EP0191437B1 - Device and process for removing soot or the like from the exhaust gases of an internal-combustion engine - Google Patents
Device and process for removing soot or the like from the exhaust gases of an internal-combustion engine Download PDFInfo
- Publication number
- EP0191437B1 EP0191437B1 EP86101625A EP86101625A EP0191437B1 EP 0191437 B1 EP0191437 B1 EP 0191437B1 EP 86101625 A EP86101625 A EP 86101625A EP 86101625 A EP86101625 A EP 86101625A EP 0191437 B1 EP0191437 B1 EP 0191437B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- exhaust gas
- resonator
- gas pipe
- cavity resonator
- constructed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/80—Apparatus for specific applications
- H05B6/802—Apparatus for specific applications for heating fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/01—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/027—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
- F01N3/028—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using microwaves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S55/00—Gas separation
- Y10S55/30—Exhaust treatment
Definitions
- the invention relates to a device for removing soot from the exhaust gases of an internal combustion engine, with a microwave source, a cavity resonator which is coupled as an intermediate piece to the exhaust pipe of the internal combustion engine and an exhaust gas inlet in an end wall and an exhaust gas outlet on an opposite end wall has, and each with a metal grid in the exhaust gas inlet and the exhaust gas outlet.
- Such a device is known from DE-A-3 024 539 in which the intermediate piece contains a soot filter made of dielectric material in the flow path of the exhaust gases, through which the exhaust gases flow essentially radially and which retains soot from the exhaust gases. If the soot deposits on the soot filter exceed a predetermined level, an electromagnetic microwave field is excited in the intermediate piece, whereby the soot is to be burned. It is disadvantageous that the soot particles on the soot filter impair the flow resistance, even if the soot particles deposited there are burnt off from time to time.
- the cavity resonator is provided at its inlet and outlet with simple metal grids, which have a relatively small hole area for sufficient metallic limitation of the microwave field in the cavity resonator, the flow resistance for the exhaust gases is additionally increased by this metal grille, which leads to a loss in performance of the Internal combustion engine leads.
- a device in which a cavity resonator is provided with a tubular ceramic insert, through which filamentary or particulate material or fluids are passed and subjected to a heat treatment there. If the ceramic insert - in one embodiment of the known device - remains open at its inlet and its outlet, the relatively large radiation losses of the microwave field make resonance operation and thus an effective high-temperature treatment in the ceramic insert impossible. However, if - in another embodiment of this known device - an iris diaphragm is attached to the inlet and outlet of the ceramic insert, a homogeneous and efficient flow of fluids through the ceramic insert is made impossible.
- the object of the invention is to develop a device according to the preamble of the main claim in such a way that an effective combustion of the soot particles floating freely in the exhaust gases takes place with low flow resistance.
- the cavity resonator contains a first gas-tight ceramic insert, which is designed as a tube and axially aligned with the exhaust pipe from the exhaust gas inlet to the exhaust outlet, and that the metal grille to achieve a low Exhaust gas flow resistance are designed as honeycomb grids which extend into the exhaust gas line with a predetermined minimum axial length in order to limit the microwave field in the cavity resonator sufficiently.
- the advantages of the invention are, in particular, that the exhaust gas flow in the tubular ceramic insert is passed homogeneously through that region of the resonator in which the greatest energy density of the electromagnetic field is present. Due to the design of the metal grille as a honeycomb grille, the exhaust gases can flow through the cavity resonator without greater flow resistance. In addition, since the honeycomb grids protrude into the exhaust pipe over a predetermined minimum axial length, a sufficient metallic limitation for the microwave field generated in the cavity resonator is realized at the same time, so that high energy densities and homogeneous field profiles of the excited electromagnetic waves arise within the ceramic insert, which are necessary to burn the soot particles contained in the homogeneous exhaust gas flow during their flight through the ceramic insert.
- the invention thus realizes a device which is simple in terms of construction, in which built-in elements in the exhaust gas line or in the cavity resonator which form flow resistances are avoided and, moreover, the maintenance work required for a soot retention device is dispensed with.
- the device is preferably switched on continuously or at predetermined intervals during the operating time of the internal combustion engine in order to continuously burn the soot particles flowing into the resonator.
- the exhaust gas inlet and the exhaust gas outlet are arranged opposite one another on the two end walls of the resonator and have essentially the same nominal width as the exhaust gas line.
- the two end walls are connected by a peripheral wall, preferably with a circular cross section, the nominal width of which is determined by the resonance frequency with which the resonator and the microwave source are operated. Due to the operating frequencies approved by the postal authorities, the nominal size of the resonator must be chosen larger than that of the exhaust pipe.
- the resonator is particularly preferably designed as a cylindrical E oio resonator and operated with the vibration mode E olo , and the flue gas pipe is preferably flange- mounted centrally on the end face.
- the electric field lines have their maximum and in the center of the resonator decrease steadily towards the outside, in the central area there is a high energy density.
- the ceramic insert is designed as a tube with the nominal size of the exhaust pipe and runs in alignment with the exhaust pipe from the inlet to the outlet of the resonator.
- the insert guides the exhaust gas flow homogeneously through the resonator and thereby prevents the exhaust gases from coming into contact with the metallic walls of the resonator, as a result of which undesirable heating of the resonator, which leads to a change in the resonance frequency, is counteracted.
- the application is chosen so that on the one hand it influences the electromagnetic field as little as possible, that is, it should consist of a material with a low dielectric constant and a low loss factor, which moreover provides the best possible thermal insulation. For this reason, glass or a loss-free ceramic material are particularly suitable.
- the resonator can be designed and operated as a Ho11 or as an E 020 resonator, it also being possible, of course, to design and operate in other suitable vibration modes.
- the resonator is designed and operated as a H o11 or E o2o resonator, the area of high energy density coincides with a ring zone around the axis of rotation of the resonator.
- the second ceramic insert tapers preferably conically at its ends and protrudes with the end cones into slightly conical connecting sections of the exhaust pipe, which are also again, for. B. in the range of the nominal size, which contains honeycomb-shaped metal grid.
- the index n or m is a measure of the relative axial length L of the resonator, measured in whole multiples of half the resonance wavelength ⁇ 0/2 . Longer structural lengths, ie vibration modes / resonators with a higher index n or m can be advantageous in particular if the residence time of the soot particles has to be increased for sufficient combustion.
- the resonator and the microwave source are preferably thermally decoupled from the exhaust gas line as effectively as possible.
- the cooling water system of the internal combustion engine is particularly advantageously suitable for cooling the cavity resonator (s).
- the cavity resonator can be provided with a cooling jacket and constantly charged with cooling liquid between the resonator wall and the cooling jacket.
- the resonator is expediently made of a metal with a low thermal expansion value.
- a microwave cavity resonator 1 is inserted as an intermediate piece in an exhaust pipe 15 of a diesel internal combustion engine (not shown).
- the cavity resonator 1 has a first end wall 2, at a predetermined axial distance here a second end wall 3 and a circular cylindrical peripheral wall 4, which connects the outer circumference of the end walls 2 and 3 to one another.
- the end walls 2 and 3 have concentrically to the axis of rotation an exhaust gas inlet 6 or an exhaust gas outlet 8 with approximately the nominal size of the exhaust pipe 15.
- the exhaust pipe 15 goes in one piece at the inlet 6 and at the outlet 8 or via a flange connection into the forehead walls 2, 3 or a corresponding inlet or outlet connection.
- the resonator consists of a metal with a low thermal expansion value, e.g. B. made of stainless steel and may be coated on its inner surface with an electrically highly conductive layer.
- microwave energy 18 of a suitable type is fed into the resonator 1 at a frequency such that the resonator the electromagnetic field with a desired shrinkage mode, e.g. B. forms an E oio resonance, which has a decreasing electric field and a decreasing electrical energy density with increasing distance from the axis of rotation.
- the exhaust gas inlet 6 and the exhaust gas outlet 8 are each provided with a honeycomb-shaped metal grille 14, which is formed from thin metal sheet and protrudes a predetermined minimum length into the exhaust gas line 15 in order to generate a sufficient metallic limitation of the resonator volume for the electromagnetic field and nevertheless the exhaust gases without to be able to conduct greater flow resistance through the resonator.
- a first tubular ceramic insert 5 is attached - from end wall to end wall - the nominal width of which is equal to that of the exhaust pipe 15.
- the insert 5 is arranged centrally and axially between the exhaust gas inlet 6 and the outlet 8 in alignment with the exhaust gas line 15 and conducts the exhaust gases through the resonator region of high energy density without changing the cross section. Since the nominal width or the diameter of the resonator 1 is substantially larger than the nominal width of the exhaust pipe 15 and is determined by the resonance frequency with which the device - according to the postal regulations - may be operated, the exhaust gas flow through the insert 5 is at a greater distance from of the resonator wall, which thereby remains relatively cold and experiences little or no thermal expansion.
- FIG. 3 and 4 show a structure corresponding to FIG. 1, in which an H o , o resonator with spaced end walls 2, 3 and the intermediate peripheral wall 4 and the exhaust gas inlet 6 and outlet 8 is inserted into the exhaust line 15, which receives microwave energy to excite the H o , a oscillation through a waveguide 12 and the coupling hole 10.
- the area of high energy density is in the form of a ring zone.
- a cylindrical second ceramic insert 7 which tapers conically at its ends, is inserted axially and centrally in the resonator 1, the end cones of the second ceramic insert 7 being passed through the inlet 6 and the outlet 8 protrude into the exhaust pipe 15, which has correspondingly conical sections 17.
- the honeycomb-shaped metal grid 14 is mounted concentrically around the end cone of the second ceramic insert 7 in the region of the inlet 6 and the outlet 8.
- the first ceramic insert 5 in the form of a tube is also inserted concentrically with the second ceramic insert 7 in the resonator.
- FIG. 5 several e oio resonators, all of which are constructed in accordance with FIG. 1, are inserted in series into an exhaust gas line 15.
- Adjacent resonators 1 are arranged adjacent to one another and have a common end wall 3 which, like the outer end walls 2, contains a central exhaust opening 9 which has the nominal width of the exhaust line 15 and each carries a honeycomb-shaped metal grille 14 for the electromagnetic delimitation of the resonator interior.
- tubular ceramic inserts 5 with the nominal size of the exhaust line 15 are inserted, which guide the exhaust gas flow centrally.
- One of the resonators 1 is connected to the microwave source 18 via a hollow line 12.
- the common end walls 3 also each have a coupling member 20, for. B. a coupling loop or a coupling opening to feed the subsequent resonators with microwave energy.
- an e oio resonator according to FIG. 1 and a H on resonator according to FIG. 3 are inserted in series into the exhaust line 15. Both resonators are fed via a separate hollow line 12 from the microwave source 18.
- the individual or the several resonators connected in series or in parallel can be thermally decoupled from the exhaust pipe in order to achieve the highest possible frequency constancy (not shown).
- the individual resonator 1 can also be thermally decoupled from the microwave source 18 (not shown).
- the resonators can be cooled by means of cooling systems which, for. B. can be integrated into the cooling systems of the internal combustion engines.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung zur Beseitigung von Ruß aus den Abgasen einer Brennkraftmaschine, mit einer Mikrowellen-Quelle, einem Hohlraum-Resonator, der als ein Zwischenstück an die Abgasleitung der Brennkraftmaschine angekoppelt ist und einen Abgaseinlaß in einer Stirnwand sowie einen Abgasauslaß an einer gegenüberliegenden Stirnwand besitzt, und mit je einem Metallgitter in dem Abgaseinlaß und dem Abgasauslaß.The invention relates to a device for removing soot from the exhaust gases of an internal combustion engine, with a microwave source, a cavity resonator which is coupled as an intermediate piece to the exhaust pipe of the internal combustion engine and an exhaust gas inlet in an end wall and an exhaust gas outlet on an opposite end wall has, and each with a metal grid in the exhaust gas inlet and the exhaust gas outlet.
Aus der DE-A-3 024 539 ist eine derartige Vorrichtung bekannt, bei der das Zwischenstück ein Rußfilter aus dielektrischem Material im Strömungspfad der Abgase enthält, welches von den Abgasen im wesentlichen radial durchströmt wird und Ruß aus den Abgasen zurückhält. Überschreiten die Rußablagerungen auf dem Rußfilter ein vorgegebenes Maß, so wird in dem Zwischenstück ein elektromagnetisches Mikrowellenfeld erregt, wodurch der Ruß zur Verbrennung gebracht werden soll. Nachteilig ist es dabei, daß die Rußpartikel auf dem Rußfilter den Strömungswiderstand beeinträchtigen, auch wenn die dort niedergeschlagenen Rußpartikel von Zeit zu Zeit abgebrannt werden. Da außerdem der Hohlraum-Resonator an seinem Einlaß und Auslaß mit einfachen Metallgittern versehen ist, die zur ausreichenden metallischen Begrenzung des Mikrowellenfeldes im Hohlraum-Resonator eine relativ geringe Lochfläche besitzen, wird durch diese Metallgitter der Strömungswiderstand für die Abgase zusätzlich erhöht, was zu Leistungseinbußen der Brennkraftmaschine führt.Such a device is known from DE-A-3 024 539 in which the intermediate piece contains a soot filter made of dielectric material in the flow path of the exhaust gases, through which the exhaust gases flow essentially radially and which retains soot from the exhaust gases. If the soot deposits on the soot filter exceed a predetermined level, an electromagnetic microwave field is excited in the intermediate piece, whereby the soot is to be burned. It is disadvantageous that the soot particles on the soot filter impair the flow resistance, even if the soot particles deposited there are burnt off from time to time. In addition, since the cavity resonator is provided at its inlet and outlet with simple metal grids, which have a relatively small hole area for sufficient metallic limitation of the microwave field in the cavity resonator, the flow resistance for the exhaust gases is additionally increased by this metal grille, which leads to a loss in performance of the Internal combustion engine leads.
Aus der US-A-3 461 261 ist eine Vorrichtung bekannt, bei der ein Hohlraum-Resonator mit einem rohrförmigen Keramikeinsatz versehen ist, durch den fadenförmiges oder teilchenförmiges Material oder Fluide hindurchgeleitet werden und dort einer Wärmebehandlung unterzogen werden. Bleibt der Keramikeinsatz - in einer Ausführungsform der bekannten Vorrichtung - an seinem Einlaß und seinem Auslaß offen, so machen die relativ großen Abstrahlverluste des Mikrowellenfeldes einen Resonanzbetrieb und damit eine wirksame Hochtemperatur-Behandlung in dem Keramikeinsatz unmöglich. Wird dagegen - in einer anderen Ausführungsform dieser bekannten Vorrichtung - am Einlaß und am Auslaß des Keramikeinsatzes eine Iris-Blende angebracht, so wird eine homogene und effiziente Durchströmung des Keramikeinsatzes mit Fluiden unmöglich gemacht.From US-A-3 461 261 a device is known in which a cavity resonator is provided with a tubular ceramic insert, through which filamentary or particulate material or fluids are passed and subjected to a heat treatment there. If the ceramic insert - in one embodiment of the known device - remains open at its inlet and its outlet, the relatively large radiation losses of the microwave field make resonance operation and thus an effective high-temperature treatment in the ceramic insert impossible. However, if - in another embodiment of this known device - an iris diaphragm is attached to the inlet and outlet of the ceramic insert, a homogeneous and efficient flow of fluids through the ceramic insert is made impossible.
Aufgabe der Erfindung ist es demgegenüber, eine Vorrichtung gemäß dem Oberbegriff des Hauptanspruches derart weiterzubilden, daß eine wirksame Verbrennung der in den Abgasen frei schwebenden Rußpartikel bei geringem Strömungswiderstand erfolgt.In contrast, the object of the invention is to develop a device according to the preamble of the main claim in such a way that an effective combustion of the soot particles floating freely in the exhaust gases takes place with low flow resistance.
Diese Aufgabe wird bei der Vorrichtung der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß der Hohlraum-Resonator einen ersten gasdichten Keramikeinsatz enthält, der als Rohr ausgebildet ist und axial mit der Abgasleitung fluchtend vom Abgaseinlaß zum Abgasauslaß verläuft, und daß die Metallgitter zur Erzielung eines geringen Abgas-Strömungswiderstandes als Wabengitter ausgebildet sind, die sich zur ausreichenden metallischen Begrenzung des Mikrowellenfeldes im Hohlraum-Resonator mit vorgegebener axialer Mindestlänge in die Abgasleitung hineinerstrecken.This object is achieved in the device of the type mentioned in that the cavity resonator contains a first gas-tight ceramic insert, which is designed as a tube and axially aligned with the exhaust pipe from the exhaust gas inlet to the exhaust outlet, and that the metal grille to achieve a low Exhaust gas flow resistance are designed as honeycomb grids which extend into the exhaust gas line with a predetermined minimum axial length in order to limit the microwave field in the cavity resonator sufficiently.
Die Vorteile der Erfindung liegen insbesondere darin, daß die Abgasströmung in dem rohrförmigen Keramikeinsatz homogen durch denjenigen Bereich des Resonators hindurchgeführt wird, in welchem die größte Energiedichte des elektromagnetischen Feldes vorhanden ist. Aufgrund der Ausbildung der Metallgitter als Wabengitter können die Abgase ohne größeren Strömungswiderstand den Hohlraum-Resonator durchströmen. Da außerdem die Wabengitter über eine vorgegebene axiale Mindestlänge in die Abgasleitung hineinragen, wird gleichzeitig eine ausreichende metallische Begrenzung für das im Hohlraum- Resonator erzeugte Mikrowellenfeld verwirklicht, so daß innerhalb des Keramikeinsatzes hohe Energiedichten und homogene Feldverläufe der angeregten elektromagnetischen Wellen entstehen, die notwendig sind, um die im homogenen Abgasstrom enthaltenen Rußpartikel während ihres Fluges durch den Keramikeinsatz zu verbrennen.The advantages of the invention are, in particular, that the exhaust gas flow in the tubular ceramic insert is passed homogeneously through that region of the resonator in which the greatest energy density of the electromagnetic field is present. Due to the design of the metal grille as a honeycomb grille, the exhaust gases can flow through the cavity resonator without greater flow resistance. In addition, since the honeycomb grids protrude into the exhaust pipe over a predetermined minimum axial length, a sufficient metallic limitation for the microwave field generated in the cavity resonator is realized at the same time, so that high energy densities and homogeneous field profiles of the excited electromagnetic waves arise within the ceramic insert, which are necessary to burn the soot particles contained in the homogeneous exhaust gas flow during their flight through the ceramic insert.
Mit der Erfindung ist somit eine im Aufbau einfache Vorrichtung verwirklicht, bei der Strömungswiderstände bildende Einbauten in der Abgasleitung oder im Hohlraum-Resonator vermieden werden und außerdem die für eine Rußrückhaltevorrichtung erforderliche Wartungsarbeit entfällt.The invention thus realizes a device which is simple in terms of construction, in which built-in elements in the exhaust gas line or in the cavity resonator which form flow resistances are avoided and, moreover, the maintenance work required for a soot retention device is dispensed with.
Bevorzugt ist die Vorrichtung während der Betriebsdauer der Brennkraftmaschine ständig oder zu vorbestimmten Intervallen eingeschaltet, um die in den Resonator einströmenden Rußpartikel ständig zu verbrennen.The device is preferably switched on continuously or at predetermined intervals during the operating time of the internal combustion engine in order to continuously burn the soot particles flowing into the resonator.
Gemäß einer besonders bevorzugten Ausführungsform der Erfindung ist der Abgaseinlaß und der Abgasauslaß einander gegenüberliegend an den beiden Stirnwänden des Resonators angeordnet und besitzt im wesentlichen dieselbe Nennweite wie die Abgasleitung. Die beiden Stirnwände werden von einer Umfangswand, bevorzugt mit Kreisquerschnitt, verbunden, dessen Nennweite durch die Resonanzfrequenz bestimmt ist, mit welcher der Resonator und die Mikrowellen-Quelle betrieben werden. Aufgrund der von den Postbehörden zugelassenen Betriebsfrequenzen muß die Nennweite des Resonators größer gewählt werden als die der Abgasleitung.According to a particularly preferred embodiment of the invention, the exhaust gas inlet and the exhaust gas outlet are arranged opposite one another on the two end walls of the resonator and have essentially the same nominal width as the exhaust gas line. The two end walls are connected by a peripheral wall, preferably with a circular cross section, the nominal width of which is determined by the resonance frequency with which the resonator and the microwave source are operated. Due to the operating frequencies approved by the postal authorities, the nominal size of the resonator must be chosen larger than that of the exhaust pipe.
Besonders bevorzugt wird der Resonator als zylindrischer Eoio-Resonator ausgebildet und mit der Schwingungsmode Eolo betrieben, und die Abgasleitung wird bevorzugt stirnseitig zentral angeflanscht. Die elektrischen Feldlinien besitzen im Zentrum des Resonators ihr Maximum und nehmen nach außen hin stetig ab, im zentralen Bereich liegt eine hohe Energiedichte vor. Der Keramikeinsatz ist bei dieser Ausführungsform der Erfindung als Rohr mit der Nennweite der Abgasleitung ausgebildet und verläuft mit der Abgasleitung fluchtend vom Einlaß zum Auslass des Resonators hin. Der Einsatz führt bei dieser Ausführungsform den Abgasstrom homogen durch den Resonator und verhindert dabei, dass die Abgase in Kontakt mit den metallischen Wänden des Resonators kommen, wodurch einer unerwünschten Erwärmung des Resonators, die zu einer Änderung der Resonanzfrequenz führt, entgegengewirkt wird. Der Einsatz wird zu diesem Zweck so gewählt, dass er einerseits das elektromagnetische Feld möglichst wenig beeinflusst, er soll also aus einem Material geringer Dielektrizitätskonstante mit geringem Verlustfaktor bestehen, das ausserdem eine möglichst gute thermische Isolierung bewirkt. Glas oder ein verlustfreies Keramikmaterial sind aus diesem Grunde besonders geeignet.The resonator is particularly preferably designed as a cylindrical E oio resonator and operated with the vibration mode E olo , and the flue gas pipe is preferably flange- mounted centrally on the end face. The electric field lines have their maximum and in the center of the resonator decrease steadily towards the outside, in the central area there is a high energy density. In this embodiment of the invention, the ceramic insert is designed as a tube with the nominal size of the exhaust pipe and runs in alignment with the exhaust pipe from the inlet to the outlet of the resonator. In this embodiment, the insert guides the exhaust gas flow homogeneously through the resonator and thereby prevents the exhaust gases from coming into contact with the metallic walls of the resonator, as a result of which undesirable heating of the resonator, which leads to a change in the resonance frequency, is counteracted. For this purpose, the application is chosen so that on the one hand it influences the electromagnetic field as little as possible, that is, it should consist of a material with a low dielectric constant and a low loss factor, which moreover provides the best possible thermal insulation. For this reason, glass or a loss-free ceramic material are particularly suitable.
Alternativ kann der Resonator als Ho11- oder als E020-Resonator ausgelegt und betrieben werden, wobei selbstverständlich eine Auslegung und ein Betrieb auch noch in anderen geeigneten Schwingungsmoden möglich ist.Alternatively, the resonator can be designed and operated as a Ho11 or as an E 020 resonator, it also being possible, of course, to design and operate in other suitable vibration modes.
Wird der Resonator als Ho11- oder als Eo2o-Resonator ausgelegt und betrieben, so fällt der Bereich hoher Energiedichte mit einer Ringzone um die Rotationsachse des Resonators zusammen. Bevorzugt wird dann ein zweiter Keramikeinsatz in Form eines stirnseitig geschlossenen hohlen oder massiven Zylinders mit reduzierter Nennweite zentral und axial in den Resonator eingesetzt, der die Abgasströmung in einen Ringkanal zwischen ersten und zweiten Keramikeinsatz durch den Resonator leitet.If the resonator is designed and operated as a H o11 or E o2o resonator, the area of high energy density coincides with a ring zone around the axis of rotation of the resonator. A second ceramic insert in the form of a hollow or solid cylinder with a reduced nominal width, which is closed at the end, is then preferably inserted centrally and axially into the resonator, which guides the exhaust gas flow into an annular channel between the first and second ceramic insert through the resonator.
Der zweite Keramikeinsatz verjüngt sich an seinen Enden bevorzugt kegelförmig und ragt mit den Endkegeln in leicht kegelförmige Anschlussabschnitte der Abgasleitung hinein, die ebenfalls wieder, z. B. im Bereich der Nennweite, die wabenförmigen Metallgitter enthält.The second ceramic insert tapers preferably conically at its ends and protrudes with the end cones into slightly conical connecting sections of the exhaust pipe, which are also again, for. B. in the range of the nominal size, which contains honeycomb-shaped metal grid.
Verallgemeinert eignen sich grundsätzlich alle E01n-Resonatoren oder Holm-Resonatoren, n = 0, 1, 2, 3... bzw. m = 1, 2, 3..., die entsprechend betrieben werden. Der Index n bzw. m ist dabei ein Maß für die relative axiale Länge L des Resonators, gemessen in ganzen Vielfachen der halben Resonanz-Wellenlänge λ0/2. Grössere Baulängen, d. h. Schwingungsmoden/Resonatoren mit höherem Index n oder m können insbesondere dann vorteilhaft sein, wenn zur ausreichenden Verbrennung die Verweildauer der Rußpartikel vergrössert werden muss.In general, all E 01n resonators or Holm resonators are suitable, n = 0, 1, 2, 3 ... or m = 1, 2, 3 ..., which are operated accordingly. The index n or m is a measure of the relative axial length L of the resonator, measured in whole multiples of half the resonance wavelength λ 0/2 . Longer structural lengths, ie vibration modes / resonators with a higher index n or m can be advantageous in particular if the residence time of the soot particles has to be increased for sufficient combustion.
Sollte es sich - z. B. wegen einer sehr hohen Abgas-Geschwindigkeit oder einer zu geringen Leistungsabgabe der Mikrowellen-Quelle - als notwendig erweisen, die Verweildauer in der Verbrennungszone zu erhöhen, so lassen sich auch bevorzugt mehrere Resonatoren in Serie in die Abgasleitung einfügen. Benachbarte Resonatoren können dann aneinander angrenzend angeordnet sein und zwischen sich eine gemeinsame Stirnwand mit einer Abgasöffnung besitzen, welche je ein Wabengitter trägt. Diese Anordnung kommt mit nur einer Ankopplung der Mikrowellen-Quelle aus, die bevorzugt über Hohlleiter und ein Koppelloch erfolgt, wenn in die gemeinsamen Stirnwände der Resonatoren Koppelorgane, z. B. Koppellöcher oder Koppelschleifen, eingearbeitet sind.Should it - e.g. B. because of a very high exhaust gas speed or too low power output of the microwave source - prove necessary to increase the length of stay in the combustion zone, it is also preferable to insert several resonators in series into the exhaust line. Adjacent resonators can then be arranged adjacent to one another and have between them a common end wall with an exhaust gas opening, each of which carries a honeycomb grid. This arrangement requires only one coupling of the microwave source, which is preferably carried out via a waveguide and a coupling hole if coupling elements, for. B. coupling holes or coupling loops are incorporated.
Erweist es sich dagegen als notwendig, den durch die Wabengitter und den Resonator verursachten geringen Strömungswiderstand noch weiter zu verringern, um damit eine bessere Motorleistung zu erzielen, so lassen sich erfindungsgemäss auch mehrere Resonatoren parallel zueinander in die Abgasleitung einsetzen.If, on the other hand, it proves necessary to further reduce the low flow resistance caused by the honeycomb grid and the resonator in order to achieve better engine performance, then according to the invention several resonators can also be used in parallel in the exhaust pipe.
Damit der Resonator und/oder die Mikrowellen-Quelle nach Möglichkeit während des Betriebes in der Frequenz nicht verstimmt werden müssen, wird der Resonator sowie die Mikrowellen-Quelle bevorzugt von der Abgasleitung thermisch möglichst wirksam entkoppelt. Zusätzlich kann es notwendig sein, den bzw. die Resonatoren mittels eines Kühlsystems zu kühlen. Besonders vorteilhaft eignet sich das Kühlwassersystem der Brennkraftmaschine zur Kühlung des oder der Hohlraumresonatoren. Zu diesem Zweck lässt sich der Hohlraumresonator mit einem Kühlmantel versehen und zwischen Resonatorwand und Kühlmantel ständig mit Kühlflüssigkeit beaufschlagen. Ausserdem wird zweckmässigerweise der Resonator aus einem Metall mit geringem Wärmedehnungswert hergestellt.So that the resonator and / or the microwave source do not have to be detuned in frequency if possible during operation, the resonator and the microwave source are preferably thermally decoupled from the exhaust gas line as effectively as possible. In addition, it may be necessary to cool the resonator (s) by means of a cooling system. The cooling water system of the internal combustion engine is particularly advantageously suitable for cooling the cavity resonator (s). For this purpose, the cavity resonator can be provided with a cooling jacket and constantly charged with cooling liquid between the resonator wall and the cooling jacket. In addition, the resonator is expediently made of a metal with a low thermal expansion value.
Vorteilhafte Weiterbildungen der Erfindung sind durch die Merkmale der Unteransprüche gekennzeichnet.Advantageous developments of the invention are characterized by the features of the subclaims.
Im folgenden werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert.Exemplary embodiments of the invention are explained in more detail below with reference to the drawing.
Es zeigen :
- Fig. 1 einen Längsschnitt durch eine erfindungsgemässe Vorrichtung ;
- Fig. 2 einen Querschnitt durch die Vorrichtung der Fig. 1 längs der Linie 11-11 ;
- Fig. 3 einen Längsschnitt durch eine zweite Ausführungsform der Vorrichtung ;
- Fig. 4 einen Querschnitt längs der Linie A-B der Fig. 3 ;
- Fig. 5 einen Längsschnitt durch eine dritte Ausführungsform der Vorrichtung ; und
- Fig. 6 einen Längsschnitt durch eine vierte Ausführungsform der Vorrichtung.
- 1 shows a longitudinal section through an inventive device.
- FIG. 2 shows a cross section through the device of FIG. 1 along the line 11-11;
- 3 shows a longitudinal section through a second embodiment of the device;
- 4 shows a cross section along the line AB of FIG. 3.
- 5 shows a longitudinal section through a third embodiment of the device; and
- Fig. 6 shows a longitudinal section through a fourth embodiment of the device.
Die Fig. 1 und 2 zeigen eine erste Ausführungsform der Vorrichtung im Längs- und Querschnitt. In eine Abgasleitung 15 einer nicht dargestellten Diesel-Brennkraftmaschine ist ein Mikrowellen-Hohlraumresonator 1 als Zwischenstück eingefügt. Der Hohlraumresonator 1 besitzt eine erste Stirnwand 2, in vorgegebenen axialem Abstand hier eine zweite Stirnwand 3 und eine kreiszylindrische Umfangswand 4, welche den Aussenumfang der Stirnwände 2 und 3 miteinander verbindet. Die Stirnwände 2 und 3 besitzen konzentrisch zur Rotationsachse einen Abgaseinlass 6 bzw. einen Abgasauslass 8 mit etwa der Nennweite der Abgasleitung 15. Die Abgasleitung 15 geht am Einlass 6 und am Auslass 8 entweder einstückig oder über eine Flanschverbindung in die Stirnwände 2, 3 oder einen entsprechenden Einlass-oder Auslaßstutzen über. Der Resonator besteht aus einem Metall mit geringem Wärmedehnungswert, z. B. aus Edelstahl und kann ggfs. an seiner inneren Oberfläche mit einer elektrisch hochleitenden Schicht beschichtet sein.1 and 2 show a first embodiment of the device in longitudinal and cross section. A
Über einen Hohlleiter 12, der an der Umfangswand 4 des Resonators 1 endet und ein in den Innenraum des Hohlraumresonators mündendes Koppelloch 10 enthält, wird von einer Mikrowellen-Quelle 18 geeigneter Bauart MikrowellenEnergie in den Resonator 1 mit einer solchen Frequenz eingespeist, dass sich im Resonator das elektromagnetische Feld mit einer gewünschten Schwindungsmode, z. B. einer Eoio-Resonanz ausbildet, die mit zunehmendem Abstand von der Rotationsachse ein abnehmendes elektrisches Feld und eine abnehmende elektrische Energiedichte besitzt.Via a
Der Abgaseinlass 6 und der Abgasauslass 8 ist mit je einem wabenförmigen Metallgitter 14 versehen, welches aus dünnem Metallblech gebildet ist und eine vorgegebene Mindestlänge in die Abgasleitung 15 hineinragt, um für das elektromagnetische Feld eine ausreichende metallische Begrenzung des Resonatorvolumens zu erzeugen und gleichwohl die Abgase ohne grösseren Strömungswiderstand durch den Resonator hindurchleiten zu können.The
Im Resonator 1 ist ein erster rohrförmiger Keramikeinsatz 5 - von Stirnwand zu Stirnwand - angebracht, dessen Nennweite gleich derjenigen der Abgasleitung 15 ist. Der Einsatz 5 ist zentrisch und axial zwischen dem Abgaseinlass 6 und dem -auslass 8 mit der Abgasleitung 15 fluchtend angeordnet und leitet die Abgase ohne Querschnittsänderung durch den Resonatorbereich hoher Energiedichte hindurch. Da die Nennweite bzw. der Durchmesser des Resonators 1 wesentlich grösser als die Nennweite der Abgasleitung 15 ist und durch die Resonanzfrequenz bestimmt wird, mit welcher die Vorrichtung - nach den Postvorschriften - betrieben werden darf, wird der Abgasstrom durch den Einsatz 5 in grösserem Abstand von der Resonatorwandung geführt, die dadurch relativ kalt bleibt und keine bzw. nur eine geringe Wärmeausdehnung erfährt.In the
Fig. 3 und 4 zeigen einen der Fig. 1 entsprechenden Aufbau, bei dem in die Abgasleitung 15 ein Ho,o-Resonator mit beabstandeten Stirnwänden 2, 3 und der dazwischen liegenden Umfangswand 4 sowie dem Abgaseinlass 6 und -auslass 8 eingefügt ist, der durch einen Hohlleiter 12 und das Koppelloch 10 Mikrowellenenergie zur Anregung der Ho,a-Schwingung erhält. Bei dieser Schwingungsmode besitzt der Bereich hoher Energiedichte die Form einer Ringzone. Um daher die Abgase beim Durchtritt durch den Resonator 1 in dieser Ringzone zu führen, ist ein zylinderförmiger zweiter Keramikeinsatz 7, der an seinen Enden sich kegelförmig verjüngt, axial und zentral in dem Resonator 1 eingesetzt, wobei die Endkegel des zweiten Keramikeinsatzes 7 durch den Einlass 6 und den Auslass 8 hindurch in die Abgasleitung 15 hineinragen, die entsprechend kegelförmige Abschnitte 17 besitzt.3 and 4 show a structure corresponding to FIG. 1, in which an H o , o resonator with spaced
Das wabenförmige Metallgitter 14 ist in der dargestellten Ausführungsform konzentrisch um die Endkegel des zweiten Keramikeinsatzes 7 im Bereich des Einlasses 6 und des Auslasses 8 angebracht. Um die Ringszone auch nach aussen hin abzugrenzen, ist außerdem auch der erste Keramikeinsatz 5 in Form eines Rohres konzentrisch zum zweiten Keramikeinsatz 7 in dem Resonator eingesetzt.In the embodiment shown, the honeycomb-shaped
In Fig. 5 sind mehrere Eoio-Resonatoren, die alle entsprechend der Fig. 1 aufgebaut sind, in Serie in eine Abgasleitung 15 eingefügt. Benachbarte Resonatoren 1 sind aneinander angrenzend angeordnet und besitzen eine gemeinsame Stirnwand 3, die, wie die äusseren Stirnwände 2, eine zentrale Abgasöffnung 9 enthalten, welche die Nennweite der Abgasleitung 15 besitzt und je ein wabenförmiges Metallgitter 14 zur elektromagnetischen Abgrenzung des Resonator-Innenraumes trägt. Zwischen dem Einlass 6 des ersten Resonators 1, den Abgasöffnungen 9 und dem Auslass 8 des letzten Resonators 1 sind rohrförmige Keramikeinsätze 5 mit der Nennweite der Abgasleitung 15 eingesetzt, die den Abgasstrom zentral führen. Einer der Resonatoren 1 ist über eine Hohlleitung 12 mit der Mikrowellen-Quelle 18 verbunden. Die gemeinsamen Stirnwände 3 besitzen ebenfalls je ein Koppelorgan 20, z. B. eine Koppelschleife oder eine Koppelöffnung, um auch die nachfolgenden Resonatoren mit Mikrowellenenergie zu speisen.In FIG. 5, several e oio resonators, all of which are constructed in accordance with FIG. 1, are inserted in series into an
Gemäss Fig. 6 ist ein Eoio-Resonator entsprechend der Fig. 1 und ein Hon-Resonator entsprechend der Fig. 3 in Serie in die Abgasleitung 15 eingefügt. Beide Resonatoren sind über je eine separate Hohlleitung 12 von der Mikrowellen-Quelle 18 gespeist.According to FIG. 6, an e oio resonator according to FIG. 1 and a H on resonator according to FIG. 3 are inserted in series into the
Der einzelne bzw. die mehreren in Serie oder parallel geschalteten Resonatoren lassen sich zur Erzielung einer möglichst hohen Frequenzkonstanz thermisch von der Abgasleitung entkoppeln (nicht dargestellt). Ebenfalls lässt sich der einzelne Resonator 1 von der Mikrowellen-Quelle 18 thermisch entkoppeln (nicht dargestellt). Ausserdem lassen sich die Resonatoren mittels Kühlsystemen kühlen, die z. B. in die Kühlsysteme der Brennkraftmaschinen integriert sein können.The individual or the several resonators connected in series or in parallel can be thermally decoupled from the exhaust pipe in order to achieve the highest possible frequency constancy (not shown). The
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT86101625T ATE41975T1 (en) | 1985-02-12 | 1986-02-07 | DEVICE AND METHOD FOR REMOVING SOOT OR THE LIKE. FROM THE EXHAUSTS OF AN INTERNAL ENGINE. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3504737 | 1985-02-12 | ||
DE19853504737 DE3504737A1 (en) | 1985-02-12 | 1985-02-12 | DEVICE AND METHOD FOR ELIMINATING RUSS OR THE LIKE. FROM THE EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0191437A1 EP0191437A1 (en) | 1986-08-20 |
EP0191437B1 true EP0191437B1 (en) | 1989-04-05 |
Family
ID=6262292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86101625A Expired EP0191437B1 (en) | 1985-02-12 | 1986-02-07 | Device and process for removing soot or the like from the exhaust gases of an internal-combustion engine |
Country Status (6)
Country | Link |
---|---|
US (1) | US4825651A (en) |
EP (1) | EP0191437B1 (en) |
JP (1) | JPS62502055A (en) |
AT (1) | ATE41975T1 (en) |
DE (2) | DE3504737A1 (en) |
WO (1) | WO1986004640A1 (en) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2588610B1 (en) * | 1985-10-11 | 1987-12-11 | Renault | PROCESS FOR REMOVAL OF CARBON PARTICLES CONTAINED IN CIRCULATING GASES, IN PARTICULAR IN EXHAUST GASES FROM COMPRESSION IGNITION ENGINES. |
FR2626783B1 (en) * | 1988-02-05 | 1990-07-20 | Renault | DEVICE FOR MICROWAVE REMOVAL OF CARBON PARTICLES CONTAINED IN EXHAUST GASES OF HEAT ENGINES |
AT404285B (en) * | 1988-03-11 | 1998-10-27 | Fleck Carl M Dr | Apparatus for separating and burning soot particles in diesel exhaust gases |
WO1990014507A1 (en) * | 1989-05-17 | 1990-11-29 | Ford Motor Company Limited | Emission control |
FR2650627B1 (en) * | 1989-08-04 | 1994-09-16 | Renault | DEVICE FOR REMOVING CARBON PARTICLES CONTAINED IN EXHAUST GASES OF HEAT ENGINES |
US5074112A (en) * | 1990-02-21 | 1991-12-24 | Atomic Energy Of Canada Limited | Microwave diesel scrubber assembly |
EP0469237A1 (en) * | 1990-08-03 | 1992-02-05 | STROMERZEUGUNG GmbH & CO. ANLAGENBAU KG | Process and device for converting molecules in a fluid stream |
DE4105734A1 (en) * | 1991-02-23 | 1992-08-27 | Bayerische Motoren Werke Ag | Rapid microwave heating of catalyst - esp. three=way catalyst for IC engine exhaust gas cleaning |
DE4132955C1 (en) * | 1991-10-04 | 1992-11-05 | Armin Dipl.-Phys. Beying | Removal of pollutant in medium - by using filter which has hollow chambers and high frequency electric field to raise temp. and produce temp. profile |
GB2262421B (en) * | 1991-12-10 | 1995-04-26 | Atomic Energy Authority Uk | The removal of organic materials from a gas |
GB9126179D0 (en) * | 1991-12-10 | 1992-02-12 | Atomic Energy Authority Uk | The removal of organic materials from process gas streams |
DE4236242A1 (en) * | 1992-10-27 | 1994-04-28 | Dornier Gmbh | Process for reducing soot particles in exhaust gas flows |
DE4319283C1 (en) * | 1993-06-10 | 1994-10-20 | Daimler Benz Ag | Method and device for reducing particles in exhaust gases |
DE4320777A1 (en) * | 1993-06-23 | 1995-01-05 | Opel Adam Ag | Method for burning particulates in the exhaust gas of an internal combustion engine by means of microwave energy |
US5536477A (en) * | 1995-03-15 | 1996-07-16 | Chang Yul Cha | Pollution arrestor |
GB9525543D0 (en) * | 1995-12-14 | 1996-02-14 | Central Research Lab Ltd | A single mode resonant cavity |
WO1998046046A1 (en) | 1997-04-04 | 1998-10-15 | Dalton Robert C | Artificial dielectric device for heating gases with electromagnetic energy |
FR2775552B1 (en) * | 1998-02-27 | 2000-05-19 | Standard Products Ind | DEVICE FOR HEATING A MATERIAL BY MICROWAVE |
US6403750B1 (en) | 1999-06-03 | 2002-06-11 | Edward J. A. Pope | Apparatus and process for making ceramic composites from photo-curable pre-ceramic polymers |
US7174707B2 (en) * | 2000-06-09 | 2007-02-13 | Volvo Lastvagnar Ab | Regeneration of a filter by the use of a tone generator |
WO2004094031A1 (en) * | 2003-04-23 | 2004-11-04 | Arka Holding Aps | Manipulation of dispersed systems |
US7432482B2 (en) * | 2004-07-09 | 2008-10-07 | Sedlmayr Steven R | Distillation and distillate method by microwaves |
US7119312B2 (en) * | 2004-07-09 | 2006-10-10 | Sedlmayr Steven R | Microwave fluid heating and distillation method |
US7157919B1 (en) | 2005-07-26 | 2007-01-02 | Caterpillar Inc. | Method and system for detecting soot and ash concentrations in a filter |
US7513921B1 (en) * | 2005-09-02 | 2009-04-07 | Hrl Laboratories, Llc | Exhaust gas filter apparatus capable of regeneration of a particulate filter and method |
US20090134152A1 (en) * | 2005-10-27 | 2009-05-28 | Sedlmayr Steven R | Microwave nucleon-electron-bonding spin alignment and alteration of materials |
GB2457495A (en) * | 2008-02-15 | 2009-08-19 | E2V Tech | RF electromagnetic heating a dielectric fluid |
DE102010015768B4 (en) * | 2010-04-19 | 2014-11-20 | Jenoptik Katasorb Gmbh | Microwave reactor for microwave assisted catalytic conversion |
CN102569971B (en) * | 2012-01-10 | 2014-09-17 | 四川大学 | Multi-magnetron series-connected microwave power synthesizer |
US9200506B2 (en) * | 2012-07-13 | 2015-12-01 | Harris Corporation | Apparatus for transporting and upgrading a hydrocarbon resource through a pipeline and related methods |
JP6551095B2 (en) * | 2015-09-15 | 2019-07-31 | 富士通株式会社 | Exhaust purification device |
JP2018063968A (en) * | 2016-10-11 | 2018-04-19 | 富士通株式会社 | Cooling device, exhaust gas treatment device, control method |
GB201722035D0 (en) * | 2017-12-28 | 2018-02-14 | Arcs Energy Ltd | Fluid traetment apparatus for an exhaust system and method thereof |
JP2022130055A (en) * | 2021-02-25 | 2022-09-06 | 富士電機株式会社 | Electrostatic precipitator |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3465114A (en) * | 1966-09-19 | 1969-09-02 | Canadian Patents Dev | Method and apparatus for dielectric heating |
US3461261A (en) * | 1966-10-31 | 1969-08-12 | Du Pont | Heating apparatus |
US3620008A (en) * | 1970-07-23 | 1971-11-16 | Robert M Newbold | Apparatus for removing air pollutants from the exhaust stream of a combustion process |
JPS5939178B2 (en) * | 1977-04-25 | 1984-09-21 | 株式会社東芝 | Activated gas generator |
DE3024539C2 (en) * | 1980-06-28 | 1982-06-09 | Filterwerk Mann & Hummel Gmbh, 7140 Ludwigsburg | Device for removing soot from the exhaust gases of an internal combustion engine |
JPS5726317A (en) * | 1980-07-22 | 1982-02-12 | Toyota Motor Corp | Treating device for particle not burnt |
JPS58114A (en) * | 1981-06-25 | 1983-01-05 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of oxide magnetic thin-film |
US4417116A (en) * | 1981-09-02 | 1983-11-22 | Black Jerimiah B | Microwave water heating method and apparatus |
US4477771A (en) * | 1982-06-21 | 1984-10-16 | General Motors Corporation | Microwave detection of soot content in a particulate trap |
JPS5925024A (en) * | 1982-08-02 | 1984-02-08 | Hitachi Ltd | Diesel engine exhaust purification device |
JPS5958114A (en) * | 1982-09-28 | 1984-04-03 | Mitsubishi Electric Corp | Filter refreshing device of internal combustion engine |
JPS59204747A (en) * | 1983-05-10 | 1984-11-20 | Nippon Denso Co Ltd | Diesel engine smoke sensor |
EP0185931B1 (en) * | 1984-12-25 | 1991-07-24 | Ebara Corporation | Method and apparatus for processing waste matter |
US5749815A (en) * | 1997-05-30 | 1998-05-12 | Lipps; John D. | Portable exercise device |
-
1985
- 1985-02-12 DE DE19853504737 patent/DE3504737A1/en active Granted
-
1986
- 1986-02-07 WO PCT/EP1986/000066 patent/WO1986004640A1/en unknown
- 1986-02-07 DE DE8686101625T patent/DE3662713D1/en not_active Expired
- 1986-02-07 AT AT86101625T patent/ATE41975T1/en not_active IP Right Cessation
- 1986-02-07 JP JP61501065A patent/JPS62502055A/en active Granted
- 1986-02-07 EP EP86101625A patent/EP0191437B1/en not_active Expired
- 1986-02-07 US US06/929,193 patent/US4825651A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE3504737A1 (en) | 1986-08-14 |
JPH0424529B2 (en) | 1992-04-27 |
EP0191437A1 (en) | 1986-08-20 |
DE3504737C2 (en) | 1989-11-30 |
US4825651A (en) | 1989-05-02 |
ATE41975T1 (en) | 1989-04-15 |
JPS62502055A (en) | 1987-08-13 |
DE3662713D1 (en) | 1989-05-11 |
WO1986004640A1 (en) | 1986-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0191437B1 (en) | Device and process for removing soot or the like from the exhaust gases of an internal-combustion engine | |
EP0212396B1 (en) | Apparatus for eliminating the soot or the like from the exhaust gases of an internal-combustion engine | |
DE69502836T2 (en) | ELECTRODE STRUCTURE FOR A PLASMA TORCH | |
EP0307414B1 (en) | Exhaust gas cleaning system for diesel engines | |
EP0537219A1 (en) | Process and device for cleaning exhaust gases. | |
DE69805633T2 (en) | EMISSION CONTROL DEVICE | |
EP0767891A1 (en) | Device for heat treating products by microwave radiation | |
DE112005002751T5 (en) | Diesel particulate filter with microwave regeneration | |
EP4056819A1 (en) | Exhaust gas/reaction agent mixing assembly | |
DE60000184T2 (en) | POWER SUPPLY FOR TREATING GASEOUS MEDIA | |
DE4331054B4 (en) | Gas laser oscillator with microwave excitation | |
DE4114935A1 (en) | Vehicle exhaust filter for diesel engine - has electrostatic precipitator and mechanical collection of carbon | |
DE69018727T2 (en) | Device for removing soot particles from combustion exhaust gases from diesel engines. | |
EP0534104A2 (en) | Radiant tube with jacket | |
EP0307656A2 (en) | Coagulator for an exhaust purification device of an internal-combustion engine | |
EP0549851A1 (en) | Soot filter for diesel engines | |
EP1286115A1 (en) | Thermal post-combustion installation | |
WO2001051780A1 (en) | Thermally insulated exhaust gas cleaning system | |
DE3933619A1 (en) | DEVICE FOR ELECTRICALLY EXCITING A GAS WITH MICROWAVES | |
EP1225311A2 (en) | Filter arrangement, in particular for a diesel engine exhaust gas particle filter | |
EP0616833B1 (en) | Soot filter for diesel engines | |
DE19936955A1 (en) | Gas laser | |
DE102010008273B4 (en) | particulate filter assembly | |
EP0404879A1 (en) | Device for burning out solids, and process for manufacturing said device. | |
EP1219793B1 (en) | Filter device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19861114 |
|
17Q | First examination report despatched |
Effective date: 19870430 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE FR GB IT SE |
|
REF | Corresponds to: |
Ref document number: 41975 Country of ref document: AT Date of ref document: 19890415 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3662713 Country of ref document: DE Date of ref document: 19890511 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19920204 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19920205 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19920227 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19930207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19930208 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19930226 Year of fee payment: 8 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19930207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19931029 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19940207 |
|
EUG | Se: european patent has lapsed |
Ref document number: 86101625.1 Effective date: 19930912 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20000329 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050207 |