[go: up one dir, main page]

EP0212396B1 - Apparatus for eliminating the soot or the like from the exhaust gases of an internal-combustion engine - Google Patents

Apparatus for eliminating the soot or the like from the exhaust gases of an internal-combustion engine Download PDF

Info

Publication number
EP0212396B1
EP0212396B1 EP86110665A EP86110665A EP0212396B1 EP 0212396 B1 EP0212396 B1 EP 0212396B1 EP 86110665 A EP86110665 A EP 86110665A EP 86110665 A EP86110665 A EP 86110665A EP 0212396 B1 EP0212396 B1 EP 0212396B1
Authority
EP
European Patent Office
Prior art keywords
exhaust
resonator
gas
filter
soot filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86110665A
Other languages
German (de)
French (fr)
Other versions
EP0212396A2 (en
EP0212396A3 (en
Inventor
Herbert A. Dipl.-Ing. Püschner
Johann Fürtauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Priority to AT86110665T priority Critical patent/ATE46937T1/en
Publication of EP0212396A2 publication Critical patent/EP0212396A2/en
Publication of EP0212396A3 publication Critical patent/EP0212396A3/en
Application granted granted Critical
Publication of EP0212396B1 publication Critical patent/EP0212396B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/028Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the invention relates to a device for removing soot or the like from the exhaust gases of an internal combustion engine, in particular a diesel internal combustion engine, with a microwave source, a cavity resonator which is coupled as an intermediate piece to the exhaust pipe and in its two exhaust openings arranged in the end faces each contains a metal grid, and with a soot filter designed as a tube made of dielectric material, which is arranged in the region of greatest energy density of the electromagnetic field in the flow path of the exhaust gases in the cavity resonator, the one exhaust opening being located radially within the filter cross section.
  • a device of the type mentioned is known from DE-A 3 024 539, in which the tubular soot filter ends at a predetermined distance in front of one exhaust opening, and in which the other exhaust opening is located radially within the filter cross-section, so that after the entry Exhaust gases in the cavity resonator - also due to the butt-covered soot filter - considerable turbulence occurs in the resonator, which in addition to increasing the flow resistance can also result in an undefined deposit of the soot particles on the resonator wall and an uneven deposit on the soot filter.
  • the object of the invention is to further develop the device of the type mentioned at the outset in such a way that effective removal of the soot particles from the exhaust gases of the internal combustion engine is possible in a simple manner.
  • tubular soot filter extends from the end wall to the end wall of the cavity resonator, that the other exhaust opening lies radially outside the filter cross section, and that the metal grids are designed as honeycomb grids and separate from the exhaust openings extend a predetermined minimum axial length into the exhaust pipe.
  • the advantages of the invention lie in particular in the fact that the design of the metal grille realizes a satisfactory end-face metallic limitation of the cavity resonator in the region of the exhaust gas openings without impairing the microwave field in the cavity resonator and without appreciably increasing the flow resistance in the exhaust gas line.
  • This configuration of the metal grids on the end face makes it possible to achieve the high quality of the cavity resonator required for the effective combustion of the soot particles with a low flow resistance.
  • the tubular soot filter runs from the front wall to the front wall and the one exhaust gas opening is located radially inside, the other exhaust gas opening, on the other hand, is located radially outside the soot filter cross section, the exhaust gas flow passes through the soot filter with an overall homogeneous course and acts on the soot filter relatively evenly with the soot particles. Since the exhaust gas flow also runs in the high-energy region of the cavity resonator, the soot particles can be burned both in the exhaust gas stream and after their deposition on the soot filter.
  • the soot filter is designed as a filter mat or filter layer which is arranged on a sufficiently gas-permeable dielectric carrier body.
  • the filter-coated carrier body has the shape of a tube, which extends essentially from the first exhaust opening to the second exhaust opening.
  • the filter unit consisting of carrier body and filter mat can be provided at the upstream or downstream end with a conical flow divider, which preferably projects into the adjoining exhaust pipe and forms the central core of the annular exhaust opening.
  • the nominal size of the carrier body is particularly preferably equal to the nominal size of the adjoining exhaust pipe, and the exhaust gas opening in this end wall also has this nominal size.
  • the exhaust opening on the opposite end wall is then ring-shaped and surrounds the flow divider projecting through this exhaust opening. In this way, unnecessary jumps in diameter between the exhaust pipe and the filter unit are prevented and additional flow resistance is avoided.
  • a dielectric, gas-tight insert is arranged as a tube with a nominal width that is larger than the diameter of the soot filter and the support body and the exhaust pipe and is arranged concentrically to the soot filter and forms the outer wall of the exhaust gas duct in the region of the resonator.
  • the end walls of the resonator can be provided with gas-tight dielectric inserts at a predetermined distance. In this way, the hot exhaust gases are kept away from the walls of the resonator, which is therefore less thermally stressed and is subject to less thermal expansion.
  • these inserts are suitable for directing the gas flow in the resonator through the areas of relatively high energy density.
  • the greatest energy density of the excited electromagnetic field is either inside or formed concentrically on the outside around the tubular support body / filter mat, so that the flow of the exhaust gases through the resonator runs before and after flowing through the soot filter in the region of high energy density, in which a direct combustion of the suspended moving soot particles can also take place.
  • resonators with the same or different soot filters it is also preferable to insert several resonators with the same or different soot filters into the exhaust line, all resonators being able to be supplied by one microwave source. If, on the other hand, the flow resistance is to be reduced further, it may alternatively be desirable to use several resonators in parallel in the exhaust line.
  • the resonators can be coupled by means of coupling elements which couple the microwave energy from one resonator to the adjacent resonator.
  • the resonator and the microwave source are preferably decoupled thermally from the exhaust gas line as effectively as possible.
  • the cooling water system of the internal combustion engine which allows its cooling water to flow through an outer cooling jacket of the resonator, is particularly advantageous for this purpose.
  • the resonator is expediently made of a metal with a low thermal expansion value.
  • a microwave cavity resonator 1 is inserted as an intermediate piece in an exhaust pipe 15 of a diesel internal combustion engine (not shown).
  • the cavity resonator 1 has a first end wall 2, at a predetermined axial distance from it a second end wall 3 and a peripheral wall 4, which in the example shown forms a circular cylinder and connects the end walls 2 and 3 to one another.
  • the exhaust line 15 opens into the cavity resonator 1 via an exhaust opening 6 in the first end wall 2 and via another exhaust opening 8 in the second end wall 3.
  • the exhaust line 15 either goes in one piece or via flange connections into the end walls 2 and 3 or corresponding inlet or outlet connections about.
  • the resonator is made of a metal with a low thermal expansion value, e.g. made of stainless steel, and may be coated on its inner surface with an electrically highly conductive layer.
  • microwave energy is fed into the resonator 1 at a frequency of a suitable type from a microwave source 18 with a frequency such that the electromagnetic Field with a desired vibration mode, e.g. an E)! mode, which has a decreasing electric field and a decreasing electrical energy density with increasing distance from the axis of the resonator.
  • a desired vibration mode e.g. an E
  • the two exhaust openings 6, 8 are each provided with a metal grille 14, which e.g. is formed from a thin metal sheet as a honeycomb grid and a predetermined minimum axial length protrudes into the exhaust line 15 in order to generate a sufficient metallic limitation of the resonator volume for the electromagnetic field and nevertheless to be able to pass the exhaust gases through the resonator 1 without greater flow resistance.
  • a metal grille 14 e.g. is formed from a thin metal sheet as a honeycomb grid and a predetermined minimum axial length protrudes into the exhaust line 15 in order to generate a sufficient metallic limitation of the resonator volume for the electromagnetic field and nevertheless to be able to pass the exhaust gases through the resonator 1 without greater flow resistance.
  • a soot filter 20 is arranged coaxially with the exhaust pipe 15, which extends from the first end wall 2 to the second end wall 3.
  • the soot filter 20 contains a filter mat 22 which is arranged on a gas-permeable, tubular support body 24 made of dielectric material on the inside or outside surface and completely covers this area.
  • the nominal width of the one exhaust opening 6 and the nominal width of the carrier body 24 are equal to the nominal width of the exhaust pipe 15 adjoining the first end wall 2.
  • the opposite second end wall 3 closes the tubular support body 24 with a central section at this end 3a, which forms a conical flow divider 13 protruding into the adjoining exhaust pipe 15.
  • the other exhaust opening 8 is designed in a ring shape, and the end wall 3 merges with the conical line section 16 into the exhaust line 15.
  • the nominal width of the other exhaust gas opening is larger than the nominal width of the carrier body 24 and the filter mat 22, so that the exhaust gases entering an exhaust gas opening 6 pass through the carrier body 24 and the filter mat 22 with a radial component of motion when flowing through the resonator 1 and then through the ring-shaped one Exhaust opening 8 leave resonator 1 again.
  • the index n or m is a measure of the relative axial Length L of the resonator, measured in whole multiples of half the resonance wavelength.
  • the generated electromagnetic field burns the soot particles deposited on the filter mat 22, and it can also burn soot particles contained in the exhaust gases when working with such a vibration mode that the energy density in the central region of the resonator increases accordingly.
  • the structure of the device according to FIG. 2 essentially corresponds to that of FIG. 1, with the exception that the exhaust gases enter the resonator through the annular exhaust opening 8 arranged axially outside the filter cross-section, and then from the outside with radial component through the filter mat 22 and Support body 24 enter the central interior of the soot filter 20 and then leave the resonator 1 through the exhaust opening 6 located axially within the filter cross section.
  • the nominal width of the supporting body 24 is also equal to the nominal width of the one exhaust gas opening 6, which is equal to the nominal width of the exhaust-side exhaust pipe 15, in this embodiment.
  • the resonator 1 of the device according to FIG. 2 additionally contains a gas-tight dielectric insert 7 which is designed as a tube and has a nominal diameter which corresponds to the nominal diameter of the second exhaust gas opening 8.
  • the insert 7 is arranged over the entire axial length of the resonator 1 from the end wall 2 to the end wall 3. While the insert 7 influences the electromagnetic field in the resonator 1 only insignificantly, it forms an outer boundary wall for the exhaust gas flow, which prevents the exhaust gases from coming into contact with the peripheral wall 4 of the resonator and undesirably heating the resonator.
  • the resonator can preferably be operated as an H) resonator, which receives microwave energy through the waveguide 12 and the coupling hole 10 from the microwave source 18 to excite an H)! Mode.
  • the area of high energy density is in the form of a ring zone, so that the tubular soot filter 20 lies in this excellent high-energy area.
  • the soot particles deposited on the filter mat 22 are therefore burned particularly effectively, and the flow resistance is only slightly increased by the filter.
  • the microwave source 18 excites an electromagnetic field in the resonator with a suitable vibration mode, which has the maximum energy density in the area of the soot filter 20 and therefore burns the soot particles deposited on the soot filter.
  • each resonator 1 Due to the inevitable heating of the resonator and the possible deposition of combustible / non-combustible particles on the resonator walls or on the soot filter 20, detuning of the resonators cannot be prevented during operation.
  • a tuning device (not shown) is provided in each resonator 1, which e.g. an automatic mechanical change in the resonator cavity ensures compliance with the resonance conditions.
  • the corresponding change in the resonance frequency is also possible.
  • an inherently rigid ring body made of dielectric, ceramic foam can be provided in the exemplary embodiment according to FIG. 1. This embodiment is advantageous if a large filter with a relatively low flow resistance can be implemented in a relatively small resonator volume.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

1. Apparatus for eliminating soot or the like from the exhaust gases of an internal combustion engine, more particular a diesel engine, comprising a micro-wave source (18), a cavity resonator (1) constituting an intermediate member coupled to the exhaust-gas pipe (15) and containing a metal grating (14) in each of its two exhaust-gas openings (6, 8) disposed in the end faces (2, 3), and a tubular soot filter (20) made of dielectric material and disposed in the region of maximum energy density of the electromagnetic field in the flow path of the exhaust gases in the cavity resonator (1), one exhaust-gas opening (6) being situated radially inside the filter cross-section, characterised in that the tubular soot filter (20) extends from one end wall (2) to the other end wall (3) of the cavity resonator (1), the other exhaust-gas opening (8) is situated radially outside the filter cross-section, and the metal gratings (14) are honeycomb gratings and extend from the exhaust-gas openings (6, 8) for a preset axial minimum length into the exhaust-gas pipe (15).

Description

Die Erfindung betrifft eine Vorrichtung zum Beseitigen von Ruß oder dergleichen aus den Abgasen einer Brennkraftmaschine, insbesondere einer Diesel-Brennkraftmaschine, mit einer Mikrowellen- Quelle, einem Hohlraumresonator, der als ein Zwischenstück an die Abgasleitung angekoppelt ist und in seinen beiden in den Stirnseiten angeordneten Abgasöffnungen je ein Metallgitter enthält, und mit einem als Rohr ausgebildeten Rußfilter aus dielektrischem Material, welches im Bereich größter Energiedichte des elektromagnetischen Feldes im Strömungspfad der Abgase in dem Hohlraumresonator angeordnet ist, wobei die eine Abgasöffnung radial innerhalb des Filterquerschnitts liegt.The invention relates to a device for removing soot or the like from the exhaust gases of an internal combustion engine, in particular a diesel internal combustion engine, with a microwave source, a cavity resonator which is coupled as an intermediate piece to the exhaust pipe and in its two exhaust openings arranged in the end faces each contains a metal grid, and with a soot filter designed as a tube made of dielectric material, which is arranged in the region of greatest energy density of the electromagnetic field in the flow path of the exhaust gases in the cavity resonator, the one exhaust opening being located radially within the filter cross section.

Eine Vorrichtung der eingangs genannten Art ist aus der DE-A 3 024 539 bekannt, bei der das rohrförmige Rußfilter in vorgegebenem Abstand vor der einen Abgasöffnung endet, und bei der auch die andere Abgasöffnung radial innerhalb des Filterquerschnitts liegt, so daß nach dem Eintritt der Abgase in den Hohlraumresonator - auch durch das stumpf abgedeckelte Rußfilter - erhebliche Verwirbelungen im Resonator auftreten, die neben einer Erhöhung des Strömungswiderstandes auch eine undefinierte Ablagerung der Rußpartikel an der Resonatorwand sowie eine ungleichmäßige Ablagerung am Rußfilter zur Folge haben können.A device of the type mentioned is known from DE-A 3 024 539, in which the tubular soot filter ends at a predetermined distance in front of one exhaust opening, and in which the other exhaust opening is located radially within the filter cross-section, so that after the entry Exhaust gases in the cavity resonator - also due to the butt-covered soot filter - considerable turbulence occurs in the resonator, which in addition to increasing the flow resistance can also result in an undefined deposit of the soot particles on the resonator wall and an uneven deposit on the soot filter.

Aus der US-A 3 461 261 ist es demgegenüber bekannt, einen Mikrowellen-Hohlraumresonator mit stirnseitigen Einlaß- und Auslaßöffnungen zur Erwärmung endloser Materialien einzusetzen, die durch den Hohlraumresonator hindurchtransportiert werden. Diese bekannte Anordnung dient auch zur Erwärmung von teilchenförmigen Feststoffen oder Fluiden, welche durch den Hohlraumresonator hindurchgeführt werden.On the other hand, it is known from US Pat. No. 3,461,261 to use a microwave cavity resonator with frontal inlet and outlet openings for heating endless materials which are transported through the cavity resonator. This known arrangement also serves to heat particulate solids or fluids which are passed through the cavity resonator.

Aufgabe der Erfindung ist es demgegenüber, die Vorrichtung der eingangs genannten Art derart weiterzubilden, daß eine wirksame Beseitigung der Rußpartikel aus den Abgasen der Brennkraftmaschine in einfacher Weise möglich ist.In contrast, the object of the invention is to further develop the device of the type mentioned at the outset in such a way that effective removal of the soot particles from the exhaust gases of the internal combustion engine is possible in a simple manner.

Diese Aufgabe wird bei der Vorrichtung der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß sich das rohrförmige Rußfilter von Stirnwand zu Stirnwand des Hohlraumresonators erstreckt, daß die andere Abgasöffnung radial außerhalb des Filterquerschnitts liegt, und daß die Metallgitter als Wabengitter ausgebildet sind und sich von den Abgasöffnungen eine vorgegebene axiale Mindestlänge in die Abgasleitung hineinerstrecken.This object is achieved according to the invention in the device of the type mentioned above in that the tubular soot filter extends from the end wall to the end wall of the cavity resonator, that the other exhaust opening lies radially outside the filter cross section, and that the metal grids are designed as honeycomb grids and separate from the exhaust openings extend a predetermined minimum axial length into the exhaust pipe.

Die Vorteile der Erfindung liegen insbesondere darin, daß die Ausgestaltung der Metallgitter eine befriedigende stirnseitige metallische Begrenzung des Hohlraumresonators im Bereich der Abgasöffnungen verwirklicht, ohne das Mikrowellenfeld im Hohlraumresonator zu beeinträchtigen, und ohne den Strömungswiderstand in der Abgasleitung merklich zu erhöhen. Durch diese Ausgestaltung der stirnseitigen Metallgitter wird es möglich, die zur wirksamen Verbrennung der Rußpartikel notwendige hohe Güte des Hohlraumresonators bei geringem Strömungswiderstand zu realisieren. Da das rohrförmige Rußfilter von Stirnwand zu Stirnwand verläuft und die eine Abgasöffnung radial innerhalb, die andere Abgasöffnung dagegen radial außerhalb des Rußfilter-Querschnittes liegt, tritt die Abgasströmung bei insgesamt homogenem Verlauf durch das Rußfilter hindurch und beaufschlagt das Rußfilter relativ gleichmäßig mit den Rußpartikeln. Da die Abgasströmung außerdem noch in dem energiereichen Bereich des Hohlraumresonators verläuft, kann eine Verbrennung der Rußpartikel sowohl im Abgasstrom als auch nach ihrer Ablagerung auf dem Rußfilter erfolgen.The advantages of the invention lie in particular in the fact that the design of the metal grille realizes a satisfactory end-face metallic limitation of the cavity resonator in the region of the exhaust gas openings without impairing the microwave field in the cavity resonator and without appreciably increasing the flow resistance in the exhaust gas line. This configuration of the metal grids on the end face makes it possible to achieve the high quality of the cavity resonator required for the effective combustion of the soot particles with a low flow resistance. Since the tubular soot filter runs from the front wall to the front wall and the one exhaust gas opening is located radially inside, the other exhaust gas opening, on the other hand, is located radially outside the soot filter cross section, the exhaust gas flow passes through the soot filter with an overall homogeneous course and acts on the soot filter relatively evenly with the soot particles. Since the exhaust gas flow also runs in the high-energy region of the cavity resonator, the soot particles can be burned both in the exhaust gas stream and after their deposition on the soot filter.

Um einen relativ geringen Strömungswiderstand zu erzielen, wird bei einer bevorzugten Ausführungsform der Erfindung das Rußfilter als eine Filtermatte oder Filterschicht ausgebildet, die auf einem ausreichend gasdurchlässigen dielektrischen Trägerkörper angeordnet ist. Der filterbeschichtete Trägerkörper besitzt die Form eines Rohres, welches sich im wesentlichen von der ersten Abgasöffnung bis zur zweiten Abgasöffnung hin erstreckt.In order to achieve a relatively low flow resistance, in a preferred embodiment of the invention the soot filter is designed as a filter mat or filter layer which is arranged on a sufficiently gas-permeable dielectric carrier body. The filter-coated carrier body has the shape of a tube, which extends essentially from the first exhaust opening to the second exhaust opening.

Die aus Trägerkörper und Filtermatte bestehende Filtereinheit kann am stromauf- oder stromabseitigen Ende mit einem kegelförmigen Strömungsteiler versehen werden, der bevorzugt in die sich anschliessende Abgasleitung hineinragt und den zentralen Kern der ringförmigen Abgasöffnung bildet.The filter unit consisting of carrier body and filter mat can be provided at the upstream or downstream end with a conical flow divider, which preferably projects into the adjoining exhaust pipe and forms the central core of the annular exhaust opening.

Besonders bevorzugt ist die Nennweite des Trägerkörpers gleich der Nennweite der anschliessenden Abgasleitung, und die Abgasöffnung in dieser Stirnwand besitzt ebenfalls diese Nennweite. Die Abgasöffnung an der gegenüberliegenden Stirnwand ist dann ringförmig ausgebildet und umgibt den durch diese Abgasöffnung hindurchragenden Strömungsteiler. Auf diese Weise werden unnötige Durchmessersprünge zwischen Abgasleitung und der Filtereinheit verhindert und zusätzlicher Strömungswiderstand vermieden.The nominal size of the carrier body is particularly preferably equal to the nominal size of the adjoining exhaust pipe, and the exhaust gas opening in this end wall also has this nominal size. The exhaust opening on the opposite end wall is then ring-shaped and surrounds the flow divider projecting through this exhaust opening. In this way, unnecessary jumps in diameter between the exhaust pipe and the filter unit are prevented and additional flow resistance is avoided.

Gemäss einer bevorzugten Ausführungsform der Erfindung ist ein dielektrischer, gasdichter Einsatz als Rohr mit einem gegenüber dem Durchmesser des Rußfilters und des Tragkörpers und der Abgasleitung vergrösserten Nennweite konzentrisch zum Rußfilter angeordnet und bildet im Bereich des Resonators die Aussenwand des Abgaskanals. Zusätzlich lassen sich auch die Stirnwände des Resonators in vorgegebenem Abstand mit gasdichten dielektrischen Einsätzen versehen. Auf diese Weise werden die heissen Abgase von den Wänden des Resonators ferngehalten, der dadurch thermisch weniger belastet wird und einer geringeren Wärmeausdehnung unterliegt. Ausserdem sind diese Einsätze geeignet, den Gasstrom im Resonator konzentriert durch die Bereiche relativ grosser Energiedichte zu leiten.According to a preferred embodiment of the invention, a dielectric, gas-tight insert is arranged as a tube with a nominal width that is larger than the diameter of the soot filter and the support body and the exhaust pipe and is arranged concentrically to the soot filter and forms the outer wall of the exhaust gas duct in the region of the resonator. In addition, the end walls of the resonator can be provided with gas-tight dielectric inserts at a predetermined distance. In this way, the hot exhaust gases are kept away from the walls of the resonator, which is therefore less thermally stressed and is subject to less thermal expansion. In addition, these inserts are suitable for directing the gas flow in the resonator through the areas of relatively high energy density.

Besonders bevorzugt wird der Resonator als Eoin-Resonator ausgebildet und betrieben, mit n = 0, 1, 2... Alternativ lässt sich jedoch auch der Resonator als Hoim-Resonator ausbilden und betreiben, m = 1, 2, 3..., obwohl auch andere geeignete Resonatorformen und Betriebsmoden möglich sind. Bei den genannten Ausbildungsformen der Resonatoren ist die grösste Energiedichte des angeregten elektromagnetischen Feldes entweder innen oder aussen konzentrisch um den rohrförmigen Tragkörper/Filtermatte ausgebildet, so dass die Strömung der Abgase durch den Resonator vor und nach dem Durchströmen des Rußfilters im Bereich hoher Energiedichte läuft, in dem auch noch eine direkte Verbrennung der suspendierten bewegten Rußpartikel stattfinden kann.The resonator is particularly preferably designed and operated as an eoin resonator, with n = 0, 1, 2 ... Alternatively, however, the resonator can also be designed and operated as a Hoim resonator, m = 1, 2, 3 ..., although other suitable resonator shapes and operating modes are also possible. With the mentioned forms of training of the resonators, the greatest energy density of the excited electromagnetic field is either inside or formed concentrically on the outside around the tubular support body / filter mat, so that the flow of the exhaust gases through the resonator runs before and after flowing through the soot filter in the region of high energy density, in which a direct combustion of the suspended moving soot particles can also take place.

Wird eine geringe Belastung des Rußfilters gewünscht, oder sollen Filter unterschiedlicher Eigenschaften nacheinander zur Anwendung gelangen, so lassen sich auch bevorzugt mehrere Resonatoren mit gleichen oder unterschiedlichen Rußfiltern in die Abgasleitung einfügen, wobei alle Resonatoren von einer Mikrowellenquelle gespeist werden können. Soll dagegen der Strömungswiderstand weiter herabgesetzt werden, so kann es alternativ wünschenswert sein, mehrere Resonatoren parallel zueinander in die Abgasleitung einzusetzen. Die Ankopplung der Resonatoren kann mittels Koppelorganen erfolgen, die die Mikrowellenenergie von einem Resonator zu dem benachbarten Resonator weiterkoppeln.If a low load on the soot filter is desired, or if filters with different properties are to be used in succession, it is also preferable to insert several resonators with the same or different soot filters into the exhaust line, all resonators being able to be supplied by one microwave source. If, on the other hand, the flow resistance is to be reduced further, it may alternatively be desirable to use several resonators in parallel in the exhaust line. The resonators can be coupled by means of coupling elements which couple the microwave energy from one resonator to the adjacent resonator.

Damit der Resonator und/oder die Mikrowellen- quelle nach Möglichkeit während des Betriebes in der Frequenz nicht verstimmt werden müssen, wird der Resonator sowie die Mikrowellenquelle bevorzugt von der Abgasleitung thermisch möglichst wirksam entkoppelt. Zusätzlich kann es notwendig sein, den bzw. die Resonatoren mittels eines Kühlsystems zu kühlen. Besonders vorteilhaft eignet sich hierzu das Kühlwassersystem der Brennkraftmaschine, welches sein Kühlwasser durch einen äusseren Kühlmantel des Resonators strömen lässt. Zusätzlich wird zweckmässigerweise der Resonator aus einem Metall mit geringem Wärmedehnungswert hergestellt.So that the resonator and / or the microwave source do not have to be detuned in frequency if possible during operation, the resonator and the microwave source are preferably decoupled thermally from the exhaust gas line as effectively as possible. In addition, it may be necessary to cool the resonator (s) by means of a cooling system. The cooling water system of the internal combustion engine, which allows its cooling water to flow through an outer cooling jacket of the resonator, is particularly advantageous for this purpose. In addition, the resonator is expediently made of a metal with a low thermal expansion value.

Vorteilhafte Weiterbildungen der Erfindung sind durch die Merkmale der Unteransprüche gekennzeichnet.Advantageous developments of the invention are characterized by the features of the subclaims.

Im folgenden werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert.Exemplary embodiments of the invention are explained in more detail below with reference to the drawing.

Es zeigen:

  • Fig. 1 einen Längsschnitt durch eine erste Ausführungsform der erfindungsgemässen Vorrichtung;
  • Fig. 2 einen Längsschnitt durch eine zweite Ausführungsform der Vorrichtung;
Show it:
  • 1 shows a longitudinal section through a first embodiment of the device according to the invention.
  • 2 shows a longitudinal section through a second embodiment of the device;

Fig. 1 und 2 zeigen einen Längsschnitt durch eine erste und zweite Ausführungsform der erfindungsgemässen Vorrichtung. In eine Abgasleitung 15 einer nicht dargestellten Diesel-Brennkraftmaschine ist ein Mikrowellen-Hohlraumresonator 1 als Zwischenstück eingefügt. Der Hohlraumresonator 1 besitzt eine erste Stirnwand 2, in vorgegebenem axialem Abstand hierzu eine zweite Stirnwand 3 und eine Umfangswand 4, die im dargestellten Beispiel einen Kreiszylinder bildet und die Stirnwände 2 und 3 miteinander verbindet. Die Abgasleitung 15 mündet über eine Abgasöffnung 6 in der ersten Stirnwand 2 und über eine andere Abgasöffnung 8 in der zweiten Stirnwand 3 in den Hohlraumresonator 1. Die Abgasleitung 15 geht entweder einstückig oder über Flanschverbindungen in die Stirnwände 2 und 3 oder entsprechende Einlass- oder Auslaßstutzen über. Der Resonator besteht aus einem Metall mit geringem Wärmedehnungswert, z.B. aus Edelstahl, und kann ggfs. an seiner inneren Oberfläche mit einer elektrisch hochleitenden Schicht beschichtet sein.1 and 2 show a longitudinal section through a first and second embodiment of the device according to the invention. A microwave cavity resonator 1 is inserted as an intermediate piece in an exhaust pipe 15 of a diesel internal combustion engine (not shown). The cavity resonator 1 has a first end wall 2, at a predetermined axial distance from it a second end wall 3 and a peripheral wall 4, which in the example shown forms a circular cylinder and connects the end walls 2 and 3 to one another. The exhaust line 15 opens into the cavity resonator 1 via an exhaust opening 6 in the first end wall 2 and via another exhaust opening 8 in the second end wall 3. The exhaust line 15 either goes in one piece or via flange connections into the end walls 2 and 3 or corresponding inlet or outlet connections about. The resonator is made of a metal with a low thermal expansion value, e.g. made of stainless steel, and may be coated on its inner surface with an electrically highly conductive layer.

Über einen Hohlleiter 12, der an der Umfangswand 4 des Resonators 1 endet und ein in den Innenraum des Resonators mündendes Koppelloch 10 enthält, wird von einer Mikrowellenquelle 18 geeigneter Bauart Mikrowellenenergie in den Resonator 1 mit einer solchen Frequenz eingespeist, dass sich im Resonator das elektromagnetische Feld mit einer gewünschten Schwingungsmode, z.B. einer E) !-Mode, ausbildet, die mit zunehmendem Abstand von der Achse des Resonators ein abnehmendes elektrisches Feld und eine abnehmende elektrische Energiedichte besitzt.Via a waveguide 12, which ends on the peripheral wall 4 of the resonator 1 and contains a coupling hole 10 opening into the interior of the resonator, microwave energy is fed into the resonator 1 at a frequency of a suitable type from a microwave source 18 with a frequency such that the electromagnetic Field with a desired vibration mode, e.g. an E)! mode, which has a decreasing electric field and a decreasing electrical energy density with increasing distance from the axis of the resonator.

Die beiden Abgasöffnungen 6, 8 sind mit je einem Metallgitter 14 versehen, welches z.B. aus einem dünnen Metallblech als Wabengitter ausgebildet ist und eine vorgegebene axiale Mindestlänge in die Abgasleitung 15 hineinragt, um für das elektromagnetische Feld eine ausreichende metallische Begrenzung des Resonatorvolumens zu erzeugen und gleichwohl die Abgase ohne grösseren Strömungswiderstand durch den Resonator 1 hindurchleiten zu können.The two exhaust openings 6, 8 are each provided with a metal grille 14, which e.g. is formed from a thin metal sheet as a honeycomb grid and a predetermined minimum axial length protrudes into the exhaust line 15 in order to generate a sufficient metallic limitation of the resonator volume for the electromagnetic field and nevertheless to be able to pass the exhaust gases through the resonator 1 without greater flow resistance.

In dem Resonator 1 ist koaxial mit der Abgasleitung 15 ein Rußfilter 20 angeordnet, welches sich von erster Stirnwand 2 zur zweiten Stirnwand 3 erstreckt. Das Rußfilter 20 enthält eine Filtermatte 22, die auf einem gasdurchlässigen, rohrförmigen Trägerkörper 24 aus dielektrischem Material auf der Innen- oder Aussenfläche angeordnet ist und diese Fläche vollständig belegt.In the resonator 1, a soot filter 20 is arranged coaxially with the exhaust pipe 15, which extends from the first end wall 2 to the second end wall 3. The soot filter 20 contains a filter mat 22 which is arranged on a gas-permeable, tubular support body 24 made of dielectric material on the inside or outside surface and completely covers this area.

Gemäss der Ausführungsform nach Fig. 1 ist die Nennweite der einen Abgasöffnung 6 und die Nennweite des Trägerkörpers 24 gleich der Nennweite der an die erste Stirnwand 2 anschliessenden Abgasleitung 15. Die gegenüberliegende zweite Stirnwand 3 verschliesst an diesem Ende den rohrförmigen Tragkörper 24 mit einem zentralen Abschnitt 3a, der einen in die anschliessende Abgasleitung 15 hineinragenden kegelförmigen Strömungsteiler 13 bildet. Um diesen zentralen Abschnitt 3a der zweiten Stirnwand 3 ist die andere Abgasöffnung 8 ringförmig ausgebildet, und die Stirnwand 3 geht mit einem konischen Leitungsabschnitt 16 in die Abgasleitung 15 über. Die Nennweite der anderen Abgasöffnung ist grösser als die Nennweite des Trägerkörpers 24 und der Filtermatte 22, so dass durch die eine Abgasöffnung 6 eintretende Abgase beim Durchströmen des Resonators 1 mit einer radialen Bewegungskomponente durch den Trägerkörper 24 und die Filtermatte 22 hindurchtreten und anschliessend durch die ringförmige Abgasöffnung 8 den Resonator 1 wieder verlassen. Das durch den Hohlleiter 12 und das Koppelloch 10 von der Mikrowellenquelle 18 eingespeiste elektromagnetische Feld ist in der Frequenz so auf die Abmessungen des Resonators 1 abgestimmt, dass der Resonator 1 in Resonanz mit einer bestimmten Schwingungsmode, z.B. der Heim-Mode mit m = 1, 2, 3.., oder mit der Eoin-Mode betrieben wird, mit n = 0, 1, 2. Der Index n bzw. m ist dabei ein Maß für die relative axiale Länge L des Resonators, gemessen in ganzen Vielfachen der halben Resonanzwellenlänge. Das erzeugte elektromagnetische Feld verbrennt die auf der Filtermatte 22 abgelagerten Rußpartikel, und es kann ausserdem in den Abgasen enthaltene Rußpartikel verbrennen, wenn mit einer solchen Schwingungsmode gearbeitet wird, dass sich die Energiedichte im zentralen Bereich des Resonators entsprechend erhöht.According to the embodiment according to FIG. 1, the nominal width of the one exhaust opening 6 and the nominal width of the carrier body 24 are equal to the nominal width of the exhaust pipe 15 adjoining the first end wall 2. The opposite second end wall 3 closes the tubular support body 24 with a central section at this end 3a, which forms a conical flow divider 13 protruding into the adjoining exhaust pipe 15. Around this central section 3a of the second end wall 3, the other exhaust opening 8 is designed in a ring shape, and the end wall 3 merges with the conical line section 16 into the exhaust line 15. The nominal width of the other exhaust gas opening is larger than the nominal width of the carrier body 24 and the filter mat 22, so that the exhaust gases entering an exhaust gas opening 6 pass through the carrier body 24 and the filter mat 22 with a radial component of motion when flowing through the resonator 1 and then through the ring-shaped one Exhaust opening 8 leave resonator 1 again. The frequency of the electromagnetic field fed in by the microwave source 18 through the waveguide 12 and the coupling hole 10 is matched to the dimensions of the resonator 1 in such a way that the resonator 1 resonates with a certain oscillation mo de, for example the home mode with m = 1, 2, 3 .., or with the Eoin mode, with n = 0, 1, 2. The index n or m is a measure of the relative axial Length L of the resonator, measured in whole multiples of half the resonance wavelength. The generated electromagnetic field burns the soot particles deposited on the filter mat 22, and it can also burn soot particles contained in the exhaust gases when working with such a vibration mode that the energy density in the central region of the resonator increases accordingly.

Der Aufbau der Vorrichtung gemäss Fig. 2 entspricht im wesentlichen demjenigen der Fig. 1 mit der Ausnahme, dass die Abgase durch die ringförmige axial außerhalb des Filterquerschnitts angeordnete Abgasöffnung 8 in den Resonator eintreten, und dann von aussen mit Radialkomponente durch die Filtermatte 22 und den Tragkörper 24 in den zentralen Innenraum des Rußfilters 20 eintreten und dann durch die axial innerhalb des Filterquerschnitts befindliche Abgasöffnung 6 den Resonator 1 verlassen. Um den Strömungswiderstand der Vorrichtung gering zu halten, ist auch in dieser Ausführungsform die Nennweite des Tragkörpers 24 gleich der Nennweite der einen Abgasöffnung 6, die gleich der Nennweite der abstromseitigen Abgasleitung 15 ist.The structure of the device according to FIG. 2 essentially corresponds to that of FIG. 1, with the exception that the exhaust gases enter the resonator through the annular exhaust opening 8 arranged axially outside the filter cross-section, and then from the outside with radial component through the filter mat 22 and Support body 24 enter the central interior of the soot filter 20 and then leave the resonator 1 through the exhaust opening 6 located axially within the filter cross section. In order to keep the flow resistance of the device low, the nominal width of the supporting body 24 is also equal to the nominal width of the one exhaust gas opening 6, which is equal to the nominal width of the exhaust-side exhaust pipe 15, in this embodiment.

Der Resonator 1 der Vorrichtung nach Fig. 2 enthält zusätzlich einen gasdichten dielektrischen Einsatz 7, der als Rohr ausgebildet ist und eine Nennweite besitzt, welche der Nennweite der zweiten Abgasöffnung 8 entspricht. Der Einsatz 7 ist über die gesamte axiale Länge des Resonators 1 von Stirnwand 2 zu Stirnwand 3 angeordnet. Während der Einsatz 7 das elektromagnetische Feld im Resonator 1 nur unwesentlich beeinflusst, so bildet er für den Abgasstrom eine äussere Begrenzunsgswand, die verhindert, dass die Abgase mit der Umfangswand 4 des Resonators in Berührung kommen und den Resonator unerwünscht erhitzen.The resonator 1 of the device according to FIG. 2 additionally contains a gas-tight dielectric insert 7 which is designed as a tube and has a nominal diameter which corresponds to the nominal diameter of the second exhaust gas opening 8. The insert 7 is arranged over the entire axial length of the resonator 1 from the end wall 2 to the end wall 3. While the insert 7 influences the electromagnetic field in the resonator 1 only insignificantly, it forms an outer boundary wall for the exhaust gas flow, which prevents the exhaust gases from coming into contact with the peripheral wall 4 of the resonator and undesirably heating the resonator.

Bei der Ausführungsform gemäss Fig. 2 lässt sich der Resonator bevorzugt als H) Resonator betreiben, der durch den Hohlleiter 12 und das Koppelloch 10 von der Mikrowellenquelle 18 Mikrowellenenergie zur Anregung einer H) !-Mode erhält. Bei dieser Schwingungsmode besitzt der Bereich hoher Energiedichte die Form einer Ringzone, so dass das rohrförmige Rußfilter 20 in diesem ausgezeichneten hochenergetischen Bereich liegt. Die an der Filtermatte 22 sich ablagernden Rußpartikel werden daher besonders wirkungsvoll verbrannt, der Strömungswiderstand wird durch das Filter nur wenig erhöht.In the embodiment according to FIG. 2, the resonator can preferably be operated as an H) resonator, which receives microwave energy through the waveguide 12 and the coupling hole 10 from the microwave source 18 to excite an H)! Mode. In this vibration mode, the area of high energy density is in the form of a ring zone, so that the tubular soot filter 20 lies in this excellent high-energy area. The soot particles deposited on the filter mat 22 are therefore burned particularly effectively, and the flow resistance is only slightly increased by the filter.

Über eine Koppeleinrichtung 10, 12, die z.B. aus einem Hohlleiter 12 mit Koppelloch 10 besteht, wird von der Mikrowellenquelle 18 ein elektromagnetisches Feld im Resonator mit geeigneter Schwingungsmode erregt, welches im Bereich des Rußfilters 20 die maximale Energiedichte besitzt und daher die am Rußfilter abgelagerten Rußpartikel verbrennt.Via a coupling device 10, 12 which e.g. consists of a waveguide 12 with a coupling hole 10, the microwave source 18 excites an electromagnetic field in the resonator with a suitable vibration mode, which has the maximum energy density in the area of the soot filter 20 and therefore burns the soot particles deposited on the soot filter.

Aufgrund der unvermeidlichen Erwärmung des Resonators sowie wegen möglicher Ablagerung von verbrennbaren/unverbrennbaren Partikeln auf den Resonatorwänden oder auf dem Rußfilter 20 lässt sich eine Verstimmung der Resonatoren während des Betriebs nicht verhindern. Um die Resonanzbedingungen in den Resonatoren ständig einzuhalten, ist in jedem Resonator 1 eine Abstimmvorrichtung (nicht dargestellt) vorhanden, die z.B. durch eine automatische mechanische Veränderung im Resonator-Hohlraum die Einhaltung der Resonanzbedingungen sicherstellt. Alternativ ist auch die entsprechende Änderung der Resonanzfrequenz möglich.Due to the inevitable heating of the resonator and the possible deposition of combustible / non-combustible particles on the resonator walls or on the soot filter 20, detuning of the resonators cannot be prevented during operation. In order to constantly maintain the resonance conditions in the resonators, a tuning device (not shown) is provided in each resonator 1, which e.g. an automatic mechanical change in the resonator cavity ensures compliance with the resonance conditions. Alternatively, the corresponding change in the resonance frequency is also possible.

Im Rahmen der Erfindung kann beim Ausführungsbeispiel nach Fig. 1 anstelle der Filtermatte 22 und ihres gasdurchlässigen Trägerkörpers 24 ein eigensteifer Ringkörper aus dielektrischem, keramischem Schaum vorgesehen sein. Diese Ausführung ist vorteilhaft, wenn in einem relativ kleinen Resonatorvolumen ein großes Filter bei relativ geringem Strömungswiderstand zu verwirklichen ist.1, instead of the filter mat 22 and its gas-permeable carrier body 24, an inherently rigid ring body made of dielectric, ceramic foam can be provided in the exemplary embodiment according to FIG. 1. This embodiment is advantageous if a large filter with a relatively low flow resistance can be implemented in a relatively small resonator volume.

Claims (20)

1. Apparatus for eliminating soot or the like from the exhaust gases of an internal combustion engine, more particular a diesel engine, comprising a microwave source (18), a cavity resonator (1) constituting an intermediate member coupled to the exhaust-gas pipe (15) and containing a metal grating (14) in each of its two exhaust-gas openings (6, 8) disposed in the end faces (2, 3), and a tubular soot filter (20) made of dielectric material and disposed in the region of maximum energy density of the electromagnetic field in the flow path of the exhaust gases in the cavity resonator (1), one exhaust-gas opening (6) being situated radially inside the filter cross-section, characterised in that the tubular soot filter (20) extends from one end wall (2) to the other end wall (3) of the cavity resonator (1), the other exhaust-gas opening (8) is situated radially outside the filter cross-section, and the metal gratings (14) are honeycomb gratings and extend from the exhaust-gas openings (6, 8) for a preset axial minimum length into the exhaust-gas pipe (15).
2. Apparatus according to claim 1, characterised in that the soot filter (20) is constructed so as to be completely or partly self-supporting.
3. Apparatus according to claim 1, characterised in that the soot filter (20) constructed a filter mat (22) surrounding at least one surface of the gas- permeable carrier member (24) made of dielectric material.
4. Apparatus according to any of the preceding claims, characterised in that the other exhaust-gas opening (6) concentrically surrounds the filter-covered carrier member (24) at the second end wall (3) of the resonator (1).
5. Apparatus according to claim 4, characterised in that the portion (3a) of the end wall (3) surrounded by the other exhaust-gas opening (8) has a conical flow divider (13) which projects into the adjacent exhaust-gas pipe.
6. Apparatus according to any of the preceding claims, characterised in that one exhaust-gas opening (6) is equal to the rated width of the adjacent exhaust-gas pipe (15).
7. Apparatus according to any of claims 4 to 6, characterised in that the rated width of the carrier member (24) is equal to the rated width of the exhaust-gas pipe (15).
8. Apparatus according to any of the preceding claims, characterised in that the soot filter (20) has self-supporting space regions.
9. Apparatus according to any of the preceding claims, characterised in that a dielectric gas-tight insert (7) is in the form of a tube disposed concentrically with the soot filter (20) and having a rated width greater than the diameter of the soot filter (20) and the exhaust-gas pipe (15), and constituting the outer wall (4) of the resonator (1) for the exhaust-gas duct.
10. Apparatus according to claim 9, characterised in that the rated width of the gas-tight insert (7) is equal to the width of the other exhaust-gas opening (8).
11. Apparatus according to any of the preceding claims, characterised in that the resonator (1) is constructed and excited as an E01n resonator, with n = 0, 1, 2 ...
12. Apparatus according to any of claims 1 to 10, characterised in that the resonator (1) is constructed and excited as an Hoim resonator, with m = 1,2,3...
13. Apparatus according to any of the preceding claims, characterised in that a number of resonators (1) each with a soot filter (20) are inserted in series into the exhaust-gas pipe (15).
14. Apparatus according to any of claims 1 to 16, characterised in that a number of resonators (1) each with a soot filter (20) are inserted parallel to one another into the exhaust-gas pipe (15).
15. Apparatus according to claim 17 or 18, characterised in that the number of resonators (1) have a feed coupling (10, 21) for coupling of microwaves and each have a coupling means in common walls of the resonators.
16. Apparatus according to any of the preceding claims, characterised in that the resonator or resonators (1) is/are thermally decoupled from the exhaust-gas pipe (15).
17. Apparatus according to any of the preceding claims, characterised in that the coupling line (12) leading to the microwave source (18) is thermally uncoupled from the microwave source (18).
18. Apparatus according to any of the preceding claims, characterised in that the resonator or resonators (1) are adapted to be cooled by the cooling water system of the internal combustion engine.
EP86110665A 1985-08-08 1986-08-01 Apparatus for eliminating the soot or the like from the exhaust gases of an internal-combustion engine Expired EP0212396B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86110665T ATE46937T1 (en) 1985-08-08 1986-08-01 DEVICE FOR REMOVING SOOT OR THE LIKE. FROM THE EXHAUSTS OF AN INTERNAL ENGINE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853528445 DE3528445A1 (en) 1985-08-08 1985-08-08 DEVICE AND METHOD FOR ELIMINATING RUSS OR THE LIKE. FROM THE EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE
DE3528445 1985-08-08

Publications (3)

Publication Number Publication Date
EP0212396A2 EP0212396A2 (en) 1987-03-04
EP0212396A3 EP0212396A3 (en) 1988-01-20
EP0212396B1 true EP0212396B1 (en) 1989-10-04

Family

ID=6278008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86110665A Expired EP0212396B1 (en) 1985-08-08 1986-08-01 Apparatus for eliminating the soot or the like from the exhaust gases of an internal-combustion engine

Country Status (3)

Country Link
EP (1) EP0212396B1 (en)
AT (1) ATE46937T1 (en)
DE (2) DE3528445A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588610B1 (en) * 1985-10-11 1987-12-11 Renault PROCESS FOR REMOVAL OF CARBON PARTICLES CONTAINED IN CIRCULATING GASES, IN PARTICULAR IN EXHAUST GASES FROM COMPRESSION IGNITION ENGINES.
AT404285B (en) * 1988-03-11 1998-10-27 Fleck Carl M Dr Apparatus for separating and burning soot particles in diesel exhaust gases
US4979364A (en) * 1988-03-11 1990-12-25 Fleck Carl M Diesel fuel exhaust gas filter
WO1990014507A1 (en) * 1989-05-17 1990-11-29 Ford Motor Company Limited Emission control
FR2650627B1 (en) * 1989-08-04 1994-09-16 Renault DEVICE FOR REMOVING CARBON PARTICLES CONTAINED IN EXHAUST GASES OF HEAT ENGINES
US5194078A (en) * 1990-02-23 1993-03-16 Matsushita Electric Industrial Co., Ltd. Exhaust filter element and exhaust gas-treating apparatus
CA2036854A1 (en) * 1990-02-23 1991-08-24 Masaaki Yonemura Exhaust filter element and exhaust gas-treating apparatus
KR0175062B1 (en) * 1990-07-02 1999-03-20 엠. 후렉 칼 Process and device for cleaning exhaust gas
EP0469237A1 (en) * 1990-08-03 1992-02-05 STROMERZEUGUNG GmbH & CO. ANLAGENBAU KG Process and device for converting molecules in a fluid stream
DE4137771A1 (en) * 1991-11-16 1993-05-19 Kloeckner Humboldt Deutz Ag Electrically regenerable particle filter assembly - for diesel engine exhausts
DE4319283C1 (en) * 1993-06-10 1994-10-20 Daimler Benz Ag Method and device for reducing particles in exhaust gases
DE4321363A1 (en) * 1993-06-26 1995-01-05 Dornier Gmbh Method and device for burning off soot on ceramic diesel particle filters
US5453116A (en) * 1994-06-13 1995-09-26 Minnesota Mining And Manufacturing Company Self supporting hot gas filter assembly
US6540816B2 (en) * 2001-08-23 2003-04-01 Fleetguard, Inc. Regenerable filter with localized and efficient heating
US7357858B2 (en) 2003-05-14 2008-04-15 Levitronix Llc Filter apparatus
EP1477216A1 (en) * 2003-05-14 2004-11-17 Levitronix LLC Filter apparatus
CN107952585A (en) * 2017-12-06 2018-04-24 佛山早稻田环保节能科技有限公司 A kind of honeycomb electrostatic field
JP2022130055A (en) * 2021-02-25 2022-09-06 富士電機株式会社 Electrostatic precipitator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3461261A (en) * 1966-10-31 1969-08-12 Du Pont Heating apparatus
US4152567A (en) * 1977-03-07 1979-05-01 Mayfield Esther O Microwave water heater
DE3024589C2 (en) * 1980-06-28 1982-09-09 Bopp & Reuther Gmbh, 6800 Mannheim Butterfly valve
DE3024539C2 (en) * 1980-06-28 1982-06-09 Filterwerk Mann & Hummel Gmbh, 7140 Ludwigsburg Device for removing soot from the exhaust gases of an internal combustion engine
US4417116A (en) * 1981-09-02 1983-11-22 Black Jerimiah B Microwave water heating method and apparatus
JPS5958114A (en) * 1982-09-28 1984-04-03 Mitsubishi Electric Corp Filter refreshing device of internal combustion engine
JPS6111414A (en) * 1984-06-26 1986-01-18 Mitsubishi Electric Corp On-vehicle combustion device
JPS6111416A (en) * 1984-06-27 1986-01-18 Mitsubishi Electric Corp On-vehicle combustion device

Also Published As

Publication number Publication date
DE3528445A1 (en) 1987-02-19
DE3666062D1 (en) 1989-11-09
ATE46937T1 (en) 1989-10-15
EP0212396A2 (en) 1987-03-04
DE3528445C2 (en) 1991-05-08
EP0212396A3 (en) 1988-01-20

Similar Documents

Publication Publication Date Title
EP0212396B1 (en) Apparatus for eliminating the soot or the like from the exhaust gases of an internal-combustion engine
EP0191437B1 (en) Device and process for removing soot or the like from the exhaust gases of an internal-combustion engine
DE3788421T2 (en) Apparatus for treating particles in the exhaust gas from a diesel engine.
DE602004011176T2 (en) Apparatus for filtering and burning particulate matter
DE69216101T2 (en) PARTICLE FILTER FOR PURIFYING DIESEL ENGINE EXHAUST GAS
DE2953010C2 (en)
EP0537219B1 (en) Process and device for cleaning exhaust gases
DE19522935A1 (en) Modular catalyst and exhaust system, esp. for large diesel engines
DE3024539C2 (en) Device for removing soot from the exhaust gases of an internal combustion engine
DE69805633T2 (en) EMISSION CONTROL DEVICE
DE3910554A1 (en) PARTICLE FILTER CONSTRUCTED USING ONE-SIDED SEALED PUNCHED TUBES
DE69801257T2 (en) exhaust gas cleaner
DE4114935A1 (en) Vehicle exhaust filter for diesel engine - has electrostatic precipitator and mechanical collection of carbon
EP0597206A1 (en) Process for the reduction of soot particles in exhaust gas streams
EP0522245A1 (en) Soot particle filter
EP0410200A1 (en) Porous body for the treatment of gases and/or vapours and/or liquids and process for the production thereof
DE4022321A1 (en) FILTER
DE69018727T2 (en) Device for removing soot particles from combustion exhaust gases from diesel engines.
EP0549851B1 (en) Soot filter for diesel engines
EP0442318B1 (en) Particle filter regenerable by combusting for exhaust gases of internal combustion engines
EP0177668A1 (en) Device for directing an electron beam
DE4303586A1 (en) Exhaust emission controller for IC engine - has tubular filter elements with regenerative heaters embedded in thickened walls and mounted in tubular housing
DE10000568C2 (en) Thermally insulated exhaust gas cleaning system
EP0451662B1 (en) Recuperative burner
EP0616833B1 (en) Soot filter for diesel engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB IT SE

17P Request for examination filed

Effective date: 19880209

17Q First examination report despatched

Effective date: 19880610

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT SE

REF Corresponds to:

Ref document number: 46937

Country of ref document: AT

Date of ref document: 19891015

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3666062

Country of ref document: DE

Date of ref document: 19891109

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920803

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920804

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920827

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920831

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930801

Ref country code: AT

Effective date: 19930801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930802

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940429

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 86110665.6

Effective date: 19940310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960911

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050801