[go: up one dir, main page]

EP0232762B1 - Method for acoustically determining the trajectory of projectiles and for the determination of the shortest distance projectile/target - Google Patents

Method for acoustically determining the trajectory of projectiles and for the determination of the shortest distance projectile/target Download PDF

Info

Publication number
EP0232762B1
EP0232762B1 EP87100842A EP87100842A EP0232762B1 EP 0232762 B1 EP0232762 B1 EP 0232762B1 EP 87100842 A EP87100842 A EP 87100842A EP 87100842 A EP87100842 A EP 87100842A EP 0232762 B1 EP0232762 B1 EP 0232762B1
Authority
EP
European Patent Office
Prior art keywords
target
microphones
projectile
microphone
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87100842A
Other languages
German (de)
French (fr)
Other versions
EP0232762A1 (en
Inventor
Helmut Dipl.-Ing. Negendank
Reinhard Dipl.-Ing. Wedekind
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhein-Flugzeugbau GmbH
Original Assignee
Rhein-Flugzeugbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhein-Flugzeugbau GmbH filed Critical Rhein-Flugzeugbau GmbH
Priority to AT87100842T priority Critical patent/ATE53654T1/en
Publication of EP0232762A1 publication Critical patent/EP0232762A1/en
Application granted granted Critical
Publication of EP0232762B1 publication Critical patent/EP0232762B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J5/00Target indicating systems; Target-hit or score detecting systems
    • F41J5/06Acoustic hit-indicating systems, i.e. detecting of shock waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S367/00Communications, electrical: acoustic wave systems and devices
    • Y10S367/906Airborne shock-wave detection

Definitions

  • the invention relates to an arrangement for acoustic projectile placement measurement, in particular for moving exercise targets, with a microphone system and evaluation devices which are intended to determine the minimum projectile / target distance while eliminating runtime errors.
  • Acoustic methods for measuring floor deposition at stationary or moving targets at subsonic speed are based on the measurement of the conical shock waves generated by ultrasound-fast guns using one or more microphones.
  • the relationships between the distance microphone / shock wave generation point on the projectile path and the shock wave amplitude or the shock wave duration are known.
  • the shortest storey / target distance can be derived directly from this.
  • both the spatial and the temporal course of the floor passage must be taken into account.
  • the target movement and projectile path can be assumed as a straight line and the speeds as constant because of the brevity of this process.
  • a calculation is only possible if the spatial relationship of the floor track to the target track can be established. Two options are known for this.
  • DE-OS 31 22 644 describes a correction method for flying training targets, which is based on a weapon location and target location-related geometry. It requires specified, precisely adhered to flight courses, flight heights and flight speeds as well as control distances and floor speeds.
  • the microphones used must be installed in the center of the target and the entire arrangement must have an acoustic spherical characteristic.
  • a three-dimensional arrangement consisting of a microphone system with at least four microphones and an additional system, that is to say a total of at least five microphones, provides a target-specific geometry which enables independence from flight courses and flight heights.
  • the microphone arrangement can also be located outside the target center.
  • the object of the present invention is to provide an arrangement which excludes runtime errors with a minimum number of microphones and provides sufficient information for evaluation, such as signal amplitudes, signal duration and runtimes, so that only a small number of training parameters have to be defined before a shooting exercise. This object is achieved by the characterizing features of claim 1.
  • the measure according to the invention offers the possibility of determining the types and number of available information with the number of microphones and their geometric position to the center of the target. This means that an optimal system can be selected depending on the mechanical and functional boundary conditions of the target / microphone system unit.
  • the floor caliber used can be recognized within certain limits.
  • the shape of the Mach cone generated by the projectile is taken into account when determining the projectile hand, there is no approximation by a flat wavefront. However, the shape is idealized. Errors that are known to occur at small intervals are corrected by the evaluation computer. Isotropic properties of the microphones are still assumed. The evaluation computer also corrects actual deviations from this.
  • the microphone arrangement is assumed to be static.
  • the microphone and target center are, however, not the actual, but "arithmetical" locations that are determined from the order of the sound, from measured time differences and the target speed.
  • the shape of the Mach cone is taken into account. Only the locations calculated in this way are included in the floor path calculation.
  • the microphone M is sonicated first, microphone M 2 after the measured time difference ⁇ t m .
  • the known microphone distance M, M 2 * is then by the distance V Z.
  • Ot m V z : target speed
  • the angle of incidence ⁇ of the shock wave then applies with the speed of sound c and for the measured duration of the pulse T. Doppler corrected pulse duration to be calculated
  • the target center and two microphones are on the target movement axis Z. Because of its rotational symmetry, such a one-dimensional arrangement is not able to clearly define a projectile path, but essential information is available.
  • the rotationally symmetrical surfaces of the second order are created, which have straight-line generators, that is, in the general case, a single-shell rotational hyperboloid with two generators. Only this is considered below, the simple special cases of circular cones and cylinders with one share each are included.
  • FIG. 3 Such a rotational hyperboloid is shown in FIG. 3.
  • G and G * are any generatrix of the two groups. It can be seen that the rotational symmetry can be used to derive the same information about the distance from a target center Z m arbitrarily located on the Z axis from any generator. If this paragraph t and determined as a rotating vector family, its z-component can be determined from the sign if the bullet passage in front of or behind the aiming point was made (front-back detection).
  • Any projectile path G that is conveniently located in the coordinate system can be selected for the calculations, since the distance to be determined is the same for all paths.
  • Fig. 4 the microphone K in the coordinate origin, the microphone at the end of the vector L on the Z axis.
  • the computed location of the microphone L is therefore in vector notation
  • the distance vector 1 is placed in the XZ plane for simplification and is therefore called
  • are known 1
  • the components of 1 and 2 are to be calculated from this, the floor track sought is thus fixed.
  • Using a third microphone outside the Z axis creates a two-dimensional microphone system. It is thus possible to select two tracks from the projectile track sets described above which are mirror-symmetrical to the microphone plane, each of the two track sets providing a solution.
  • the desired target center no longer has to lie on the Z axis, but can be moved to the microphone plane.
  • FIG. 5 shows a flat microphone system. It corresponds to that from FIG. 4 with the additional third microphone M. In order to simplify the calculation, it lies in the XZ plane with the vector M for the computed microphone location R 3 is the distance vector from M and the bullet trajectory G. The distance between R, and 3 at G is ⁇ t M is the measured time difference between the sound of the microphones K and M,
  • the search for the pair of projectile paths is carried out by selecting any projectile path from the family and a mathematical rotation of M around the Z axis until the conditions of a system of equations are met.
  • This coordinate transformation is shown in FIG. 6 as a projection into the XY plane.
  • Is known M is measured
  • the floor track pair can also be determined using a different approach.
  • the Mach cone is used for this A (See Fig. Introduced.
  • the rotation of M is then performed so that A and G enclose the Mach angle a
  • this fourth microphone N is, for example, in the YZ plane at the computed microphone location N shown.
  • the aid of the measured distance and the scalar product with the two possible path verifiers or by means of arithmetical rotation of N around the Z axis results in a double solution which is symmetrical to the YZ plane, of which only one is identical to a solution which was obtained with the aid of the microphone M.
  • the target center can be fixed anywhere in the room with the solutions resulting from the above approaches, and therefore a target body can be defined in the evaluation computer under all bombardment situations.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

Die Erfindung betrifft eine Anordnung zur akustischen Geschoßablagemessung, insbesondere für bewegte Übungsziele, mit einem Mikrophonsystem und Auswerteeinrichtungen, die den Minimalabstand Geschoß/Ziel unter Ausschaltung von Laufzeitfehlern ermitteln sollen.The invention relates to an arrangement for acoustic projectile placement measurement, in particular for moving exercise targets, with a microphone system and evaluation devices which are intended to determine the minimum projectile / target distance while eliminating runtime errors.

Akustische Verfahren zur Geschoßablagemessung an ruhenden oder mit Unterschallgeschwindigkeit bewegten Übungszielen beruhen auf der Vermessung der von überschallschnellen Geschosen erzeugten kegelförmigen Stoßwellen unter Verwendung eines oder mehrerer Mikrophone. Die Zusammenhänge zwischen der Entfernung Mikrophon/Stoßwellenerzeugungspunkt auf der Geschoßbahn und der Stoßwellenamplitude oder der Stoßwellendauer sind bekannt. Bei nicht bewegten Zielen kann hieraus der kürzeste Abstand Geschoß/Ziel direkt abgeleitet werden.Acoustic methods for measuring floor deposition at stationary or moving targets at subsonic speed are based on the measurement of the conical shock waves generated by ultrasound-fast guns using one or more microphones. The relationships between the distance microphone / shock wave generation point on the projectile path and the shock wave amplitude or the shock wave duration are known. In the case of non-moving targets, the shortest storey / target distance can be derived directly from this.

Weiterhin ist bekannt, daß bei bewegten Zielen die direkte Messung fehlerhaft ist, so daß sich - abhängig von den vektroiellen Größen Geschoß-, Ziel- und Schallgeschwindigkeit - nur in seltenen Sonderfällen das richtige Ergebnis ergibt.Furthermore, it is known that the direct measurement is incorrect in the case of moving targets, so that - depending on the vector sizes of the projectile, target and sound speed - the correct result is obtained only in rare special cases.

Zur Vermeidung dieser Fehler muß sowohl der räumliche als auch der zeitliche Verlauf der Geschoßpassage berücksichtigt werden. Für einen solchen Passagevorgang können wegen der Kürze dieses Vorgangs die Zielbewegungs- und Geschoßbahn als eine Gerade und die Geschwin digkeiten als konstant angenommen werden. Eine Rechnung ist jedoch nur dann möglich, wenn der räumliche Bezug der Geschoßbahn zur Zielbahn hergestellt werden kann. Hierzu sind zwei Möglichkeiten bekannt.To avoid these errors, both the spatial and the temporal course of the floor passage must be taken into account. For such a passage process, the target movement and projectile path can be assumed as a straight line and the speeds as constant because of the brevity of this process. However, a calculation is only possible if the spatial relationship of the floor track to the target track can be established. Two options are known for this.

In der DE-OS 31 22 644 ist ein Korrekturverfahren für fliegende Übungsziele beschrieben, das auf einer waffenort- und zielortbezogenen Geometrie basiert. Es erfordert festgelegte, genau einzuhaltende Flugkurse, Flughöhen und Fluggeschwindigkeiten sowie Bekämpfungsentfernungen und Geschoßgeschwindigkeiten. Die verwendeten Mikrophone müssen im Zielmittelpunkt installiert sein, und die gesamte Anordnung muß eine akustische Kugelcharakteristik aufweisen.DE-OS 31 22 644 describes a correction method for flying training targets, which is based on a weapon location and target location-related geometry. It requires specified, precisely adhered to flight courses, flight heights and flight speeds as well as control distances and floor speeds. The microphones used must be installed in the center of the target and the entire arrangement must have an acoustic spherical characteristic.

Eine andere Möglichkeit wird in der EU-PS 0 003 095 beschreiben. Dort liefert eine dreidimensionale Anordnung, bestehend aus einem Mikrophonsystem mit mindestens vier Mikrophonen und einem Zusatzsystem, also insgesamt mindestens fünf Mikrophonen, eine zielbezogene Geometrie, welche die Unabhängigkeit von Flugkursen und Flughöhen ermöglicht. Die Mikrophonanordnung kann sich auch außerhalb des Zielmittelpunktes befinden.Another possibility is described in EU-PS 0 003 095. There, a three-dimensional arrangement, consisting of a microphone system with at least four microphones and an additional system, that is to say a total of at least five microphones, provides a target-specific geometry which enables independence from flight courses and flight heights. The microphone arrangement can also be located outside the target center.

Aufgabe der vorliegenden Erfindung ist es, eine Anordnung zu schaffen, die Laufzeitfehler bei minimaler Mikrophonanzahl ausschließt und zur Auswertung hinreichende Informationen, wie Signalamplituden, Signaldauer und -laufzeiten liefert, so daß nur eine geringe Zahl von Übungsparametern vor einer Schießübung festzulegen sind. Diese Aufgabe ist durch die Kennzeichnenden Merkmale des Anspruchs 1 gelöst.The object of the present invention is to provide an arrangement which excludes runtime errors with a minimum number of microphones and provides sufficient information for evaluation, such as signal amplitudes, signal duration and runtimes, so that only a small number of training parameters have to be defined before a shooting exercise. This object is achieved by the characterizing features of claim 1.

Die erfindungsgemäße Maßnahme bietet die Möglichkeit, Arten und Anzahl der verfühbaren Informationen mit der Anzahl der Mikrophone und ihere geometrischen Lage zum Zielmittelpunkt zu bestimmen. Das bedeutet, daß in Abhängigkeit der mechanischen und funktionellen Randbedingungen der Einheit Ziel/Mikrophonsystem ein optimales System ausgewählt werden kann.The measure according to the invention offers the possibility of determining the types and number of available information with the number of microphones and their geometric position to the center of the target. This means that an optimal system can be selected depending on the mechanical and functional boundary conditions of the target / microphone system unit.

Weiterbildungen und vorteilhafte Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen.Further developments and advantageous refinements of the invention can be found in the subclaims.

Die Erfindung wird anhand der Zeichnungen näher erläutert. Es zeigen:

  • Fig. 1 eine Prinzipdarstellung zur Ermittlung der Minimalentfernung Geschoß/Ziel,
  • Fig. 2 eine Darstellung zur Erläuterung der Dopplerkorrektur und des rechnerischen Mikrophonortes,
  • Fig. 3 ein Rotationshyperboloid,
  • Fig. 4 ein Raumdiagramm mit einem Mikrophon im Koordinatenursprung und einem am Ende eines Vektors in einer Raumachse liegenden Mikrophon,
  • Fig. 5 ein Raumdiagramm mit drei in einer Ebene liegenden Mikrophonen,
  • Fig. 6 ein Diagramm zur Erläuterung der Koordinatentransformation und
  • Fig. 7 ein Diagramm für ein dreidimensionales Mikrophonsystem mit vier Mikrophonen.
The invention is explained in more detail with reference to the drawings. Show it:
  • 1 is a schematic diagram for determining the minimum distance floor / target,
  • 2 shows a representation to explain the Doppler correction and the computed microphone location,
  • 3 shows a rotational hyperboloid,
  • 4 shows a spatial diagram with a microphone in the coordinate origin and a microphone lying at the end of a vector in a spatial axis,
  • 5 shows a spatial diagram with three microphones lying in one plane,
  • Fig. 6 is a diagram for explaining the coordinate transformation and
  • Fig. 7 is a diagram for a three-dimensional microphone system with four microphones.

In der Prinzipdarstellung nach Fig. 1 befindet sich der Zielmittelpunkt Zm zu, Zeitpunkt t = 0 im Koordinatenursprung und bewegt sich in Richtung der Z-Achse. Das Geschoß befindet sich zum gleichen Zeitpunkt am Ende des Ortsverktors R (t = 0), und es bewegt sich in Richtung G.

  • Es gilt also:
  • Zielbahn
    Figure imgb0001
  • Geschoßbahn
    Figure imgb0002
  • Die Momentanentfernung Ziel - Geschoß ist dann
    Figure imgb0003
    Figure imgb0004
  • Diese Entfernung wird minimal, wenn
    Figure imgb0005
  • wird.
  • Die kürzeste Entfernung Emin liegt also zum Zeitpunkt
  • tmin.
  • tmln
    Figure imgb0006
  • vor.
  • Dieser Wert ist in *) einzusetzen und Emin zu berechnen.
In the basic illustration according to FIG. 1, the target center Z m is at, time t = 0 in the coordinate origin and moves in the direction of the Z axis. The storey is at the same time at the end of the local vector R (t = 0) and it is moving in the direction of G.
  • So the following applies:
  • Finish line
    Figure imgb0001
  • Bullet train
    Figure imgb0002
  • The momentary target - floor is then
    Figure imgb0003
    Figure imgb0004
  • This distance becomes minimal, though
    Figure imgb0005
  • becomes.
  • The shortest distance E min is therefore at the time
  • tmin.
  • t mln
    Figure imgb0006
  • in front.
  • This value must be inserted in * ) and E min calculated.

Bevor die Systeme im Einzelnen beschreiben werden, folgen zunächst einige Erklärungen und Vereinbarungen, die für alle Systeme gemeinsam gelten:

  • A) Der kürzeste Abstand Geschoß/Ziel wird in vier Schritten ermittelt:
    • 1. Erfassen und Übertragen der erforderlichen akustischen Daten,
    • 2. Berechnung der räumlichen Lage der Geschoßbahn oder der Geschoßbahnschar, deren Elemente in Bezug auf die Zielbahn alle den gleichen Informationsgehalt haben,
    • 3. Berechnung der Zeitparameter auf Geschoß- und Zielbahn,
    • 4. Berechnung des kürzesten Abstandes Geschoß/Ziel.

    Die Zeitparameter sind elementar aus Geschoß-, Ziel- und Schallgeschwindigkeit sowie dem Abstand zum ersten beschallten Mikrophon ableitbar. Die Geschoßbahnberechnugen werden im weiteren Verlauf ausführlich dargestellt.
  • B) Die Mikrophonsignale werden mittels eines geeigneten Telemetrieverfahrens einem Auswertungscomputer, der die erforderlichen Berechnungen durchführt, zugeführt.
  • C) Sollen Temperatur- und Höheneinflüsse berücksichtigt werden, erfolgt die Bestimmung der aktuellen Schallgeschwindigkeit aus der Temperatur 5 nach der bekannten Beziehung
    Figure imgb0007

    Die Messung erfolgt in der Nähe der Mikrophone, die Information wird ebenfalls mittels Telemetrie dem Auswertungscomputer zugeführt.
  • D) Mindestens zwei Mikrophone sind hintereinander in Zielbewegungsrichtung angeordnet, alle Mikrophonorte in Bezug auf den gewünschten Zielmittelpunkt sind bekannt.
  • E) Die Abstände Mikrophon/Geschoßbahn werden über die bekannten Zusammenhänge zwischen Abstand und Stoßwellenamplitude bzw. -dauer bestimmt.
Before the systems are described in detail, there are a few explanations and agreements that apply to all systems:
  • A) The shortest distance between floor and target is determined in four steps:
    • 1. acquisition and transmission of the required acoustic data,
    • 2. Calculation of the spatial position of the floor track or the floor track family, the elements of which all have the same information content in relation to the destination track,
    • 3. calculation of the time parameters on the projectile and target track,
    • 4. Calculation of the shortest floor / target distance.

    The time parameters can be derived from the floor, target and sound speed as well as the distance to the first sonic microphone. The projectile path calculations are shown in detail in the further course.
  • B) The microphone signals are fed to an evaluation computer, which carries out the necessary calculations, by means of a suitable telemetry method.
  • C) If temperature and altitude influences are to be taken into account, the current speed of sound is determined from temperature 5 according to the known relationship
    Figure imgb0007

    The measurement is carried out in the vicinity of the microphones, and the information is also fed to the evaluation computer by means of telemetry.
  • D) At least two microphones are arranged one behind the other in the direction of target movement, all microphone locations with respect to the desired target center are known.
  • E) The distances between the microphone and the bullet path are determined via the known relationships between distance and shock wave amplitude or duration.

Bei Auswertung beider Informationen ist in bestimmten Grenzen die Erkennung des verwendeten Geschoßkalibers möglich.When evaluating both pieces of information, the floor caliber used can be recognized within certain limits.

  • F) Bei schnell bewgten Zielen ist eine Dopplerkorrektur der gemessenen Impulsdauer erforderlich. Der hierzu benötigte Einfallwinkel der Schallwellenfront in Bezug auf die Zielbewegungsrichtung wird aus einer Schallaufzeit-Differenzmessung zwischen den unter D) genannten Mikrophonen ermittelt.F) With fast moving targets a Doppler correction of the measured pulse duration is necessary. The angle of incidence of the sound wave front required for this in relation to the direction of target movement is determined from a difference in sound propagation time between the microphones mentioned under D).
  • G) Schallaufzeit-Differenzmessungen zwischen Mikrophonen werden vorzugsweise durch Bildung und Auswertung der Kreuzkorrelationsfunktion der beteiligten beiden Mikrophonsignale durchgeführt. Dieses Verfahren liefert auch bei hohem Störgeräuschpegel große Genauigkeit und weitere Information. So werden die unter D) genannten Mikrophone gemeinsam von Windgeräusch des Zieles beschallt. Die Kreuzkorrelationsfunktion erhält daher ein Maximum, aus dessen Lage bei bekannter Schallgeschwindigkeit die Machzahl des Zieles bestimmt werden kann.G) Differences in sound propagation time between microphones are preferably carried out by forming and evaluating the cross-correlation function of the two microphone signals involved. This method provides great accuracy and further information even with high noise levels. The microphones mentioned under D) are exposed to wind noise from the target. The cross-correlation function therefore receives a maximum, from the position of which the Mach number of the target can be determined at a known speed of sound.
  • H) Die Berechnungen erfolgen nach den Prinzipien der geometrischen Akustrik. Das Ausbreitungsmedium Luft wird als ruhend und homogen angenommen.H) The calculations are based on the principles of geometric acoustics. The air as a medium of propagation is assumed to be dormant and homogeneous.

Die Form des vom Geschoß erzeugten Machkegels wird bei der Bestimmung der Geschoßhan berücksichtigt, es erfolgt keine Näherung durch eine ebene Wellenfront. Die Form wird jedoch idealisiert angenommen. Fehler, die bekanntlich bei kleinen Abständen auftreten, werden vom Auswertungscomputer korrigiert. Es werden weiterhin isotrope Eingenschaften der Mikrophone angenommen. Tatsächliche Abweichungen hiervon korrigiert ebenfalls der Auswertungscomputer.The shape of the Mach cone generated by the projectile is taken into account when determining the projectile hand, there is no approximation by a flat wavefront. However, the shape is idealized. Errors that are known to occur at small intervals are corrected by the evaluation computer. Isotropic properties of the microphones are still assumed. The evaluation computer also corrects actual deviations from this.

I) Um die geometrischen Darstellungen zu vereinfachen, wird die Mikrophonanordnung ruhend angenommen. Die Mikrophon- und Zielmittelpunktsorte sind jedoch nicht die tatsächlichen, sondern "rechnerische" Orte, die aus der Reihenfolge der Beschallung, aus gemessenen Zeitdifferenzen und der Zielgeschwindigkeit ermittelt werden. Die Form des Machkegels wird hierbei berücksichtigt. Nur die so berechneten Orte fließen in die Geschoßbahnberechnung ein.I) In order to simplify the geometric representations, the microphone arrangement is assumed to be static. The microphone and target center are, however, not the actual, but "arithmetical" locations that are determined from the order of the sound, from measured time differences and the target speed. The shape of the Mach cone is taken into account. Only the locations calculated in this way are included in the floor path calculation.

In Fig. 2 ist ein Beispiel zur Erläuterung der Punkte F und I dargestellt. Das Mikrophon M, wird zuerste beschallt, Mikrophon M2 nach der gemessenen Zeitdifferenz △tm. Der bekannte Mikrophonabstand M,M2 * is dann um die Strecke VZ. Otm (Vz: Zielgeschwindigkeit) zu verringern bzw. bei umgekehrter Reihenfolge der Beschallung zu verlängern.2 shows an example to explain points F and I. The microphone M, is sonicated first, microphone M 2 after the measured time difference △ t m . The known microphone distance M, M 2 * is then by the distance V Z. To decrease Ot m (V z : target speed) or to extend it in the reverse order of the sonication.

Für den Einfallswinkel β der Stoßwelle gilt dann mit der Schallgeschwindigkeit c

Figure imgb0008
und für die aus der gemessenen Impulsdauer T. zu berechnende dopplerkorrigierte Impulsdauer
Figure imgb0009
The angle of incidence β of the shock wave then applies with the speed of sound c
Figure imgb0008
and for the measured duration of the pulse T. Doppler corrected pulse duration to be calculated
Figure imgb0009

Die Vorkenntnis der aktuellen Schallgeschwindigkeit ist für diese Korrektur nicht notwendig.The previous knowledge of the current speed of sound is not necessary for this correction.

Beim einfachsten System befinden sich Zielmittelpunkt und zwei Mikrophone auf der Zielbewegungsachse Z. Eine solche eindimensionale Anordnung ist auf Grund ihrer Rotationssymmetrie nicht in der Lage, eine Geschoßbahn eindeutig festzulegen, es sind jedoch wesentliche Informationen verfügbar.In the simplest system, the target center and two microphones are on the target movement axis Z. Because of its rotational symmetry, such a one-dimensional arrangement is not able to clearly define a projectile path, but essential information is available.

Bei einer gedachten Rotation des Geschoßbahn um die Z-Ahse entstehen die rotationssymmetrischen Flächen zweiter Ordnung, die geradlinige Erzeugende haben, also im allgemeinen Fall ein einschaliges Rotationshyperboloid mit zwei Erzeugendenscharen. Nur dieses wird im Folgenden betrachtet, die einfachen Sonderfälle Kreiskegel und -zylinder mit je einer Schar sind eingeschlossen.With an imaginary rotation of the projectile path around the Z axis, the rotationally symmetrical surfaces of the second order are created, which have straight-line generators, that is, in the general case, a single-shell rotational hyperboloid with two generators. Only this is considered below, the simple special cases of circular cones and cylinders with one share each are included.

In Fig. 3 ist ein solches Rotationshyperboloid dargestellt. G und G* sind je eine beliebige Erzeugende der beiden Scharen. Es wird ersichtlich, daß durch die Rotationssymmetrie aus jeder beliebigen Erzeugenden die gleiche Information über den Abstand zu einem auf der Z-Achse beliebig gelegenen Zielmittelpunkt Zm ableitbar ist. Wird dieser Abstand in als rotierende Vektorschar ermittelt, kann aus dem Vorzeichen seiner z-Komponente bestimmt werden, ob die Geschoßpassage vor oder hinter dem Zielmittelpunkt erfolgte (Vorn-Hinten-Erkennung).Such a rotational hyperboloid is shown in FIG. 3. G and G * are any generatrix of the two groups. It can be seen that the rotational symmetry can be used to derive the same information about the distance from a target center Z m arbitrarily located on the Z axis from any generator. If this paragraph t and determined as a rotating vector family, its z-component can be determined from the sign if the bullet passage in front of or behind the aiming point was made (front-back detection).

Für die Berechnungen kann eine beliebige, rechentechnisch im Koordinatensystem günstig gelegene Geschoßbahn G ausgewählt werden, da der zu ermittelnde Abstand bei allen Bahnen gleich ist.Any projectile path G that is conveniently located in the coordinate system can be selected for the calculations, since the distance to be determined is the same for all paths.

In Fig. 4 sich das Mikrophon K im Koordinatenursprung, das Mikrophon am Ende des Vektors L auf der Z-Achse. Der rechnerische Ort des Mikrophons L ist daher in Vektorschreibweise

Figure imgb0010
Der Abstandsvektor 1 wird zur Vereinfachung in die X-Z-Ebene gelegt und lautet daher
Figure imgb0011
In Fig. 4 the microphone K in the coordinate origin, the microphone at the end of the vector L on the Z axis. The computed location of the microphone L is therefore in vector notation
Figure imgb0010
The distance vector 1 is placed in the XZ plane for simplification and is therefore called
Figure imgb0011

Er steht wie Vektor R 2 senkrecht auf der Geschoßbahn G. Für 2 kann keine Komponente zu Null angenommen werden.

Figure imgb0012
Der Abstand von R, und 2 auf G ist
Figure imgb0013
Mit dem Machwinkel a, der Machzahl des Geschosss MG und der Geschwindigkeit VG gilt bekanntlich
Figure imgb0014
It stands like vector R 2 perpendicular to the floor trajectory G. For 2 no component can be assumed to be zero.
Figure imgb0012
The distance from R, and 2 to G is
Figure imgb0013
The Mach angle a, the Mach number of the projectile M G and the speed V G are known to apply
Figure imgb0014

Ist △tL die gemessene Zeitdifferenz zwischen der Beschallung der Mikrophone K und L, legt das Geschoß die Streckt △tLVG zurück. Es gilt daher

Figure imgb0015
If △ t L is the measured time difference between the sound of the microphones K and L, the floor covers the distance △ t L V G. It therefore applies
Figure imgb0015

Bekannt sind die Größen c, VG, MG und , die Größen |1|,|R2]und △tL werden gemessen. Hieraus sind die Komponenten von 1, und 2 zu berechnen, die gesuchte Geschoßbahn liegt damit fest.The sizes c, V G , M G and, the sizes | are known 1 |, | R 2 ] and △ t L are measured. The components of 1 and 2 are to be calculated from this, the floor track sought is thus fixed.

Gemäß Fig. 4 ist folgendes Gleichungssystem ansetzbar:

Figure imgb0016
Figure imgb0017
Figure imgb0018
Die Lösung dieses Gleichungssystems liefert die 5 unbekannten Komponenten
Figure imgb0019
Figure imgb0020
Figure imgb0021
Figure imgb0022
Figure imgb0023
4, the following system of equations can be applied:
Figure imgb0016
Figure imgb0017
Figure imgb0018
The solution to this system of equations provides the 5 unknown components
Figure imgb0019
Figure imgb0020
Figure imgb0021
Figure imgb0022
Figure imgb0023

Die Lösung zeigt, daß die für die Vorn-Hinten-Erkennung erforderliche z-Komponente der Abstände eindeutig bestimmt ist.The solution shows that the z-component of the distances required for the front-rear detection is clearly determined.

Die Vorzeichen von x1 und y2 sind frei wählbar, das Vorzeichen von x2 muß dem von x1 gliech sein, da x, in X2 enthalten ist.The signs of x 1 and y 2 are freely selectable, the sign of x 2 must be the same as that of x 1 , since x is contained in X2 .

Es existieren also durch den gewählten Ansatz vier explizite Lösungen mit der Eingenschaft der Spiegelsymmetrie zur X-Z-Ebene bzw. zur Y-Z-Ebene. Keine der Lösungen muß jedoch die tatsächliche Geschoßbahn sein. Für die Berechnung des kürzesten Abstandes kann eine beliebige BahnThere are therefore four explicit solutions based on the chosen approach with the property of mirror symmetry to the X-Z plane or to the Y-Z plane. However, none of the solutions need to be the actual floor trajectory. Any path can be used to calculate the shortest distance

Figure imgb0024
Figure imgb0024

ausgewählt werden.to be chosen.

Durch Verwendung eines dritten Mikrophons außerhalb der Z-Achse entsteht ein zweidimensionales Mikrophonsystem. Es ist damit möglich, aus den vorstehend beschiebenen Geschoßbahnscharen zwei Bahnen zu selektieren, die spiegelsymmetrisch zur Mikrophonebene sind, jede der zwei Bahnscharen liefert eine Lösung. Der gewünschte Zielmittelpunkt muß nicht mehr auf der Z-Achse liegen, sondern kann in die Mikrophonenbene verlegt werden. Es ist auch möglich, in dieser Ebene Zielflächen, zum Beispiel in Form von Fahrzeugsilhoutten im Auswertecomputer zu definieren. Erfolgt der Beschuß des Ziels nur aus einem der Halbräume, die durch die Mikrophonebene festgelegt werden, ist die Geschoßbhan sogar eindeutig festlegbar, und es kann ein Zielkörper definiert werden.Using a third microphone outside the Z axis creates a two-dimensional microphone system. It is thus possible to select two tracks from the projectile track sets described above which are mirror-symmetrical to the microphone plane, each of the two track sets providing a solution. The desired target center no longer has to lie on the Z axis, but can be moved to the microphone plane. It is also possible to define target areas in this level, for example in the form of vehicle silhouettes in the evaluation computer. If the target is shot from only one of the half-spaces defined by the microphone level, the projectile rail can even be clearly defined and a target body can be defined.

In Fig. 5 ist ein ebenes Mikrophonsystem dargestellt. Es entspricht dem aus Fig. 4 mit dem zusätzichen dritten Mikrophon M. Um die Rechnung zu vereinfachen, liegt es in der X-Z-Ebene mit dem Vektor M zum rechnerischen Mikrophonort

Figure imgb0025
R3 ist der Abstandsvektor von M und der Geschoßbahn G. Der Abstand zwischen R, und 3 auf G ist
Figure imgb0026
△tM ist die gemessene Zeitdifferenz zwischen der Beschallung der Mikrophone K und M, |3| wird ebenfalls gemessen. M und L liegen beide auf G; es gilt daher
Figure imgb0027
und
Figure imgb0028
5 shows a flat microphone system. It corresponds to that from FIG. 4 with the additional third microphone M. In order to simplify the calculation, it lies in the XZ plane with the vector M for the computed microphone location
Figure imgb0025
R 3 is the distance vector from M and the bullet trajectory G. The distance between R, and 3 at G is
Figure imgb0026
△ t M is the measured time difference between the sound of the microphones K and M, | 3 | is also measured. M and L are both on G; therefore it applies
Figure imgb0027
and
Figure imgb0028

Ist G zur X-Y-Ebene parallel, wird |L| = 0. Da 1 in der X-Z-Ebene angenommen ist, muß Δ M parallel zur Y-Achse liegen, und es ist ein vereinfachter Ansatz ohne Berechnung von 0 möglich. Im Folgenden wird nur der komplizierte Fall |Δ L| 0 betrachtet.If G is parallel to the XY plane, | L | = 0. Since 1 is assumed in the XZ plane, must Δ M are parallel to the Y axis, and a simplified approach is possible without calculating 0. In the following only the complicated case | Δ L | 0 considered.

Die Festlegung des gesuchten Geschoßbahnpaares erfolgt durch Auswahl einer beliebigen Geschoßbahn aus der Schar und eine rechnerische Rotation von M um die Z-Achse, bis die Bedingungen eines Gleichungssystems erfüllt sind.The search for the pair of projectile paths is carried out by selecting any projectile path from the family and a mathematical rotation of M around the Z axis until the conditions of a system of equations are met.

Die Koordinaten des um den Winkel Ψ zu drehenden Mikrophons sind dann

Figure imgb0029
The coordinates of the microphone to be rotated through the angle Ψ are then
Figure imgb0029

In Fig. 6 ist diese Koordinatentransformation als Projektion in die X-Y-Ebene dargestellt. Die ausgewählt Geschoßbahn ist durch die Abstandsverktoren R 1, und R 2 gegeben, die Abstandsverktoren der tatsächlichen Geschoßbahn R 1' und R 2' ergeben sich durch entgegengestzte Rotation R 1 und R 2 um den gesuchten Winkel Ψ = arctan

Figure imgb0030
This coordinate transformation is shown in FIG. 6 as a projection into the XY plane. The selected floor track is through the distance verifiers R 1 , and R Given 2 , the distance verifiers of the actual floor track R 1 'and R 2 'result from opposite rotation R 1 and R 2 around the searched angle Ψ = arctan
Figure imgb0030

Bekannt ist M, gemesen wird |R 3| und △tM, xMΨ und y sind gesucht.Is known M , is measured | R 3 | and △ t M , xM Ψ and y are wanted.

Gemäß Fig. 5 und 6 ist folgendes Gleichungssystem ansetzbar:

Figure imgb0031
Figure imgb0032
Figure imgb0033
5 and 6, the following system of equations can be applied:
Figure imgb0031
Figure imgb0032
Figure imgb0033

Es liefert als Lösung

Figure imgb0034
Figure imgb0035
It provides a solution
Figure imgb0034
Figure imgb0035

Für yMΨ existieren, bedingt durch die Spiegelsymmetrie zur X-Z-Ebene, zwei Lösungen. Die in Fig. 6 dargestellte Projektion der Lösung in die X-Y-Ebene ist also noch an der X-Achse zu spiegeln (R 1'',R 2'').Due to the mirror symmetry to the XZ plane, there are two solutions for yM Ψ . The projection of the solution into the XY plane shown in FIG. 6 is therefore still to be reflected on the X axis ( R 1 '' R 2 '').

Die Festlegung des Geschoßbahnpaares kann auch über einen anderen Ansatz erfolgen. Hierzu wird die Machkegelerzeugende A (siehe Fig. eingeführt. Die Rotation von M wird dann so durchgeführt, daß A und G den Machwinkel a einschließen |R31| muß dann nicht gemessen werden.The floor track pair can also be determined using a different approach. The Mach cone is used for this A (See Fig. Introduced. The rotation of M is then performed so that A and G enclose the Mach angle a | R31 | then there is no need to measure.

Wird das zweidimensionale Mikrophonsystem durch ein viertes Mikrophon außerhalb der Mikrophonebene X-Z erweitert, kann eine Geschoßbahn eindeutig bestimmt werden. In Fig. 7 is dieses vierte Mikrophon N beispielsweise in der Y-Z-Ebene am rechnerischen Mikrophonort N dargestellt. Es sind mehrere Lösungsansätze möglich, zum Beispiel, wie bereits ausgeführt, mit Hilfe des gemessenen Abstandes und des Skalarproduktes mit den beiden möglichen Bahnverktoren oder durch rechnerische Rotation von N um die Z-Achse. Mit dem letzteren Ansatz ergibt sich dann eine zur Y-Z-Ebene symmetrische Doppellösung, von denen eine einzige identisch ist mit einer Lösung, die mit Hilfe des Mikrophons M gewonnen wurde.If the two-dimensional microphone system is expanded by a fourth microphone outside the microphone plane XZ, a projectile path can be clearly determined. In Fig. 7 this fourth microphone N is, for example, in the YZ plane at the computed microphone location N shown. There are several possible solutions, for example, as already explained, with the aid of the measured distance and the scalar product with the two possible path verifiers or by means of arithmetical rotation of N around the Z axis. The latter approach then results in a double solution which is symmetrical to the YZ plane, of which only one is identical to a solution which was obtained with the aid of the microphone M.

Ein Ansatz mit Hilfe des Machwinkels a ohne Kenntnis des Abstandes |R4| ist ebenfalls möglich. Gemäß Fig. 7 gilt

Figure imgb0036
An approach using the Mach angle a without knowing the distance | R4 | is also possible. 7 applies
Figure imgb0036

Wie in den vorstehenden Rechnungen ausgeführt, ergibt sich |△N| aus einer der möglichen Laufzeitdifferenzen, zum Beispiel zu Mikrophon K, die Machkegelerzeugende B folgt dann aus der Vektorsumme

Figure imgb0037
As stated in the above calculations, we have | △ N | from one of the possible transit time differences, for example to microphone K, the Mach cone generating B then follows from the vector sum
Figure imgb0037

Erfüllt dieser Vektor das obenstehende Skalarprodukt nicht, ist die zweite Möglichkeit mit R," und GN" die damit eindeutig bestimmte Geschoßbahn.If this vector does not meet the scalar product above, the second option with R, "and G N " is the uniquely determined projectile path.

Der Zielmittelpunkt kann mit den aus den vorstehenden Ansätzen sich ergebenen Lösungen beliebig im Raum festgeleft werden, und es kann daher unter allen Beschußsituationen eine Zielkörper im Auswertungscomputer definiert werden.The target center can be fixed anywhere in the room with the solutions resulting from the above approaches, and therefore a target body can be defined in the evaluation computer under all bombardment situations.

Claims (4)

1. An arrangement for converting sonic pressure in order to detect acoustically the paths and deviations of projectiles for moving practice targets, having a microphone system and an evaluation device having an evaluation algorithm, characterised in that the microphone system has at least two microphones separated in the direction of movement of the target, their signals being converted in the evaluation device on the basis of known physical relationships into data representing spacings and differences in sound propagation time and being fed to an evaluation computer, both for calculating a minimum spacing between projectile and target, while taking into account the path of the target-projectile in space and time, and a component of the projectile travel in the direction of the connection axis between the microphones and that the calculated data serve to determine a plurality of projectile paths running rotationally symmetrical to the connection axis between the microphones, said paths being synonymous, in relation to the minimum spacing between target and projectile and to the component in the direction of the said connection axis, with the centre point of the target on this axis.
2. An arrangement for converting sonic pressure according in claim 1, characterised in that a further microphone is arranged outside the connection axis in a plane with the other microphones, its signal serving to calculate an additional spacing and/or difference in sound propagation time.
3. An arrangement for converting sonic pressure according to claim 1 and 2, characterised in that a further microphone is so arranged that it lies outside the plane and that the signal of this microphone represents a further spacing and/or a further difference in sound propagation time in order to calculate the projectile path accurately.
4. A method of measuring the target Mach number with arrangements according to claims 1, 2 and 3, characterised in that at least two microphones offset in the direction of movement of the targets are jointly provided with sound from a sound source located at a known place before or after the microphones and moved along with the target and that the difference in propagation time required in order to calculate the target Mach number is ascertained with the aid of cross correlation of the signals of the two microphones.
EP87100842A 1986-02-08 1987-01-22 Method for acoustically determining the trajectory of projectiles and for the determination of the shortest distance projectile/target Expired - Lifetime EP0232762B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87100842T ATE53654T1 (en) 1986-02-08 1987-01-22 PROCEDURE FOR ACOUSTIC DETECTION OF BULLET PATHS AND DETERMINATION OF THE SHORTEST BULLET/TARGET DISTANCE.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3603991 1986-02-08
DE3603991 1986-02-08
DE19863612352 DE3612352A1 (en) 1986-02-08 1986-04-12 ARRANGEMENT FOR ACOUSTICALLY DETECTING FLOOR RAILWAYS AND DETERMINING THE SHORTEST DISTANCE OF THE FLOOR / TARGET
DE3612352 1986-04-12

Publications (2)

Publication Number Publication Date
EP0232762A1 EP0232762A1 (en) 1987-08-19
EP0232762B1 true EP0232762B1 (en) 1990-06-13

Family

ID=25840828

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87100842A Expired - Lifetime EP0232762B1 (en) 1986-02-08 1987-01-22 Method for acoustically determining the trajectory of projectiles and for the determination of the shortest distance projectile/target

Country Status (3)

Country Link
US (1) US4805159A (en)
EP (1) EP0232762B1 (en)
DE (1) DE3612352A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3823490C2 (en) * 1988-07-11 1994-08-11 Ingbuero Fuer Elektro Mechanis Device for the automatic electronic determination of the hit coordinates of ultrasound-fast projectiles on flying targets
DE3843601A1 (en) * 1988-12-23 1990-06-28 Ingbuero Fuer Elektro Mechanis Method and device for automatic measurement and indication of the hit coordinates of supersonic projectiles on flying targets
DE3914179A1 (en) * 1989-04-28 1990-10-31 Herwig Fischer METHOD FOR DETERMINING THE HIT LOCATION WHILE SHOOTING EXERCISE GOALS
SE467550B (en) * 1990-01-18 1992-08-03 Lasse Kristian Karlsen INDICATOR DEVICE FOR DETERMINING THE PROJECTILES 'RANGE
US5241518A (en) * 1992-02-18 1993-08-31 Aai Corporation Methods and apparatus for determining the trajectory of a supersonic projectile
SE506657C2 (en) * 1996-03-29 1998-01-26 Haakan Appelgren Method and apparatus for projectile measurement
IL118846A (en) * 1996-07-14 2000-07-16 Levanon Nadav Method and apparatus for acoustic monitoring of the trajectory of a supersonic projectile
DE19713516A1 (en) * 1997-04-02 1998-10-22 Graul Werner Dr Ing Determining passive track of acoustic or other radiation emittents under water
US6563763B2 (en) * 2001-04-03 2003-05-13 Aai Corporation Method and system for correcting for curvature in determining the trajectory of a projectile
US20060063574A1 (en) 2003-07-30 2006-03-23 Richardson Todd E Sports simulation system
US20070238539A1 (en) * 2006-03-30 2007-10-11 Wayne Dawe Sports simulation system
US9199153B2 (en) 2003-07-30 2015-12-01 Interactive Sports Technologies Inc. Golf simulation system with reflective projectile marking
US7544137B2 (en) * 2003-07-30 2009-06-09 Richardson Todd E Sports simulation system
KR101244440B1 (en) * 2004-07-02 2013-03-18 트랙맨 에이/에스 A method and an apparatus for determining a deviation between an actual direction of a launched projectile and a predetermined direction
US8861311B2 (en) * 2010-04-23 2014-10-14 Vanderbilt University System and method for estimating projectile trajectory and source location
US9135831B2 (en) * 2013-01-24 2015-09-15 Bryan P. O'Keefe System and method for demonstrating a path of a projectile
IL295152A (en) 2022-07-27 2024-02-01 Synchrosense Ltd Compact supersonic projectile tracking

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7342400U (en) * 1974-04-04 Dornier System Gmbh Support structure
DE2603061A1 (en) * 1976-01-28 1977-08-11 Elektro Mechanischer Fluggerae Aerial practice target drag sleeve - has central sound receiver sensing passing ground fired projectiles
GB1553251A (en) * 1976-05-20 1979-09-26 Ms Instr Ltd Position determining system
GB1580253A (en) * 1977-02-21 1980-11-26 Australasian Training Aids Pty Firing range
SE7714913L (en) * 1977-12-29 1979-06-30 Swedair Ab PROCEDURE AND DEVICE FOR DETERMINING THE BOOM DISTANCE
DE3122644A1 (en) * 1981-06-06 1982-12-23 Hartmut Ing.(Grad.) 8035 Gauting Euer Method for acoustic measurement of the hit offset when firing at airborne practice targets
US4505481A (en) * 1982-07-06 1985-03-19 Australasian Training Aids (Pty.) Ltd. Inflatable target apparatus
DE3341549A1 (en) * 1983-11-17 1985-05-30 Rhein-Flugzeugbau GmbH, 4050 Mönchengladbach AIR TOWING TARGET ARRANGEMENT

Also Published As

Publication number Publication date
DE3612352C2 (en) 1992-12-17
DE3612352A1 (en) 1987-08-13
EP0232762A1 (en) 1987-08-19
US4805159A (en) 1989-02-14

Similar Documents

Publication Publication Date Title
EP0232762B1 (en) Method for acoustically determining the trajectory of projectiles and for the determination of the shortest distance projectile/target
DE3204874C2 (en) Passive method for obtaining target data from a sound source
DE69727913T2 (en) PURCHASE OF GROUPS
DE2952315C2 (en)
DE69119583T2 (en) DEVICE FOR ACOUSTIC EVALUATION OF A FLOOR FLIGHTWAY
EP2681584A1 (en) Methods for detecting the flight path of projectiles
DE3936359A1 (en) METHOD FOR DETERMINING THE TARGET DIRECTION AND DISTANCE FROM SOUND GENERATING TARGETS
DE3322500C2 (en)
EP1410060A1 (en) Method for passive determination of target data
DE3531230C2 (en)
DE2942355A1 (en) DEVICE FOR DETECTING THE CONTINUITY OF A PROJECTILE
DE10130297A1 (en) Method for determining the target position of a sound-emitting target
DE69207504T2 (en) Procedure for determining the position of objects
EP0253277B1 (en) Passive method for estimating data of a target moving in water and radiating time continuous sound signals
EP0530476B1 (en) Device and method for electroacoustic angular measurement of ultrasonic shells passing towed air targets
DE2802936C2 (en)
DE3200820C2 (en)
DE19520115A1 (en) Method for determining the roll position of a rolling flying object
EP0962784B1 (en) Method of passively determining target data
DE3528075A1 (en) Method and device for stereo-acoustic hit position measurement of projectiles
DE3345021A1 (en) Passive method for estimating state variables of a moving target radiating sound pulses into water
EP0115044B1 (en) Method for tactical situation reconnaissance
DE10305896B3 (en) Method for determining the position of an object in space by means of a signal emitted by the object and received by receivers
DE10119586A1 (en) Flight data measurement device has laser light sensors connected to evaluation device for generating signals depending on whether shell has flown through line laser beam or not
EP3435108A1 (en) Method for detecting a transmitter with a search device and search device for carrying out a method of this type

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19870811

17Q First examination report despatched

Effective date: 19880425

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19900613

Ref country code: BE

Effective date: 19900613

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19900613

Ref country code: NL

Effective date: 19900613

REF Corresponds to:

Ref document number: 53654

Country of ref document: AT

Date of ref document: 19900615

Kind code of ref document: T

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19900924

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19910131

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19910131

Ref country code: LI

Effective date: 19910131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921127

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921216

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930126

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 87100842.1

Effective date: 19940810