[go: up one dir, main page]

EP0212473A2 - Druckgesteuertes Wärmerohr - Google Patents

Druckgesteuertes Wärmerohr Download PDF

Info

Publication number
EP0212473A2
EP0212473A2 EP86110933A EP86110933A EP0212473A2 EP 0212473 A2 EP0212473 A2 EP 0212473A2 EP 86110933 A EP86110933 A EP 86110933A EP 86110933 A EP86110933 A EP 86110933A EP 0212473 A2 EP0212473 A2 EP 0212473A2
Authority
EP
European Patent Office
Prior art keywords
heat
heat pipe
transfer medium
displacement body
cooling zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86110933A
Other languages
English (en)
French (fr)
Other versions
EP0212473A3 (en
EP0212473B1 (de
Inventor
Carlo Bassani
Claus A.O. Busse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
European Atomic Energy Community Euratom
Original Assignee
European Atomic Energy Community Euratom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by European Atomic Energy Community Euratom filed Critical European Atomic Energy Community Euratom
Publication of EP0212473A2 publication Critical patent/EP0212473A2/de
Publication of EP0212473A3 publication Critical patent/EP0212473A3/de
Application granted granted Critical
Publication of EP0212473B1 publication Critical patent/EP0212473B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/132Heat exchange with adjustor for heat flow
    • Y10S165/133Conduction rate

Definitions

  • the invention relates to a pressure-controlled heat pipe, consisting of a closed vessel containing a heat transfer medium with a heat source at which the heat transfer medium evaporates, and a heat sink in the form of a cooling zone, with a non-condensable inert gas at a controllable pressure in the vessel at the upper end of the cooling zone is feedable.
  • Pressure controlled heat pipes are e.g. known from the journal "Heat and mass transfer", Volume 19, 1985, pages 67 to 71.
  • the temperature of such heat pipes is influenced by the size of an inert gas plug in the cooling zone. If you want to raise the temperature of the heating furnace, you increase the inert gas pressure, which reduces the cooled area of the cooling zone that can be reached by the heat transfer medium.
  • the object of the invention is to improve a heat pipe of the type mentioned so that solid deposits can no longer occur in the cooling zone, even if the inert gas pressure is changed quickly for control purposes.
  • This object is achieved according to the invention in that from the upper end of the cooling zone along the central region of this zone a thermally conductive displacement body protrudes downwards and that this displacement body carries baffles at least in its upper part, which separate the space between the cooled wall and the displacement body Divide a variety of interconnected volumes.
  • the baffles are preferably designed as spiral ribs.
  • spiral ribs serve on the one hand to extend the path, the condensate droplets have to take on their way up, so that they no longer come to the coldest area of the cooling wall, and on the other hand to the convection flow of the inert gas in the axial area of the To hinder the cooling zone.
  • the displacement body contributes to achieving the object on which the invention is based by firstly occupying the axial region of the cooling zone and thus deflecting condensate droplets early towards the cooled wall, and secondly by opening the axial region of the cooling zone above the steam zone maintains a high temperature at which solid deposits are not possible.
  • the spiral ribs are preferably inclined outward in a roof shape, so that condensate can flow outwards by gravity towards the chimney wall.
  • spiral ribs are designed as a single-start screw. It would also be possible, for example, to interrupt the rib structure and to form at least two single-start screws lying one behind the other, one of which could be, for example, right-handed and the other left-handed, or one of which has a larger screw thread than the other.
  • the heat pipe furnace shown in Fig. 1 consists of a double-walled horizontal heat pipe 1 which coaxially surrounds a furnace channel 2.
  • a heat transfer medium for example water, cesium or sodium, which evaporates at a heat source 3 and condenses at a heat sink 4.
  • the heat source is formed, for example, by a resistance heater, which is inserted into an insulation 5 surrounding the heat pipe 1 and which heats the heat pipe from the outside.
  • the heat sink 4 is formed by a chimney which is connected to the heat pipe and protrudes from the insulation 5 at the top.
  • the outer wall of the chimney is cooled in the upper region, for example with the aid of water cooling 6.
  • an inert gas plug 8 By suitable choice of the helium pressure, the boundary layer 9 between the vaporous heat transfer medium in the heat pipe 1 and the Inert gas plugs are moved vertically so that a more or less large area of the cooled wall is available as a heat sink for the heat transfer medium.
  • the helium is fed in by a control circuit, not shown, which orients the temperature in the furnace 2 at a desired temperature.
  • Fig. 2 shows an enlarged view of the upper end of the chimney 4 with the water cooling 6 and the boundary layer 9 between the inert gas plug 8 and the steam of the heat transfer medium.
  • a displacement body 11 which consists of a highly thermally conductive metal, projects axially into this chimney from above by a cover 7. The displacement body extends below the minimum level of the boundary layer 9, so that its tip is always immersed in the vaporous heat transfer medium.
  • the upper half of this displacement body carries spiral ribs 12 which extend almost to the wall of the chimney provided with capillary grooves 13.
  • the fireplace insert according to the invention deflects the droplets laterally and reduces convection effects, since the steam particles are forced outward from the axial area towards the cooled chimney wall at an early stage.
  • the displacer 11 the lower end of which is immersed in the hot steam of the heat transfer medium, keeps the spiral ribs at a high temperature in relation to the wall, so that there is no fear of solid deposits which could render the furnace unusable.
  • the fireplace insert according to the invention also brings safety advantages in the event of an accident in which the helium supply line breaks.
  • the then rising steam flow of the heat transfer medium must pass through the entire spiral before it can escape through the broken helium line.
  • the insert acts as a condensation trap and prevents the heat transfer medium from escaping.
  • the heat pipe can also have a shape other than that of a double-walled coaxial pipe.
  • the heat pipe does not need to be horizontal, but can also be inclined or vertical. While it is important in a horizontal heat pipe assembly that all inner walls are provided with capillary structures so that all walls are always wetted with liquid heat transfer medium, with vertical assembly the wetting could also be done by gravity alone without capillary structures.
  • the chimney could also be placed at an angle on the heat pipe if only it was ensured that it was higher than the latter.
  • spiral ribs could be replaced by internally shaped internals, e.g. through pagoda-like deflector plates, which act as chicanes for the steam flow and also divide the annular space between the displacement body and the cooled wall into numerous interconnected partial volumes.
  • the spiral screw can also be designed as a multi-start screw, which can have a greater pitch than a single-start screw, without the individual partial volumes being increased thereby.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Pipeline Systems (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

Die Erfindung betrifft ein druckgesteuertes Wärmerohr, bestehend aus einem ein Wärmeträgermedium enthaltenden geschlossenen Gefäß mit einer Wärmequelle, an der das Wärmeträgermedium verdampft, und einer Wärmesenke in Form einer Kühlzone, wobei am oberen Ende dieser Zone ein nichtkondensierbares Inertgas unter regelbarem Druck in das Gefäß einspeisbar ist. Erfindungsgemäß ragt vom oberen Ende der Kühlzone ein gut wärmeleitender Verdrängungskörper (11) nach unten, der zumindest in seinem oberen Teil Ablenkbleche (12) trägt, die den Zwischenraum zwischen dem Verdrängungskörper und der gekühlten Wand der Kühlzone in eine Vielzahl von miteinander in Verbindung stehenden Volumen unterteilen.

Description

  • Die Erfindung bezieht sich auf ein druckgesteuertes Wärme­rohr, bestehend aus einem ein Wärmeträgermedium enthaltenden geschlossenen Gefäß mit einer Wärmequelle, an der das Wärme­trägermedium verdampft, und einer Wärmesenke in Form einer Kühlzone, wobei am oberen Ende der Kühlzone ein nichtkonden­sierbares Inertgas unter regelbarem Druck in das Gefäß ein­speisbar ist.
  • Druckgesteuerte Wärmerohre sind z.B. aus der Zeitschrift "Wärme- und Stoffübertragung", Band 19, 1985, Seiten 67 bis 71 bekannt. Die Temperatur solcher Wärmerohre wird durch die Größe eines Inertgasstopfens in der Kühlzone beeinflußt. Will man die Temperatur des Wärmeofens anheben, dann steigert man den Inertgasdruck, wodurch die vom Wärmeträgermedium erreichbare gekühlte Fläche der Kühlzone verringert wird.
  • Besonders bei niedrigen Betriebsdrücken hat sich gezeigt, daß sich an der Grenzfläche zwischen dem dampfförmigen Wärmeträger­medium und dem Inertgas in der Kühlzone eine Nebelzone aus­bildet und daß Dampftröpfchen weit in den Bereich des Inert­gasstopfens nach oben gerissen werden. Es kann dann passieren, daß der Dampf an der wesentlich kühleren Wand im Bereich des Inertgasstopfens nicht nur kondensiert, sondern sogar als fester Stoff abgelagert wird. Dieser Effekt wird noch verstärkt durch die natürliche Konvektion des Edelgases, das im Axialbereich der Kühlzone aufsteigt und im kühleren Wandbereich wieder nach unten fällt.
  • Besonders groß ist diese Gefahr während eines Regelübergangs des Wärmerohrs auf niedrigere Temperatur, da dann ein Teil des Inertgases abgezogen wird.
  • Aufgabe der Erfindung ist es, ein Wärmerohr der eingangs ge­nannten Art so zu verbessern, daß Feststoffablagerungen in der Kühlzone nicht mehr auftreten können, und zwar selbst dann nicht, wenn der Inertgasdruck zu Regelzwecken rasch geändert wird.
  • Diese Aufgabe wird erfindungsgenäß dadurch gelöst, daß vom obe­ren Ende der Kühlzone entlang des zentralen Bereichs dieser Zone ein gut wärmeleitender Verdrängungskörper nach unten ragt und daß dieser Verdrängungskörper zumindest in seinem oberen Teil Ablenkbleche trägt, die den Zwischenraum zwischen der gekühlten Wand und dem Verdrängungskörper in eine Vielzahl von miteinander in Verbindung stehenden Volumen unterteilen. Vorzugsweise sind die Ablenkbleche als Spiralrippen ausgebildet.
  • Die Spiralrippen dienen zum einen dazu, den Weg zu verlängern, den Kondensattröpfchen auf ihrem Weg nach oben nehmen müssen, so daß sie gar nicht mehr bis in den kältesten Bereich der Kühlwand kommen, und zum anderen dazu, die Konvektionsströmung des Inertgases im axialen Bereich der Kühlzone zu behindern.
  • Der Verdrängungskörper trägt zur Lösung der der Erfindung zu­grundeliegenden Aufgabe dadurch bei, daß er zum einen den Axial­bereich der Kühlzone besetzt und damit Kondensattröpfchen früh­zeitig in Richtung auf die gekühlte Wand ablenkt, und zum an­deren dadurch, daß er den axialen Bereich der Kühlzone ober­halb der Dampfzone auf einer hohen Temperatur hält, bei der Feststoffablagerungen nicht möglich sind.
  • Vorzugsweise sind die Spiralrippen dachförmig nach außen ge­neigt, so daß Kondensat durch Schwerkraft nach außen in Rich­tung auf die Kaminwand abfließen kann.
  • Es ist nicht notwendig, aber aus fertigungstechnischen Gründen sinnvoll, daß die Spiralrippen als eingängige Schraube ausgebil­det sind. Möglich wäre es beispielsweise auch, die Rippenstruk­tur zu unterbrechen und mindestens zwei hintereinanderliegende eingängige Schrauben auszubilden, von denen die eine beispiels­weise rechtsgängig und die andere linksgängig sein könnte oder von denen die eine einen größeren Schraubengang als die andere besitzt.
  • Nachfolgend wird die Erfindung anhand eines bevorzugten Aus­führungsbeispiels mithilfe zweier Figuren näher erläutert.
    • Fig. 1 zeigt im Querschnitt einen Wärmerohrofen mit einem er­findungsgemäßen druckgesteuerten Wärmerohr.
    • Fig. 2 zeigt in vergrößertem Maßstab ein Detail aus Fig. 1.
  • Der in Fig. 1 dargestellte Wärmerohrofen besteht aus einem doppelwandigen horizontalen Wärmerohr 1, das einen Ofenkanal 2 koaxial umgibt. Im Bereich zwischen den beiden Wänden des Wärmerohrs 1 befindet sich ein Wärmeträgermedium, z.B. Wasser, Caesium oder Natrium, das an einer Wärmequelle 3 verdampft und an einer Wärmesenke 4 kondensiert. Die Wärmequelle wird beispielsweise von einer Widerstandsheizung gebildet, die in eine das Wärme­rohr 1 umgebende Isolierung 5 eingefügt ist und das Wärmerohr von außen aufheizt. Die Wärmesenke 4 wird von einem Kamin ge­bildet, der an das Wärmerohr angeschlossen ist und oben aus der Isolierung 5 herausragt. Die Außenwand des Kamins ist im oberen Bereich gekühlt, beispielsweise mithilfe einer Wasser­kühlung 6. Am Deckel 7 des Kamins mündet eine Inertgasleitung 14, z.B. eine Heliumleitung, durch die der oberste Kaminbereich mit einem Inertgasstopfen 8 versehen werden kann. Durch geeignete Wahl des Heliumdrucks kann die Grenzschicht 9 zwischen dem dampfförmigen Wärmeträgermedium in der Wärmeröhre 1 und dem Inertgasstopfen vertikal verschoben werden, so daß ein mehr oder minder großer Bereich der gekühlten Wand als Wärmesenke für das Wärmeträgermedium verfügbar ist. Die Heliumeinspeisung erfolgt durch einen nicht dargestellten Regelkreis, der die Temperatur im Ofen 2 an einer Solltemperatur orientiert.
  • Fig. 2 zeigt vergrößert das obere Ende des Kamins 4 mit der Wasserkühlung 6 und der Grenzschicht 9 zwischen dem Inertgas­stopfen 8 und dem Dampf des Wärmeträgermediums. In diesen Kamin ragt axial von oben durch einen Deckel 7 gehalten ein Verdrängungskörper 11 hinein, der aus einem gut wärmeleitfähi­gen Metall besteht. Der Verdrängungskörper reicht bis unter­halb des Mindestniveaus der Grenzschicht 9, so daß seine Spitze stets in das dampfförmige Wärmeträgermedium eintaucht. Die obere Hälfte dieses Verdrängungskörpers trägt Spiralrippen 12, die fast bis an die mit Kapillarrillen 13 versehene Wand des Kamins reichen.
  • Der erfindungsgemäße Kamineinsatz lenkt die Tröpfchen seit­lich ab und verringert Konvektionseffekte, da die Dampfpar­tikel frühzeitig aus dem axialen Bereich nach außen in Rich­tung auf die gekühlte Kaminwand gedrängt werden. Zugleich hält der Verdrängungskörper 11, dessen unteres Ende in den heißen Dampf des Wärmeträgermediums eintaucht, die Spiral­rippen auf einer gegenüber der Wand hohen Temperatur, so daß dort keine Feststoffablagerungen zu befürchten sind, die den Ofen unbrauchbar machen könnten. Diese Einflüsse des erfin­dungsgemäßen Kamineinsatzes fördern also die Stabilität unter Normalbedingungen.
  • Bei gewünschten Änderungen des Betriebszustands, insbesondere bei einer Absenkung der Ofentemperatur durch Verkleinerung des Inertgasstopfens wird ebenfalls die Gefahr von bis in die obe­ren Bereich des Kamins vordringenden Kondensattröpfchen be­seitigt, während ohne den erfindungsgemäßen Einsatz in diesem Fall sogar in die Heliumleitung 14 Kondensattröpfchen ein­dringen können.
  • Schließlich bringt der erfindungsgemäße Kamineinsatz auch Sicherheitsvorteile bei einem Unfall, bei dem die Helium­zuleitung bricht. In diesem Fall muß der dann aufsteigende Dampfstrom des Wärmeträgermediums die ganzen Spiralen durch­laufen, ehe er durch die gebrochene Heliumleitung austreten kann. Hier wirkt der Einsatz somit als Kondensationsfalle und verhindert ein Austreten des Wärmeträgermediums.
  • Die Erfindung ist nicht auf das im einzelnen dargestellte Aus­führungsbeispiel beschränkt. So kann das Wärmerohr auch eine andere Form als die eines doppelwandigen koaxialen Rohrs be­sitzen. Das Wärmerohr braucht nicht waagerecht zu liegen, son­dern kann auch geneigt sein oder senkrecht stehen. Während bei einer waagerechten Wärmerohrmontage wichtig ist, daß alle Innen­wände mit Kapillarstrukturen versehen sind, damit alle Wände stets mit flüssigem Wärmeträgermedium benetzt sind, könnte bei einer Senkrechtmontage die Benetzung auch ohne Kapillar­strukturen alleine durch die Schwerkraft erfolgen. Der Kamin könnte auch schräg auf dem Wärmerohr aufgesetzt werden, wenn nur dafür gesorgt wird, daß er höher als letzteres liegt.
  • Die Spiralrippen könnten durch anders geformte Einbauten er­setzt werden, z.B. durch pagodenähnliche Abweisbleche, die als Schikanen für die Dampfströmung wirken und ebenfalls den Ringraum zwischen dem Verdrängungskörper und der gekühlten Wand in zahlreiche miteinander in Verbindung stehende Teil­volumen unterteilen.
  • Je nach den zulässigen Druckverlusten entlang der Kühlzone kann man die Spiralschraube auch als mehrgängige Schraube aus­bilden, die eine größere Steigung als eine eingängige Schraube haben kann, ohne daß die einzelnen Teilvolumen dadurch ver­größert würden.

Claims (3)

1. Druckgesteuertes Wärmerohr, bestehend aus einem ein Wärme­trägermedium enthaltenden geschlossenen Gefäß mit einer Wärme­quelle, an der das Wärmeträgermedium verdampft, und einer Wärme­senke in Form einer Kühlzone, wobei am oberen Ende der Kühl­zone ein nichtkondensierbares Inertgas unter regelbarem Druck in das Gefäß einspeisbar ist, dadurch gekennzeichnet, daß vom oberen Ende der Kühlzone aus entlang des zentralen Be­reichs dieser Zone ein gut wärmeleitender Verdrängungskörper (11) nach unten ragt, und daß dieser Verdrängungskörper zumin­dest in seinem oberen Teil Ablenkbleche (12) trägt, die den Zwischenraum zwischen dem Verdrängungskörper und der gekühlten Wand dieser Zone in eine Vielzahl von miteinander in Verbindung stehenden Volumen unterteilt.
2. Wärmerohr nach Anspruch 1, dadurch gekennzeichnet, daß die Ablenkbleche als Spiralrippen (12) ausgebildet sind, die bis in die Nähe der gekühlten Wand reichen.
3. Wärmerohr nach Anspruch 2, dadurch gekennzeichnet, daß die Spiralrippen (12) dachförmig nach außen geneigt sind.
EP86110933A 1985-08-19 1986-08-07 Druckgesteuertes Wärmerohr Expired EP0212473B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU86046 1985-08-19
LU86046A LU86046A1 (de) 1985-08-19 1985-08-19 Druckgesteuertes waermerohr

Publications (3)

Publication Number Publication Date
EP0212473A2 true EP0212473A2 (de) 1987-03-04
EP0212473A3 EP0212473A3 (en) 1987-07-29
EP0212473B1 EP0212473B1 (de) 1989-05-24

Family

ID=19730533

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86110933A Expired EP0212473B1 (de) 1985-08-19 1986-08-07 Druckgesteuertes Wärmerohr

Country Status (9)

Country Link
US (1) US4674562A (de)
EP (1) EP0212473B1 (de)
JP (1) JPH0686991B2 (de)
CA (1) CA1267406A (de)
DE (1) DE3663587D1 (de)
DK (1) DK160963C (de)
IE (1) IE57284B1 (de)
LU (1) LU86046A1 (de)
PT (1) PT83193B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379437A1 (de) * 1989-01-20 1990-07-25 Bertin & Cie Verfahren und Vorrichtung zur Schnellregulierung einer Wandtemperatur

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917178A (en) * 1989-05-18 1990-04-17 Grumman Aerospace Corporation Heat pipe for reclaiming vaporized metal
GB2315324A (en) * 1996-07-16 1998-01-28 Alan Brown Thermo-syphons
US7497136B2 (en) * 2006-12-13 2009-03-03 Espec Corp. Environmental test apparatus
DE102008021975A1 (de) 2008-05-02 2009-11-05 Bayerische Motoren Werke Aktiengesellschaft Druckgesteuertes Wärmerohr

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU217083A1 (ru) * Е. Г. Кардашевский Учебный прибор по математике для изучения графиков элементарных функций
SU838058A1 (ru) * 1979-07-23 1981-06-15 Московское Научно-Производственноеобъединение По Механизированномустроительному Инструменту И Отделоч-Ным Машинам (Объединение Вниисми) Штукатурна форсунка
GB2117104A (en) * 1982-03-11 1983-10-05 Mahdjuri Sabet Faramarz Heat pipe for collecting solar radiation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU57482A1 (de) * 1968-12-05 1970-06-09
US3934643A (en) * 1971-07-26 1976-01-27 Nikolaus Laing Controllable heat pipe
NL7206063A (nl) * 1972-05-04 1973-11-06 N.V. Philips Gloeilampenfabrieken Verwarmingsinrichting
LU72213A1 (de) * 1975-04-04 1977-02-01
SU929986A1 (ru) * 1980-07-14 1982-05-23 Предприятие П/Я В-2679 Теплова труба
SU1017900A1 (ru) * 1981-09-23 1983-05-15 Semena Mikhail G Регулируема теплова труба

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU217083A1 (ru) * Е. Г. Кардашевский Учебный прибор по математике для изучения графиков элементарных функций
SU838058A1 (ru) * 1979-07-23 1981-06-15 Московское Научно-Производственноеобъединение По Механизированномустроительному Инструменту И Отделоч-Ным Машинам (Объединение Вниисми) Штукатурна форсунка
GB2117104A (en) * 1982-03-11 1983-10-05 Mahdjuri Sabet Faramarz Heat pipe for collecting solar radiation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
P. DUNN et al.: "Heat pipes", Ausgabe 3, 1982, Seiten 226-231, Pergamon Press, Oxford, GB *
PROCEEDINGS PART II, 5TH INTERNATIONAL HEAT PIPE CONFERENCE, Tsukuba Science City, 14.-18. Mai 1984, Seiten 15-47, Japan Technology & Economics Center Inc., Tokyo, Japan; F. POLASEK: "Heat pipe research and development in east european countries" *
SOVIET INVENTIONS ILLUSTRATED, Woche E/22, 14. Juli 1982, Zusammenfassung Nr. 45362; & SU-A-838 058 (KUZBASS POLY) 30-07-1981 *
SOVIET INVENTIONS ILLUSTRATED, Woche K/22, 13. Juli 1983, Zusammenfassung Nr. 53542; & SU-A-217 083 (BIOTECH. RES. INST.) 15-07-1982 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379437A1 (de) * 1989-01-20 1990-07-25 Bertin & Cie Verfahren und Vorrichtung zur Schnellregulierung einer Wandtemperatur
WO1990008298A1 (fr) * 1989-01-20 1990-07-26 Bertin & Cie Procede et dispositif de regulation rapide d'une temperature de paroi
FR2642156A1 (fr) * 1989-01-20 1990-07-27 Bertin & Cie Procede et dispositif de regulation rapide d'une temperature de paroi
US5161609A (en) * 1989-01-20 1992-11-10 Bertin & Cie Method and apparatus for high speed regulation of a wall temperature

Also Published As

Publication number Publication date
DK160963B (da) 1991-05-06
EP0212473A3 (en) 1987-07-29
DK385886A (da) 1987-02-20
CA1267406A (en) 1990-04-03
JPH0686991B2 (ja) 1994-11-02
PT83193A (en) 1986-09-01
US4674562A (en) 1987-06-23
PT83193B (pt) 1992-10-30
EP0212473B1 (de) 1989-05-24
DK160963C (da) 1991-11-04
DK385886D0 (da) 1986-08-13
JPS6298191A (ja) 1987-05-07
IE57284B1 (en) 1992-07-01
IE862076L (en) 1987-02-19
LU86046A1 (de) 1986-09-11
DE3663587D1 (en) 1989-06-29

Similar Documents

Publication Publication Date Title
DE7614361U1 (de) Elektrischer transformator
DE2450847A1 (de) Wasserheizer
DE2143494A1 (de) Druckwasserreaktor
DE2801215C2 (de) Kühlvorrichtung für tiefe Temperaturen
EP0212473B1 (de) Druckgesteuertes Wärmerohr
DE3639760C2 (de)
DE3203289C2 (de)
DE1917184A1 (de) Anlage zur Druckunterdrueckung bei Kernreaktoren
DE2428893A1 (de) Heizvorrichtung zum behandeln von synthetischen fasern oder dergleichen mit heizdampf
DE19703724C2 (de) Druckloser Warmwasser-Speicher aus Kunststoff für die Solar-Wärmetechnik
EP0017101B1 (de) Wärmeaustauscher, insbesondere für Wärmepumpenanlagen
DE2903250C2 (de) Kessel zum Erhitzen und Speichern von Wasser
DE946989C (de) Dampfbeheizter Waermetauscher
AT408909B (de) Wärmespeicher für eine warmwasserheizung und zur aufbereitung von hygienewarmwasser
DE7902340U1 (de) Kessel zur speicherung und erzeugung von erhitztem wasser
DE2047536C3 (de) Einrichtung im Kochersystem eines mit inertem Gas arbeitenden Absorptionskälteapparats
DE4116383C2 (de)
DE715344C (de) Vorrichtung zum Befeuchten von Raumluft
DE3535977A1 (de) Kokstrockenkuehleinrichtung
DE613069C (de) Quecksilberdampfkessel
AT159261B (de) Metalldampfstromrichter mit aus Metall bestehenden Anodenarmen.
DE1589714C (de) Siedekühl-Vorrichtung zur Kühlung von Entladungsröhren
AT18586B (de) Elektrische Heizvorrichtung.
DE907923C (de) Schlackenfangrost fuer Schmelzkammerfeuerungen von Wasserrohrkesseln
DE1679764B2 (de) Elektrischer heisswasserspeicher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19871230

17Q First examination report despatched

Effective date: 19880620

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 3663587

Country of ref document: DE

Date of ref document: 19890629

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960618

Year of fee payment: 11

Ref country code: FR

Payment date: 19960618

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960715

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960724

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960831

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960924

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

BERE Be: lapsed

Owner name: EUROPAISCHE ATOMGEMEINSCHAFT EURATOM

Effective date: 19970831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970807

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050807