[go: up one dir, main page]

EP0165108A1 - Convertisseur temps-numérique ultra-rapide - Google Patents

Convertisseur temps-numérique ultra-rapide Download PDF

Info

Publication number
EP0165108A1
EP0165108A1 EP85400870A EP85400870A EP0165108A1 EP 0165108 A1 EP0165108 A1 EP 0165108A1 EP 85400870 A EP85400870 A EP 85400870A EP 85400870 A EP85400870 A EP 85400870A EP 0165108 A1 EP0165108 A1 EP 0165108A1
Authority
EP
European Patent Office
Prior art keywords
chain
doors
door
signal
stop signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85400870A
Other languages
German (de)
English (en)
Other versions
EP0165108B1 (fr
Inventor
Jean-François Genat
François Rossel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Priority to AT85400870T priority Critical patent/ATE41713T1/de
Publication of EP0165108A1 publication Critical patent/EP0165108A1/fr
Application granted granted Critical
Publication of EP0165108B1 publication Critical patent/EP0165108B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F10/00Apparatus for measuring unknown time intervals by electric means
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F10/00Apparatus for measuring unknown time intervals by electric means
    • G04F10/005Time-to-digital converters [TDC]

Definitions

  • the present invention relates to a time-to-digital converter, that is to say a device intended to supply a digital value representing the time elapsed between the reception of a start signal and the reception of a stop signal.
  • the field of application of the invention is notably, but not exclusively, that of very short time measurement in high-energy physical nuclear electronics, nuclear physics, or nuclear medicine.
  • the converter according to the invention is particularly suitable for measuring the collection time intervals at the ends of particle detectors.
  • time-to-digital converters are essentially of two types.
  • the former use a capacitor which is charged at constant current for the duration to be measured, the charge level then being digitized; these converters are generally precise, but of a complex structure.
  • the second are based on the use of reference clocks; they are also of complex structure and their precision is linked to that of the clock.
  • the present invention aims to provide a time-to-digital converter having a simple structure allowing it to be produced in the form of an integrated circuit.
  • the present invention also aims to provide an ultra-fast time-digital converter, that is to say having a very short response time.
  • the present invention is based on the use, as a time reference, of the propagation times of logic signals in an integrated circuit.
  • the new integrated circuit technologies in the present case the manufacture of networks of prediffused doors, ensure, within the same sample, dispersions of the order of a few percent on sets of logical doors. several thousand units.
  • the measurement is carried out by inhibiting, following reception of the stop signal, the propagation of the start signal in a chain of doors.
  • This inhibition can be achieved in several ways.
  • the locking circuit comprises a second chain of doors which is formed on the same integrated circuit substrate and at one end of which the stop signal is received, the two chains forming paths parallel with connections between the doors of the first chain and the doors of the second chain so that the state of the doors of at least one of the two chains is locked when the starting signal propagating along the first chain and the stop signal propagating along the second chain met.
  • the configuration of the doors of the first chain, as well as possibly that of the doors of the second chain is representative of the time to be measured.
  • the converter is provided with coding means having inputs connected to the doors of at least one of the chains to provide a digital measurement value depending on the state of these doors.
  • the directions of propagation of the start signal and the stop signal along the two parallel chains can be opposite to each other or identical. In the latter case, the propagation time through the doors of the first chain is greater than the propagation time through the doors of the second chain so that the stop signal can "catch up" with the start signal.
  • the locking circuit comprises a set of paths each formed between a common input receiving the stop signal and a respective gate of the chain of propagation of the start signal.
  • the stop signal is applied almost simultaneously to the different doors so that the state of the chain is frozen upon receipt of the stop signal.
  • Means for reading the state of the gates of the propagation chain of the starting signal are provided to provide a digital value representative of the time to be measured.
  • the converter according to the invention makes it possible to give the result of the measurement of very short times in an ultra-fast manner.
  • An additional advantage is that the converter can be implemented as an integrated circuit.
  • the converter of FIG. 1 comprises two chains of doors 10 and 15 similar, formed parallel to one another but with opposite directions of propagation.
  • the door chains are formed from a network of pre-diffused doors on the same integrated circuit substrate.
  • Each door 11 of the chain 1a has a first input connected to a non-inverting output of the previous door 11 and a second input connected to the inverting output of an associated door 16 of the chain 15.
  • the latter has a first input connected to the non-inverting output of the previous door 16 and a second input connected to the inverting output of the associated door 11.
  • Each door 11 is thus associated with a door 16, and vice versa.
  • the term "gate" is used here to designate a logic circuit through which an incoming signal may or may not be propagated depending on the state of a control signal which may also be received by this circuit.
  • a start signal sd is applied to the input end 12 of the door chain 10 in the form, for example, of a transition from low logic level to high logic level at an instant t1.
  • a stop signal is applied to the input end 17 of the door chain 15 also in the form of a transition from low logic level to high logic level at an instant t2.
  • the inputs 12 and 17 are located at opposite ends of the chains 10 and 15, the signals sd and sa propagating in opposite directions. Each time the signal sd crosses a door 11, the corresponding door 16 is blocked. Likewise, each time the signal sa passes through a door 16, the corresponding door 11 is blocked.
  • the coding circuit can be arranged to directly deliver a binary digital word giving on N bits a value proportional to ⁇ t.
  • the least significant bit of the word supplied by the converter is 2 t pd .
  • the dispersion ⁇ t pd of the propagation times per integrated circuit gate must satisfy:
  • the maximum number N of significant bits that the converter can supply is such that:
  • T being the value of the full scale of the converter.
  • the value of the least significant bit is here equal to 2 td. A reduction in this value in order to improve the precision or the fineness of the measurement requires a reduction in the propagation time per gate.
  • FIG. 2 illustrates another embodiment of a converter according to the invention with which the least significant bit has a value which can be less than the propagation time per gate.
  • the start signal sd is applied to the input end 22 of a first chain 20 of doors 21 similar to the chain 10 of the converter of FIG. 1.
  • the stop signal sa is applied to the end of input 27 of a second chain 25 of transmission doors 26.
  • Each door 26 is arranged to systematically transmit the signal which is present on its signal input, the latter being connected to its control input.
  • Each input of a door 26 is connected to an input of a door 23 whose inverting output is connected to an input of an associated door 21.
  • the other input of this door 21 is connected to the non-inverting output of the previous door 21 while the other input of the door 23 is connected to the inverting output of the associated door 21.
  • a door 26 is associated with each pair of doors 21 - 23.
  • the starting signal sd is applied to the input 22 at time t1 and propagates along the chain 20. It will be noted that the crossing of each door 21 by the signal sd is accompanied by. blocking of the associated door 23.
  • the stop signal sa is applied to the input 27 at time t2 and propagates along the chain 25. The propagation along this chain is faster than that along the chain 20 so that the signal sa can catch up with the starting signal. As soon as the signal meets door 23 not blocked, it passes through it in order to be able to block the corresponding door 21, thus blocking the propagation of the starting signal.
  • the signal sa continues to be propagated along the chain 25, successively blocking the doors of the chain 20 not crossed by the start signal.
  • the coding circuit 29 can be arranged to supply the number m in the form of a binary digital word.
  • the least significant bit of the word supplied by the converter is t1 pd - t2 pd ; it can therefore take a value less than t1 pd and t2p d .
  • condition (1) Regarding the dispersions ot1 pd and ⁇ t2 pd on the propagation times, we find condition (1) with: also finds the relation (2) giving the number of bits N.
  • the pre-broadcast networks currently available have propagation times per gate less than a nanosecond and dispersions of less than a few tens of picoseconds.
  • the converter of FIG. 2 allows under these conditions a coding on 5 bits with a low weight equal to 500 ps and a full scale of 16 ns.
  • this is a common advantage to all of the embodiments of the invention, the result is available very quickly.
  • FIG. 2 also shows means for adjusting the converter.
  • each chain 20, 25 is connected a series of transmission doors, respectively 20a, 25a.
  • the starting signal is applied to an input terminal 22a which is connected to the input of a switching circuit 24, the outputs of which are connected to respective inputs of the doors 21a of the suite 20a.
  • the stop signal is applied to an input terminal 27a which is connected to the input of a switching circuit 28, the outputs of which are connected to respective inputs of the doors 26a of the sequence 25a.
  • Each switching circuit has a control input for selecting one of the outputs.
  • the zero adjustment is carried out by positioning the routing circuits so that the response of the converter is equal to zero when the signals sd and sa are applied simultaneously to the terminals 22a and 27a.
  • a decoding circuit 20b is arranged at the end of the chain 20 opposite to that of the input, this decoding circuit 20b having inputs connected to the non-inverting outputs of several doors 21.
  • the converter operating on N bits the chain 20 comprises at least 2N gates 21.
  • the number of gates 21 is chosen a little greater than 2N, for example equal to 2N + k and the decoding circuit 20b receives the outputs of the 2k + 1 last doors in the chain.
  • the propagation time per gate, here t1 pd is a function of the supply voltage of the integrated circuit.
  • the decoding circuit 20b is it used to supply a control quantity for adjusting the supply voltage, so that full scale is just reached when two reference signals sd and sa are applied with a time interval equal to full scale, the coding circuit 29 being connected to the first 2N doors of chain 21.
  • FIG. 3 illustrates another embodiment of a converter according to the invention in which the propagation of the starting signal in a chain of doors is stopped by the parallel blocking of the doors of the chain in response to the reception of the signal d 'stop.
  • the start signal sd is received at the input end 32 of a chain 30 of doors 31 while the stop signal sa is applied to a terminal 37 in parallel on the first door inputs 33 each associated with a respective door 31.
  • the connections of the gates 31 and 33 are identical to those of the gates 21 and 23 of the converter of FIG. 2, the gates 31 and 33 being formed on the same integrated circuit substrate from a network of prediffused gates.
  • each door 31 by the signal sd is accompanied by the blocking of the associated door 33.
  • the stop signal passes through the doors 33 not yet blocked to block the associated doors 31 and thus stop the propagation of the signal sd.
  • the state of the doors of the chain 30 is a linear function of the time interval At separating the instants t1 and t2 of reception of the signals sd and sa. This state is read directly from the non-inverting outputs of the gates 31 and converted into the form of a digital word by means of a coding circuit 39.
  • the least significant bit 6t of the word supplied by the converter is equal to t pd , that is to say the propagation time per gate of the chain 30.
  • t pd the propagation time per gate of the chain 30.
  • condition (1) is weaker by a factor 2 1/2 than condition (1), because there is only one propagation in a single chain. However, an additional dispersion is introduced because the locking of the doors 31 of the chain 30 cannot be exactly simultaneous.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analogue/Digital Conversion (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Gripping On Spindles (AREA)
  • Measurement Of Unknown Time Intervals (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Une chaîne (10) de portes (11) est formée sur un même substrat de circuit intégré pour permettre la propgation le long de la chaîne d'un signal de départ reçu à une extrémité de la chaîne, et un circuit de verrouillage (15) formé par exemple par une autre chaîne de portes (16) a des sorties connectées aux portes de la chaîne (10) pour pouvoir bloquer l'état de celle-ci à la suite de la réception d'un signal d'arrêt, de sorte que le nombre de portes traversées par le signal de départ est une fonction linéaire du temps écoulé entre la réception du signal de départ et la réception du signal d'arrêt.

Description

  • La présente invention concerne un convertisseur temps-numérique,c'est-à- dire un dispositif destiné à fournir une valeur numérique représentant le temps écoulé entre la réception d'un signal de départ et la réception d'un signal d'arrêt.
  • Le domaine d'application de l'invention est notamment, mais non exclusivement, celui de la mesure de temps très brefs en électronique nucléaire physique des hautes énergies, physique nucléaire, ou médecine nucléaire. A titre d'exemple, le convertisseur selon l'invention convient particulièrement à la mesure des intervalles de temps de collection aux extrémités de détecteurs de particules.
  • Les convertisseurs temps-numérique connus sont essentiellement de deux types. Les premiers utilisent un condensateur qui est chargé à courant constant pendant la durée à mesurer, le niveau de charge étant ensuite numérisé ; ces convertisseurs sont généralement précis, mais d'une structure complexe. Les seconds sont basés sur l'utilisation d'horloges de référence ; ils sont également de structure complexe et leur précision est liée à celle de l'horloge.
  • La présente invention à pour but de fournir un convertisseur temps-numérique ayant une structure simple permettant sa réalisation sous forme de circuit intégré. La présente invention a aussi pour but de fournir un convertisseur temps-numérique ultra-rapide, c'est à dire ayant un temps de réponse très bref.
  • Ce but est atteint au moyen d'un convertisseur comportant, conformément à l'invention :
    • - une chaine de portes formées sur un même substrat de circuit intégré pour permettre la propagation le long de la chaîne d'un signal de départ reçu à une extrémité de la chaîne, et
    • - un circuit de verrouillage ayant des sorties connectées aux portes de la chaîne pour pouvoir bloquer l'état de celles-ci à la suite de la réception d'un signal d'arrêt, de sorte que le nombre de portes traversées par le signal de départ est une fonction linéaire du temps écoulé entre la réception du signal de départ et la réception du signal d'arrêt.
  • La présente invention est basée sur l'utilisation, en tant que référence temporelle, des temps de propagation de signaux logiques dans un circuit intégré. En effet, les nouvelles technologies de circuits intégrés, dans le cas présent la fabrication de réseaux de portes prédiffusées, assurent, à l'intérieur d'un même échantillon, des dispersions de l'ordre de quelques pour cent sur des ensembles de portes logiques de plusieurs milliers d'unités.
  • La mesure est réalisée par l'inhibition, à la suite de la réception du signal d'arrêt, de la propagation du signal de départ dans une chaîne de portes.
  • Cette inhibition peut être réalisée de plusieurs façons.
  • Selon un mode de réalisation préféré de l'invention le circuit de verrouillage comprend une deuxième chaîne de portes qui est formée sur un même substrat de circuit intégré et à une extrémité de laquelle est reçu le signal d'arrêt, les deux chaînes formant des trajets parallèles avec liaisons entre les portes de la première chaîne et les portes de la deuxième chaîne de sorte que l'état des portes d'au moins l'une des deux chaînes est verrouillé lorsque le signal de départ se propageant le long de la première chaîne et le signal d'arrêt se propageant le long de la deuxième chaîne se sont rencontrés. La configuration des portes de la première chaîne, de même, éventuellement, que celle des portes de la deuxième chaine est représentative du temps à mesurer. Aussi, le convertisseur est-il muni de moyens de codage ayant des entrées reliées aux portes d'au moins l'une des chaînes pour fournir une valeur numérique de mesure fonction de l'état de ces portes.
  • Les sens de propagation du signal de départ et du signal d'arrêt le long des deux chaines parallèles peuvent être inverses l'un de l'autre ou identiques. Dans ce dernier cas, le temps de propagation à travers les portes de la première chaîne est supérieur au temps de propagation à travers les portes de la deuxième chaîne afin que le signal d'arrêt puisse "rattraper" le signal de départ.
  • Selon un autre mode de réalisation de l'invention, le circuit de verrouillage comprend un ensemble de trajets formés chacun entre une entrée commune recevant le signal d'arrêt et une porte respective de la chaine de propagation du signal de départ. Dans ce cas, le signal d'arrêt est appliqué de façon quasi-simultanée aux différentes portes de sorte que l'état de la chaîne est figé dès réception du signal d'arrêt. Des moyens de lecture de l'état des portes de la chaîne de propagation du signal de départ sont prévus pour fournir une valeur numérique représentative du temps à mesurer.
  • Dans tous les cas, le convertisseur conforme à l'invention permet de donner de façon ultra-rapide le résultat de la mesure de temps très brefs. Un avantage supplémentaire tient à ce que le convertisseur est réalisable sous forme de circuit intégré.
  • D'autres particularités et avantages du convertisseur temps-numérique selon l'invention ressortiront à la lecture de la description faite ci-après, à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
    • - la figure 1 est un schéma d'un convertisseur temps-numérique selon un premier mode de réalisation de l'invention,
    • - la figure 2 est un schéma d'un convertisseur temps-numérique selon un mode préféré de réalisation de l'invention, et
    • - la figure 3 est un schéma d'un convertisseur temps-numérique selon encore un autre mode de réalisation de l'invention.
  • Le convertisseur de la figure 1 comporte deux chaînes de portes 10 et 15 similaires, formées parallèlement l'une à l'autre mais avec des directions de propagation opposées. Les chaînes de portes sont formées à partir d'un réseau de portes prédiffusées sur un même substrat de circuit intégré.
  • Chaque porte 11 de la chaîne la a une première entrée reliée à une sortie non-inverseuse de la porte 11 précédente et une seconde entrée reliée à la sortie inverseuse d'une porte 16 associée de la chaîne 15. Celle-ci a une première entrée reliée à la sortie non-inverseuse de la porte 16 précédente et une seconde entrée reliée à la sortie inverseuse de la porte 11 associée. A chaque porte 11 est ainsi associée une porte 16, et réciproquement. On notera que le terme " porte " est utilisé ici pour désigner un circuit logique à travers lequel un signal entrant peut ou non être propagé selon l'état d'un signal de commande qui peut être reçu également par ce circuit.
  • Un signal de départ sd est appliqué à l'extrémité d'entrée 12 de la chaîne de portes 10 sous forme par exemple d'une transition de niveau logique bas à niveau logique haut à un instant t1. Un signal d'arrêt est appliqué à l'extrémité d'entrée 17 de la chaîne de portes 15 également sous forme d'une transition de niveau logique bas à niveau logique haut à un instant t2. Les entrées 12 et 17 sont situées à des extrémités opposées des chaînes 10 et 15, les signaux sd et sa se propageant en sens opposés. A chaque fois que le signal sd franchit une porte 11, la porte 16 correspondante est bloquée. De la même façon, à chaque fois que le signal sa franchit une porte 16, la porte 11 correspondante est bloquée. La rencontre des signaux sd et sa s'effectue en un point tel que le nombre de portes traversées par l'un deux est une fonction linéaire du temps recherché Δt = t2 - t1. L'état des portes après la rencontre est figé. Il peut être lu immédiatement sur les sorties des portes de l'une des chaînes, par exemple sur les sorties non-inverseuses des portes 16, celles-ci étant reliées à un circuit de codage 19. Si l'on désigne par M le nombre total de portes dans chaque chaîne, par m le nombre de portes 11 franchies par le signal de départ, et par tpd le temps de propagation à travers une porte, l'on a Δt = tpd (2 m - M). Le circuit de codage peut être agencé pour délivrer directement un mot numérique binaire donnant sur N bits une valeur proportionnelle à Δ t.
  • Le bit de poids faible du mot fourni par le convertisseur vaut 2 tpd. Pour un convertisseur N bits dont le poids faible vaut δt et avec une précision absolue égale au demi-poids faible, la dispersion σ tpd des temps de propagation par porte de circuit intégré doit satisfaire :
    Figure imgb0001
  • L'on peut aussi montrer que pour une dispersion donnée, le nombre N de bits significatifs maximum que le convertisseur peut fournir, est tel que :
    Figure imgb0002
  • T étant la valeur de la pleine échelle du convertisseur. La valeur du bit de poids faible est ici égale à 2 td. Une diminution de cette valeur en vue d'améliorer la précision ou la finesse de la mesure requiert une diminution du temps de propagation par porte.
  • La figure 2 illustre un autre mode de réalisation d'un convertisseur selon l'invention avec lequel le bit de poids faible a une valeur qui peut être inférieure au temps de propagation par porte.
  • Le signal de départ sd est appliqué à l'extrémité d'entrée 22 d'une première chaîne 20 de portes 21 analogue à la chaîne 10 du convertisseur de la figure 1. Le signal d'arrêt sa est appliqué à l'extrémité d'entrée 27 d'une deuxième chaîne 25 de portes 26 de transmission.
  • Chaque porte 26 est agencée pour transmettre systématiquement le signal qui se présente sur son entrée de signal, celle-ci étant reliée à son entrée de commande. Chaque entrée d'une porte 26 est reliée à une entrée d'une porte 23 dont la sortie inverseuse est connectée à une entrée d'une porte 21 associée. L'autre entrée de cette porte 21 est reliée à la sortie non-inverseuse de la porte 21 précédente tandis que l'autre entrée de la porte 23 est connectée à la sortie inverseuse de la porte 21 associée. Ainsi, une porte 26 est associée à chaque couple de portes 21 - 23.
  • Le signal de départ sd est appliqué à l'entrée 22 à l'instant t1 et se propage le long de la chaîne 20. On notera que le franchissement de chaque porte 21 par le signal sd s'accompagne du. blocage de la porte 23 associée. Le signal d'arrêt sa est appliqué à l'entrée 27 à l'instant t2 et se propage le long de la chaîne 25. La propagation le long de cette chaîne est plus rapide que celle le long de la chaîne 20 de sorte que le signal sa puisse rattraper le signal de départ. Dès que le signal sa rencontre une porte 23 non bloquée, il passe à travers celle-ci pour pouvoir bloquer la porte 21 correspondante, bloquant ainsi la propagation du signal de départ. Le signal sa continue d'être propagé le long de la chaîne 25, bloquant successivement les portes de la chaîne 20 non franchies par le signal de départ. L'état des portes de la chaîne 20 est une fonction linéaire de Δt = t2 - t1. Il peut être lu immédiatement sur les sorties non-inverseuses des portes 21, celles-ci étant reliées à un circuit de codage 29. Si l'on désigne par m le nombre de portes 21 franchies par le signal de départ, par t1pd le temps de propagation par porte de la chaîne 20 et par t2pd le temps de propagation par porte de la chaîne 25, l'on a At = m (t1pd - t2pd). Le circuit de codage 29 peut être agencé pour fournir le nombre m sous forme d'un mot numérique binaire.
  • Le temps de propagation à travers les portes d'une chaîne dépend de plusieurs facteurs : nombre de portes connectées en sortie de chaque porte de la chaîne, longueur des connexions entre portes, tension d'alimentation du circuit,... En l'espèce, l'on peut jouer sur l'un ou plusieurs de ces facteurs pour avoir des temps de propagation t1pd et t2pd différents tels que :
    • t1pd > t2pd.L'on pourrait disposer la chaîne de portes 21 avec les portes 23 associées sur un substrat de circuit intégré et la chaine de portes 26 sur un autre substrat. Toutefois, de préférence, les portes 21, 23, 26 sont formées à partir d'un réseau de portes prédiffusées sur un même substrat et la différence de temps de propagation est obtenue en jouant sur le nombre de portes connectées à chaque porte d'une chaîne et sur les longueurs de connexion.
  • Le bit de poids faible du mot fourni par le convertisseur vaut t1pd - t2pd ; il peut donc prendre une valeur inférieure à t1pd et t2pd. En ce qui concerne les dispersions ot1pd et σ t2pd sur les temps de propagation, l'on retrouve la condition (1) avec :
    Figure imgb0003
    retrouve également la relation (2) donnant le nombre de bits N.
  • Les réseaux prédiffusés disponibles actuellement présentent des temps de propagation par porte inférieurs à la nanoseconde et des dispersions inférieures à quelques dizaines de picosecondes. A titre indicatif, le convertisseur de la figure 2 permet dans ces conditions un codage sur 5 bits avec un poids faible égal à 500 ps et une pleine échelle de 16 ns. De plus, et c'est un avantage commun à tous les modes de réalisation de l'invention, le résultat est disponible très rapidement.
  • Sur la figure 2 sont également représentés des moyens de règlage du convertisseur.
  • Pour le règlage du zéro, on connecte en amont de chaque chaîne 20, 25 une suite de portes de transmission, respectivement 20a, 25a. Le signal de départ est appliqué sur une borne d'entrée 22a qui est reliée à l'entrée d'un circuit d'aiguillage 24 dont les sorties sont reliées à des entrées respectives des portes 21a de la suite 20a. De même le signal d'arrêt est appliqué sur une borne d'entrée 27a qui est reliée à l'entrée d'un circuit d'aiguillage 28 dont les sorties sont reliées à des entrées respectives des portes 26a de la suite 25a. Chaque circuit d'aiguillage a une entrée de commande permettant de sélectionner une des sorties. Le réglage de zéro est effectué en positionnant les circuits d'aiguillage de manière que la réponse du convertisseur soit égale à zéro lorsque les signaux sd et sa sont appliqués simultanément aux bornes 22a et 27a.
  • Pour le réglage de la pleine échelle, un circuit de décodage 20b est disposé à l'extrémité de la chaîne 20 opposée à celle d'entrée, ce circuit de décodage 20b ayant des entrées connectées aux sorties non-inverseuses de plusieurs portes 21. Le convertisseur fonctionnant sur N bits la chaîne 20 comprend au moins 2N portes 21. En fait, le nombre de portes 21 est choisi un peu supérieur à 2N, par exemple égal à 2N + k et le circuit de décodage 20b reçoit les sorties des 2k + 1 dernières portes de la chaine. Comme déjà indiqué, le temps de propagation par porte, ici t1pd est fonction de la tension d'alimentation du circuit intégré. Aussi, le circuit de décodage 20b est-il utilisé pour fournir une grandeur de commande de règlage de la tension d'alimentation, de manière que la pleine échelle soit juste atteinte lorsque deux signaux de référence sd et sa sont appliqués avec un intervalle de temps égal à la pleine échelle, le circuit de codage 29 étant relié aux 2N premières portes de la chaîne 21.
  • On notera que plusieurs réglages alternés du zéro et de la pleine échelle peuvent être nécessaires.
  • Dans ce qui précède, on a envisagé le cas où la propagation du signal de départ dans une chaîne de portes est stoppée en étant rejointe par la propagation du signal d'arrêt dans une autre chaîne de portes.
  • La figure 3 illustre un autre mode de réalisation d'un convertisseur selon l'invention dans lequel la propagation du signal de départ dans une chaîne de portes est stoppée par le blocage en parallèle des portes de la chaîne en réponse à la réception du signal d'arrêt.
  • Le signal de départ sd est reçu à l'extrémité d'entrée 32 d'une chaîne 30 de portes 31 tandis que le signal d'arrêt sa est appliqué sur une borne 37 en parallèle sur les premières entrées de portes 33 associées chacune à une porte 31 respective. Les connexions des portes 31 et 33 sont identiques à celles des portes 21 et 23 du convertisseur de la figure 2, les portes 31 et 33 étant formées sur un même substrat de circuit intégré à partir d'un réseau de portes prédiffusées.
  • Le franchissement de chaque porte 31 par le signal sd s'accompagne du blocage de la porte 33 associée. Le signal d'arrêt passe à travers les portes 33 non encore bloquées pour bloquer les portes 31 associées et arrêter ainsi la propagation du signal sd. L'état des portes de la chaîne 30 est une fonction linéaire de l'intervalle de temps At séparant les instants t1 et t2 de réception des signaux sd et sa. Cet état est lu directement sur les sorties non-inverseuses des portes 31 et converti sous forme d'un mot numérique au moyen d'un circuit de codage 39.
  • Le bit de poids faible 6t du mot fourni par le convertisseur vaut tpd, c'est-à-dire le temps de propagation par porte de la chaîne 30. Pour un convertisseur N bits de précision égale au demi-poids faible, la dispersion σ t Pd du temps de propagation tDd doit ici satisfaire la condition :
    Figure imgb0004
  • On notera que cette condition est moins forte d'un facteur 21/2 que la condition (1), du fait qu'il y a une seule propagation dans une seule chaîne. Toutefois, une dispersion supplémentaire est introduite du fait que le verrouillage des portes 31 de la chaîne 30 ne peut être exactement simultané.

Claims (7)

1. Convertisseur temps-numérique ultra-rapide, caractérisé en ce qu'il comporte :
- une chaine (10 ; 20 ; 30) de portes (11 ; 21 ; 31) formées sur un même substrat de circuit intégré pour permettre la propagation le long de la chaîne d'un signal de départ reçu à une extrémité de la chaine, et
- un circuit de verrouillage (15 ; 23 , 25 ; 33) ayant des sorties connectées aux portes de la chaîne pour pouvoir bloquer l'état de celle-ci à la suite de la réception d'un signal d'arrêt, de sorte que le nombre de portes traversées par le signal de départ est une fonction linéaire du temps écoulé entre la réception du signal de départ et la réception du signal d'arrêt.
2. Convertisseur selon la revendication 1, caractérisé en ce que le circuit de verrouillage comprend une deuxième chaîne (5 ; 25) de portes (16 ; 26) qui est formée sur un même substrat de circuit intégré et à une extrémité de laquelle est reçu le signal d'arrêt, les deux chaînes (10 ; 20) (15 ; 25) formant des trajets parallèles avec liaisons entre les portes (11 ; 21) de la première chaîne et les portes (16 ; 26) de la deuxième chaine de sorte que l'état des portes d'au moins l'une des chaines est verrouillé lorsque le signal de départ se propageant le long de la première chaîne et le signal d'arrêt se propageant le long de la deuxième chaîne se sont rencontrés.
3. Convertisseur selon la revendication 2, caractérisé en ce qu'il comporte des moyens de codage (19, 29) ayant des entrées reliées aux portes d'au moins l'une des chaînes (10,-20) pour fournir une valeur numérique de mesure fonction de l'état de ces portes.
4. Convertisseur selon l'une quelconque des revendications 2 et 3, caractérisé en ce que le signal de départ et le signal d'arrêt se propagent dans le même sens, le temps de propagation à travers les portes (21) de la première chaîne étant supérieur au temps de propagation à travers les portes (26) de la deuxième chaîne.
5. Convertisseur selon l'une quelconque des revendications 2 et 3, caractérisé en ce que le signal de départ et le signal d'arrêt se propagent en sens opposés.
6. Convertisseur selon la revendication 1, caractérisé en ce qu'à chaque porte (21 ; 31) de la chaîne (20 ; 30) est associé un circuit respectif (23 ; 33) formant porte dont une première entrée est reliée à la porte associée de la chaîne pour bloquer ledit circuit (23 ; 33) en réponse au passage du signal de départ à travers ladite porte (21 ; 31), dont une seconde entrée est connectée pour recevoir le signal d'arrêt, et dont une sortie est reliée à la porte associée (21 ; 31) de la chaîne pour bloquer cette porte en réponse au signal d'arrêt lorsque le signal de départ n'a pas encore franchi ladite porte (21 ; 31).
7. Convertisseur selon la revendication 6, caractérisé en ce que le signal d'arrêt est appliqué en parallèle sur les secondes entrées des circuits portes (33) associés aux portes (31) de la chaîne (30).
EP85400870A 1984-05-11 1985-05-06 Convertisseur temps-numérique ultra-rapide Expired EP0165108B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85400870T ATE41713T1 (de) 1984-05-11 1985-05-06 Ultraschneller zeitnumerischer umformer.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8407344A FR2564216B1 (fr) 1984-05-11 1984-05-11 Convertisseur temps-numerique ultrarapide
FR8407344 1984-05-11

Publications (2)

Publication Number Publication Date
EP0165108A1 true EP0165108A1 (fr) 1985-12-18
EP0165108B1 EP0165108B1 (fr) 1989-03-22

Family

ID=9303902

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85400870A Expired EP0165108B1 (fr) 1984-05-11 1985-05-06 Convertisseur temps-numérique ultra-rapide

Country Status (6)

Country Link
US (1) US4719608A (fr)
EP (1) EP0165108B1 (fr)
JP (1) JPS60253994A (fr)
AT (1) ATE41713T1 (fr)
DE (1) DE3569049D1 (fr)
FR (1) FR2564216B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0508232A2 (fr) * 1991-04-09 1992-10-14 MSC MICROCOMPUTERS SYSTEMS COMPONENTS VERTRIEBS GmbH Circuit électronique pour la mesure de périodes de temps courtes

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163296A (ja) * 1986-12-26 1988-07-06 Hitachi Ltd 時間差測定回路
US5384713A (en) * 1991-10-23 1995-01-24 Lecroy Corp Apparatus and method for acquiring and detecting stale data
US6081147A (en) * 1994-09-29 2000-06-27 Fujitsu Limited Timing controller and controlled delay circuit for controlling timing or delay time of a signal by changing phase thereof
US6324125B1 (en) * 1999-03-30 2001-11-27 Infineon Technologies Ag Pulse width detection
US6239591B1 (en) 1999-04-29 2001-05-29 International Business Machines Corporation Method and apparatus for monitoring SOI hysterises effects
US6777708B1 (en) 2003-01-15 2004-08-17 Advanced Micro Devices, Inc. Apparatus and methods for determining floating body effects in SOI devices
US6774395B1 (en) 2003-01-15 2004-08-10 Advanced Micro Devices, Inc. Apparatus and methods for characterizing floating body effects in SOI devices
US20050222789A1 (en) * 2004-03-31 2005-10-06 West Burnell G Automatic test system
US20060129350A1 (en) * 2004-12-14 2006-06-15 West Burnell G Biphase vernier time code generator
US7761751B1 (en) 2006-05-12 2010-07-20 Credence Systems Corporation Test and diagnosis of semiconductors
US8138843B2 (en) * 2006-09-15 2012-03-20 Massachusetts Institute Of Technology Gated ring oscillator for a time-to-digital converter with shaped quantization noise
US8228763B2 (en) * 2008-04-11 2012-07-24 Infineon Technologies Ag Method and device for measuring time intervals
US8243555B2 (en) * 2008-08-07 2012-08-14 Infineon Technologies Ag Apparatus and system with a time delay path and method for propagating a timing event
US8065102B2 (en) * 2008-08-28 2011-11-22 Advantest Corporation Pulse width measurement circuit
US7996168B2 (en) 2009-03-06 2011-08-09 Advantest Corporation Method and apparatus for time vernier calibration
US8098085B2 (en) 2009-03-30 2012-01-17 Qualcomm Incorporated Time-to-digital converter (TDC) with improved resolution
US8324952B2 (en) 2011-05-04 2012-12-04 Phase Matrix, Inc. Time interpolator circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423676A (en) * 1965-07-02 1969-01-21 Rosenberry W K Multi-state digital interpolating apparatus for time interval measurements
FR2088363A1 (fr) * 1970-05-06 1972-01-07 Ibm
US3638047A (en) * 1970-07-07 1972-01-25 Gen Instrument Corp Delay and controlled pulse-generating circuit
US4164666A (en) * 1976-06-08 1979-08-14 Toyko Shibaura Electric Co., Ltd. Electronic apparatus using complementary MOS transistor dynamic clocked logic circuits
US4433919A (en) * 1982-09-07 1984-02-28 Motorola Inc. Differential time interpolator
US4439046A (en) * 1982-09-07 1984-03-27 Motorola Inc. Time interpolator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB729931A (en) * 1952-07-17 1955-05-11 Cinema Television Ltd Improvements in or relating to electrical timing arrangements
SU402853A1 (ru) * 1971-07-26 1973-10-19 Пензенский Политехнический Институт Цифровой измеритель интервалов времени
FR2165758B1 (fr) * 1971-12-29 1974-06-07 Commissariat Energie Atomique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423676A (en) * 1965-07-02 1969-01-21 Rosenberry W K Multi-state digital interpolating apparatus for time interval measurements
FR2088363A1 (fr) * 1970-05-06 1972-01-07 Ibm
US3638047A (en) * 1970-07-07 1972-01-25 Gen Instrument Corp Delay and controlled pulse-generating circuit
US4164666A (en) * 1976-06-08 1979-08-14 Toyko Shibaura Electric Co., Ltd. Electronic apparatus using complementary MOS transistor dynamic clocked logic circuits
US4433919A (en) * 1982-09-07 1984-02-28 Motorola Inc. Differential time interpolator
US4439046A (en) * 1982-09-07 1984-03-27 Motorola Inc. Time interpolator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IRE TRANSACTIONS ON NUCLEAR SCIENCE, vol. NS-6, no. 1, mars 1959, pages 31-34, New York, US; R.H. RAGSDALE et al.: "A chronotron for relativistic neutron time-of-flight measurements" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0508232A2 (fr) * 1991-04-09 1992-10-14 MSC MICROCOMPUTERS SYSTEMS COMPONENTS VERTRIEBS GmbH Circuit électronique pour la mesure de périodes de temps courtes
EP0508232A3 (en) * 1991-04-09 1994-05-25 Msc Microcomputers Systems Com Electronic circuit for measuring short time-intervals

Also Published As

Publication number Publication date
US4719608A (en) 1988-01-12
JPS60253994A (ja) 1985-12-14
DE3569049D1 (en) 1989-04-27
FR2564216A1 (fr) 1985-11-15
ATE41713T1 (de) 1989-04-15
EP0165108B1 (fr) 1989-03-22
FR2564216B1 (fr) 1986-10-24

Similar Documents

Publication Publication Date Title
EP0165108B1 (fr) Convertisseur temps-numérique ultra-rapide
EP0645888B1 (fr) Ligne à retard numérique
EP0068949A1 (fr) Procédé et dispositif optique de conversion analogique-numérique
EP0735694B1 (fr) Dispositif de faible coût et intégrable pour l'acquisition de signaux électriques selon la norme ARINC 429
FR2598570A1 (fr) Circuit retardateur numerique
FR2666707A1 (fr) Dispositif de division de frequence programmable.
FR2551231A1 (fr) Circuit de controle parametrique en courant alternatif
EP0639001B1 (fr) Circuit de filtrage d'un signal impulsionnel et circuit intégré comportant un tel circuit
FR2510809A1 (fr) Montage de commande electronique destine a produire un comportement monostable dans un relais bistable
US5258612A (en) Timed-resolved spectroscopy with split pump and probe pulses
FR2550671A1 (fr) Circuit convertisseur analogique-numerique et demodulateur de signaux video modules en argument
EP3376670A1 (fr) Ligne à retard configurable
EP0632279A1 (fr) Dispositif de mesure de la durée d'un intervalle de temps
EP1303043A1 (fr) Filtre digital pour reduire des pics de tension
WO2010031952A1 (fr) Compteur analogique et imageur incorporant un tel compteur
FR2903205A1 (fr) Procede de controle du temps d'evaluation d'une machine d'etat
FR2461958A1 (fr) Circuit de comparaison de phase
EP0193453A1 (fr) Dispositif pour contrôler la période séparant des impulsions
FR2483142A1 (fr) Piece d'horlogerie electronique comportant un circuit de controle du moteur
FR2532772A1 (fr) Appareil permettant de detecter des erreurs dans un flot de donnees numeriques code en un code a double densite
EP3667914B1 (fr) Calibration d'un circuit retardateur
FR2567697A1 (fr) Dispositif de localisation des transitions d'un signal de donnees par rapport a un signal d'horloge et mecanisme de cadrage comprenant un tel dispositif
EP1610462A1 (fr) Circuit et procédé de vérification de la constance de biais d'un flux de bits
EP1390769B1 (fr) Dispositif d'echantillonnage de signal electrique haute frequence
FR2589651A1 (fr) Ligne a retard a semi-conducteur pour circuit logique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860605

17Q First examination report despatched

Effective date: 19870903

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890322

Ref country code: AT

Effective date: 19890322

REF Corresponds to:

Ref document number: 41713

Country of ref document: AT

Date of ref document: 19890415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3569049

Country of ref document: DE

Date of ref document: 19890427

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900507

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900518

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900531

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900613

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910531

Ref country code: CH

Effective date: 19910531

Ref country code: BE

Effective date: 19910531

BERE Be: lapsed

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

Effective date: 19910531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940323

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940908

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940909

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950506

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST