EP0160692A1 - Procede de transfert de genes exogenes dans des plantes en utilisant le pollen comme vecteur - Google Patents
Procede de transfert de genes exogenes dans des plantes en utilisant le pollen comme vecteurInfo
- Publication number
- EP0160692A1 EP0160692A1 EP84904249A EP84904249A EP0160692A1 EP 0160692 A1 EP0160692 A1 EP 0160692A1 EP 84904249 A EP84904249 A EP 84904249A EP 84904249 A EP84904249 A EP 84904249A EP 0160692 A1 EP0160692 A1 EP 0160692A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pollen
- dna
- plant
- plants
- donor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 44
- 238000012546 transfer Methods 0.000 title claims abstract description 28
- 239000013598 vector Substances 0.000 title claims description 15
- 241000196324 Embryophyta Species 0.000 claims abstract description 99
- 108020004414 DNA Proteins 0.000 claims abstract description 75
- 108091029865 Exogenous DNA Proteins 0.000 claims abstract description 19
- 241000218922 Magnoliophyta Species 0.000 claims abstract description 7
- 240000008042 Zea mays Species 0.000 claims description 67
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 47
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 claims description 46
- 235000009973 maize Nutrition 0.000 claims description 44
- 235000007244 Zea mays Nutrition 0.000 claims description 18
- 241000209138 Tripsacum Species 0.000 claims description 17
- 235000007218 Tripsacum dactyloides Nutrition 0.000 claims description 15
- 239000000872 buffer Substances 0.000 claims description 12
- 244000082267 Tripsacum dactyloides Species 0.000 claims description 11
- KKEBXNMGHUCPEZ-UHFFFAOYSA-N 4-phenyl-1-(2-sulfanylethyl)imidazolidin-2-one Chemical compound N1C(=O)N(CCS)CC1C1=CC=CC=C1 KKEBXNMGHUCPEZ-UHFFFAOYSA-N 0.000 claims description 10
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 10
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 claims description 8
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 4
- 229930006000 Sucrose Natural products 0.000 claims description 4
- 239000005720 sucrose Substances 0.000 claims description 4
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 150000001720 carbohydrates Chemical class 0.000 claims description 2
- 244000209671 Zea mays subsp parviglumis Species 0.000 claims 1
- 239000007864 aqueous solution Substances 0.000 claims 1
- 244000037666 field crops Species 0.000 claims 1
- 230000001902 propagating effect Effects 0.000 claims 1
- 230000004936 stimulating effect Effects 0.000 claims 1
- 230000007198 pollen germination Effects 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 4
- 239000012869 germination medium Substances 0.000 abstract 1
- 230000035784 germination Effects 0.000 description 28
- 235000013339 cereals Nutrition 0.000 description 18
- 230000010152 pollination Effects 0.000 description 15
- 238000011282 treatment Methods 0.000 description 14
- 210000000349 chromosome Anatomy 0.000 description 13
- 230000004720 fertilization Effects 0.000 description 12
- 235000013601 eggs Nutrition 0.000 description 11
- 230000012010 growth Effects 0.000 description 11
- 238000011534 incubation Methods 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 241000209149 Zea Species 0.000 description 8
- 210000000805 cytoplasm Anatomy 0.000 description 8
- 210000005069 ears Anatomy 0.000 description 7
- 238000010353 genetic engineering Methods 0.000 description 7
- 238000010348 incorporation Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 210000002257 embryonic structure Anatomy 0.000 description 6
- 210000001161 mammalian embryo Anatomy 0.000 description 6
- 108700028369 Alleles Proteins 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000013020 embryo development Effects 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 210000004209 hair Anatomy 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 230000010153 self-pollination Effects 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 3
- 241000209504 Poaceae Species 0.000 description 3
- 241001123567 Puccinia sorghi Species 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 210000002421 cell wall Anatomy 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 230000021759 endosperm development Effects 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 238000003976 plant breeding Methods 0.000 description 3
- 230000001568 sexual effect Effects 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 229910052902 vermiculite Inorganic materials 0.000 description 3
- 239000010455 vermiculite Substances 0.000 description 3
- 235000019354 vermiculite Nutrition 0.000 description 3
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 240000005979 Hordeum vulgare Species 0.000 description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 description 2
- 108091093105 Nuclear DNA Proteins 0.000 description 2
- 108020005120 Plant DNA Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 235000007241 Zea diploperennis Nutrition 0.000 description 2
- 235000017556 Zea mays subsp parviglumis Nutrition 0.000 description 2
- 241000172407 Zea mays subsp. huehuetenangensis Species 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010061291 Mineral deficiency Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000208125 Nicotiana Species 0.000 description 1
- 101000868151 Rattus norvegicus Somatotropin Proteins 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 244000083398 Zea diploperennis Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229930002877 anthocyanin Natural products 0.000 description 1
- 235000010208 anthocyanin Nutrition 0.000 description 1
- 239000004410 anthocyanin Substances 0.000 description 1
- 150000004636 anthocyanins Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000010154 cross-pollination Effects 0.000 description 1
- 230000002559 cytogenic effect Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 230000006543 gametophyte development Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000030414 genetic transfer Effects 0.000 description 1
- 230000001295 genetical effect Effects 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009399 inbreeding Methods 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000008627 meiotic prophase Effects 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 238000009401 outcrossing Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 230000008659 phytopathology Effects 0.000 description 1
- 230000008121 plant development Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 230000033458 reproduction Effects 0.000 description 1
- 230000027272 reproductive process Effects 0.000 description 1
- 230000008117 seed development Effects 0.000 description 1
- 230000007226 seed germination Effects 0.000 description 1
- 230000014639 sexual reproduction Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012090 tissue culture technique Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
Definitions
- the invention herein described relates to a method for the transfer of exogenous genes in Angiosperms from a selected donor plant to a host plant.
- the method involves incubation of pollen from the parent plant with foreign DNA from the donor.
- the host plant is then pollinated with treated pollen and normal fertilization and development of seed occur.
- a self-pollination system is preferred.
- Transformed offspring generated from seed express genetic traits characteristic of the foreign DNA donor.
- Agrobacterium tumefaciens and the Ti plasmid holds promise, but this system is limited to dicotyledonous plants.
- A. tumefaciens does not infect monocotyledonous plants. This plant group includes grasses and cereals, and indeed most of the world's important food crops [Sci. Amer., 248(6) ;59, 1983].
- Tissue culture techniques are also being investigated. Many dicotyledonous plants can be quite easily regen- erated into intact plants from undifferentiated tis ⁇ sue-culture cells.
- the male gametophyte is a complex structure.
- the male gametophyte (pollen grain) of maize consists of a tube nucleus and a generative cell. Soon after germination the pollen tube protrudes from the pore of the pollen grain and the generative cell divides to produce two sperm.
- the pollen tube then enters the stigma, grows down the style, and enters the female gametophyte where it disposes of its contents into the cytoplasm of the embryosac [Pfahler, P.L. 1978. Biology of the male gametophyte. Iri D.B. Walden (ed.). Maize breeding and genetics. John Wiley and Sons, New York, pp. 517-530; Earle, E. 1982. Gametogenesis, fertilization and embryo development. I I H. Smith and D. Grierson (eds.). Molecular biology of plant development. Bot. Monogs. 1 : 285-305. Univ. Calif. Press, Berkeley; and Linskens, H.F. 1983.
- Mutations and transformations achieved through sexual transfer of exogenous DNA are phenotypically similar to expressions of known mutant loci. If actual gene transfer does take place, it is assumed that incorporation into the genome of the zygote will be at specific sites on one or more chromosomes (Rubin, G.M. , and A,C, Spradling. 1982. Genetic transformation with transposable vectors. Sci. 218: 348-353; Spradling, A.C., and G.M. Rubin. 1982. Transposition of cloned P elements into
- Transformed plants either segregate in a
- OMPI phenotypes and whether loci coding for these genet ⁇ ically mutated phenotypes are located on the expected chromosomes and expected positions on chromosomes arms.
- cultivated maize Zea mays
- arose through natural crossing perhaps first with gamagrass (Tripsacum dactyloides) .
- Hybrids with 36 Tripsacum (Tr) + 10 Zea (Zm) chromosomes are characterized mostly by 18 Tr bivalents and 10 Zm univalents during meiotic prophase [de Wet, J.M.J. and J.R. Harlan. 1974. Tripsacum - maize interaction: A novel cytogenetic system. Genetics 7_8. 493-502; de Wet, J.M.J. et al. 1982. Systematics of . Tripsacum dactyloides (Gramineae) . Amer. J. Bot. 69.* 1251-1257] .
- Tripsacoid maize genotypes so produced carry several traits new to the genome of maize, and are highly desirable in maize improvement (Bergquist, R.L. 1981.
- Diploid Tripsacum taxa produce functional female gametes that are haploid (18 chromosomes) or diploid (36 chromosomes) .
- the ⁇ ytologically non-reduced female gamete may function sexually or develop parthenogenetically to produce a functional embryo.
- Offspring from such crosses were therefore expected to have 18 Tr + 10 Zm, 36 Tr + 10 Zm, or 36 Tr + 0 Zm chromosomes, the last cytotype being maternal. These cytotypes were indeed produced, but some offspring with 36 Tr + 0 Zm chromosomes resembled true hybrids with 36 Tr + 10 Zm in phenotype.
- OMPI _ litter mates that were not genetically altered. Plant embryos were similarly transformed by Sayfer (1980, supra) and by Zhou et a].. (1983, supra) . Pollen may serve as a transfer vector of exogenous DNA (Hess, D. 1980. Investigations on the intra- and interspecific transfer of anthocyanin genes using pollen as vectors. Zeitschr. Dephysiol. Bd. 9J3: 321-337) .
- an object of this invention is to -provide a new and useful method for the transfer of foreign genes among flowering plants using the devel ⁇ oping male gametophyte as a transfer vector.
- a further object is to provide a male gametophyte system for the transfer of genes between maize cultivars.
- Yet another object is to provide a method for the inter-species transfer of genes between gamagr ss and maize using pollen as a vector.
- the male gametophyte of Angiosperms can effectively act as a transfer vector of exogenous genes.
- One of species selected as experimental material for gene transfer is maize (Zea mays) .
- Another experimental species is gamagrass (Tripsacum dactyloides) .
- the genetics of maize is fairly well understood; stocks of marker genes are available; and two genes have been cloned and are available for experimentation.
- pollen can be used as a transfer vector of foreign genes.
- the technique of the invention can be used with flowering plants (Angiosperms) for dicot-dicot or monocot-monocot genetic transfer. This genetic engineering techniques is so simple that it can be used in plant breeding with little refinement.
- the male gametophyte has two major advan ⁇ tages over the use of plasmids as transfer vectors.
- the most important advantage is efficiency. Germinating and incubating of pollen are readily achieved in the field, and self-pollination followed by selection are standard breeding tools for plant im ⁇ provement.
- the usefulness of this technique is further enhanced by the ability to transform zygotes, bypassing problems associated with generating func ⁇ tional plants from protoplasts. Data indicate that germinating pollen grains incubated with alien DNA affect fertilization, and induce directional mutations in the genome of the zygote which are expressed in the resulting offspring and their descendents.
- the technique of the invention can be used to consistently transfer selected marker or other desirable genes from a DNA donor plant to a recipient mother cultivar. However, the mechanisms involved in DNA uptake by the
- OMPI pollen tube transportation of alien DNA to the embryosac by the male gametophyte, and exogenous nucleotide incorporation into the genome of the zygote, as well as the genetics of transferred or mutated genes in the offspring of the recipient mother, are not yet well known.
- the method of the invention comprises the isolation of exogenous DNA from a selected donor plant, removal of mature pollen from the chosen donor plant, germination of this pollen in pollen- germinating liquid medium, incubation of germinating pollen with the foreign DNA, pollination of the mother plant with treated pollen, fertilization of the eggs within mature embryosacs of the mother plant, matura- tion of the ovary, obtain ent of seeds from mother plant and germination of same, and selection of transformed plants from the population obtained from said seeds.
- pollen from a compatible cultivar related to the mother plant- can be treated with exogenous genes and used to pollinate the respec ⁇ tive mother plant.
- OMPI OMPI :4321-4325
- PGM aqueous pollen-germi- nating medium
- PGM comprising carbohydrate, calcium, and boron
- Mature pollen is sprinkled onto a thin layer of PGM. Most of the pollen will begin to germinate within approximately 15 minutes.
- the previously-prepared donor DNA is added to the germinating pollen grains after approximately 10% of the pollen grains have begun germination.
- PGM is poured over germinating pollen and SSC buffer with DNA is added to give a final DNA concentration of approxi ⁇ mately 4-5 g/ml. Pollination is then initiated immediately. The PGM/DNA mixture is then transferred to the stigmatic surface of a receptive female inflorescence. Pollinated flowers are protected from foreign pollen by shoot bags until the PGM evaporates and then are covered with brown paper bags. Fer ⁇ tilization eventually occurs, but embryo and endosperm development is reduced. This effect is due to a reduction of functional pollen and sperm. It is known that several pollen grains are essential for the development of a seed (Klyucharena, M.V. 1962.
- IPO polar cells may come from the same or different male gametophyte as the sperm that fertilizes the egg.
- Pollen grains typically contain a tube nucleus and a generative cell.
- the haploid generative cell divides to form two sperm, the sperm travel down the pollen tube of a germinating pollen grain, traverses the stigmatic surface and the style of a mature female inflorescence, and eventually enters the ovary where one sperm combines in the fertilization process with the haploid egg cell.
- Gametic delivery results in deposition near the egg of two sperm, the vegetative nucleus and cytoplasm by each of several male gametophytes. This is accom ⁇ panied by loss of sperm and egg cell wall components.
- Gametic fusion results in the transmission of nearly the total sperm cytoplasm and organelle complement to the egg. The one sperm plays a role in the develop- ment of endosperm.
- OMPI normal stigma penetration and fertilization occurs, but embryo and endosperm development is greatly reduced. It is also suggested that a critical number of male gametophytes need to deposit their contents into the cytoplasm of the female gametophyte for successful seed development. Increase in quantity of treated pollen used in pollination increases the number of seeds produced.
- Results obtained using the method of the in- vention and maize demonstrate that exogenous genes are incorporated into the genome of the zygote. When and exactly how this occurs is unknown. If the DNA is carried to the female gametophyte by the sperm, incorporation may either be directly from the sperm -genome or indirectly from the sperm cytoplasm. It is also possible that DNA is transported as free frag ⁇ ments in the cytoplasm of the male gametophyte or sperm. Incorporation may then take place during division of the zygote to produce an embryo.
- the Zea mays cultivar B73 was selected for various experiments using the method of the invention.
- the female inflorescence of the standard maize inbred B73 consists of some 500 individual ovules arranged in 8 rows of paired spikelets around a central rachis. Each ovule has its own style with a feathery stigma, and contains a single female gametophyte. Sytles grow to over 15 cm long. Pollen grains are large, and it is possible to pick up individual grains with a fine, moist human hair for transportation to the stigma. Pollen germination and pollen tube growth down the stigma can be followed using fluorescence microscopy. Pollen germination is not severely affected by PGM or DNA incubation but pollen tube growth is retarded and few sperm reach the female gametophyte.
- Maize B73 is self-pollinated with pollen incubat ⁇ ed with DNA obtained from Tripsacum dactyloides or DNA from other maize genotypes carrying specific marker genes using the method of the invention.
- tripsacoid traits, as well as specific genes of the maize DNA donor transferable to maize through sexual transfer of exogenous DNA are similar to those incorporated into the maize genome through introgression (de Wet, J.M.J. et al. 1978.
- Nuclear DNA is extracted from seedling or mature leaves of the donor genotype using a combination of published techniques [J. Mol. Biol. 3:208-219 (1961); Plant Physiol. 6_6_: 1140-1143 (1980) ; Nucl. Acids Res. 8_: 4321-4325 (1980)], using a Trisbase buffer [0.2 M Trisbase (24.22g) , 0.2 M Disodium di-H 2 0 EDTA (74.45g), 4% SDS (40g) in one liter H_0] . Extracted DNA is purified as described in procedures cited above.
- Pollen germination and pollination after incu ⁇ bation with exogenous DNA are the most difficult aspects of the method of the invention using the male gametophyte as a carrier of foreign DNA.
- Pollen germinating medium PGM. comprises a ' solution of approximately 15% sucrose, 0.03% calcium nitrate and 0.01% boric acid in water. Maize, as well as the pollen of other plants, germinates well in the PGM. The base of a large petri dish is covered with a thin layer of pollen germinating medium and sprinkled with mature pollen of the recipient mother. In experiments with maize approximately 27mm of pollen is used for each set of pollinations.
- pollen from a single anther is sufficient to insure seed set.
- pollen starts to germinate within 3 to 10 minutes.
- Approximately 60 to 90% of the pollen is germinated after 15 minutes.
- DNA is obtained from donor plants according to the method of Example 1. Incubation of pollen with exogenous DNA begins after approximately 10% of pollen grains show visible signs of germination. Pollen tubes longer than the diameter of the grains break . during pollination.
- Nine ml of PGM is poured over the germinated pollen and 1 ml of buffer with DNA is added, to obtain a DNA concentration of 4-5 g/ml. Pollination is initiated immediately.
- the 11 ml of solution thus prepared is suffi ⁇ cient, for example, to pollinate three female inflorescences of corn each with approximately 300 to 500 ovules. Pollinating an ear of corn requires approximately one minute. Stigmas are cut to the tip of the cob twelve hours before pollination. The PGM with DNA and pollen is transferred to stigmas with a pasteur pipet. Pollinated ears are protected from foreign pollen by shoot bags until PGM evaporates, and they are then covered by standard brown paper bags. , PGM takes approximately 15 minutes to evaporate. Incubation continues until the developing pollen tube enters the stigma, or until the DNA is destroyed on the stigmas. Pollen tube growth continues during incubation with DNA, and penetration of stigmas proceeds normally. Fertilization takes place, but embryo and endosperm development is greatly reduced. This is believed due to a reduction of functional pollen and sperm. Resultant seeds are then screened for transposed genetic characteristics. Similar procedures are adapted for other experimental plants.
- Maize inbreds B73, DP194 and Zm 1974 produce an average of 425, 368 and 572 caryopses respectively per female inflorescence when they are self-pollinated.
- Various treatments of mature pollen of B73 are per ⁇ formed using the methods described in Example 1 and 2. Results of these experiments are presented in Table I below:
- Zm Zea mays (domesticated maize) ; Z ⁇ mays subsp. parviglumis
- Percentage seedset is negatively correlated with successful germination. Ears were classified into those with 1 to 10, 11 to 20, 21 to 30 and 31 to 40 caryopses. Seedset classes were planted separately and percentage germination recorded. Results of this experiment are presented in Table III below.
- Seedset of 31-40 caryopses per ear resulted in 3.5% germination, of 21-30 caryopses in 31-34% germination, of 11-20 caryopses in 32-43% germination and 1-10 caryopses in 39-63% germination.
- Poor germination from ears with relatively high seedset is due to reduced amounts of endosperm in the small caryopses in relation to caryopses from ears with low seedset.
- Germination is essentially perfect when caryopses are planted in sterile vermiculite and kept in a growth chamber at 75 F.
- Inbred Zea mays DP194 is highly susceptible to common leaf-rust caused by Puccinia sorghi.
- the DNA donor, Zea mays B14-A is resistant to rust. Resistance is dominant over susceptibility, and the genotype of B14-A used as DNA donor was homozygous resistant (Rpl /Rpl) .
- Rpl /Rpl homozygous resistant
- Seedlings are transplanted when the second leaf appears, inoculated with rust starting at the 4-leaf stage. Field germination of the same treatment was 73%. DP194 control planted in vermiculite produced 90% germination within six days, and 100% germination by the eleventh day. These data show that three out of 103 seedlings (No. 74, 102, 103) showed complete resis ⁇ tance after repeated inoculations with rust spores at the four-leaf and later stages. All other seedlings showed disease symptoms within five days after inocu ⁇ lation. Five out of 103 seedlings (No.
- each inflorescence branch is composed of solitary female spikelets, alternately arranged in cavities of an indurated rachis, with the paired male spikelets arranged on the same rachis above the female section.
- Sixteen plants were characterized by soli ⁇ tary female spikelets on tassel branches below the male spikelets.
- Female spikelets in the tassel do " occur in maize as a rare mutation, but they are paired as is typical in the female inflorescence of maize. Five of these robust plants tillered to produce 3 to 6 fertile culms.
- Peduncles of female inflorescences in Zml974 vary from 13 to 57 cm in length.
- trans- formed offspring were three plants with peduncle lengths of 87 cm, 102 cm and 110 cm. Two of these plants tillered while the other was characterized by a single culm.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Procédé de transfert de gènes exogènes dans des plantes à fleurs. L'ADN du donneur est isolé et incubé avec le pollen dans un milieu de germination de pollen. Ce pollen est ensuite utilisé pour polliniser une plante compatible, et les graines sont recueillies. Les rejetons présentent des traits définis par l'ADN exogène.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US54826083A | 1983-11-03 | 1983-11-03 | |
US548260 | 1983-11-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0160692A1 true EP0160692A1 (fr) | 1985-11-13 |
Family
ID=24188063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84904249A Withdrawn EP0160692A1 (fr) | 1983-11-03 | 1984-10-31 | Procede de transfert de genes exogenes dans des plantes en utilisant le pollen comme vecteur |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0160692A1 (fr) |
WO (1) | WO1985001856A1 (fr) |
Families Citing this family (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3585638D1 (de) * | 1984-05-11 | 1992-04-23 | Ciba Geigy Ag | Transformation von pflanzenerbgut. |
DE3636991A1 (de) * | 1986-03-03 | 1987-09-24 | Transgene Gmbh | Verfahren zur uebertragung organischer und/oder anorganischer substanzen auf ei- und/oder somazellen von tieren sowie entsprechende zusammensetzungen |
LU86372A1 (fr) * | 1986-03-26 | 1987-11-11 | Cen Centre Energie Nucleaire | Procede de traitement de materiel vegetal afin d'otenir l'expression d'au moins un gene,et materiel vegetal dans lequel ce gene s'exprime |
IL84459A (en) * | 1986-12-05 | 1993-07-08 | Agracetus | Apparatus and method for the injection of carrier particles carrying genetic material into living cells |
US5120657A (en) * | 1986-12-05 | 1992-06-09 | Agracetus, Inc. | Apparatus for genetic transformation |
EP0275069A3 (fr) * | 1987-01-13 | 1990-04-25 | DNA PLANT TECHNOLOGY CORPORATION (under the laws of the state of Delaware) | Transformation génique dans les plantes utilisant le pollen |
US5049500A (en) * | 1987-01-13 | 1991-09-17 | E. I. Du Pont De Nemours | Pollen-mediated gene transformation in plants |
IL82153A (en) * | 1987-04-09 | 1991-12-15 | Yissum Res Dev Co | Process for introducing genes into plants |
US5371003A (en) * | 1987-05-05 | 1994-12-06 | Sandoz Ltd. | Electrotransformation process |
PT87394B (pt) * | 1987-05-05 | 1992-09-30 | Sandoz Sa | Processo para a transformacao de tecidos vegetais |
ES2121803T3 (es) * | 1987-05-20 | 1998-12-16 | Novartis Ag | Plantas de zea mays y plantas transgenicas de zea mays generadas a partir de protoplastos o celulas derivadas de protoplastos. |
US5350689A (en) * | 1987-05-20 | 1994-09-27 | Ciba-Geigy Corporation | Zea mays plants and transgenic Zea mays plants regenerated from protoplasts or protoplast-derived cells |
CA1327173C (fr) | 1987-07-21 | 1994-02-22 | Erwin Heberle-Bors | Methode de transfert de genes dans des plantes |
US5629183A (en) * | 1989-05-08 | 1997-05-13 | The United States Of America As Represented By The Secretary Of Agriculture | Plant transformation by gene transfer into pollen |
US5550318A (en) * | 1990-04-17 | 1996-08-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US6946587B1 (en) | 1990-01-22 | 2005-09-20 | Dekalb Genetics Corporation | Method for preparing fertile transgenic corn plants |
US5484956A (en) * | 1990-01-22 | 1996-01-16 | Dekalb Genetics Corporation | Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin |
JP3209744B2 (ja) * | 1990-01-22 | 2001-09-17 | デカルブ・ジェネティクス・コーポレーション | 結実能力のある遺伝子変換コーン |
US6329574B1 (en) | 1990-01-22 | 2001-12-11 | Dekalb Genetics Corporation | High lysine fertile transgenic corn plants |
US5149655A (en) * | 1990-06-21 | 1992-09-22 | Agracetus, Inc. | Apparatus for genetic transformation |
AU8433091A (en) * | 1990-08-21 | 1992-03-17 | Florigene Bv | Method for producing transformed chrysanthemum plants |
US6326527B1 (en) | 1993-08-25 | 2001-12-04 | Dekalb Genetics Corporation | Method for altering the nutritional content of plant seed |
US5780709A (en) * | 1993-08-25 | 1998-07-14 | Dekalb Genetics Corporation | Transgenic maize with increased mannitol content |
US5795753A (en) | 1994-12-08 | 1998-08-18 | Pioneer Hi-Bred International Inc. | Reversible nuclear genetic system for male sterility in transgenic plants |
US5750868A (en) * | 1994-12-08 | 1998-05-12 | Pioneer Hi-Bred International, Inc. | Reversible nuclear genetic system for male sterility in transgenic plants |
EP0757102A1 (fr) | 1995-08-04 | 1997-02-05 | Plant Genetic Systems N.V. | Transformation génétique utilisant un inhibiteur de PARP |
US6084164A (en) | 1996-03-25 | 2000-07-04 | Pioneer Hi-Bred International, Inc. | Sunflower seeds with enhanced saturated fatty acid contents |
AU743305C (en) | 1997-01-17 | 2006-03-30 | Maxygen, Inc. | Evolution of whole cells and organisms by recursive sequence recombination |
US5929300A (en) * | 1997-07-15 | 1999-07-27 | The United States Of America As Represented By The Secretary Of Agriculture | Pollen-based transformation system using solid media |
WO1999053050A1 (fr) | 1998-04-08 | 1999-10-21 | Commonwealth Scientific And Industrial Research Organisation | Procedes et moyens d'obtention de phenotypes modifies |
US20050086718A1 (en) | 1999-03-23 | 2005-04-21 | Mendel Biotechnology, Inc. | Plant transcriptional regulators of abiotic stress |
US7897843B2 (en) | 1999-03-23 | 2011-03-01 | Mendel Biotechnology, Inc. | Transcriptional regulation of plant biomass and abiotic stress tolerance |
EP1950306A1 (fr) | 1999-11-17 | 2008-07-30 | Mendel Biotechnology, Inc. | Gènes de tolérance au stress environnemental |
CA2390597A1 (fr) | 1999-11-17 | 2001-05-25 | Mendel Biotechnology, Inc. | Genes de resistance aux elements pathogenes |
EP2045262B1 (fr) | 1999-12-28 | 2013-05-29 | Bayer CropScience NV | Protéines insecticides provenant de Bacillus thuringiensis |
EP1406483A4 (fr) | 2000-08-22 | 2005-05-25 | Mendel Biotechnology Inc | Genes servant a modifier des caracteristiques de plantes iv |
US7517975B2 (en) | 2000-09-26 | 2009-04-14 | Pioneer Hi-Bred International, Inc. | Nucleotide sequences mediating male fertility and method of using same |
EP1988099B1 (fr) | 2001-01-09 | 2012-11-14 | Bayer CropScience NV | Protéines insecticides de Bacillus thuringiensis |
DE10212892A1 (de) | 2002-03-20 | 2003-10-09 | Basf Plant Science Gmbh | Konstrukte und Verfahren zur Regulation der Genexpression |
EP2360179A1 (fr) | 2002-03-22 | 2011-08-24 | Bayer BioScience N.V. | Nouvelles protéines insecticides à base de Bacillus thuringiensis |
EP2036984B1 (fr) | 2002-07-26 | 2012-02-22 | BASF Plant Science GmbH | Reversion de l'effet sélectif négatif d'un protéin de marquage comme procédure de sélection |
DK1546336T3 (da) | 2002-09-18 | 2012-04-10 | Mendel Biotechnology Inc | Polynukleotider og polypeptider i planter. |
WO2004081184A2 (fr) | 2003-03-07 | 2004-09-23 | Seminis Vegetable Seeds, Inc. | Transformation sans marqueur |
IL157538A0 (en) | 2003-08-21 | 2004-03-28 | Bar Ilan Res & Dev Company Ltd | Plant resistant to cytoplasm-feeding parasites |
CA2604807C (fr) | 2005-04-19 | 2018-06-12 | Basf Plant Science Gmbh | Methodes ameliorees controlant une expression genique |
CA2625061A1 (fr) | 2005-07-08 | 2007-01-18 | Universidad Nacional Autonoma De Mexico | Nouvelles proteines bacteriennes avec activite pesticide |
AU2006298844B2 (en) | 2005-09-20 | 2012-01-12 | Basf Plant Science Gmbh | Methods for controlling gene expression using ta-siRAN |
PL1999141T3 (pl) | 2006-03-21 | 2011-10-31 | Bayer Cropscience Nv | Nowe geny kodujące białka owadobójcze |
EP2041284B1 (fr) | 2006-07-05 | 2021-05-26 | Arkansas State University Research and Development Institute | Production de stilbènes et de leurs dérivés dans des cultures de racines végétales chevelues |
CA2657843A1 (fr) | 2006-07-19 | 2008-01-24 | The Regents Of The University Of California | Expression de la superoxyde dismutase vegetale resistant a une regulation du micro-arn |
AU2007289109B2 (en) | 2006-08-31 | 2012-11-15 | Monsanto Technology Llc. | Methods for rapidly transforming monocots |
CA2674499A1 (fr) | 2007-02-06 | 2008-08-14 | Basf Plant Science Gmbh | Utilisation de genes de l'alanine racemase en vue de conferer aux plantes une resistance aux nematodes |
US20100011463A1 (en) | 2007-02-06 | 2010-01-14 | Basf Plant Science Gmbh | Compositions and Methods Using RNA Interference for Control of Nematodes |
ES2383716T3 (es) | 2007-02-08 | 2012-06-25 | Basf Plant Science Gmbh | Composiciones y métodos que utilizan ARN de interferencia de un gen del tipo OPR3 para el control de nemátodos |
BRPI0807204A2 (pt) | 2007-02-09 | 2014-06-03 | Basf Plant Science Gmbh | Molécula de dsrna, coleção de moléculas de dsrna, planta transgênica, e, método para preparar uma planta transgênica |
CN101679995A (zh) | 2007-03-15 | 2010-03-24 | 巴斯福植物科学有限公司 | 线虫几丁质酶基因用于控制植物寄生性线虫的用途 |
US9994621B2 (en) | 2007-06-01 | 2018-06-12 | Bayer Cropscience N.V. | Genes encoding insecticidal proteins |
WO2009020458A1 (fr) | 2007-08-03 | 2009-02-12 | Pioneer Hi-Bred International, Inc. | Séquences de nucléotides de msca1 affectant la fertilité mâle des plantes et leur procédé d'utilisation |
CN101952445A (zh) | 2007-12-21 | 2011-01-19 | 关键基因公司 | 毛状体特异性启动子 |
US8367899B2 (en) | 2007-12-31 | 2013-02-05 | E I Du Pont De Neumours And Company | Gray leaf spot tolerant maize and methods of production |
CN101280315B (zh) | 2008-05-20 | 2010-09-01 | 中国农业科学院油料作物研究所 | 毛白杨木质素单体合成基因4-cl及应用 |
CN102124025A (zh) | 2008-08-27 | 2011-07-13 | 巴斯夫植物科学有限公司 | 抗线虫的转基因植物 |
US20100083400A1 (en) | 2008-09-30 | 2010-04-01 | Kindiger Bryan K | Lolium Multiflorum Line Inducing Genome Loss |
EP2527450A1 (fr) | 2008-12-11 | 2012-11-28 | BASF Plant Science GmbH | Résistance de nématode spécifique aux racines de plante |
WO2010106163A1 (fr) | 2009-03-20 | 2010-09-23 | Basf Plant Science Company Gmbh | Plantes transgéniques résistantes aux nématodes |
ES2879599T3 (es) | 2009-06-08 | 2021-11-22 | Nunhems Bv | Plantas tolerantes a la sequía |
JP2012531216A (ja) | 2009-07-01 | 2012-12-10 | バイエル・クロップサイエンス・エヌ・ヴェー | グリホサート耐性が増強された植物を得るための方法および手段 |
CA2770572A1 (fr) | 2009-08-25 | 2011-03-03 | Basf Plant Science Company Gmbh | Plantes transgeniques resistantes aux nematodes |
WO2011069953A1 (fr) | 2009-12-09 | 2011-06-16 | Basf Plant Science Company Gmbh | Méthode d'augmentation de la résistance aux champignons de végétaux par silençage du gène smt1 des champignons |
AU2010343143A1 (en) | 2009-12-28 | 2012-06-28 | Pioneer Hi-Bred International, Inc. | Sorghum fertility restorer genotypes and methods of marker-assisted selection |
BR112012018616A2 (pt) | 2010-01-26 | 2017-01-10 | Pioneer Hi Bred Int | marcador de polinucleotídeo, polinucleotídeo isolado, polipeptídeo transportador abc isolado, planta, célula, semente, método para seleção de uma planta ou germoplasma de soja, método de introgressão de um alelo de resistência a herbicida em uma planta de soja, método para conferir tolerância ou tolerância melhorada a um ou mais herbicidas, método para controlar de modo seletivo plantas daninhas em um campo contendo uma cultura |
WO2011104153A1 (fr) | 2010-02-23 | 2011-09-01 | Basf Plant Science Company Gmbh | Plantes transgéniques résistantes aux nématodes |
WO2011147968A1 (fr) | 2010-05-28 | 2011-12-01 | Nunhems B.V. | Plantes dotées d'une taille de fruit accrue |
EP2590996B1 (fr) | 2010-07-08 | 2016-05-25 | Bayer CropScience NV | Protéine transportrice de glucosinolate et ses utilisations |
WO2012074868A2 (fr) | 2010-12-03 | 2012-06-07 | Ms Technologies, Llc | Expression optimisée de molécules d'acide nucléique codant pour la résistance au glyphosate dans cellules végétales |
US20140026256A1 (en) | 2010-12-20 | 2014-01-23 | Basf Plant Science Company Gmbh | Nematode-Resistant Transgenic Plants |
EA201390918A1 (ru) | 2010-12-22 | 2013-11-29 | Пайонир Хай-Бред Интернэшнл, Инк. | Qtl, ассоциированные с полевой устойчивостью всего растения к sclerotinia, и способы ее идентификации |
US8648230B2 (en) | 2011-03-18 | 2014-02-11 | Ms Technologies, Llc | Regulatory regions preferentially expressing in non-pollen plant tissue |
EP2535416A1 (fr) | 2011-05-24 | 2012-12-19 | BASF Plant Science Company GmbH | Développement d'une pomme de terre résistante au phytophthora avec rendement amélioré |
BR112013030724B1 (pt) | 2011-05-31 | 2020-10-27 | Keygene N.V | gene quimérico, vetor, célula hospedeira, uso de uma molécula de ácido nucleico e método para produzir uma planta transgênica possuindo resistência almentada à praga de inseto |
US20150059018A1 (en) | 2011-10-19 | 2015-02-26 | Keygene N.V. | Methods and compositions for producing drimenol |
WO2013134651A1 (fr) | 2012-03-09 | 2013-09-12 | Board Of Trustees Of Michigan State University | Procédé d'amélioration de la tolérance à la sécheresse des plantes par l'expression de ndr1 |
CA2867535A1 (fr) | 2012-03-20 | 2013-09-29 | Dow Agrosciences Llc | Marqueurs moleculaires de basse teneur d'acide palmitique chez le tournesol (helianthus annus), et leurs procedes d'utilisation |
RU2014151361A (ru) | 2012-05-18 | 2016-07-10 | Пайонир Хай-Бред Интернэшнл, Инк. | Последовательности индуцируемого промотора для регулируемой экспрессии и способы применения |
US9598707B2 (en) | 2012-11-26 | 2017-03-21 | Arkansas State University-Jonesboro | Method to increase the yield of products in plant material |
US10462994B2 (en) | 2013-01-29 | 2019-11-05 | Basf Plant Science Company Gmbh | Fungal resistant plants expressing HCP7 |
BR112015017345A2 (pt) | 2013-01-29 | 2017-11-21 | Basf Plant Science Co Gmbh | método para aumentar a resistência aos fungos em uma planta, construção de vetor recombinante, planta transgênica, método para produção de planta transgência, uso de qualquer um dos ácidos nucleicos exógenos, parte que pode ser colhida de uma planta transgênica, produto derivado de uma planta, método para produção de um produto e método para cultivar uma planta resistente a fungos |
CA2891424A1 (fr) | 2013-01-29 | 2014-08-07 | Basf Plant Science Company Gmbh | Plantes resistantes aux champignons exprimant ein2 |
US9783817B2 (en) | 2013-03-04 | 2017-10-10 | Arkansas State University | Methods of expressing and detecting activity of expansin in plant cells |
WO2014135682A1 (fr) | 2013-03-08 | 2014-09-12 | Basf Plant Science Company Gmbh | Végétaux résistants aux pathogènes fongiques exprimant mybtf |
WO2014142647A1 (fr) | 2013-03-14 | 2014-09-18 | Wageningen Universiteit | Souches fongiques ayant une production améliorée d'acide citrique et d'acide itaconique |
US9714429B2 (en) | 2014-01-28 | 2017-07-25 | Arkansas State University | Regulatory sequence of cupin family gene |
WO2015193653A1 (fr) | 2014-06-16 | 2015-12-23 | Consejo Nacional De Investigaciones Cientificas Y Tecnicas | Gènes et protéines chimériques de résistance à l'oxydation et plantes transgéniques les comprenant |
BR112017016688B1 (pt) | 2015-02-04 | 2024-01-23 | Basf Plant Science Company Gmbh | Método para aumentar a resistência fúngica, método para a produção de um produto e método para criar uma planta resistente a fungos |
JP6978152B2 (ja) | 2015-09-04 | 2021-12-08 | キージーン ナムローゼ フェンノートシャップ | 複相胞子生殖遺伝子 |
WO2017139544A1 (fr) | 2016-02-11 | 2017-08-17 | Pioneer Hi-Bred International, Inc. | Qtl associés à l'identification de la résistance à la verse dans le soja et procédés permettant l'identification |
WO2017184500A1 (fr) | 2016-04-18 | 2017-10-26 | Bloomsburg University of Pennsylvania | Compositions et procédés d'administration de molécules à des plantes |
EP3054014A3 (fr) | 2016-05-10 | 2016-11-23 | BASF Plant Science Company GmbH | Utilisation d'un fongicide sur des plantes transgéniques. |
DK3472187T3 (da) | 2016-06-20 | 2022-04-25 | Univ Louisiana State | Grønalgebicarbonat-transporter og anvendelser deraf |
CN113166736A (zh) | 2018-08-13 | 2021-07-23 | 奥尔胡斯大学 | 具有改变的激动剂特异性和亲和性的基因改变的LysM受体 |
AU2019321028A1 (en) | 2018-08-13 | 2021-03-04 | Aarhus Universitet | Genetically altered plants expressing heterologous receptors that recognize lipo-chitooligosaccharides |
KR20210138563A (ko) | 2018-12-06 | 2021-11-19 | 바게닝겐 유니버시테이트 | 식물 nin-유전자를 사이토킨에 반응성이 되도록 유전적으로 변경시키는 방법 |
BR112021018680A2 (pt) | 2019-03-21 | 2021-11-23 | Univ Of Essex Enterprises Limited | Métodos para aumentar a biomassa em uma planta através da estimulação da regeneração de rubp e transporte de elétrons |
AU2020285344A1 (en) | 2019-05-29 | 2021-11-11 | Keygene N.V. | Gene for parthenogenesis |
CN114667292A (zh) | 2019-07-11 | 2022-06-24 | 加利福尼亚大学董事会 | 用生长调节因子(grf)、grf相互作用因子(gif)或嵌合grf-gif改进植物再生的方法 |
GB201911068D0 (en) | 2019-08-02 | 2019-09-18 | Univ Edinburgh | Modified higher plants |
CA3145892A1 (fr) | 2019-08-02 | 2021-02-11 | Martin C. JONIKAS | Motifs proteiques de liaison a rubisco et leurs utilisations |
BR112022002923A2 (pt) | 2019-08-19 | 2022-05-10 | Univ Aarhus | Receptores de exopolissacarídeo modificados para reconhecer e estruturar microbiota |
EP4110928A1 (fr) | 2020-02-28 | 2023-01-04 | Cambridge Enterprise Limited | Méthodes, plantes et compositions pour surmonter la suppression des nutriments de la symbiose mycorhizienne |
WO2021233904A1 (fr) | 2020-05-19 | 2021-11-25 | Aarhus Universitet | Motifs de récepteur lysm |
AU2021363100A1 (en) | 2020-10-13 | 2023-05-25 | Keygene N.V. | Modified promoter of a parthenogenesis gene |
EP4347845A2 (fr) | 2021-05-26 | 2024-04-10 | The Board of Trustees of the University of Illinois | Plantes en c4 à efficacité photosynthétique accrue |
KR20240034182A (ko) | 2021-06-03 | 2024-03-13 | 마젠 애니멀 헬스 인코포레이티드 | 사이토카인 수준을 변경하고 갓 태어난 돼지에게 수동 면역을 제공하기 위한 코로나바이러스 스파이크 단백질의 경구 투여 |
EP4508204A1 (fr) | 2022-04-11 | 2025-02-19 | The Regents of University of California | Procédés de criblage de gain de plante de mutations de fonction et compositions associées |
AR131388A1 (es) | 2022-12-15 | 2025-03-12 | Univ Aarhus | Activación sintética de receptores transmembrana multiméricos |
WO2024161012A2 (fr) | 2023-02-03 | 2024-08-08 | Aarhus Universitet | Amélioration de la fixation de l'azote à l'aide du modèle fun |
WO2024189170A1 (fr) | 2023-03-14 | 2024-09-19 | Aarhus Universitet | Kinases du récepteur nfr1 génétiquement modifiées |
WO2024189171A1 (fr) | 2023-03-14 | 2024-09-19 | Aarhus Universitet | Kinases du récepteur nfr5 génétiquement modifiées |
WO2024233373A1 (fr) | 2023-05-05 | 2024-11-14 | The Board Of Trustees Of The University Of Illinois | Cadres de lecture ouverts en amont modifiés pour moduler la relaxation du npq |
US20240409951A1 (en) | 2023-06-09 | 2024-12-12 | Aarhus Universitet | Symrk phosphorylation for root nodule organogenesis |
US20250092418A1 (en) | 2023-08-28 | 2025-03-20 | Niab | Methods of genetically altering a plant nin-gene to be responsive to auxin |
-
1984
- 1984-10-31 EP EP84904249A patent/EP0160692A1/fr not_active Withdrawn
- 1984-10-31 WO PCT/US1984/001774 patent/WO1985001856A1/fr unknown
Non-Patent Citations (1)
Title |
---|
See references of WO8501856A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1985001856A1 (fr) | 1985-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0160692A1 (fr) | Procede de transfert de genes exogenes dans des plantes en utilisant le pollen comme vecteur | |
CN103602657B (zh) | Eat1基因的应用及恢复eat1基因缺失导致水稻雄性不育的方法 | |
JP2021520223A (ja) | 植物ヘテロシスの利用方法 | |
WO2020248969A1 (fr) | Plante de lignée de maintien de stérilité mâle et son utilisation | |
WO2016054236A1 (fr) | Sauvetage d'embryons in situ et récupération d'hybrides non génétiquement modifiés à partir de croisements intergénétiques | |
JPH0646697A (ja) | 外部から誘導し得るプロモーター配列を用いた小胞子形成の制御 | |
CN115843674A (zh) | 玉米单倍体诱导系的选育方法及其应用 | |
Rose et al. | The transfer of cytoplasmic and nuclear genomes by somatic hybridisation | |
WO2020213728A1 (fr) | Plante de brassica rapa à stérilité mâle cytoplasmique dont la croissance est améliorée | |
Wenzel et al. | New strategy to tackle breeding problems of potato | |
US12137650B2 (en) | Methods for promoting production of viable seeds from apomictic guayule plants | |
WO2024108657A1 (fr) | Gène de stérilité mâle récessif nucléaire photosensible ghpsm5 et son application dans le coton | |
US6583335B1 (en) | Direct transformation of higher plants through pollen tube pathway | |
Kiyoharu | Tissue culture and genetic engineering in rice | |
Mujeeb-Kazi et al. | A simplified and effective protocol for production of bread wheat haploids (n= 3x= 21, ABD) with some application areas in wheat improvement | |
CN105671055B (zh) | 水稻生殖发育基因mmd2的应用及恢复水稻雄性不育的方法 | |
Li et al. | Construction of a novel female sterility system for hybrid rice | |
CN117296710B (zh) | 一种快速创制细胞质雄性不育系的方法 | |
Brar et al. | Application of biotechnology in hybrid rice | |
JPH04505553A (ja) | 雄性発生を受けるトウモロコシの能力を高めるための方法及びそれから生成される生成物 | |
CN114591967B (zh) | 玉米tcp基因在杂交育种中的应用 | |
Al-Ahmad et al. | Infertile interspecific hybrids between transgenically mitigated Nicotiana tabacum and Nicotiana sylvestris did not backcross to N. sylvestris | |
JP2002534102A (ja) | タバコ属種間雑種およびその後代 | |
US20240164270A1 (en) | Watermelon gene conferring a high number of male flowers | |
CN107964550A (zh) | 一种纯合转基因油菜的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB LI LU NL SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19851008 |