[go: up one dir, main page]

EP0187904B1 - Method of heat treating pearlitic rail steels - Google Patents

Method of heat treating pearlitic rail steels Download PDF

Info

Publication number
EP0187904B1
EP0187904B1 EP85113653A EP85113653A EP0187904B1 EP 0187904 B1 EP0187904 B1 EP 0187904B1 EP 85113653 A EP85113653 A EP 85113653A EP 85113653 A EP85113653 A EP 85113653A EP 0187904 B1 EP0187904 B1 EP 0187904B1
Authority
EP
European Patent Office
Prior art keywords
rail head
temperature
rail
compressed air
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85113653A
Other languages
German (de)
French (fr)
Other versions
EP0187904A3 (en
EP0187904A2 (en
Inventor
Wilhelm Dr.-Ing. Heller
Jürgen Dr.-Ing. Flügge
Gerhard Ratz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Turnout Technology Germany GmbH
Original Assignee
Vereinigte Weichenbau GmbH
Butzbacher Weichenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Weichenbau GmbH, Butzbacher Weichenbau GmbH filed Critical Vereinigte Weichenbau GmbH
Priority to AT85113653T priority Critical patent/ATE56226T1/en
Publication of EP0187904A2 publication Critical patent/EP0187904A2/en
Publication of EP0187904A3 publication Critical patent/EP0187904A3/en
Application granted granted Critical
Publication of EP0187904B1 publication Critical patent/EP0187904B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Definitions

  • the invention relates to a method for the heat treatment of pearlitic rail steels.
  • the usual austenitizing temperature for these processes is 850 to 900 ° C.
  • the heating takes place in an oven, inductively or by burner.
  • the accelerated cooling is achieved by quenching in oil or blowing with water vapor, a water spray or compressed air.
  • the hardness values achieved with these processes are between 320 and 380 HV on the running surface.
  • the hardness towards the middle of the rail head drops gradually or with a steep transition to 280 to 300 HV.
  • Such heat-treated rails are used in routes with high traffic volumes, tight curve radii and / or with axle loads over 200 kN as well as in switches.
  • the strength and wear properties of the above are sufficient for particularly extreme loads. heat-treated splints.
  • An increase in strength while maintaining the desired fine pearlitic structure, which is favorable for the wear properties, by adding strength-increasing alloy elements such as chromium, manganese, nickel and molybdenum is not possible, since in the heat treatment described, when these alloy elements are added instead of a transformation in the lower pearlite stage, the transformation partly. in the bainite and martensite stage, and thus structures are formed which have an unfavorable effect on the wear properties and the break resistance.
  • High-strength pearlitic rail steels are known from the literature reference DE-Z Technische Mitteilungen Krupp, Werkberichte, Vol. 37 (1979), H. 3, pages 79-87 and 89-94, which have a fine-grained structure with a small lamella spacing and a small thickness Cementite and ferrite lamellae after adding max. 1.4% chromium and max. 2% nickel, based on a steel with approx. 0.75% carbon and approx. 1% manganese tensile strengths up to 1350 N / mm 2 in the naturally hard air-cooled state.
  • an increase in this strength through heat treatment for example accelerated cooling into the region of the lower pearlite stage, leads to the above-mentioned undesirable proportions of bainite and martensite in the structure.
  • These steels have a ferritic-pearlitic structure with a grain size smaller than 8 according to the A.S.T.M. norm.
  • DE-C-2541978 discloses a process for the heat treatment of switch parts made of steels with a composition of 0.6 to 0.8% carbon, 0.05 to 0.5% silicon and 0.8 to 1.3% manganese , in which the running surface of the switch part is heated to austenitizing temperature by means of a burner or inductor and then blown with compressed air in order to quench it in the range of pearlite conversion from 650 to 450 ° C. and subsequently in one or more stages with blowing being throttled compared to the first stage to be deterred so that the temperature range set in the tread before the pearlite transformation is not exceeded and is maintained in the region of the fastest pearlite transformation until the completion of the transformation, after which the water is quenched to below 100.degree.
  • tensile strength values up to a maximum of 1200 N / mm 2 (approx. 350 HV) can be achieved in a heat-treated condition up to a depth of 15 mm from the driving surface.
  • vanadium of the order of 0.05 to 0.20% in conjunction with the envisaged nitrogen content of 0.010 to 0.025% ensures that after the heat treatment in the ferrite lamellae of the finely streaked perlite finely dispersed precipitates of vanadium nitrides or Vanadium carbonitrides are present. These finely dispersed precipitates cause an increase in strength (precipitation hardening) which overlaps the phase boundary hardening by setting a small lamella spacing.
  • the hardness of the rails heat-treated according to the invention is thereby increased compared to a vanadium-free steel.
  • the decisive factor for the success according to the invention in the process steps is, in particular, the combination of the austenitizing temperature of 950 to 1050 ° C., which is higher than in the prior art, in conjunction with the renewed heating of the rail head to 600 to 650 ° C. after completion of the pearlite transformation.
  • the reheating of the rail head leads to a complete separation of the finest vanadium carbonitride particles from the supersaturated solution, in which vanadium, nitrogen and carbon are at 950 to 1050 ° C after austenitizing.
  • the elimination of the vanadium carbonitride particles can only take place incompletely; therefore the desired increase in strength will only partially occur.
  • the rail head is then quickly cooled to a temperature below 100 ° C using water or other suitable quenching media.
  • the reheating of the rail head to 600 to 650 ° C thus causes a complete hardening by excretion of the finest vanadium carbides or vanadium carbonitrides.
  • the previous cooling of the rail head to approx. 400 ° C ensures that the conversion in the pearlite stage is complete and that the subsequent hardening can proceed with a high germ density.
  • niobium of the order of 0.02 to 0.10% provided according to the invention hardly brings about any additional precipitation hardening. It is designed to prevent grain growth in combination with the intended aluminum additives from 0.010 to 0.070% during austenitizing heating.
  • liquid media such as water or steam, can be added to the compressed air, in particular in the first cooling stage.
  • the features of claim 5 represent an economical process variant, according to which the rails are treated from the hot forming heat at final roll temperatures of 950 to 1000 ° C.
  • heating of the cooled rail to the austenitizing temperature is eliminated, which saves energy costs.
  • the rail head is first brought to a fine-lamellar pearlitic structure by blowing with compressed air, and after the pelite conversion has ended at 400 ° C, the rail head is heated again to 600 to 650 ° C and then the entire rail (head, bridge and foot) is mixed with water or other suitable quenching media is rapidly cooled to a temperature below 100 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Metal Rolling (AREA)

Abstract

The present invention relates to a method for thermal treatment of pearlitic rail steel. For increasing strength and wear resistance steels with the claimed composition are produced with a fine lamellar pearlite structure by heat treatment. During the first cycle the rail head portion is heated in a sufficient depth of up to 50 mm by means of a burner or an inductive system to an austenitization temperature of about 950 DEG to 1050 DEG C. Thereafter the heated head portion is cooled by means of compressed air in such a way that in a first step by blowing a large amount of air the temperature of the rail head portion is cooled within 10 to 20 s to 650 DEG to 600 DEG C. before the area of the pearlitic transformation. In a second step with throttled blowing compared to the first step in the area of the pearlitic transformation the rail head portion is cooled within 2 to 4 minutes to about 400 DEG C. until finishing the pearlitic transformation. Then the rail head portion is again heated for 4 to 6 minutes to a temperature of about 600 DEG to 650 DEG C. and then rapidly cooled by means of water or other appropriate quenching media to a temperature of less than 100 DEG C.

Description

Die Erfindung betrifft ein Verfahren zur Wärmebehandlung perlitischer Schienenstähle.The invention relates to a method for the heat treatment of pearlitic rail steels.

Verfahren zur Wärmebehandlung von Schienenstählen, bei denen die gesamte Schiene oder nur der Schienenkopf auf Austenitisierungstemperatur erwärmt und anschließend derartig beschleunigt abgekühlt werden, daß durch Umwandlung in der unteren Perlitstufe sich ein feinlamellares perlitisches Gefüge einstellt, sind aus der Druckschrift DE-Z "Stahl und Eisen", 1970, Nr. 17, Seite 926 ff., bekannt. Ziel derartiger Wärmebehandlungsverfahren ist es, insbesondere bei Schienen mit Richtanalysen gemäß der Güte 90 A nach UIC-Merkblatt 860-V bzw. gemäß der Standardgüte nach AREA (0,60 bis 0,75% Kohlenstoff, 0,80 bis 1,30% Mangan, max. 0,50% Silizium) an der Fahrfläche der Schiene bis zu einer Tiefe von mindestens 10 mm ein feinperlitisches Gefüge einzustellen, wobei sich durch dieses feinperlitische Gefüge ein erhöhter Widerstand gegen Verschleiß und eine vier- bis sechsfach höhere Lebensdauer gegenüber nichtwärmebehandelten Schienen ergibt.Processes for the heat treatment of rail steels, in which the entire rail or only the rail head are heated to the austenitizing temperature and then accelerated in such a way that a fine-lamellar pearlitic structure results from conversion in the lower pearlite stage, are steel and iron from the publication DE-Z ", 1970, No. 17, page 926 ff., Known. The aim of such heat treatment processes is, in particular for rails with directional analyzes according to quality 90 A according to UIC leaflet 860-V or according to the standard quality according to AREA (0.60 to 0.75% carbon, 0.80 to 1.30% manganese , max. 0.50% silicon) on the running surface of the rail to a depth of at least 10 mm to set a fine pearlitic structure, whereby this fine pearlitic structure results in increased resistance to wear and a four to six times longer service life compared to non-heat-treated rails .

Bei diesen Verfahren beträgt die übliche Austenitisierungstemperatur 850 bis 900°C. Die Erwärmung erfolgt in einem Ofen, induktiv oder durch Brenner. Die beschleunigte Abkühlung wird durch Abschrecken in Öl oder Anblasen mit Wasserdampf, einem Wassersprühnebel oder Preßluft erreicht.The usual austenitizing temperature for these processes is 850 to 900 ° C. The heating takes place in an oven, inductively or by burner. The accelerated cooling is achieved by quenching in oil or blowing with water vapor, a water spray or compressed air.

Die bei diesen Verfahren erzielten Härtewerte liegen zwischen 320 und 380 HV an der Fahrfläche. Zur Schienenkopfmitte hin fällt die Härte je nach Wärmebehandlungsverfahren allmählich oder mit steilem Übergang auf 280 bis 300 HV ab.The hardness values achieved with these processes are between 320 and 380 HV on the running surface. Depending on the heat treatment process, the hardness towards the middle of the rail head drops gradually or with a steep transition to 280 to 300 HV.

Derartig wärmebehandelte Schienen werden eingesetzt in Strecken mit hohem Verkehrsaufkommen, engen Kurvenradien und/oder bei Achslasten über 200 kN sowie in Weichen.Such heat-treated rails are used in routes with high traffic volumes, tight curve radii and / or with axle loads over 200 kN as well as in switches.

Für besonders extreme Belastungen reichen jedoch die Festigkeits- und Verschleißeigenschaften der o.a. wärmebehandelten Schienen nicht aus. Eine Festigkeitssteigerung unter Beibehaltung des angestrebten, für die Verschleißeigenschaften günstigen feinperlitischen Gefüges durch Zusatz von festigkeitssteigernden Legierungselementen wie Chrom, Mangan, Nickel und Molybdän ist nicht möglich, da bei der beschriebenen Wärmebehandlung bei Zugabe dieser Legierungselemente anstelle einer Umwandlung in der unteren Perlitstufe die Umwandlung z.T. in der Bainit-und Martensitstufe erfolgt und somit Gefüge entstehen, die sich ungünstig auf die Verschleißeigenschaften und die Bruchsicherheit auswirken.However, the strength and wear properties of the above are sufficient for particularly extreme loads. heat-treated splints. An increase in strength while maintaining the desired fine pearlitic structure, which is favorable for the wear properties, by adding strength-increasing alloy elements such as chromium, manganese, nickel and molybdenum is not possible, since in the heat treatment described, when these alloy elements are added instead of a transformation in the lower pearlite stage, the transformation partly. in the bainite and martensite stage, and thus structures are formed which have an unfavorable effect on the wear properties and the break resistance.

Zwar sind aus der Literaturstelle DE-Z Technische Mitteilungen Krupp, Werksberichte, Bd. 37 (1979), H. 3, Seiten 79-87 und 89-94 hochfeste perlitische Schienenstähle bekannt, die bei einem feinkörnigen Gefüge mit geringem Lamellenabstand und geringer Dicke der Zementit- und Ferritlamellen nach Zusatz von max. 1,4% Crom und max. 2% Nickel, bezogen auf einen Stahl mit ca. 0,75% Kohlenstoff und ca. 1 % Mangan Zugfestigkeiten bis 1350 N/mm2 im naturharten-Iuftabgekühlten - Zustand aufweisen. Eine Steigerung dieser Festigkeit durch eine Wärmebehandlung, z.B. beschleunigte Abkühlung in das Gebiet der unteren Perlitstufe, führt jedoch zu den obenerwähnten unerwünschten Anteilen an Bainit und Martensit im Gefüge.High-strength pearlitic rail steels are known from the literature reference DE-Z Technische Mitteilungen Krupp, Werkberichte, Vol. 37 (1979), H. 3, pages 79-87 and 89-94, which have a fine-grained structure with a small lamella spacing and a small thickness Cementite and ferrite lamellae after adding max. 1.4% chromium and max. 2% nickel, based on a steel with approx. 0.75% carbon and approx. 1% manganese tensile strengths up to 1350 N / mm 2 in the naturally hard air-cooled state. However, an increase in this strength through heat treatment, for example accelerated cooling into the region of the lower pearlite stage, leads to the above-mentioned undesirable proportions of bainite and martensite in the structure.

Aus der DE-A 2 113 418 sind Schienenstähle bekannt mit einer Analyse von:

  • 0,2 bis 0,85 Gew.-% Kohlenstoff, 0 bis 1,5 Gew.- % Silizium, 0,5 bis 2,5 Gew.-% Mangan, max. 0,06 Gew.-% Phosphor, max. 0,06 Gew.-% Schwefel, 0 bis 1,5 Gew.-% Chrom, 0 bis 1,0 Gew.-% Nickel, 0 bis 0,6 Gew.-% Molybdän, sowie mindestens einem der folgenden Elemente 0,05 bis 0,2 Gew.- % Vanadium, 0,01 bis 0,1 Gew.-% Niob, 0,015 bis 0,1 Gew.-% Aluminium, 0,15 bis 0,3 Gew.-% Zirkon in Verbindung mit 0,003 bis 0,030 Gew.-% Stickstoff.
Rail steels are known from DE-A 2 113 418 with an analysis of:
  • 0.2 to 0.85% by weight carbon, 0 to 1.5% by weight silicon, 0.5 to 2.5% by weight manganese, max. 0.06% by weight phosphorus, max. 0.06% by weight of sulfur, 0 to 1.5% by weight of chromium, 0 to 1.0% by weight of nickel, 0 to 0.6% by weight of molybdenum, and at least one of the following elements 0, 05 to 0.2% by weight of vanadium, 0.01 to 0.1% by weight of niobium, 0.015 to 0.1% by weight of aluminum, 0.15 to 0.3% by weight of zirconium in combination with 0.003 to 0.030 wt% nitrogen.

Diese Stähle haben ein ferritisch-perlitisches Gefüge mit einer Korngröße kleiner 8 nach A.S.T.M.-Norm.These steels have a ferritic-pearlitic structure with a grain size smaller than 8 according to the A.S.T.M. norm.

Ihre Festigkeitswerte erreichen diese Stähle entweder nach einem Normalglühen oder nach einen kontrolliert geführten Walzprozeß, wobei der höchste in den Beispielen ausgewiesene Festigkeitswert 81 kg/mm2 entsprechend ca. 795 N/mm2 bzw. ca. 220 HV beträgt. Eine dem Schienenwalzen nachgeschaltete Wärmebehandlung zur Steigerung der Festigkeitswerte zumindest im Schienenkopf ist nicht vorgesehen. Wegen der realtiv geringen Zugfestigkeitswerte ist die Verschleißbeständigkeit dieser Stähle bei extremen Belastungen nicht gewährleistet.These steels achieve their strength values either after normalizing or after a controlled rolling process, the highest strength value shown in the examples being 81 kg / mm 2, corresponding to approx. 795 N / mm 2 or approx. 220 HV. A heat treatment downstream of the rail rolling to increase the strength values at least in the rail head is not provided. Because of the relatively low tensile strength values, the wear resistance of these steels is not guaranteed under extreme loads.

Aus der DE-C-2541978 ist ein Verfahren zur Wärmebehandlung von Weichenteilen aus Stählen mit einer Zusammensetzung von 0,6 bis 0,8% Kohlenstoff, 0,05 bis 0,5% Silizium und 0,8 bis 1,3% Mangan bekannt, bei dem die Lauffläche des Weichenteils mittels Brenner oder Induktor auf Austenitisierungstemperatur erhitzt und anschließend mit Preßluft angeblasen wird, um sie in den Bereich der Perlitumwandlung von 650 bis 450°C abzuschrecken und nachfolgend in einer oder in mehreren Stufen mit gegenüber der ersten Stufe gedrosseltem Anblasen abzuschrecken, damit der in der Lauffläche vor der Perlitumwandlung eingestellte Temperaturbereich nicht überschritten und im Bereich der schnellsten Perlitumwandlung bis zum Abschluß der Umwandlung beibehalten wird, wonach mittels Wasser auf unter 100°C abgeschreckt wird.DE-C-2541978 discloses a process for the heat treatment of switch parts made of steels with a composition of 0.6 to 0.8% carbon, 0.05 to 0.5% silicon and 0.8 to 1.3% manganese , in which the running surface of the switch part is heated to austenitizing temperature by means of a burner or inductor and then blown with compressed air in order to quench it in the range of pearlite conversion from 650 to 450 ° C. and subsequently in one or more stages with blowing being throttled compared to the first stage to be deterred so that the temperature range set in the tread before the pearlite transformation is not exceeded and is maintained in the region of the fastest pearlite transformation until the completion of the transformation, after which the water is quenched to below 100.degree.

Mit diesem Verfahren können in wärmebehandeltem Zustand bis zu einer Tiefe von 15 mm ab Fahrfläche Zugfestigkeitswerte bis maximal 1200 N/mm2 (ca. 350 HV) erreicht werden.With this process, tensile strength values up to a maximum of 1200 N / mm 2 (approx. 350 HV) can be achieved in a heat-treated condition up to a depth of 15 mm from the driving surface.

Es ist daher Aufgabe der vorliegenden Erfindung, Verfahren zur Wärmebehandlung von Schienenstählen der eingangs genannten Art so weiterzuentwickeln, daß unter Beibehaltung des feinlamellaren perlitischen Gefüges an der SchienenfahrfJäche Härtewerte von > 380 HV erreicht werden, wobei die Härte auch noch in einer Tiefe von 15 mm unter der Fahrfläche oberhalb 360 HV liegen soll.It is therefore an object of the present invention to further develop methods for the heat treatment of rail steels of the type mentioned at the outset such that hardness values of> 380 HV are achieved while maintaining the fine-lamellar pearlitic structure on the rail surface, the hardness also being at a depth of 15 mm below the driving surface should be above 360 HV.

Gelöst wird diese Aufgabe durch das Verfahren gemäß Hauptanspruch. Bevorzugte Ausführungsformen sind in dem abhähgigen Ansprüchen 2-5 zufinden.This problem is solved by the method according to the main claim. Preferred embodiments can be found in the dependent claims 2-5.

Durch den erfindungsgemäß vorgesehenen Zusatz von Vanadium in der Größenordnung von 0,05 bis 0,20% in Verbindung mit dem vorgesehenen Stickstoffgehalt von 0,010 bis 0,025% wird insbesondere erreicht, daß nach Abschluß der Wärmebehandlung in den Ferritlamellen des feinstreifigen Perlits feindisperse Ausscheidungen von Vanadiumnitriden bzw. Vanadiumcarbonitriden vorliegen. Diese feindispersen Ausscheidungen bewirken eine Festigkeitssteigerung (Ausscheidungshärtung), die sich der Phasengrenzenhärtung durch Einstellung eines geringen Lamellenabstandes überlagert. Die Härte der erfindungsgemäß wärmebehandelten Schienen wird dadurch gegenüber einem Vanadium-freien Stahl erhöht.The addition of vanadium of the order of 0.05 to 0.20% in conjunction with the envisaged nitrogen content of 0.010 to 0.025%, in particular, ensures that after the heat treatment in the ferrite lamellae of the finely streaked perlite finely dispersed precipitates of vanadium nitrides or Vanadium carbonitrides are present. These finely dispersed precipitates cause an increase in strength (precipitation hardening) which overlaps the phase boundary hardening by setting a small lamella spacing. The hardness of the rails heat-treated according to the invention is thereby increased compared to a vanadium-free steel.

Entscheidend für den erfindungsgemäßen Erfolg ist bei den Verfahrensschritten insbesondere die Kombination der gegenüber dem Stand der Technik erhöhten Austenitisierungstemperatur von 950 bis 1050°C in Verbindung mit dem erneuten Erwärmen des Schienenkopfes auf 600 bis 650°C nach Beendigung der Perlitumwandlung. Das erneute Erwärmen des Schienenkopfes führt zu einer vollständigen Ausscheidung feinster Vanadiumcarbonitridteilchen aus der übersättigten Lösung, in der sich Vanadium, Stickstoff und Kohlenstoff nach Austenitisieren auf 950 bis 1050°C befinden. Bei der beschleunigten Abkühlung auf Temperaturen von etwa 400°C kann die Ausscheidung der Vanadiumcarbonitridteilchen nur unvollständig ablaufen; deshalb wird dabei die gewünschte Festigkeitssteigerung nur teilweise eintreten.The decisive factor for the success according to the invention in the process steps is, in particular, the combination of the austenitizing temperature of 950 to 1050 ° C., which is higher than in the prior art, in conjunction with the renewed heating of the rail head to 600 to 650 ° C. after completion of the pearlite transformation. The reheating of the rail head leads to a complete separation of the finest vanadium carbonitride particles from the supersaturated solution, in which vanadium, nitrogen and carbon are at 950 to 1050 ° C after austenitizing. With the accelerated cooling to temperatures of approximately 400 ° C., the elimination of the vanadium carbonitride particles can only take place incompletely; therefore the desired increase in strength will only partially occur.

Sind die Vanadiumcarbide bzw. Vanadiumcarbonitride feindispers ausgeschieden, wird anschließend der Schienenkopf mittels Wasser oder anderer geeigneter Abschreckmedien schnell auf eine Temperatur unter 100°C abgekühlt.If the vanadium carbides or vanadium carbonitrides are finely dispersed, the rail head is then quickly cooled to a temperature below 100 ° C using water or other suitable quenching media.

Die Wiedererwärmung des Schienenkopfes auf 600 bis 650°C bewirkt somit eine vollständige Aushärtung durch Ausscheidung feinster Vanadiumcarbide bzw. Vanadiumcarbonitride. Die vorherige Abkühlung des Schienenkopfes auf ca. 400°C stellt sicher, daß die Umwandlung in der Perlitstufe abgeschlossen ist und daß die nachfolgende Aushärtung mit einer hohen Keimdichte ablaufen kann.The reheating of the rail head to 600 to 650 ° C thus causes a complete hardening by excretion of the finest vanadium carbides or vanadium carbonitrides. The previous cooling of the rail head to approx. 400 ° C ensures that the conversion in the pearlite stage is complete and that the subsequent hardening can proceed with a high germ density.

Der erfindungsgemäß vorgesehene Zusatz von Niob in der Größenordnung von 0,02 bis 0,10% bewirkt kaum eine zusätzliche Ausscheidungshärtung. Er ist dazu bestimmt, während der austenitisierenden Erwärmung das Kornwachstum in Verbindung mit den vorgesehenen Aluminiumzusätzen von 0,010 bis 0,070% zu verhindern.The addition of niobium of the order of 0.02 to 0.10% provided according to the invention hardly brings about any additional precipitation hardening. It is designed to prevent grain growth in combination with the intended aluminum additives from 0.010 to 0.070% during austenitizing heating.

Die Merkmale der Unteransprüche stellen vorteilhafte Ausgestaltungen der Erfindung dar.The features of the subclaims represent advantageous embodiments of the invention.

So empfiehlt es sich, gemäß Anspruch 2 eine in den einzelnen Elementen eingeschränkte Stahlanalyse zu verwenden. Zur beschleunigten Abkühlung können gemäß Anspruch 3 der Preßluft, insbesondere in der ersten Abkühlstufe, weitere flüssige Medien, wie Wasser oder Wasserdampf beigemischt werden.So it is advisable to use a limited steel analysis in the individual elements according to claim 2. For accelerated cooling, further liquid media, such as water or steam, can be added to the compressed air, in particular in the first cooling stage.

Eine wirtschaftliche Verfahrensvariante stellen die Merkmale des Anspruches 5 dar, nach dem die Schienen aus der Warmverformungshitze heraus bei Walzendtemperaturen von 950 bis 1000°C behandelt werden. Bei dieser Verfahrensvariante entfällt das Erwärmen der erkalteten Schiene auf die Austenitisierungstemperatur, wodurch Energiekosten eingespart werden. Bei dieser Verfahrensabwandlung wird zunächst der Schienenkopf durch Anblasen mit Preßluft auf feinlamellares perlitisches Gefüge gebracht, worauf nach Beendigung der Pelitumwandlung bei 400°C der Schienenkopf erneut auf 600 bis 650°C erwärmt und anschließend die gesamte Schiene (Kopf, Steg und Fuß) mittels Wasser oder anderer geeigneter Abschreckmedien auf eine Temperatur unter 100°C schnell abgekühlt wird.The features of claim 5 represent an economical process variant, according to which the rails are treated from the hot forming heat at final roll temperatures of 950 to 1000 ° C. In this variant of the method, heating of the cooled rail to the austenitizing temperature is eliminated, which saves energy costs. In this modification of the process, the rail head is first brought to a fine-lamellar pearlitic structure by blowing with compressed air, and after the pelite conversion has ended at 400 ° C, the rail head is heated again to 600 to 650 ° C and then the entire rail (head, bridge and foot) is mixed with water or other suitable quenching media is rapidly cooled to a temperature below 100 ° C.

Im folgenden wird das erfindungsgemäße Verfahren durch zwei grafische Darstellungen näher erläutert. ;The method according to the invention is explained in more detail below by means of two graphic representations. ;

Es zeigen

  • Fig. 1 den Temperatur-Zeit-Ablauf des Wärmebehandlungsverfahrens für einen Stahl mit definierter Analyse,
  • Fig. 2 den Härteverlauf erfindungsgemäß wärmebehandelter Schienen im Schienenkopf in bestimmten Abständen von der Lauffläche.
Show it
  • 1 shows the temperature-time sequence of the heat treatment process for a steel with a defined analysis,
  • Fig. 2 shows the hardness profile according to the invention heat-treated rails in the rail head at certain distances from the tread.

In Fig. 1 sind die bei Durchführung des erfindungsgemäßen Verfahrens einzustellenden Temperaturen in °C während bestimmter Verfahrensschritte A bis G in Abhängigkeit von der Zeit in Minuten für einen Schienenstahl mit einer chemischen Zusammensetzung von

  • 0,75% C, 0,46% Si, 1,05% Mn, 0,10% V, 0,04% Nb, 0,020% Al, 0,015% N, Rest Eisen und übliche Verunreinigungen aufgetragen.
1 shows the temperatures to be set when the method according to the invention is carried out in ° C. during certain method steps A to G as a function of the time in minutes for a rail steel with a chemical composition of
  • 0.75% C, 0.46% Si, 1.05% Mn, 0.10% V, 0.04% Nb, 0.020% Al, 0.015% N, balance iron and usual impurities.

Es bedeuten Verfahrensschritte

  • A - Erwärmen auf Austenitisierungstemperatur
  • B - Halten bei Austenitisierungstemperatur
  • C - Schnelle Abkühlung bis zum Beginn der Perlitumwandlung
  • D - Gedrosselte Abkühlung auf rd. 400°C
  • E - Wiedererwärmen auf rd. 600°C
  • F - Halten bei etwa 600°C
  • G - Abkühlung auf etwa 100°C.
It means procedural steps
  • A - heating to austenitizing temperature
  • B - Hold at austenitizing temperature
  • C - Rapid cooling until pearlite transformation begins
  • D - Reduced cooling to approx. 400 ° C
  • E - reheating to approx. 600 ° C
  • F - Hold at around 600 ° C
  • G - cooling to about 100 ° C.

In Fig. 2 ist die Härte HV im Schienenkopf in Abhängigkeit des Abstandes in mm von der Schienenlauffläche aufgetragen, und zwar in Form eines Streubandes für erfindungsgemäß wärmebehandelte Schienen mit folgender Richtanalyse:
0,73 bis 0,80% C, 0,40 bis 0,50% Si, 0,90 bis 1,20% Mn, 0,09 bis 0,12% V, 0,03 bis 0,05% Nb, 0,015 bis 0,040% Al, 0,012 bis 0,018% N, Rest Eisen.
2, the hardness HV is plotted in the rail head as a function of the distance in mm from the rail running surface, in the form of a scattering band for rails heat-treated according to the invention with the following directional analysis:
0.73 to 0.80% C, 0.40 to 0.50% Si, 0.90 to 1.20% Mn, 0.09 to 0.12% V, 0.03 to 0.05% Nb, 0.015 to 0.040% Al, 0.012 to 0.018% N, balance iron.

Der untere Bereich des Streubandes gilt für
0,73 bis 0,75% C, 0,40 bis 0,43% Si, 0,90 bis 0,95% Mn, 0,09 bis 0,10% V, 0,03 bis 0,05% Nb, 0,015 bis 0,040% Al, 0,012 bis 0,014% N.
The lower area of the scatter band applies to
0.73 to 0.75% C, 0.40 to 0.43% Si, 0.90 to 0.95% Mn, 0.09 to 0.10% V, 0.03 to 0.05% Nb, 0.015 to 0.040% Al, 0.012 to 0.014% N.

Der obere Bereich des Streubandes gilt fürThe upper area of the scatter band applies to

0,78 bis 0,80% C, 0,47 bis 0,50% Si, 1,15 bis 1,20% Mn, 0,11 bis 0,12% V, 0,03 bis 0,05% Nb, 0,015 bis 0,040% Al, 0,016 bis 0,018% N.0.78 to 0.80% C, 0.47 to 0.50% Si, 1.15 to 1.20% Mn, 0.11 to 0.12% V, 0.03 to 0.05% Nb, 0.015 to 0.040% Al, 0.016 to 0.018% N.

Durch die neben der Härteskala gezeichnete Zugfestigkeitsskala ist die Umrechnung der Härte HV (Härtewerte nach Vickers) in Festigkeitswerte N/mm2 (N = Newton) gegeben.The tensile strength scale drawn next to the hardness scale shows the conversion of the hardness HV (Vickers hardness values) into strength values N / mm 2 (N = Newton).

Innerhalb der o.a. Richtanalyse werden bei Durchführung des erfindungsgemäßen Wärmebehandlungsverfahrens an der Schienenfahrfläche Härtewerte von 400 bis 445 HV entsprechend einer Festigkeit von 1350 bis 1500 N/mm2 erreicht.Within the above-mentioned directional analysis, when the heat treatment method according to the invention is carried out, hardness values of 400 to 445 HV corresponding to a strength of 1350 to 1500 N / mm 2 are achieved on the rail running surface.

In einer Tiefe von 15 mm unter der Schienenlauffläche (= Fahrfläche) liegen die Härtewerte in einem Bereich von 380 bis 425 HV weit oberhalb der geforderten Werte von 360 HV.At a depth of 15 mm below the rail running surface (= running surface), the hardness values in a range from 380 to 425 HV are far above the required values of 360 HV.

Der Härteverlauf der nach Fig. 1 wärmebehandelten Schiene mit der dort vorgegebenen chemischen Zusammensetzung trifft ungefähr die Mittelwerte des Streubandes nach Fig. 2.The hardness profile of the splint heat-treated according to FIG. 1 with the chemical composition specified there roughly meets the mean values of the scatter band according to FIG. 2.

Claims (5)

1. A process for the thermal treatment of rails, to increase strength and resistance to wear with the formation of a fine lamellar pearlitic structure, of steels having
0.55 to 0.82% carbon
0.25 to 0.50% silicon
0.80 to 1.30% manganese
≤ 0.035% phosphorus
≤ 0.040% sulphur
≤ 0.30% chromium
≤ 0.10% nickel
≤ 0.05% molybdenum
0.05 to 0.20% vanadium
0.02 to 0.10% niobium
0.010 to 0.025% nitrogen
0.01 to 0.070% aluminium
residue iron and the usual impurities due to smelting, wherein for increased strength and resistance to wear the rail head is heated to an adequate depth of up to 50 mm as it passes through the furnace by means of burners or inductively to an austenitization temperature of 950 to 1050°C and then cooled with compressed air, a large quantity of which is blown on to the rail head in a first stage within 10 to 20 seconds to reduce its temperature from 650 to 600°C before the range of pearlite transformation, a smaller quantity of compressed air being applied in a second stage within 2 to 4 minutes in the range of pearlite transformation to reduce the temperature of the rail head to about 400°C until the completion of the pearlite transformation, with the formation of a fine lamellar pearlitic structure, whereafter the rail head is again heated to 600 to 650°C for a period of 4 to 6 minutes and then rapidly cooled by water or other suitable quenching media to a temperature below 100°C.
2. A process according to claim 1, characterized in that the steels subjected to the thermal treatment have an analysis of
0.70 to 0.80% carbon
0.40 to 0.50% silicon
0.90 to 1.20% manganese
≤ 0.035% phosphorus
≤ 0.040% sulphur
≤ 0.30% chromium
≤ 0.10% nickel
≤ 0.02% molybdenum
0.08 to 0.12% vanadium
0.02 to 0.05% niobium
0.012 to 0.018% nitrogen
0.010 to 0.050% aluminium
residue iron and the usual impurities.
3. A process according to one of claims 1 and 2, characterized in that liquid media, such as water or steam, are admixed to the compressed air, more particularly in the first cooling stage.
4. A process according to one of claims 1 to 3, characterized in that the austenitization temperature is 950 to 1000°C.
5. A process according to one of claims 1 to 4, characterized in that coming from the hot deformation heat the rails are treated at final rolling temperatures of 950 to 1000°C, compressed air first being blown on to the rail head to confer a final lamellar pearlitic structure thereon, while after completion of pearlite transformation at 400°C the rail head is again heated to 600 to 650°C, whereafter the whole rail (head, web and base) is rapidly cooled by water or other suitable quenching media to a temperature below 100°C.
EP85113653A 1984-12-21 1985-10-26 Method of heat treating pearlitic rail steels Expired - Lifetime EP0187904B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85113653T ATE56226T1 (en) 1984-12-21 1985-10-26 PROCESS FOR THE HEAT TREATMENT OF PEARLITIC RAIL STEELS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3446794A DE3446794C1 (en) 1984-12-21 1984-12-21 Process for the heat treatment of pearlitic rail steel
DE3446794 1984-12-21

Publications (3)

Publication Number Publication Date
EP0187904A2 EP0187904A2 (en) 1986-07-23
EP0187904A3 EP0187904A3 (en) 1989-07-19
EP0187904B1 true EP0187904B1 (en) 1990-09-05

Family

ID=6253499

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85113653A Expired - Lifetime EP0187904B1 (en) 1984-12-21 1985-10-26 Method of heat treating pearlitic rail steels

Country Status (6)

Country Link
US (1) US4714500A (en)
EP (1) EP0187904B1 (en)
JP (1) JPS61157636A (en)
AT (1) ATE56226T1 (en)
CA (1) CA1256004A (en)
DE (2) DE3446794C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693562A1 (en) 1994-07-19 1996-01-24 VOEST-ALPINE SCHIENEN GmbH Process and apparatus for heat-treating shaped rolled pieces
US6224694B1 (en) 1994-07-09 2001-05-01 Voest Alpine Schienen Gmbh & Co., Kg Method for heat-treating profiled rolling stock

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU86510A1 (en) * 1986-07-10 1988-02-02 Centre Rech Metallurgique METHOD AND DEVICE FOR MANUFACTURING A HIGH RESISTANCE RAIL
US4886558A (en) * 1987-05-28 1989-12-12 Nkk Corporation Method for heat-treating steel rail head
US4895605A (en) * 1988-08-19 1990-01-23 Algoma Steel Corporation Method for the manufacture of hardened railroad rails
DE4200545A1 (en) * 1992-01-11 1993-07-15 Butzbacher Weichenbau Gmbh TRACK PARTS AND METHOD FOR THE PRODUCTION THEREOF
RU2107740C1 (en) * 1993-12-20 1998-03-27 Ниппон Стил Корпорейшн Railroad rail from perlitic steel with high resistance to wear and high impact strength and method of its production
IT1274607B (en) * 1994-08-09 1997-07-18 Lovere Sidermeccanica Spa STEELS FOR WHEEL RIMS AND SINGLE-WHEEL WHEELS FOR THE RAILWAY SECTOR AND SIMILAR
CN1044826C (en) * 1994-11-15 1999-08-25 新日本制铁株式会社 Perlite rail of high abrasion resistance and method of mfg. the same
CN1044723C (en) * 1996-09-27 1999-08-18 攀枝花钢铁(集团)公司钢铁研究院 Heat treatment method for vanadium-contained alloy steel rail
JP3478174B2 (en) * 1999-06-02 2003-12-15 Jfeスチール株式会社 Pearlitic steel rail with excellent wear resistance and ductility
DE10148305A1 (en) * 2001-09-29 2003-04-24 Sms Meer Gmbh Process and plant for the thermal treatment of rails
EP1348770A1 (en) * 2002-03-19 2003-10-01 E.C.O. Trading LLC Plant and procedure for the production of small parts in hot formed steel
JP5761116B2 (en) 2012-04-27 2015-08-12 新日鐵住金株式会社 Wheel steel
WO2016027467A1 (en) * 2014-08-20 2016-02-25 Jfeスチール株式会社 Heat treatment rail manufacturing method and manufacturing apparatus
US10400320B2 (en) 2015-05-15 2019-09-03 Nucor Corporation Lead free steel and method of manufacturing
MX2018006811A (en) * 2015-12-04 2018-11-09 Arconic Inc METHODS FOR COOLING AN ELECTRICALLY DRIVING SHEET DURING THERMAL TREATMENT BY TRANSVERSAL FLOW INDUCTION.
CN117483561A (en) * 2018-08-08 2024-02-02 宝山钢铁股份有限公司 Method for manufacturing hot-stamped component with aluminum-silicon alloy coating and hot-stamped component
CN109207691A (en) * 2018-10-30 2019-01-15 攀钢集团攀枝花钢铁研究院有限公司 The production method of heavy haul railway rail
CN112011680B (en) * 2020-07-28 2022-04-26 马鞍山钢铁股份有限公司 Intermittent quenching method for railway wheels
CN112410648B (en) * 2020-10-13 2021-12-28 攀钢集团攀枝花钢铁研究院有限公司 High-density pearlite steel rail and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1255689B (en) * 1962-10-12 1967-12-07 United States Steel Corp Process for the heat treatment of rail head surfaces
GB1342582A (en) * 1970-03-20 1974-01-03 British Steel Corp Rail steel
US3846183A (en) * 1973-05-02 1974-11-05 Bethlehem Steel Corp Method of treating steel rail
DE2439338C2 (en) * 1974-08-16 1980-08-28 Fried. Krupp, Huettenwerke Ag, 4630 Bochum Process for the heat treatment of rails from the rolling heat
DE2541978C3 (en) * 1975-09-20 1978-08-24 Butzbacher Weichenbau Gmbh, 6308 Butzbach Process for the heat treatment of switch parts in a continuous process
JPS54148124A (en) * 1978-05-12 1979-11-20 Nippon Steel Corp Manufacture of high strength rall of excellent weldability
JPS57198216A (en) * 1981-05-27 1982-12-04 Nippon Kokan Kk <Nkk> Manufacture of high-strength rail

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 68, no. 26, Seite 11256, 24. Juni 1968, Zusammenfassung Nr. 116634t, Columbus, Ohio, USA; E.L. KOLOSOVA et al.:"Hardening of rail steel by means of small vanadiumadditions" *
PATENT ABSTRACTS OF JAPAN, Band 7, Nr. 46(C-153)(1191), 23. Februar 1983; & JP-A-57 198 216 (NIPPON KOKAN) 04.12.1982 *
STAHL UND EISEN, 90(1970) ; Manuskript des Seminarvortrages von H. Becker, 15.6.80, "Aufbau und Eigenschaften von mikrolegierten Feinkornsbanstählen" *
STAHL UND EISEN, Band 90, Nr. 17, 20. August 1970, Seiten 922-928, Düsseldorf, DE *
TECH. MITT. KRUPP, WERKSBERICHTE, Band 37, Heft 3, 1979, Seiten 79-87, Essen, DE; HELLER et al.:"Untersuchung und betriebliche Erprobung neuartiger naturharter Schienenstähle" *
TECH. MITT. KRUPP, WERKSBERICHTE, Band 37, Heft 3,1979, Seiten 89-94, Essen, DE; FLUEGGE:"Metallkundliche Zusammenhänge bei perlitischen Schienenstählen" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224694B1 (en) 1994-07-09 2001-05-01 Voest Alpine Schienen Gmbh & Co., Kg Method for heat-treating profiled rolling stock
EP0693562A1 (en) 1994-07-19 1996-01-24 VOEST-ALPINE SCHIENEN GmbH Process and apparatus for heat-treating shaped rolled pieces
US6419762B2 (en) 1994-07-19 2002-07-16 Voest-Alpine Schienen Gmbh Heat-treated profiled rolling stock
US6770155B2 (en) 1994-07-19 2004-08-03 Voestalpine Schienen Gmbh Method for heat-treating profiled rolling stock

Also Published As

Publication number Publication date
CA1256004A (en) 1989-06-20
ATE56226T1 (en) 1990-09-15
JPS61157636A (en) 1986-07-17
US4714500A (en) 1987-12-22
DE3446794C1 (en) 1986-01-02
EP0187904A3 (en) 1989-07-19
EP0187904A2 (en) 1986-07-23
DE3579578D1 (en) 1990-10-11

Similar Documents

Publication Publication Date Title
EP0187904B1 (en) Method of heat treating pearlitic rail steels
DE69427189T2 (en) HIGH-STRENGTH, ABRASION-RESISTANT RAIL WITH PERLITE STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF
DE3874100T2 (en) METHOD FOR PRODUCING STEEL WITH A LOW RATIO OF THE ELASTICITY LIMIT TO RESISTANCE TO BREAKING.
DE60300561T3 (en) Process for producing a hot-rolled steel strip
DE60205744T2 (en) HIGH STRENGTH AND HIGH-DUCTILE STEEL PLATE WITH HYPERFINE CRYSTAL CORRUGATED STRUCTURE MANUFACTURED BY MOBILIZATION PROCESSING AND GLOWING OF COMMON CARBON STEEL STEEL, AND METHOD OF MANUFACTURING THEREOF
DE69418565T2 (en) HEAT-UNTREATED STEEL FOR HOT FORGING, METHOD FOR PRODUCING A FORGING PIECE MADE THEREOF AND A FORGING PIECE
DE2439338B1 (en) Process for the heat treatment of rails
DE1483218C3 (en) Process for producing a heat-resistant, ferritic Cr-Mo-V steel with high creep strength and improved creep elongation
DE3617725C2 (en)
EP1052296B1 (en) Use of a steel for the manufacture of amour plates
EP0160616B1 (en) Use of a steel in atmospheres containing hydrogen sulfide
DE3832014C2 (en) Process for the production of high-strength seamless steel tubes
EP2103704A1 (en) Hot-rolled long product and method for its manufacture
DE60121084T2 (en) High strength hot rolled steel with high yield strength for use in motor vehicles
DE3616518A1 (en) METHOD FOR PRODUCING A HIGH-STRENGTH STEEL
DE3006695C2 (en) Process for heat treatment of rails
DE3044338C2 (en) Process for producing cold sheet and its use
DE3445794C1 (en)
DE10208186A1 (en) Steel, solid wheel and wheel tires for rail vehicles and methods for producing such components
DE1239110B (en) Use of a highly wear-resistant rail steel alloy
AT401359B (en) METHOD FOR PRODUCING A HEART PIECE
AT387985B (en) Process for producing rolling steel
DE19528671C1 (en) Steel for linear construction profiles for underground pit mining
WO2021037567A1 (en) Spring wire, tension clamp formed therefrom and method for producing such a spring wire
WO1998040527A2 (en) Microalloyed bearing steel for cold forming, method for manufacturing finished and semi-finished products therefrom

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB LI LU NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB LI LU NL

17P Request for examination filed

Effective date: 19890705

17Q First examination report despatched

Effective date: 19890915

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BUTZBACHER WEICHENBAU GMBH

Owner name: VEREINIGTE WEICHENBAU GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI LU NL

REF Corresponds to:

Ref document number: 56226

Country of ref document: AT

Date of ref document: 19900915

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3579578

Country of ref document: DE

Date of ref document: 19901011

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940928

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: BUTZBACHER WEICHENBAU GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: BUTZBACHER WEICHENBAU GMBH TE BUTZBACH, BONDSREPUB

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19951001

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951024

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951031

Ref country code: CH

Effective date: 19951031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961026

Ref country code: GB

Effective date: 19961026

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19981023

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19981030

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040430

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041012

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050503