such a one-dimensional arrangement is not able to clearly define a projectile path, but essential information is available.
  • the rotationally symmetrical surfaces of the second order are created, which have straight-line generators, that is, in the general case, a single-shell rotational hyperboloid with two generators. Only this is considered below, the simple special cases of circular cones and cylinders with one share each are included.
  • FIG. 3 Such a rotational hyperboloid is shown in FIG. 3.
  • G and G * are any generatrix of the two groups. It can be seen that the rotational symmetry can be used to derive the same information about the distance from a target center Z m arbitrarily located on the Z axis from any generator. If this paragraph t and determined as a rotating vector family, its z-component can be determined from the sign if the bullet passage in front of or behind the aiming point was made (front-back detection).
  • Any projectile path G that is conveniently located in the coordinate system can be selected for the calculations, since the distance to be determined is the same for all paths.
  • Fig. 4 the microphone K in the coordinate origin, the microphone at the end of the vector L on the Z axis.
  • the computed location of the microphone L is therefore in vector notation
  • the distance vector 1 is placed in the XZ plane for simplification and is therefore called
  • are known 1
  • the components of 1 and 2 are to be calculated from this, the floor track sought is thus fixed.
  • Using a third microphone outside the Z axis creates a two-dimensional microphone system. It is thus possible to select two tracks from the projectile track sets described above which are mirror-symmetrical to the microphone plane, each of the two track sets providing a solution.
  • the desired target center no longer has to lie on the Z axis, but can be moved to the microphone plane.
  • FIG. 5 shows a flat microphone system. It corresponds to that from FIG. 4 with the additional third microphone M. In order to simplify the calculation, it lies in the XZ plane with the vector M for the computed microphone location R 3 is the distance vector from M and the bullet trajectory G. The distance between R, and 3 at G is ⁇ t M is the measured time difference between the sound of the microphones K and M,
  • the search for the pair of projectile paths is carried out by selecting any projectile path from the family and a mathematical rotation of M around the Z axis until the conditions of a system of equations are met.
  • This coordinate transformation is shown in FIG. 6 as a projection into the XY plane.
  • Is known M is measured
  • the floor track pair can also be determined using a different approach.
  • the Mach cone is used for this A (See Fig. Introduced.
  • the rotation of M is then performed so that A and G enclose the Mach angle a
  • this fourth microphone N is, for example, in the YZ plane at the computed microphone location N shown.
  • the aid of the measured distance and the scalar product with the two possible path verifiers or by means of arithmetical rotation of N around the Z axis results in a double solution which is symmetrical to the YZ plane, of which only one is identical to a solution which was obtained with the aid of the microphone M.
  • the target center can be fixed anywhere in the room with the solutions resulting from the above approaches, and therefore a target body can be defined in the evaluation computer under all bombardment situations.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Claims (4)

1. Dispositif de capteur de pression acoustique pour la saisie acoustique de trajectoires de projectile et d'objectifs de projectile, pour des cibles mobiles d'exercice, avec un système de microphones et un dispositif de traitement possédant un algorithme de traitement, caractérisé en ce que le système de microphones présente au moins deux microphones séparés dans la direction du mouvement de la cible dont les signaux sont traités dans le dispositif de traitement sur la base des relations physiques connues concernant les données de distances et de différences de durée de propogation du son, et introduits dans un ordinateur de traitement, pour calculer aussi bien une distance minimale projectile/cible, en tenant compte de l'évolution dans l'espace et dans le temps du passage cible-projectile, qu'une composante de la trajectoire dans la direction de l'axe de jonction des microphones, et en ce que les données traitées servent à déterminer un grand nombre de trajectoires à sysmétrie de révolution autour de l'axe de liaison des microphones, qui sont univoques pour déterminer la distance minima projectile/cible et pour déterminer la composante dans la direction de l'axe de liaison cité, le centre de la cible étant sur cet axe.
2. Dispositif de capteur de pression acoustique selon la revendication 1, caractérisé en ce qu'on dispose un autre microphone en dehors de l'axe de liaison, dans le même plan que les autres microphones, et dont le signal sert à calculer une distance supplémentaire et/ou une différence de temps de propagation du son.
3. Dispositif de capteur de pression acoustique selon une des revendications 1 ou 2 caractérisé en ce qu'on dispose un autre microphone en dehors du plan, et que le signal de ce microphone fournit une autre distance et/ou une autre différence de durée de propagation du son pour calculer de manière univoque la trajectoire du projectile.
4. Procédé de mesure du nombre de Mach de la cible avec les dispositifs selon les revendications 1, et 3, caractérisé en ce qu'au moins deux microphones placés dans la direction du mouvement de la cible sont impressionnés ensemble par une source de bruit se trouvant en une position connue en avant ou en arrière des microphones et en ce que la différence de temps de propagation nécessaire au calcul du nombre de Mach de la cible est déterminée au moyen de la corrélation croisée des signaux des deux microphones.
EP87100842A 1986-02-08 1987-01-22 Méthode pour déterminer acoustiquement les trajectoires de projectiles et détermination de la distance minimum projectile-cible Expired - Lifetime EP0232762B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87100842T ATE53654T1 (de) 1986-02-08 1987-01-22 Verfahren zur akustischen erfassung von geschossbahnen und zur ermittlung des kuerzesten abstandes geschoss/ziel.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3603991 1986-02-08
DE3603991 1986-02-08
DE19863612352 DE3612352A1 (de) 1986-02-08 1986-04-12 Anordnung zur akustischen erfassung von geschossbahnen und zur ermittlung des kuerzesten abstandes geschoss / ziel
DE3612352 1986-04-12

Publications (2)

Publication Number Publication Date
EP0232762A1 EP0232762A1 (fr) 1987-08-19
EP0232762B1 true EP0232762B1 (fr) 1990-06-13

Family

ID=25840828

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87100842A Expired - Lifetime EP0232762B1 (fr) 1986-02-08 1987-01-22 Méthode pour déterminer acoustiquement les trajectoires de projectiles et détermination de la distance minimum projectile-cible

Country Status (3)

Country Link
US (1) US4805159A (fr)
EP (1) EP0232762B1 (fr)
DE (1) DE3612352A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3823490C2 (de) * 1988-07-11 1994-08-11 Ingbuero Fuer Elektro Mechanis Einrichtung zur selbsttätigen elektronischen Bestimmung der Trefferkoordinaten von überschallschnellen Geschossen an fliegenden Zielkörpern
DE3843601A1 (de) * 1988-12-23 1990-06-28 Ingbuero Fuer Elektro Mechanis Verfahren und einrichtung zur selbsttaetigen messung und anzeige der trefferkoordinaten von ueberschallschnellen geschossen an fliegenden zielen
DE3914179A1 (de) * 1989-04-28 1990-10-31 Herwig Fischer Verfahren zur ermittlung der trefferablage beim beschuss von uebungszielen
SE467550B (sv) * 1990-01-18 1992-08-03 Lasse Kristian Karlsen Indikatoranordning foer bestaemning av projektilers bana
US5241518A (en) * 1992-02-18 1993-08-31 Aai Corporation Methods and apparatus for determining the trajectory of a supersonic projectile
SE506657C2 (sv) * 1996-03-29 1998-01-26 Haakan Appelgren Sätt och anordning vid projektilinmätning
IL118846A (en) * 1996-07-14 2000-07-16 Levanon Nadav Method and apparatus for acoustic monitoring of the trajectory of a supersonic projectile
DE19713516A1 (de) * 1997-04-02 1998-10-22 Graul Werner Dr Ing Verfahren und Einrichtung zur passiven Bahnbestimmung eines Strahlungsemittenten
US6563763B2 (en) * 2001-04-03 2003-05-13 Aai Corporation Method and system for correcting for curvature in determining the trajectory of a projectile
US20060063574A1 (en) 2003-07-30 2006-03-23 Richardson Todd E Sports simulation system
US20070238539A1 (en) * 2006-03-30 2007-10-11 Wayne Dawe Sports simulation system
US9199153B2 (en) 2003-07-30 2015-12-01 Interactive Sports Technologies Inc. Golf simulation system with reflective projectile marking
US7544137B2 (en) * 2003-07-30 2009-06-09 Richardson Todd E Sports simulation system
KR101244440B1 (ko) * 2004-07-02 2013-03-18 트랙맨 에이/에스 발사된 투사체의 실제 방향과 사전 결정 방향 사이의편차를 결정하기 위한 방법 및 장치
US8861311B2 (en) * 2010-04-23 2014-10-14 Vanderbilt University System and method for estimating projectile trajectory and source location
US9135831B2 (en) * 2013-01-24 2015-09-15 Bryan P. O'Keefe System and method for demonstrating a path of a projectile
IL295152A (en) 2022-07-27 2024-02-01 Synchrosense Ltd Mobile ultrasonic sling tracking

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7342400U (de) * 1974-04-04 Dornier System Gmbh Tragekonstruktion
DE2603061A1 (de) * 1976-01-28 1977-08-11 Elektro Mechanischer Fluggerae Luftschleppzielanordnung
GB1553251A (en) * 1976-05-20 1979-09-26 Ms Instr Ltd Position determining system
GB1580253A (en) * 1977-02-21 1980-11-26 Australasian Training Aids Pty Firing range
SE7714913L (sv) * 1977-12-29 1979-06-30 Swedair Ab Forfarande jemte anordning for bestemning av bomavstandet
DE3122644A1 (de) * 1981-06-06 1982-12-23 Hartmut Ing.(Grad.) 8035 Gauting Euer Verfahren zur akustischen messung der trefferablage beim beschuss fliegender uebungsziele
US4505481A (en) * 1982-07-06 1985-03-19 Australasian Training Aids (Pty.) Ltd. Inflatable target apparatus
DE3341549A1 (de) * 1983-11-17 1985-05-30 Rhein-Flugzeugbau GmbH, 4050 Mönchengladbach Luftschleppzielanordnung

Also Published As

Publication number Publication date
DE3612352C2 (fr) 1992-12-17
DE3612352A1 (de) 1987-08-13
EP0232762A1 (fr) 1987-08-19
US4805159A (en) 1989-02-14

Similar Documents

Publication Publication Date Title
EP0232762B1 (fr) Méthode pour déterminer acoustiquement les trajectoires de projectiles et détermination de la distance minimum projectile-cible
DE3204874C2 (de) Passives Verfahren zum Gewinnen von Zieldaten von einer Schallquelle
DE69727913T2 (de) Verfolgung von gruppen
DE2952315C2 (fr)
DE69119583T2 (de) Vorrichtung zur akustischen auswertung einer geschossflugbahn
EP2681584A1 (fr) Procédé de détection de la trajectoire de projectiles
DE3936359A1 (de) Verfahren zur bestimmung der zielrichtung und der zielentfernung von schallerzeugenden zielen
DE3322500C2 (fr)
EP1410060A1 (fr) Procede de determination passive de donnees cibles
DE3531230C2 (fr)
DE2942355A1 (de) Vorrichtung zum erfassen des durchganges eines projektils
DE10130297A1 (de) Verfahren zum Bestimmen der Zielposition eines schallabstrahlenden Ziels
DE69207504T2 (de) Verfahren zur Positionsbestimmung von Objekten
EP0253277B1 (fr) Procédé passif d'estimation des données d'une cible en mouvement dans l'eau et rayonnement des signaux sonores en temps continu
EP0530476B1 (fr) Dispositif et méthode pour la mesure angulaire par électroacoustique de projectiles ultrasoniques passant des avions-cibles toués
DE2802936C2 (fr)
DE3200820C2 (fr)
DE19520115A1 (de) Verfahren zum Bestimmen der Rollage eines rollenden Flugobjektes
EP0962784B1 (fr) Procédé passif de détermination de données de cibles
DE3528075A1 (de) Verfahren und einrichtung zur stereoakustischen trefferablagemessung von geschossen
DE3345021A1 (de) Passives verfahren zur schaetzung von zustandsgroessen eines bewegten, schallimpulse ins wasser abstrahlenden ziels
EP0115044B1 (fr) Procédé de reconnaissance d'un situation tactique
DE10305896B3 (de) Verfahren zum Bestimmen der Position eines Objektes im Raum mittels eines vom Objekt ausgesendeten und von Empfängern empfangenen Signals
DE10119586A1 (de) Flugdaten-Messvorrichtung und -Messverfahren
EP3435108A1 (fr) Procédé de recherche d'un appareil d'envoi à l'aide d'un appareil de recherche et appareil de recherche destiné à exécuter un tel procédé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19870811

17Q First examination report despatched

Effective date: 19880425

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19900613

Ref country code: BE

Effective date: 19900613

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19900613

Ref country code: NL

Effective date: 19900613

REF Corresponds to:

Ref document number: 53654

Country of ref document: AT

Date of ref document: 19900615

Kind code of ref document: T

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19900924

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19910131

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19910131

Ref country code: LI

Effective date: 19910131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921127

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921216

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930126

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 87100842.1

Effective date: 19940810