[go: up one dir, main page]

EP0191437B1 - Device and process for removing soot or the like from the exhaust gases of an internal-combustion engine - Google Patents

Device and process for removing soot or the like from the exhaust gases of an internal-combustion engine Download PDF

Info

Publication number
EP0191437B1
EP0191437B1 EP86101625A EP86101625A EP0191437B1 EP 0191437 B1 EP0191437 B1 EP 0191437B1 EP 86101625 A EP86101625 A EP 86101625A EP 86101625 A EP86101625 A EP 86101625A EP 0191437 B1 EP0191437 B1 EP 0191437B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
resonator
gas pipe
cavity resonator
constructed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86101625A
Other languages
German (de)
French (fr)
Other versions
EP0191437A1 (en
Inventor
Herbert A. Dipl.-Ing. Püschner
Johann Fürtauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Priority to AT86101625T priority Critical patent/ATE41975T1/en
Publication of EP0191437A1 publication Critical patent/EP0191437A1/en
Application granted granted Critical
Publication of EP0191437B1 publication Critical patent/EP0191437B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/802Apparatus for specific applications for heating fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/028Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/30Exhaust treatment

Definitions

  • the invention relates to a device for removing soot from the exhaust gases of an internal combustion engine, with a microwave source, a cavity resonator which is coupled as an intermediate piece to the exhaust pipe of the internal combustion engine and an exhaust gas inlet in an end wall and an exhaust gas outlet on an opposite end wall has, and each with a metal grid in the exhaust gas inlet and the exhaust gas outlet.
  • Such a device is known from DE-A-3 024 539 in which the intermediate piece contains a soot filter made of dielectric material in the flow path of the exhaust gases, through which the exhaust gases flow essentially radially and which retains soot from the exhaust gases. If the soot deposits on the soot filter exceed a predetermined level, an electromagnetic microwave field is excited in the intermediate piece, whereby the soot is to be burned. It is disadvantageous that the soot particles on the soot filter impair the flow resistance, even if the soot particles deposited there are burnt off from time to time.
  • the cavity resonator is provided at its inlet and outlet with simple metal grids, which have a relatively small hole area for sufficient metallic limitation of the microwave field in the cavity resonator, the flow resistance for the exhaust gases is additionally increased by this metal grille, which leads to a loss in performance of the Internal combustion engine leads.
  • a device in which a cavity resonator is provided with a tubular ceramic insert, through which filamentary or particulate material or fluids are passed and subjected to a heat treatment there. If the ceramic insert - in one embodiment of the known device - remains open at its inlet and its outlet, the relatively large radiation losses of the microwave field make resonance operation and thus an effective high-temperature treatment in the ceramic insert impossible. However, if - in another embodiment of this known device - an iris diaphragm is attached to the inlet and outlet of the ceramic insert, a homogeneous and efficient flow of fluids through the ceramic insert is made impossible.
  • the object of the invention is to develop a device according to the preamble of the main claim in such a way that an effective combustion of the soot particles floating freely in the exhaust gases takes place with low flow resistance.
  • the cavity resonator contains a first gas-tight ceramic insert, which is designed as a tube and axially aligned with the exhaust pipe from the exhaust gas inlet to the exhaust outlet, and that the metal grille to achieve a low Exhaust gas flow resistance are designed as honeycomb grids which extend into the exhaust gas line with a predetermined minimum axial length in order to limit the microwave field in the cavity resonator sufficiently.
  • the advantages of the invention are, in particular, that the exhaust gas flow in the tubular ceramic insert is passed homogeneously through that region of the resonator in which the greatest energy density of the electromagnetic field is present. Due to the design of the metal grille as a honeycomb grille, the exhaust gases can flow through the cavity resonator without greater flow resistance. In addition, since the honeycomb grids protrude into the exhaust pipe over a predetermined minimum axial length, a sufficient metallic limitation for the microwave field generated in the cavity resonator is realized at the same time, so that high energy densities and homogeneous field profiles of the excited electromagnetic waves arise within the ceramic insert, which are necessary to burn the soot particles contained in the homogeneous exhaust gas flow during their flight through the ceramic insert.
  • the invention thus realizes a device which is simple in terms of construction, in which built-in elements in the exhaust gas line or in the cavity resonator which form flow resistances are avoided and, moreover, the maintenance work required for a soot retention device is dispensed with.
  • the device is preferably switched on continuously or at predetermined intervals during the operating time of the internal combustion engine in order to continuously burn the soot particles flowing into the resonator.
  • the exhaust gas inlet and the exhaust gas outlet are arranged opposite one another on the two end walls of the resonator and have essentially the same nominal width as the exhaust gas line.
  • the two end walls are connected by a peripheral wall, preferably with a circular cross section, the nominal width of which is determined by the resonance frequency with which the resonator and the microwave source are operated. Due to the operating frequencies approved by the postal authorities, the nominal size of the resonator must be chosen larger than that of the exhaust pipe.
  • the resonator is particularly preferably designed as a cylindrical E oio resonator and operated with the vibration mode E olo , and the flue gas pipe is preferably flange- mounted centrally on the end face.
  • the electric field lines have their maximum and in the center of the resonator decrease steadily towards the outside, in the central area there is a high energy density.
  • the ceramic insert is designed as a tube with the nominal size of the exhaust pipe and runs in alignment with the exhaust pipe from the inlet to the outlet of the resonator.
  • the insert guides the exhaust gas flow homogeneously through the resonator and thereby prevents the exhaust gases from coming into contact with the metallic walls of the resonator, as a result of which undesirable heating of the resonator, which leads to a change in the resonance frequency, is counteracted.
  • the application is chosen so that on the one hand it influences the electromagnetic field as little as possible, that is, it should consist of a material with a low dielectric constant and a low loss factor, which moreover provides the best possible thermal insulation. For this reason, glass or a loss-free ceramic material are particularly suitable.
  • the resonator can be designed and operated as a Ho11 or as an E 020 resonator, it also being possible, of course, to design and operate in other suitable vibration modes.
  • the resonator is designed and operated as a H o11 or E o2o resonator, the area of high energy density coincides with a ring zone around the axis of rotation of the resonator.
  • the second ceramic insert tapers preferably conically at its ends and protrudes with the end cones into slightly conical connecting sections of the exhaust pipe, which are also again, for. B. in the range of the nominal size, which contains honeycomb-shaped metal grid.
  • the index n or m is a measure of the relative axial length L of the resonator, measured in whole multiples of half the resonance wavelength ⁇ 0/2 . Longer structural lengths, ie vibration modes / resonators with a higher index n or m can be advantageous in particular if the residence time of the soot particles has to be increased for sufficient combustion.
  • the resonator and the microwave source are preferably thermally decoupled from the exhaust gas line as effectively as possible.
  • the cooling water system of the internal combustion engine is particularly advantageously suitable for cooling the cavity resonator (s).
  • the cavity resonator can be provided with a cooling jacket and constantly charged with cooling liquid between the resonator wall and the cooling jacket.
  • the resonator is expediently made of a metal with a low thermal expansion value.
  • a microwave cavity resonator 1 is inserted as an intermediate piece in an exhaust pipe 15 of a diesel internal combustion engine (not shown).
  • the cavity resonator 1 has a first end wall 2, at a predetermined axial distance here a second end wall 3 and a circular cylindrical peripheral wall 4, which connects the outer circumference of the end walls 2 and 3 to one another.
  • the end walls 2 and 3 have concentrically to the axis of rotation an exhaust gas inlet 6 or an exhaust gas outlet 8 with approximately the nominal size of the exhaust pipe 15.
  • the exhaust pipe 15 goes in one piece at the inlet 6 and at the outlet 8 or via a flange connection into the forehead walls 2, 3 or a corresponding inlet or outlet connection.
  • the resonator consists of a metal with a low thermal expansion value, e.g. B. made of stainless steel and may be coated on its inner surface with an electrically highly conductive layer.
  • microwave energy 18 of a suitable type is fed into the resonator 1 at a frequency such that the resonator the electromagnetic field with a desired shrinkage mode, e.g. B. forms an E oio resonance, which has a decreasing electric field and a decreasing electrical energy density with increasing distance from the axis of rotation.
  • the exhaust gas inlet 6 and the exhaust gas outlet 8 are each provided with a honeycomb-shaped metal grille 14, which is formed from thin metal sheet and protrudes a predetermined minimum length into the exhaust gas line 15 in order to generate a sufficient metallic limitation of the resonator volume for the electromagnetic field and nevertheless the exhaust gases without to be able to conduct greater flow resistance through the resonator.
  • a first tubular ceramic insert 5 is attached - from end wall to end wall - the nominal width of which is equal to that of the exhaust pipe 15.
  • the insert 5 is arranged centrally and axially between the exhaust gas inlet 6 and the outlet 8 in alignment with the exhaust gas line 15 and conducts the exhaust gases through the resonator region of high energy density without changing the cross section. Since the nominal width or the diameter of the resonator 1 is substantially larger than the nominal width of the exhaust pipe 15 and is determined by the resonance frequency with which the device - according to the postal regulations - may be operated, the exhaust gas flow through the insert 5 is at a greater distance from of the resonator wall, which thereby remains relatively cold and experiences little or no thermal expansion.
  • FIG. 3 and 4 show a structure corresponding to FIG. 1, in which an H o , o resonator with spaced end walls 2, 3 and the intermediate peripheral wall 4 and the exhaust gas inlet 6 and outlet 8 is inserted into the exhaust line 15, which receives microwave energy to excite the H o , a oscillation through a waveguide 12 and the coupling hole 10.
  • the area of high energy density is in the form of a ring zone.
  • a cylindrical second ceramic insert 7 which tapers conically at its ends, is inserted axially and centrally in the resonator 1, the end cones of the second ceramic insert 7 being passed through the inlet 6 and the outlet 8 protrude into the exhaust pipe 15, which has correspondingly conical sections 17.
  • the honeycomb-shaped metal grid 14 is mounted concentrically around the end cone of the second ceramic insert 7 in the region of the inlet 6 and the outlet 8.
  • the first ceramic insert 5 in the form of a tube is also inserted concentrically with the second ceramic insert 7 in the resonator.
  • FIG. 5 several e oio resonators, all of which are constructed in accordance with FIG. 1, are inserted in series into an exhaust gas line 15.
  • Adjacent resonators 1 are arranged adjacent to one another and have a common end wall 3 which, like the outer end walls 2, contains a central exhaust opening 9 which has the nominal width of the exhaust line 15 and each carries a honeycomb-shaped metal grille 14 for the electromagnetic delimitation of the resonator interior.
  • tubular ceramic inserts 5 with the nominal size of the exhaust line 15 are inserted, which guide the exhaust gas flow centrally.
  • One of the resonators 1 is connected to the microwave source 18 via a hollow line 12.
  • the common end walls 3 also each have a coupling member 20, for. B. a coupling loop or a coupling opening to feed the subsequent resonators with microwave energy.
  • an e oio resonator according to FIG. 1 and a H on resonator according to FIG. 3 are inserted in series into the exhaust line 15. Both resonators are fed via a separate hollow line 12 from the microwave source 18.
  • the individual or the several resonators connected in series or in parallel can be thermally decoupled from the exhaust pipe in order to achieve the highest possible frequency constancy (not shown).
  • the individual resonator 1 can also be thermally decoupled from the microwave source 18 (not shown).
  • the resonators can be cooled by means of cooling systems which, for. B. can be integrated into the cooling systems of the internal combustion engines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PCT No. PCT/EP86/00066 Sec. 371 Date Dec. 4, 1986 Sec. 102(e) Date Dec. 4, 1986 PCT Filed Feb. 7, 1986 PCT Pub. No. WO86/04640 PCT Pub. Date Aug. 14, 1986.A device and method for separating soot or other impurities from the exhaust gases of an internal-combustion engine, particularly a diesel internal-combustion engine, comprises a microwave source that is coupled to the intermediate section of the exhaust pipe that is constructed for the development of an electromagnetic field, an effective burning of the soot with a low flow resistance, the intermediate section being developed as a cavity resonator and at its exhaust gas inlet and exhaust gas outlet, is equipped with a metal grid, and an insert made of a dielectric material in the cavity resonator concentrates the exhaust gas flow in the area of high energy density of the electromagnetic field.

Description

Die Erfindung betrifft eine Vorrichtung zur Beseitigung von Ruß aus den Abgasen einer Brennkraftmaschine, mit einer Mikrowellen-Quelle, einem Hohlraum-Resonator, der als ein Zwischenstück an die Abgasleitung der Brennkraftmaschine angekoppelt ist und einen Abgaseinlaß in einer Stirnwand sowie einen Abgasauslaß an einer gegenüberliegenden Stirnwand besitzt, und mit je einem Metallgitter in dem Abgaseinlaß und dem Abgasauslaß.The invention relates to a device for removing soot from the exhaust gases of an internal combustion engine, with a microwave source, a cavity resonator which is coupled as an intermediate piece to the exhaust pipe of the internal combustion engine and an exhaust gas inlet in an end wall and an exhaust gas outlet on an opposite end wall has, and each with a metal grid in the exhaust gas inlet and the exhaust gas outlet.

Aus der DE-A-3 024 539 ist eine derartige Vorrichtung bekannt, bei der das Zwischenstück ein Rußfilter aus dielektrischem Material im Strömungspfad der Abgase enthält, welches von den Abgasen im wesentlichen radial durchströmt wird und Ruß aus den Abgasen zurückhält. Überschreiten die Rußablagerungen auf dem Rußfilter ein vorgegebenes Maß, so wird in dem Zwischenstück ein elektromagnetisches Mikrowellenfeld erregt, wodurch der Ruß zur Verbrennung gebracht werden soll. Nachteilig ist es dabei, daß die Rußpartikel auf dem Rußfilter den Strömungswiderstand beeinträchtigen, auch wenn die dort niedergeschlagenen Rußpartikel von Zeit zu Zeit abgebrannt werden. Da außerdem der Hohlraum-Resonator an seinem Einlaß und Auslaß mit einfachen Metallgittern versehen ist, die zur ausreichenden metallischen Begrenzung des Mikrowellenfeldes im Hohlraum-Resonator eine relativ geringe Lochfläche besitzen, wird durch diese Metallgitter der Strömungswiderstand für die Abgase zusätzlich erhöht, was zu Leistungseinbußen der Brennkraftmaschine führt.Such a device is known from DE-A-3 024 539 in which the intermediate piece contains a soot filter made of dielectric material in the flow path of the exhaust gases, through which the exhaust gases flow essentially radially and which retains soot from the exhaust gases. If the soot deposits on the soot filter exceed a predetermined level, an electromagnetic microwave field is excited in the intermediate piece, whereby the soot is to be burned. It is disadvantageous that the soot particles on the soot filter impair the flow resistance, even if the soot particles deposited there are burnt off from time to time. In addition, since the cavity resonator is provided at its inlet and outlet with simple metal grids, which have a relatively small hole area for sufficient metallic limitation of the microwave field in the cavity resonator, the flow resistance for the exhaust gases is additionally increased by this metal grille, which leads to a loss in performance of the Internal combustion engine leads.

Aus der US-A-3 461 261 ist eine Vorrichtung bekannt, bei der ein Hohlraum-Resonator mit einem rohrförmigen Keramikeinsatz versehen ist, durch den fadenförmiges oder teilchenförmiges Material oder Fluide hindurchgeleitet werden und dort einer Wärmebehandlung unterzogen werden. Bleibt der Keramikeinsatz - in einer Ausführungsform der bekannten Vorrichtung - an seinem Einlaß und seinem Auslaß offen, so machen die relativ großen Abstrahlverluste des Mikrowellenfeldes einen Resonanzbetrieb und damit eine wirksame Hochtemperatur-Behandlung in dem Keramikeinsatz unmöglich. Wird dagegen - in einer anderen Ausführungsform dieser bekannten Vorrichtung - am Einlaß und am Auslaß des Keramikeinsatzes eine Iris-Blende angebracht, so wird eine homogene und effiziente Durchströmung des Keramikeinsatzes mit Fluiden unmöglich gemacht.From US-A-3 461 261 a device is known in which a cavity resonator is provided with a tubular ceramic insert, through which filamentary or particulate material or fluids are passed and subjected to a heat treatment there. If the ceramic insert - in one embodiment of the known device - remains open at its inlet and its outlet, the relatively large radiation losses of the microwave field make resonance operation and thus an effective high-temperature treatment in the ceramic insert impossible. However, if - in another embodiment of this known device - an iris diaphragm is attached to the inlet and outlet of the ceramic insert, a homogeneous and efficient flow of fluids through the ceramic insert is made impossible.

Aufgabe der Erfindung ist es demgegenüber, eine Vorrichtung gemäß dem Oberbegriff des Hauptanspruches derart weiterzubilden, daß eine wirksame Verbrennung der in den Abgasen frei schwebenden Rußpartikel bei geringem Strömungswiderstand erfolgt.In contrast, the object of the invention is to develop a device according to the preamble of the main claim in such a way that an effective combustion of the soot particles floating freely in the exhaust gases takes place with low flow resistance.

Diese Aufgabe wird bei der Vorrichtung der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß der Hohlraum-Resonator einen ersten gasdichten Keramikeinsatz enthält, der als Rohr ausgebildet ist und axial mit der Abgasleitung fluchtend vom Abgaseinlaß zum Abgasauslaß verläuft, und daß die Metallgitter zur Erzielung eines geringen Abgas-Strömungswiderstandes als Wabengitter ausgebildet sind, die sich zur ausreichenden metallischen Begrenzung des Mikrowellenfeldes im Hohlraum-Resonator mit vorgegebener axialer Mindestlänge in die Abgasleitung hineinerstrecken.This object is achieved in the device of the type mentioned in that the cavity resonator contains a first gas-tight ceramic insert, which is designed as a tube and axially aligned with the exhaust pipe from the exhaust gas inlet to the exhaust outlet, and that the metal grille to achieve a low Exhaust gas flow resistance are designed as honeycomb grids which extend into the exhaust gas line with a predetermined minimum axial length in order to limit the microwave field in the cavity resonator sufficiently.

Die Vorteile der Erfindung liegen insbesondere darin, daß die Abgasströmung in dem rohrförmigen Keramikeinsatz homogen durch denjenigen Bereich des Resonators hindurchgeführt wird, in welchem die größte Energiedichte des elektromagnetischen Feldes vorhanden ist. Aufgrund der Ausbildung der Metallgitter als Wabengitter können die Abgase ohne größeren Strömungswiderstand den Hohlraum-Resonator durchströmen. Da außerdem die Wabengitter über eine vorgegebene axiale Mindestlänge in die Abgasleitung hineinragen, wird gleichzeitig eine ausreichende metallische Begrenzung für das im Hohlraum- Resonator erzeugte Mikrowellenfeld verwirklicht, so daß innerhalb des Keramikeinsatzes hohe Energiedichten und homogene Feldverläufe der angeregten elektromagnetischen Wellen entstehen, die notwendig sind, um die im homogenen Abgasstrom enthaltenen Rußpartikel während ihres Fluges durch den Keramikeinsatz zu verbrennen.The advantages of the invention are, in particular, that the exhaust gas flow in the tubular ceramic insert is passed homogeneously through that region of the resonator in which the greatest energy density of the electromagnetic field is present. Due to the design of the metal grille as a honeycomb grille, the exhaust gases can flow through the cavity resonator without greater flow resistance. In addition, since the honeycomb grids protrude into the exhaust pipe over a predetermined minimum axial length, a sufficient metallic limitation for the microwave field generated in the cavity resonator is realized at the same time, so that high energy densities and homogeneous field profiles of the excited electromagnetic waves arise within the ceramic insert, which are necessary to burn the soot particles contained in the homogeneous exhaust gas flow during their flight through the ceramic insert.

Mit der Erfindung ist somit eine im Aufbau einfache Vorrichtung verwirklicht, bei der Strömungswiderstände bildende Einbauten in der Abgasleitung oder im Hohlraum-Resonator vermieden werden und außerdem die für eine Rußrückhaltevorrichtung erforderliche Wartungsarbeit entfällt.The invention thus realizes a device which is simple in terms of construction, in which built-in elements in the exhaust gas line or in the cavity resonator which form flow resistances are avoided and, moreover, the maintenance work required for a soot retention device is dispensed with.

Bevorzugt ist die Vorrichtung während der Betriebsdauer der Brennkraftmaschine ständig oder zu vorbestimmten Intervallen eingeschaltet, um die in den Resonator einströmenden Rußpartikel ständig zu verbrennen.The device is preferably switched on continuously or at predetermined intervals during the operating time of the internal combustion engine in order to continuously burn the soot particles flowing into the resonator.

Gemäß einer besonders bevorzugten Ausführungsform der Erfindung ist der Abgaseinlaß und der Abgasauslaß einander gegenüberliegend an den beiden Stirnwänden des Resonators angeordnet und besitzt im wesentlichen dieselbe Nennweite wie die Abgasleitung. Die beiden Stirnwände werden von einer Umfangswand, bevorzugt mit Kreisquerschnitt, verbunden, dessen Nennweite durch die Resonanzfrequenz bestimmt ist, mit welcher der Resonator und die Mikrowellen-Quelle betrieben werden. Aufgrund der von den Postbehörden zugelassenen Betriebsfrequenzen muß die Nennweite des Resonators größer gewählt werden als die der Abgasleitung.According to a particularly preferred embodiment of the invention, the exhaust gas inlet and the exhaust gas outlet are arranged opposite one another on the two end walls of the resonator and have essentially the same nominal width as the exhaust gas line. The two end walls are connected by a peripheral wall, preferably with a circular cross section, the nominal width of which is determined by the resonance frequency with which the resonator and the microwave source are operated. Due to the operating frequencies approved by the postal authorities, the nominal size of the resonator must be chosen larger than that of the exhaust pipe.

Besonders bevorzugt wird der Resonator als zylindrischer Eoio-Resonator ausgebildet und mit der Schwingungsmode Eolo betrieben, und die Abgasleitung wird bevorzugt stirnseitig zentral angeflanscht. Die elektrischen Feldlinien besitzen im Zentrum des Resonators ihr Maximum und nehmen nach außen hin stetig ab, im zentralen Bereich liegt eine hohe Energiedichte vor. Der Keramikeinsatz ist bei dieser Ausführungsform der Erfindung als Rohr mit der Nennweite der Abgasleitung ausgebildet und verläuft mit der Abgasleitung fluchtend vom Einlaß zum Auslass des Resonators hin. Der Einsatz führt bei dieser Ausführungsform den Abgasstrom homogen durch den Resonator und verhindert dabei, dass die Abgase in Kontakt mit den metallischen Wänden des Resonators kommen, wodurch einer unerwünschten Erwärmung des Resonators, die zu einer Änderung der Resonanzfrequenz führt, entgegengewirkt wird. Der Einsatz wird zu diesem Zweck so gewählt, dass er einerseits das elektromagnetische Feld möglichst wenig beeinflusst, er soll also aus einem Material geringer Dielektrizitätskonstante mit geringem Verlustfaktor bestehen, das ausserdem eine möglichst gute thermische Isolierung bewirkt. Glas oder ein verlustfreies Keramikmaterial sind aus diesem Grunde besonders geeignet.The resonator is particularly preferably designed as a cylindrical E oio resonator and operated with the vibration mode E olo , and the flue gas pipe is preferably flange- mounted centrally on the end face. The electric field lines have their maximum and in the center of the resonator decrease steadily towards the outside, in the central area there is a high energy density. In this embodiment of the invention, the ceramic insert is designed as a tube with the nominal size of the exhaust pipe and runs in alignment with the exhaust pipe from the inlet to the outlet of the resonator. In this embodiment, the insert guides the exhaust gas flow homogeneously through the resonator and thereby prevents the exhaust gases from coming into contact with the metallic walls of the resonator, as a result of which undesirable heating of the resonator, which leads to a change in the resonance frequency, is counteracted. For this purpose, the application is chosen so that on the one hand it influences the electromagnetic field as little as possible, that is, it should consist of a material with a low dielectric constant and a low loss factor, which moreover provides the best possible thermal insulation. For this reason, glass or a loss-free ceramic material are particularly suitable.

Alternativ kann der Resonator als Ho11- oder als E020-Resonator ausgelegt und betrieben werden, wobei selbstverständlich eine Auslegung und ein Betrieb auch noch in anderen geeigneten Schwingungsmoden möglich ist.Alternatively, the resonator can be designed and operated as a Ho11 or as an E 020 resonator, it also being possible, of course, to design and operate in other suitable vibration modes.

Wird der Resonator als Ho11- oder als Eo2o-Resonator ausgelegt und betrieben, so fällt der Bereich hoher Energiedichte mit einer Ringzone um die Rotationsachse des Resonators zusammen. Bevorzugt wird dann ein zweiter Keramikeinsatz in Form eines stirnseitig geschlossenen hohlen oder massiven Zylinders mit reduzierter Nennweite zentral und axial in den Resonator eingesetzt, der die Abgasströmung in einen Ringkanal zwischen ersten und zweiten Keramikeinsatz durch den Resonator leitet.If the resonator is designed and operated as a H o11 or E o2o resonator, the area of high energy density coincides with a ring zone around the axis of rotation of the resonator. A second ceramic insert in the form of a hollow or solid cylinder with a reduced nominal width, which is closed at the end, is then preferably inserted centrally and axially into the resonator, which guides the exhaust gas flow into an annular channel between the first and second ceramic insert through the resonator.

Der zweite Keramikeinsatz verjüngt sich an seinen Enden bevorzugt kegelförmig und ragt mit den Endkegeln in leicht kegelförmige Anschlussabschnitte der Abgasleitung hinein, die ebenfalls wieder, z. B. im Bereich der Nennweite, die wabenförmigen Metallgitter enthält.The second ceramic insert tapers preferably conically at its ends and protrudes with the end cones into slightly conical connecting sections of the exhaust pipe, which are also again, for. B. in the range of the nominal size, which contains honeycomb-shaped metal grid.

Verallgemeinert eignen sich grundsätzlich alle E01n-Resonatoren oder Holm-Resonatoren, n = 0, 1, 2, 3... bzw. m = 1, 2, 3..., die entsprechend betrieben werden. Der Index n bzw. m ist dabei ein Maß für die relative axiale Länge L des Resonators, gemessen in ganzen Vielfachen der halben Resonanz-Wellenlänge λ0/2. Grössere Baulängen, d. h. Schwingungsmoden/Resonatoren mit höherem Index n oder m können insbesondere dann vorteilhaft sein, wenn zur ausreichenden Verbrennung die Verweildauer der Rußpartikel vergrössert werden muss.In general, all E 01n resonators or Holm resonators are suitable, n = 0, 1, 2, 3 ... or m = 1, 2, 3 ..., which are operated accordingly. The index n or m is a measure of the relative axial length L of the resonator, measured in whole multiples of half the resonance wavelength λ 0/2 . Longer structural lengths, ie vibration modes / resonators with a higher index n or m can be advantageous in particular if the residence time of the soot particles has to be increased for sufficient combustion.

Sollte es sich - z. B. wegen einer sehr hohen Abgas-Geschwindigkeit oder einer zu geringen Leistungsabgabe der Mikrowellen-Quelle - als notwendig erweisen, die Verweildauer in der Verbrennungszone zu erhöhen, so lassen sich auch bevorzugt mehrere Resonatoren in Serie in die Abgasleitung einfügen. Benachbarte Resonatoren können dann aneinander angrenzend angeordnet sein und zwischen sich eine gemeinsame Stirnwand mit einer Abgasöffnung besitzen, welche je ein Wabengitter trägt. Diese Anordnung kommt mit nur einer Ankopplung der Mikrowellen-Quelle aus, die bevorzugt über Hohlleiter und ein Koppelloch erfolgt, wenn in die gemeinsamen Stirnwände der Resonatoren Koppelorgane, z. B. Koppellöcher oder Koppelschleifen, eingearbeitet sind.Should it - e.g. B. because of a very high exhaust gas speed or too low power output of the microwave source - prove necessary to increase the length of stay in the combustion zone, it is also preferable to insert several resonators in series into the exhaust line. Adjacent resonators can then be arranged adjacent to one another and have between them a common end wall with an exhaust gas opening, each of which carries a honeycomb grid. This arrangement requires only one coupling of the microwave source, which is preferably carried out via a waveguide and a coupling hole if coupling elements, for. B. coupling holes or coupling loops are incorporated.

Erweist es sich dagegen als notwendig, den durch die Wabengitter und den Resonator verursachten geringen Strömungswiderstand noch weiter zu verringern, um damit eine bessere Motorleistung zu erzielen, so lassen sich erfindungsgemäss auch mehrere Resonatoren parallel zueinander in die Abgasleitung einsetzen.If, on the other hand, it proves necessary to further reduce the low flow resistance caused by the honeycomb grid and the resonator in order to achieve better engine performance, then according to the invention several resonators can also be used in parallel in the exhaust pipe.

Damit der Resonator und/oder die Mikrowellen-Quelle nach Möglichkeit während des Betriebes in der Frequenz nicht verstimmt werden müssen, wird der Resonator sowie die Mikrowellen-Quelle bevorzugt von der Abgasleitung thermisch möglichst wirksam entkoppelt. Zusätzlich kann es notwendig sein, den bzw. die Resonatoren mittels eines Kühlsystems zu kühlen. Besonders vorteilhaft eignet sich das Kühlwassersystem der Brennkraftmaschine zur Kühlung des oder der Hohlraumresonatoren. Zu diesem Zweck lässt sich der Hohlraumresonator mit einem Kühlmantel versehen und zwischen Resonatorwand und Kühlmantel ständig mit Kühlflüssigkeit beaufschlagen. Ausserdem wird zweckmässigerweise der Resonator aus einem Metall mit geringem Wärmedehnungswert hergestellt.So that the resonator and / or the microwave source do not have to be detuned in frequency if possible during operation, the resonator and the microwave source are preferably thermally decoupled from the exhaust gas line as effectively as possible. In addition, it may be necessary to cool the resonator (s) by means of a cooling system. The cooling water system of the internal combustion engine is particularly advantageously suitable for cooling the cavity resonator (s). For this purpose, the cavity resonator can be provided with a cooling jacket and constantly charged with cooling liquid between the resonator wall and the cooling jacket. In addition, the resonator is expediently made of a metal with a low thermal expansion value.

Vorteilhafte Weiterbildungen der Erfindung sind durch die Merkmale der Unteransprüche gekennzeichnet.Advantageous developments of the invention are characterized by the features of the subclaims.

Im folgenden werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert.Exemplary embodiments of the invention are explained in more detail below with reference to the drawing.

Es zeigen :

  • Fig. 1 einen Längsschnitt durch eine erfindungsgemässe Vorrichtung ;
  • Fig. 2 einen Querschnitt durch die Vorrichtung der Fig. 1 längs der Linie 11-11 ;
  • Fig. 3 einen Längsschnitt durch eine zweite Ausführungsform der Vorrichtung ;
  • Fig. 4 einen Querschnitt längs der Linie A-B der Fig. 3 ;
  • Fig. 5 einen Längsschnitt durch eine dritte Ausführungsform der Vorrichtung ; und
  • Fig. 6 einen Längsschnitt durch eine vierte Ausführungsform der Vorrichtung.
Show it :
  • 1 shows a longitudinal section through an inventive device.
  • FIG. 2 shows a cross section through the device of FIG. 1 along the line 11-11;
  • 3 shows a longitudinal section through a second embodiment of the device;
  • 4 shows a cross section along the line AB of FIG. 3.
  • 5 shows a longitudinal section through a third embodiment of the device; and
  • Fig. 6 shows a longitudinal section through a fourth embodiment of the device.

Die Fig. 1 und 2 zeigen eine erste Ausführungsform der Vorrichtung im Längs- und Querschnitt. In eine Abgasleitung 15 einer nicht dargestellten Diesel-Brennkraftmaschine ist ein Mikrowellen-Hohlraumresonator 1 als Zwischenstück eingefügt. Der Hohlraumresonator 1 besitzt eine erste Stirnwand 2, in vorgegebenen axialem Abstand hier eine zweite Stirnwand 3 und eine kreiszylindrische Umfangswand 4, welche den Aussenumfang der Stirnwände 2 und 3 miteinander verbindet. Die Stirnwände 2 und 3 besitzen konzentrisch zur Rotationsachse einen Abgaseinlass 6 bzw. einen Abgasauslass 8 mit etwa der Nennweite der Abgasleitung 15. Die Abgasleitung 15 geht am Einlass 6 und am Auslass 8 entweder einstückig oder über eine Flanschverbindung in die Stirnwände 2, 3 oder einen entsprechenden Einlass-oder Auslaßstutzen über. Der Resonator besteht aus einem Metall mit geringem Wärmedehnungswert, z. B. aus Edelstahl und kann ggfs. an seiner inneren Oberfläche mit einer elektrisch hochleitenden Schicht beschichtet sein.1 and 2 show a first embodiment of the device in longitudinal and cross section. A microwave cavity resonator 1 is inserted as an intermediate piece in an exhaust pipe 15 of a diesel internal combustion engine (not shown). The cavity resonator 1 has a first end wall 2, at a predetermined axial distance here a second end wall 3 and a circular cylindrical peripheral wall 4, which connects the outer circumference of the end walls 2 and 3 to one another. The end walls 2 and 3 have concentrically to the axis of rotation an exhaust gas inlet 6 or an exhaust gas outlet 8 with approximately the nominal size of the exhaust pipe 15. The exhaust pipe 15 goes in one piece at the inlet 6 and at the outlet 8 or via a flange connection into the forehead walls 2, 3 or a corresponding inlet or outlet connection. The resonator consists of a metal with a low thermal expansion value, e.g. B. made of stainless steel and may be coated on its inner surface with an electrically highly conductive layer.

Über einen Hohlleiter 12, der an der Umfangswand 4 des Resonators 1 endet und ein in den Innenraum des Hohlraumresonators mündendes Koppelloch 10 enthält, wird von einer Mikrowellen-Quelle 18 geeigneter Bauart MikrowellenEnergie in den Resonator 1 mit einer solchen Frequenz eingespeist, dass sich im Resonator das elektromagnetische Feld mit einer gewünschten Schwindungsmode, z. B. einer Eoio-Resonanz ausbildet, die mit zunehmendem Abstand von der Rotationsachse ein abnehmendes elektrisches Feld und eine abnehmende elektrische Energiedichte besitzt.Via a waveguide 12, which ends on the peripheral wall 4 of the resonator 1 and contains a coupling hole 10 opening into the interior of the cavity resonator, microwave energy 18 of a suitable type is fed into the resonator 1 at a frequency such that the resonator the electromagnetic field with a desired shrinkage mode, e.g. B. forms an E oio resonance, which has a decreasing electric field and a decreasing electrical energy density with increasing distance from the axis of rotation.

Der Abgaseinlass 6 und der Abgasauslass 8 ist mit je einem wabenförmigen Metallgitter 14 versehen, welches aus dünnem Metallblech gebildet ist und eine vorgegebene Mindestlänge in die Abgasleitung 15 hineinragt, um für das elektromagnetische Feld eine ausreichende metallische Begrenzung des Resonatorvolumens zu erzeugen und gleichwohl die Abgase ohne grösseren Strömungswiderstand durch den Resonator hindurchleiten zu können.The exhaust gas inlet 6 and the exhaust gas outlet 8 are each provided with a honeycomb-shaped metal grille 14, which is formed from thin metal sheet and protrudes a predetermined minimum length into the exhaust gas line 15 in order to generate a sufficient metallic limitation of the resonator volume for the electromagnetic field and nevertheless the exhaust gases without to be able to conduct greater flow resistance through the resonator.

Im Resonator 1 ist ein erster rohrförmiger Keramikeinsatz 5 - von Stirnwand zu Stirnwand - angebracht, dessen Nennweite gleich derjenigen der Abgasleitung 15 ist. Der Einsatz 5 ist zentrisch und axial zwischen dem Abgaseinlass 6 und dem -auslass 8 mit der Abgasleitung 15 fluchtend angeordnet und leitet die Abgase ohne Querschnittsänderung durch den Resonatorbereich hoher Energiedichte hindurch. Da die Nennweite bzw. der Durchmesser des Resonators 1 wesentlich grösser als die Nennweite der Abgasleitung 15 ist und durch die Resonanzfrequenz bestimmt wird, mit welcher die Vorrichtung - nach den Postvorschriften - betrieben werden darf, wird der Abgasstrom durch den Einsatz 5 in grösserem Abstand von der Resonatorwandung geführt, die dadurch relativ kalt bleibt und keine bzw. nur eine geringe Wärmeausdehnung erfährt.In the resonator 1, a first tubular ceramic insert 5 is attached - from end wall to end wall - the nominal width of which is equal to that of the exhaust pipe 15. The insert 5 is arranged centrally and axially between the exhaust gas inlet 6 and the outlet 8 in alignment with the exhaust gas line 15 and conducts the exhaust gases through the resonator region of high energy density without changing the cross section. Since the nominal width or the diameter of the resonator 1 is substantially larger than the nominal width of the exhaust pipe 15 and is determined by the resonance frequency with which the device - according to the postal regulations - may be operated, the exhaust gas flow through the insert 5 is at a greater distance from of the resonator wall, which thereby remains relatively cold and experiences little or no thermal expansion.

Fig. 3 und 4 zeigen einen der Fig. 1 entsprechenden Aufbau, bei dem in die Abgasleitung 15 ein Ho,o-Resonator mit beabstandeten Stirnwänden 2, 3 und der dazwischen liegenden Umfangswand 4 sowie dem Abgaseinlass 6 und -auslass 8 eingefügt ist, der durch einen Hohlleiter 12 und das Koppelloch 10 Mikrowellenenergie zur Anregung der Ho,a-Schwingung erhält. Bei dieser Schwingungsmode besitzt der Bereich hoher Energiedichte die Form einer Ringzone. Um daher die Abgase beim Durchtritt durch den Resonator 1 in dieser Ringzone zu führen, ist ein zylinderförmiger zweiter Keramikeinsatz 7, der an seinen Enden sich kegelförmig verjüngt, axial und zentral in dem Resonator 1 eingesetzt, wobei die Endkegel des zweiten Keramikeinsatzes 7 durch den Einlass 6 und den Auslass 8 hindurch in die Abgasleitung 15 hineinragen, die entsprechend kegelförmige Abschnitte 17 besitzt.3 and 4 show a structure corresponding to FIG. 1, in which an H o , o resonator with spaced end walls 2, 3 and the intermediate peripheral wall 4 and the exhaust gas inlet 6 and outlet 8 is inserted into the exhaust line 15, which receives microwave energy to excite the H o , a oscillation through a waveguide 12 and the coupling hole 10. In this mode of vibration, the area of high energy density is in the form of a ring zone. Therefore, in order to guide the exhaust gases as they pass through the resonator 1 in this ring zone, a cylindrical second ceramic insert 7, which tapers conically at its ends, is inserted axially and centrally in the resonator 1, the end cones of the second ceramic insert 7 being passed through the inlet 6 and the outlet 8 protrude into the exhaust pipe 15, which has correspondingly conical sections 17.

Das wabenförmige Metallgitter 14 ist in der dargestellten Ausführungsform konzentrisch um die Endkegel des zweiten Keramikeinsatzes 7 im Bereich des Einlasses 6 und des Auslasses 8 angebracht. Um die Ringszone auch nach aussen hin abzugrenzen, ist außerdem auch der erste Keramikeinsatz 5 in Form eines Rohres konzentrisch zum zweiten Keramikeinsatz 7 in dem Resonator eingesetzt.In the embodiment shown, the honeycomb-shaped metal grid 14 is mounted concentrically around the end cone of the second ceramic insert 7 in the region of the inlet 6 and the outlet 8. In order to also delimit the ring zone from the outside, the first ceramic insert 5 in the form of a tube is also inserted concentrically with the second ceramic insert 7 in the resonator.

In Fig. 5 sind mehrere Eoio-Resonatoren, die alle entsprechend der Fig. 1 aufgebaut sind, in Serie in eine Abgasleitung 15 eingefügt. Benachbarte Resonatoren 1 sind aneinander angrenzend angeordnet und besitzen eine gemeinsame Stirnwand 3, die, wie die äusseren Stirnwände 2, eine zentrale Abgasöffnung 9 enthalten, welche die Nennweite der Abgasleitung 15 besitzt und je ein wabenförmiges Metallgitter 14 zur elektromagnetischen Abgrenzung des Resonator-Innenraumes trägt. Zwischen dem Einlass 6 des ersten Resonators 1, den Abgasöffnungen 9 und dem Auslass 8 des letzten Resonators 1 sind rohrförmige Keramikeinsätze 5 mit der Nennweite der Abgasleitung 15 eingesetzt, die den Abgasstrom zentral führen. Einer der Resonatoren 1 ist über eine Hohlleitung 12 mit der Mikrowellen-Quelle 18 verbunden. Die gemeinsamen Stirnwände 3 besitzen ebenfalls je ein Koppelorgan 20, z. B. eine Koppelschleife oder eine Koppelöffnung, um auch die nachfolgenden Resonatoren mit Mikrowellenenergie zu speisen.In FIG. 5, several e oio resonators, all of which are constructed in accordance with FIG. 1, are inserted in series into an exhaust gas line 15. Adjacent resonators 1 are arranged adjacent to one another and have a common end wall 3 which, like the outer end walls 2, contains a central exhaust opening 9 which has the nominal width of the exhaust line 15 and each carries a honeycomb-shaped metal grille 14 for the electromagnetic delimitation of the resonator interior. Between the inlet 6 of the first resonator 1, the exhaust openings 9 and the outlet 8 of the last resonator 1, tubular ceramic inserts 5 with the nominal size of the exhaust line 15 are inserted, which guide the exhaust gas flow centrally. One of the resonators 1 is connected to the microwave source 18 via a hollow line 12. The common end walls 3 also each have a coupling member 20, for. B. a coupling loop or a coupling opening to feed the subsequent resonators with microwave energy.

Gemäss Fig. 6 ist ein Eoio-Resonator entsprechend der Fig. 1 und ein Hon-Resonator entsprechend der Fig. 3 in Serie in die Abgasleitung 15 eingefügt. Beide Resonatoren sind über je eine separate Hohlleitung 12 von der Mikrowellen-Quelle 18 gespeist.According to FIG. 6, an e oio resonator according to FIG. 1 and a H on resonator according to FIG. 3 are inserted in series into the exhaust line 15. Both resonators are fed via a separate hollow line 12 from the microwave source 18.

Der einzelne bzw. die mehreren in Serie oder parallel geschalteten Resonatoren lassen sich zur Erzielung einer möglichst hohen Frequenzkonstanz thermisch von der Abgasleitung entkoppeln (nicht dargestellt). Ebenfalls lässt sich der einzelne Resonator 1 von der Mikrowellen-Quelle 18 thermisch entkoppeln (nicht dargestellt). Ausserdem lassen sich die Resonatoren mittels Kühlsystemen kühlen, die z. B. in die Kühlsysteme der Brennkraftmaschinen integriert sein können.The individual or the several resonators connected in series or in parallel can be thermally decoupled from the exhaust pipe in order to achieve the highest possible frequency constancy (not shown). The individual resonator 1 can also be thermally decoupled from the microwave source 18 (not shown). In addition, the resonators can be cooled by means of cooling systems which, for. B. can be integrated into the cooling systems of the internal combustion engines.

Claims (14)

1. Apparatus for the elimination of soot from the exhaust gases of an internal combustion engine, comprising a microwave source (18), a cavity resonator (1) which, as an intermediate component, is coupled to the exhaust gas pipe (15) of the internal combustion engine and has an exhaust gas inlet in one end wall (2) and an exhaust gas outlet (8) at an opposite end wall (3), and a respective metal grid (14) in the exhaust gas inlet (6) and in the exhaust gas outlet (8), characterised in that the cavity resonator (1) contains a first gas-tight ceramic insert (5) which is constructed as a tube and extends axially in alignment with the exhaust gas pipe (15) from the exhaust gas inlet (6) to the exhaust gas outlet (8), and that the metal grids (14) are constructed as honeycomb grids to achieve a slight exhaust gas flow resistance and extend by a predetermined minimum axial length into the exhaust gas pipe (15) for sufficient metallic limitation of the microwave field in the cavity resonator (1).
2. Apparatus according to Claim 1, characterised in that the exhaust gas inlet (6) and the exhaust gas outlet (8) have substantially the same nominal diameter as the exhaust gas pipe (15), and that the circumferential wall (4) between the end walls (2, 3) of the cavity resonator (1) has a circular cross-section of greater nominal diameter than the exhaust gas pipe (15).
3. Apparatus according to Claim 1 or 2, characterised in that the cavity resonator (1) is constructed and excited as an Eol,-resonator, in which n = 0, 1, 2..., and that the first ceramic insert (5) is constructed as a tube having the nominal diameter of the exhaust gas pipe (15).
4. Apparatus according to Claim 1 or 2, characterised in that the cavity resonator (1) is constructed and excited as an Ho,m resonator, in which m = 1, 2, 3..., and that a second ceramic insert (7) is constructed as a cylinder of reduced nominal diameter which is closed at the front end and which is inserted centrally and axially into the cavity resonator (1) to produce a flow channel of annular cross-section.
5. Apparatus according to Claim 4, characterised in that the second ceramic insert (7) narrows in a tapered shape at its ends.
6. Apparatus according to any one of the preceding claims, characterised in that a plurality of cavity resonators (1), each with at least one gas-tight ceramic insert (5), are fitted in series in the exhaust gas pipe (15).
7. Apparatus according to Claim 6, characterised in that adjacent cavity resonators (1) are arranged to adjoin each other and in each case have a common end wall (3) with an exhaust gas opening (9) carrying the metal grid (14).
8. Apparatus according to Claim 7, characterised in that, for microwave coupling, the plurality of cavity resonators (1) have a supply coupling (10, 12) and in each case a coupling member (20) in the common end walls (3).
9. Apparatus according to any one of Claims 1 to 5, characterised in that a plurality of cavity resonators (1) are fitted parallel to each other in the exhaust gas pipe (15).
10. Apparatus according to any one of the preceding claims, characterised in that the resonator(s) (1) is/are thermally uncoupled from the exhaust gas pipe (15).
11. Apparatus according to any one of the preceding claims, characterised in that the coupling line (12), leading to the microwave source (18), is thermally uncoupled from the microwave source.
12. Apparatus according to any one of the preceding claims, characterised in that the resonators(s) (1) is/are able to be cooled by a cooling system.
13. Apparatus according to Claim 12, characterised in that the cooling system communicates with the cooling water system of the internal combustion engine.
14. Apparatus according to any one of the preceding claims, characterised in that the resonator (1) is made of a metallic material with a low thermal expansion value.
EP86101625A 1985-02-12 1986-02-07 Device and process for removing soot or the like from the exhaust gases of an internal-combustion engine Expired EP0191437B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86101625T ATE41975T1 (en) 1985-02-12 1986-02-07 DEVICE AND METHOD FOR REMOVING SOOT OR THE LIKE. FROM THE EXHAUSTS OF AN INTERNAL ENGINE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3504737 1985-02-12
DE19853504737 DE3504737A1 (en) 1985-02-12 1985-02-12 DEVICE AND METHOD FOR ELIMINATING RUSS OR THE LIKE. FROM THE EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE

Publications (2)

Publication Number Publication Date
EP0191437A1 EP0191437A1 (en) 1986-08-20
EP0191437B1 true EP0191437B1 (en) 1989-04-05

Family

ID=6262292

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86101625A Expired EP0191437B1 (en) 1985-02-12 1986-02-07 Device and process for removing soot or the like from the exhaust gases of an internal-combustion engine

Country Status (6)

Country Link
US (1) US4825651A (en)
EP (1) EP0191437B1 (en)
JP (1) JPS62502055A (en)
AT (1) ATE41975T1 (en)
DE (2) DE3504737A1 (en)
WO (1) WO1986004640A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588610B1 (en) * 1985-10-11 1987-12-11 Renault PROCESS FOR REMOVAL OF CARBON PARTICLES CONTAINED IN CIRCULATING GASES, IN PARTICULAR IN EXHAUST GASES FROM COMPRESSION IGNITION ENGINES.
FR2626783B1 (en) * 1988-02-05 1990-07-20 Renault DEVICE FOR MICROWAVE REMOVAL OF CARBON PARTICLES CONTAINED IN EXHAUST GASES OF HEAT ENGINES
AT404285B (en) * 1988-03-11 1998-10-27 Fleck Carl M Dr Apparatus for separating and burning soot particles in diesel exhaust gases
WO1990014507A1 (en) * 1989-05-17 1990-11-29 Ford Motor Company Limited Emission control
FR2650627B1 (en) * 1989-08-04 1994-09-16 Renault DEVICE FOR REMOVING CARBON PARTICLES CONTAINED IN EXHAUST GASES OF HEAT ENGINES
US5074112A (en) * 1990-02-21 1991-12-24 Atomic Energy Of Canada Limited Microwave diesel scrubber assembly
EP0469237A1 (en) * 1990-08-03 1992-02-05 STROMERZEUGUNG GmbH & CO. ANLAGENBAU KG Process and device for converting molecules in a fluid stream
DE4105734A1 (en) * 1991-02-23 1992-08-27 Bayerische Motoren Werke Ag Rapid microwave heating of catalyst - esp. three=way catalyst for IC engine exhaust gas cleaning
DE4132955C1 (en) * 1991-10-04 1992-11-05 Armin Dipl.-Phys. Beying Removal of pollutant in medium - by using filter which has hollow chambers and high frequency electric field to raise temp. and produce temp. profile
GB2262421B (en) * 1991-12-10 1995-04-26 Atomic Energy Authority Uk The removal of organic materials from a gas
GB9126179D0 (en) * 1991-12-10 1992-02-12 Atomic Energy Authority Uk The removal of organic materials from process gas streams
DE4236242A1 (en) * 1992-10-27 1994-04-28 Dornier Gmbh Process for reducing soot particles in exhaust gas flows
DE4319283C1 (en) * 1993-06-10 1994-10-20 Daimler Benz Ag Method and device for reducing particles in exhaust gases
DE4320777A1 (en) * 1993-06-23 1995-01-05 Opel Adam Ag Method for burning particulates in the exhaust gas of an internal combustion engine by means of microwave energy
US5536477A (en) * 1995-03-15 1996-07-16 Chang Yul Cha Pollution arrestor
GB9525543D0 (en) * 1995-12-14 1996-02-14 Central Research Lab Ltd A single mode resonant cavity
WO1998046046A1 (en) 1997-04-04 1998-10-15 Dalton Robert C Artificial dielectric device for heating gases with electromagnetic energy
FR2775552B1 (en) * 1998-02-27 2000-05-19 Standard Products Ind DEVICE FOR HEATING A MATERIAL BY MICROWAVE
US6403750B1 (en) 1999-06-03 2002-06-11 Edward J. A. Pope Apparatus and process for making ceramic composites from photo-curable pre-ceramic polymers
US7174707B2 (en) * 2000-06-09 2007-02-13 Volvo Lastvagnar Ab Regeneration of a filter by the use of a tone generator
WO2004094031A1 (en) * 2003-04-23 2004-11-04 Arka Holding Aps Manipulation of dispersed systems
US7432482B2 (en) * 2004-07-09 2008-10-07 Sedlmayr Steven R Distillation and distillate method by microwaves
US7119312B2 (en) * 2004-07-09 2006-10-10 Sedlmayr Steven R Microwave fluid heating and distillation method
US7157919B1 (en) 2005-07-26 2007-01-02 Caterpillar Inc. Method and system for detecting soot and ash concentrations in a filter
US7513921B1 (en) * 2005-09-02 2009-04-07 Hrl Laboratories, Llc Exhaust gas filter apparatus capable of regeneration of a particulate filter and method
US20090134152A1 (en) * 2005-10-27 2009-05-28 Sedlmayr Steven R Microwave nucleon-electron-bonding spin alignment and alteration of materials
GB2457495A (en) * 2008-02-15 2009-08-19 E2V Tech RF electromagnetic heating a dielectric fluid
DE102010015768B4 (en) * 2010-04-19 2014-11-20 Jenoptik Katasorb Gmbh Microwave reactor for microwave assisted catalytic conversion
CN102569971B (en) * 2012-01-10 2014-09-17 四川大学 Multi-magnetron series-connected microwave power synthesizer
US9200506B2 (en) * 2012-07-13 2015-12-01 Harris Corporation Apparatus for transporting and upgrading a hydrocarbon resource through a pipeline and related methods
JP6551095B2 (en) * 2015-09-15 2019-07-31 富士通株式会社 Exhaust purification device
JP2018063968A (en) * 2016-10-11 2018-04-19 富士通株式会社 Cooling device, exhaust gas treatment device, control method
GB201722035D0 (en) * 2017-12-28 2018-02-14 Arcs Energy Ltd Fluid traetment apparatus for an exhaust system and method thereof
JP2022130055A (en) * 2021-02-25 2022-09-06 富士電機株式会社 Electrostatic precipitator

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3465114A (en) * 1966-09-19 1969-09-02 Canadian Patents Dev Method and apparatus for dielectric heating
US3461261A (en) * 1966-10-31 1969-08-12 Du Pont Heating apparatus
US3620008A (en) * 1970-07-23 1971-11-16 Robert M Newbold Apparatus for removing air pollutants from the exhaust stream of a combustion process
JPS5939178B2 (en) * 1977-04-25 1984-09-21 株式会社東芝 Activated gas generator
DE3024539C2 (en) * 1980-06-28 1982-06-09 Filterwerk Mann & Hummel Gmbh, 7140 Ludwigsburg Device for removing soot from the exhaust gases of an internal combustion engine
JPS5726317A (en) * 1980-07-22 1982-02-12 Toyota Motor Corp Treating device for particle not burnt
JPS58114A (en) * 1981-06-25 1983-01-05 Nippon Telegr & Teleph Corp <Ntt> Manufacture of oxide magnetic thin-film
US4417116A (en) * 1981-09-02 1983-11-22 Black Jerimiah B Microwave water heating method and apparatus
US4477771A (en) * 1982-06-21 1984-10-16 General Motors Corporation Microwave detection of soot content in a particulate trap
JPS5925024A (en) * 1982-08-02 1984-02-08 Hitachi Ltd Diesel engine exhaust purification device
JPS5958114A (en) * 1982-09-28 1984-04-03 Mitsubishi Electric Corp Filter refreshing device of internal combustion engine
JPS59204747A (en) * 1983-05-10 1984-11-20 Nippon Denso Co Ltd Diesel engine smoke sensor
EP0185931B1 (en) * 1984-12-25 1991-07-24 Ebara Corporation Method and apparatus for processing waste matter
US5749815A (en) * 1997-05-30 1998-05-12 Lipps; John D. Portable exercise device

Also Published As

Publication number Publication date
DE3504737A1 (en) 1986-08-14
JPH0424529B2 (en) 1992-04-27
EP0191437A1 (en) 1986-08-20
DE3504737C2 (en) 1989-11-30
US4825651A (en) 1989-05-02
ATE41975T1 (en) 1989-04-15
JPS62502055A (en) 1987-08-13
DE3662713D1 (en) 1989-05-11
WO1986004640A1 (en) 1986-08-14

Similar Documents

Publication Publication Date Title
EP0191437B1 (en) Device and process for removing soot or the like from the exhaust gases of an internal-combustion engine
EP0212396B1 (en) Apparatus for eliminating the soot or the like from the exhaust gases of an internal-combustion engine
DE69502836T2 (en) ELECTRODE STRUCTURE FOR A PLASMA TORCH
EP0307414B1 (en) Exhaust gas cleaning system for diesel engines
EP0537219A1 (en) Process and device for cleaning exhaust gases.
DE69805633T2 (en) EMISSION CONTROL DEVICE
EP0767891A1 (en) Device for heat treating products by microwave radiation
DE112005002751T5 (en) Diesel particulate filter with microwave regeneration
EP4056819A1 (en) Exhaust gas/reaction agent mixing assembly
DE60000184T2 (en) POWER SUPPLY FOR TREATING GASEOUS MEDIA
DE4331054B4 (en) Gas laser oscillator with microwave excitation
DE4114935A1 (en) Vehicle exhaust filter for diesel engine - has electrostatic precipitator and mechanical collection of carbon
DE69018727T2 (en) Device for removing soot particles from combustion exhaust gases from diesel engines.
EP0534104A2 (en) Radiant tube with jacket
EP0307656A2 (en) Coagulator for an exhaust purification device of an internal-combustion engine
EP0549851A1 (en) Soot filter for diesel engines
EP1286115A1 (en) Thermal post-combustion installation
WO2001051780A1 (en) Thermally insulated exhaust gas cleaning system
DE3933619A1 (en) DEVICE FOR ELECTRICALLY EXCITING A GAS WITH MICROWAVES
EP1225311A2 (en) Filter arrangement, in particular for a diesel engine exhaust gas particle filter
EP0616833B1 (en) Soot filter for diesel engines
DE19936955A1 (en) Gas laser
DE102010008273B4 (en) particulate filter assembly
EP0404879A1 (en) Device for burning out solids, and process for manufacturing said device.
EP1219793B1 (en) Filter device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT SE

17P Request for examination filed

Effective date: 19861114

17Q First examination report despatched

Effective date: 19870430

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT SE

REF Corresponds to:

Ref document number: 41975

Country of ref document: AT

Date of ref document: 19890415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3662713

Country of ref document: DE

Date of ref document: 19890511

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920204

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920205

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920227

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930226

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931029

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940207

EUG Se: european patent has lapsed

Ref document number: 86101625.1

Effective date: 19930912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000329

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050207