[go: up one dir, main page]

EP0160692A1 - Procede de transfert de genes exogenes dans des plantes en utilisant le pollen comme vecteur - Google Patents

Procede de transfert de genes exogenes dans des plantes en utilisant le pollen comme vecteur

Info

Publication number
EP0160692A1
EP0160692A1 EP84904249A EP84904249A EP0160692A1 EP 0160692 A1 EP0160692 A1 EP 0160692A1 EP 84904249 A EP84904249 A EP 84904249A EP 84904249 A EP84904249 A EP 84904249A EP 0160692 A1 EP0160692 A1 EP 0160692A1
Authority
EP
European Patent Office
Prior art keywords
pollen
dna
plant
plants
donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP84904249A
Other languages
German (de)
English (en)
Inventor
Johannes Martenis Jacob De Wet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0160692A1 publication Critical patent/EP0160692A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector

Definitions

  • the invention herein described relates to a method for the transfer of exogenous genes in Angiosperms from a selected donor plant to a host plant.
  • the method involves incubation of pollen from the parent plant with foreign DNA from the donor.
  • the host plant is then pollinated with treated pollen and normal fertilization and development of seed occur.
  • a self-pollination system is preferred.
  • Transformed offspring generated from seed express genetic traits characteristic of the foreign DNA donor.
  • Agrobacterium tumefaciens and the Ti plasmid holds promise, but this system is limited to dicotyledonous plants.
  • A. tumefaciens does not infect monocotyledonous plants. This plant group includes grasses and cereals, and indeed most of the world's important food crops [Sci. Amer., 248(6) ;59, 1983].
  • Tissue culture techniques are also being investigated. Many dicotyledonous plants can be quite easily regen- erated into intact plants from undifferentiated tis ⁇ sue-culture cells.
  • the male gametophyte is a complex structure.
  • the male gametophyte (pollen grain) of maize consists of a tube nucleus and a generative cell. Soon after germination the pollen tube protrudes from the pore of the pollen grain and the generative cell divides to produce two sperm.
  • the pollen tube then enters the stigma, grows down the style, and enters the female gametophyte where it disposes of its contents into the cytoplasm of the embryosac [Pfahler, P.L. 1978. Biology of the male gametophyte. Iri D.B. Walden (ed.). Maize breeding and genetics. John Wiley and Sons, New York, pp. 517-530; Earle, E. 1982. Gametogenesis, fertilization and embryo development. I I H. Smith and D. Grierson (eds.). Molecular biology of plant development. Bot. Monogs. 1 : 285-305. Univ. Calif. Press, Berkeley; and Linskens, H.F. 1983.
  • Mutations and transformations achieved through sexual transfer of exogenous DNA are phenotypically similar to expressions of known mutant loci. If actual gene transfer does take place, it is assumed that incorporation into the genome of the zygote will be at specific sites on one or more chromosomes (Rubin, G.M. , and A,C, Spradling. 1982. Genetic transformation with transposable vectors. Sci. 218: 348-353; Spradling, A.C., and G.M. Rubin. 1982. Transposition of cloned P elements into
  • Transformed plants either segregate in a
  • OMPI phenotypes and whether loci coding for these genet ⁇ ically mutated phenotypes are located on the expected chromosomes and expected positions on chromosomes arms.
  • cultivated maize Zea mays
  • arose through natural crossing perhaps first with gamagrass (Tripsacum dactyloides) .
  • Hybrids with 36 Tripsacum (Tr) + 10 Zea (Zm) chromosomes are characterized mostly by 18 Tr bivalents and 10 Zm univalents during meiotic prophase [de Wet, J.M.J. and J.R. Harlan. 1974. Tripsacum - maize interaction: A novel cytogenetic system. Genetics 7_8. 493-502; de Wet, J.M.J. et al. 1982. Systematics of . Tripsacum dactyloides (Gramineae) . Amer. J. Bot. 69.* 1251-1257] .
  • Tripsacoid maize genotypes so produced carry several traits new to the genome of maize, and are highly desirable in maize improvement (Bergquist, R.L. 1981.
  • Diploid Tripsacum taxa produce functional female gametes that are haploid (18 chromosomes) or diploid (36 chromosomes) .
  • the ⁇ ytologically non-reduced female gamete may function sexually or develop parthenogenetically to produce a functional embryo.
  • Offspring from such crosses were therefore expected to have 18 Tr + 10 Zm, 36 Tr + 10 Zm, or 36 Tr + 0 Zm chromosomes, the last cytotype being maternal. These cytotypes were indeed produced, but some offspring with 36 Tr + 0 Zm chromosomes resembled true hybrids with 36 Tr + 10 Zm in phenotype.
  • OMPI _ litter mates that were not genetically altered. Plant embryos were similarly transformed by Sayfer (1980, supra) and by Zhou et a].. (1983, supra) . Pollen may serve as a transfer vector of exogenous DNA (Hess, D. 1980. Investigations on the intra- and interspecific transfer of anthocyanin genes using pollen as vectors. Zeitschr. Dephysiol. Bd. 9J3: 321-337) .
  • an object of this invention is to -provide a new and useful method for the transfer of foreign genes among flowering plants using the devel ⁇ oping male gametophyte as a transfer vector.
  • a further object is to provide a male gametophyte system for the transfer of genes between maize cultivars.
  • Yet another object is to provide a method for the inter-species transfer of genes between gamagr ss and maize using pollen as a vector.
  • the male gametophyte of Angiosperms can effectively act as a transfer vector of exogenous genes.
  • One of species selected as experimental material for gene transfer is maize (Zea mays) .
  • Another experimental species is gamagrass (Tripsacum dactyloides) .
  • the genetics of maize is fairly well understood; stocks of marker genes are available; and two genes have been cloned and are available for experimentation.
  • pollen can be used as a transfer vector of foreign genes.
  • the technique of the invention can be used with flowering plants (Angiosperms) for dicot-dicot or monocot-monocot genetic transfer. This genetic engineering techniques is so simple that it can be used in plant breeding with little refinement.
  • the male gametophyte has two major advan ⁇ tages over the use of plasmids as transfer vectors.
  • the most important advantage is efficiency. Germinating and incubating of pollen are readily achieved in the field, and self-pollination followed by selection are standard breeding tools for plant im ⁇ provement.
  • the usefulness of this technique is further enhanced by the ability to transform zygotes, bypassing problems associated with generating func ⁇ tional plants from protoplasts. Data indicate that germinating pollen grains incubated with alien DNA affect fertilization, and induce directional mutations in the genome of the zygote which are expressed in the resulting offspring and their descendents.
  • the technique of the invention can be used to consistently transfer selected marker or other desirable genes from a DNA donor plant to a recipient mother cultivar. However, the mechanisms involved in DNA uptake by the
  • OMPI pollen tube transportation of alien DNA to the embryosac by the male gametophyte, and exogenous nucleotide incorporation into the genome of the zygote, as well as the genetics of transferred or mutated genes in the offspring of the recipient mother, are not yet well known.
  • the method of the invention comprises the isolation of exogenous DNA from a selected donor plant, removal of mature pollen from the chosen donor plant, germination of this pollen in pollen- germinating liquid medium, incubation of germinating pollen with the foreign DNA, pollination of the mother plant with treated pollen, fertilization of the eggs within mature embryosacs of the mother plant, matura- tion of the ovary, obtain ent of seeds from mother plant and germination of same, and selection of transformed plants from the population obtained from said seeds.
  • pollen from a compatible cultivar related to the mother plant- can be treated with exogenous genes and used to pollinate the respec ⁇ tive mother plant.
  • OMPI OMPI :4321-4325
  • PGM aqueous pollen-germi- nating medium
  • PGM comprising carbohydrate, calcium, and boron
  • Mature pollen is sprinkled onto a thin layer of PGM. Most of the pollen will begin to germinate within approximately 15 minutes.
  • the previously-prepared donor DNA is added to the germinating pollen grains after approximately 10% of the pollen grains have begun germination.
  • PGM is poured over germinating pollen and SSC buffer with DNA is added to give a final DNA concentration of approxi ⁇ mately 4-5 g/ml. Pollination is then initiated immediately. The PGM/DNA mixture is then transferred to the stigmatic surface of a receptive female inflorescence. Pollinated flowers are protected from foreign pollen by shoot bags until the PGM evaporates and then are covered with brown paper bags. Fer ⁇ tilization eventually occurs, but embryo and endosperm development is reduced. This effect is due to a reduction of functional pollen and sperm. It is known that several pollen grains are essential for the development of a seed (Klyucharena, M.V. 1962.
  • IPO polar cells may come from the same or different male gametophyte as the sperm that fertilizes the egg.
  • Pollen grains typically contain a tube nucleus and a generative cell.
  • the haploid generative cell divides to form two sperm, the sperm travel down the pollen tube of a germinating pollen grain, traverses the stigmatic surface and the style of a mature female inflorescence, and eventually enters the ovary where one sperm combines in the fertilization process with the haploid egg cell.
  • Gametic delivery results in deposition near the egg of two sperm, the vegetative nucleus and cytoplasm by each of several male gametophytes. This is accom ⁇ panied by loss of sperm and egg cell wall components.
  • Gametic fusion results in the transmission of nearly the total sperm cytoplasm and organelle complement to the egg. The one sperm plays a role in the develop- ment of endosperm.
  • OMPI normal stigma penetration and fertilization occurs, but embryo and endosperm development is greatly reduced. It is also suggested that a critical number of male gametophytes need to deposit their contents into the cytoplasm of the female gametophyte for successful seed development. Increase in quantity of treated pollen used in pollination increases the number of seeds produced.
  • Results obtained using the method of the in- vention and maize demonstrate that exogenous genes are incorporated into the genome of the zygote. When and exactly how this occurs is unknown. If the DNA is carried to the female gametophyte by the sperm, incorporation may either be directly from the sperm -genome or indirectly from the sperm cytoplasm. It is also possible that DNA is transported as free frag ⁇ ments in the cytoplasm of the male gametophyte or sperm. Incorporation may then take place during division of the zygote to produce an embryo.
  • the Zea mays cultivar B73 was selected for various experiments using the method of the invention.
  • the female inflorescence of the standard maize inbred B73 consists of some 500 individual ovules arranged in 8 rows of paired spikelets around a central rachis. Each ovule has its own style with a feathery stigma, and contains a single female gametophyte. Sytles grow to over 15 cm long. Pollen grains are large, and it is possible to pick up individual grains with a fine, moist human hair for transportation to the stigma. Pollen germination and pollen tube growth down the stigma can be followed using fluorescence microscopy. Pollen germination is not severely affected by PGM or DNA incubation but pollen tube growth is retarded and few sperm reach the female gametophyte.
  • Maize B73 is self-pollinated with pollen incubat ⁇ ed with DNA obtained from Tripsacum dactyloides or DNA from other maize genotypes carrying specific marker genes using the method of the invention.
  • tripsacoid traits, as well as specific genes of the maize DNA donor transferable to maize through sexual transfer of exogenous DNA are similar to those incorporated into the maize genome through introgression (de Wet, J.M.J. et al. 1978.
  • Nuclear DNA is extracted from seedling or mature leaves of the donor genotype using a combination of published techniques [J. Mol. Biol. 3:208-219 (1961); Plant Physiol. 6_6_: 1140-1143 (1980) ; Nucl. Acids Res. 8_: 4321-4325 (1980)], using a Trisbase buffer [0.2 M Trisbase (24.22g) , 0.2 M Disodium di-H 2 0 EDTA (74.45g), 4% SDS (40g) in one liter H_0] . Extracted DNA is purified as described in procedures cited above.
  • Pollen germination and pollination after incu ⁇ bation with exogenous DNA are the most difficult aspects of the method of the invention using the male gametophyte as a carrier of foreign DNA.
  • Pollen germinating medium PGM. comprises a ' solution of approximately 15% sucrose, 0.03% calcium nitrate and 0.01% boric acid in water. Maize, as well as the pollen of other plants, germinates well in the PGM. The base of a large petri dish is covered with a thin layer of pollen germinating medium and sprinkled with mature pollen of the recipient mother. In experiments with maize approximately 27mm of pollen is used for each set of pollinations.
  • pollen from a single anther is sufficient to insure seed set.
  • pollen starts to germinate within 3 to 10 minutes.
  • Approximately 60 to 90% of the pollen is germinated after 15 minutes.
  • DNA is obtained from donor plants according to the method of Example 1. Incubation of pollen with exogenous DNA begins after approximately 10% of pollen grains show visible signs of germination. Pollen tubes longer than the diameter of the grains break . during pollination.
  • Nine ml of PGM is poured over the germinated pollen and 1 ml of buffer with DNA is added, to obtain a DNA concentration of 4-5 g/ml. Pollination is initiated immediately.
  • the 11 ml of solution thus prepared is suffi ⁇ cient, for example, to pollinate three female inflorescences of corn each with approximately 300 to 500 ovules. Pollinating an ear of corn requires approximately one minute. Stigmas are cut to the tip of the cob twelve hours before pollination. The PGM with DNA and pollen is transferred to stigmas with a pasteur pipet. Pollinated ears are protected from foreign pollen by shoot bags until PGM evaporates, and they are then covered by standard brown paper bags. , PGM takes approximately 15 minutes to evaporate. Incubation continues until the developing pollen tube enters the stigma, or until the DNA is destroyed on the stigmas. Pollen tube growth continues during incubation with DNA, and penetration of stigmas proceeds normally. Fertilization takes place, but embryo and endosperm development is greatly reduced. This is believed due to a reduction of functional pollen and sperm. Resultant seeds are then screened for transposed genetic characteristics. Similar procedures are adapted for other experimental plants.
  • Maize inbreds B73, DP194 and Zm 1974 produce an average of 425, 368 and 572 caryopses respectively per female inflorescence when they are self-pollinated.
  • Various treatments of mature pollen of B73 are per ⁇ formed using the methods described in Example 1 and 2. Results of these experiments are presented in Table I below:
  • Zm Zea mays (domesticated maize) ; Z ⁇ mays subsp. parviglumis
  • Percentage seedset is negatively correlated with successful germination. Ears were classified into those with 1 to 10, 11 to 20, 21 to 30 and 31 to 40 caryopses. Seedset classes were planted separately and percentage germination recorded. Results of this experiment are presented in Table III below.
  • Seedset of 31-40 caryopses per ear resulted in 3.5% germination, of 21-30 caryopses in 31-34% germination, of 11-20 caryopses in 32-43% germination and 1-10 caryopses in 39-63% germination.
  • Poor germination from ears with relatively high seedset is due to reduced amounts of endosperm in the small caryopses in relation to caryopses from ears with low seedset.
  • Germination is essentially perfect when caryopses are planted in sterile vermiculite and kept in a growth chamber at 75 F.
  • Inbred Zea mays DP194 is highly susceptible to common leaf-rust caused by Puccinia sorghi.
  • the DNA donor, Zea mays B14-A is resistant to rust. Resistance is dominant over susceptibility, and the genotype of B14-A used as DNA donor was homozygous resistant (Rpl /Rpl) .
  • Rpl /Rpl homozygous resistant
  • Seedlings are transplanted when the second leaf appears, inoculated with rust starting at the 4-leaf stage. Field germination of the same treatment was 73%. DP194 control planted in vermiculite produced 90% germination within six days, and 100% germination by the eleventh day. These data show that three out of 103 seedlings (No. 74, 102, 103) showed complete resis ⁇ tance after repeated inoculations with rust spores at the four-leaf and later stages. All other seedlings showed disease symptoms within five days after inocu ⁇ lation. Five out of 103 seedlings (No.
  • each inflorescence branch is composed of solitary female spikelets, alternately arranged in cavities of an indurated rachis, with the paired male spikelets arranged on the same rachis above the female section.
  • Sixteen plants were characterized by soli ⁇ tary female spikelets on tassel branches below the male spikelets.
  • Female spikelets in the tassel do " occur in maize as a rare mutation, but they are paired as is typical in the female inflorescence of maize. Five of these robust plants tillered to produce 3 to 6 fertile culms.
  • Peduncles of female inflorescences in Zml974 vary from 13 to 57 cm in length.
  • trans- formed offspring were three plants with peduncle lengths of 87 cm, 102 cm and 110 cm. Two of these plants tillered while the other was characterized by a single culm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Procédé de transfert de gènes exogènes dans des plantes à fleurs. L'ADN du donneur est isolé et incubé avec le pollen dans un milieu de germination de pollen. Ce pollen est ensuite utilisé pour polliniser une plante compatible, et les graines sont recueillies. Les rejetons présentent des traits définis par l'ADN exogène.
EP84904249A 1983-11-03 1984-10-31 Procede de transfert de genes exogenes dans des plantes en utilisant le pollen comme vecteur Withdrawn EP0160692A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54826083A 1983-11-03 1983-11-03
US548260 1983-11-03

Publications (1)

Publication Number Publication Date
EP0160692A1 true EP0160692A1 (fr) 1985-11-13

Family

ID=24188063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84904249A Withdrawn EP0160692A1 (fr) 1983-11-03 1984-10-31 Procede de transfert de genes exogenes dans des plantes en utilisant le pollen comme vecteur

Country Status (2)

Country Link
EP (1) EP0160692A1 (fr)
WO (1) WO1985001856A1 (fr)

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3585638D1 (de) * 1984-05-11 1992-04-23 Ciba Geigy Ag Transformation von pflanzenerbgut.
DE3636991A1 (de) * 1986-03-03 1987-09-24 Transgene Gmbh Verfahren zur uebertragung organischer und/oder anorganischer substanzen auf ei- und/oder somazellen von tieren sowie entsprechende zusammensetzungen
LU86372A1 (fr) * 1986-03-26 1987-11-11 Cen Centre Energie Nucleaire Procede de traitement de materiel vegetal afin d'otenir l'expression d'au moins un gene,et materiel vegetal dans lequel ce gene s'exprime
IL84459A (en) * 1986-12-05 1993-07-08 Agracetus Apparatus and method for the injection of carrier particles carrying genetic material into living cells
US5120657A (en) * 1986-12-05 1992-06-09 Agracetus, Inc. Apparatus for genetic transformation
EP0275069A3 (fr) * 1987-01-13 1990-04-25 DNA PLANT TECHNOLOGY CORPORATION (under the laws of the state of Delaware) Transformation génique dans les plantes utilisant le pollen
US5049500A (en) * 1987-01-13 1991-09-17 E. I. Du Pont De Nemours Pollen-mediated gene transformation in plants
IL82153A (en) * 1987-04-09 1991-12-15 Yissum Res Dev Co Process for introducing genes into plants
US5371003A (en) * 1987-05-05 1994-12-06 Sandoz Ltd. Electrotransformation process
PT87394B (pt) * 1987-05-05 1992-09-30 Sandoz Sa Processo para a transformacao de tecidos vegetais
ES2121803T3 (es) * 1987-05-20 1998-12-16 Novartis Ag Plantas de zea mays y plantas transgenicas de zea mays generadas a partir de protoplastos o celulas derivadas de protoplastos.
US5350689A (en) * 1987-05-20 1994-09-27 Ciba-Geigy Corporation Zea mays plants and transgenic Zea mays plants regenerated from protoplasts or protoplast-derived cells
CA1327173C (fr) 1987-07-21 1994-02-22 Erwin Heberle-Bors Methode de transfert de genes dans des plantes
US5629183A (en) * 1989-05-08 1997-05-13 The United States Of America As Represented By The Secretary Of Agriculture Plant transformation by gene transfer into pollen
US5550318A (en) * 1990-04-17 1996-08-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US6946587B1 (en) 1990-01-22 2005-09-20 Dekalb Genetics Corporation Method for preparing fertile transgenic corn plants
US5484956A (en) * 1990-01-22 1996-01-16 Dekalb Genetics Corporation Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin
JP3209744B2 (ja) * 1990-01-22 2001-09-17 デカルブ・ジェネティクス・コーポレーション 結実能力のある遺伝子変換コーン
US6329574B1 (en) 1990-01-22 2001-12-11 Dekalb Genetics Corporation High lysine fertile transgenic corn plants
US5149655A (en) * 1990-06-21 1992-09-22 Agracetus, Inc. Apparatus for genetic transformation
AU8433091A (en) * 1990-08-21 1992-03-17 Florigene Bv Method for producing transformed chrysanthemum plants
US6326527B1 (en) 1993-08-25 2001-12-04 Dekalb Genetics Corporation Method for altering the nutritional content of plant seed
US5780709A (en) * 1993-08-25 1998-07-14 Dekalb Genetics Corporation Transgenic maize with increased mannitol content
US5795753A (en) 1994-12-08 1998-08-18 Pioneer Hi-Bred International Inc. Reversible nuclear genetic system for male sterility in transgenic plants
US5750868A (en) * 1994-12-08 1998-05-12 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
EP0757102A1 (fr) 1995-08-04 1997-02-05 Plant Genetic Systems N.V. Transformation génétique utilisant un inhibiteur de PARP
US6084164A (en) 1996-03-25 2000-07-04 Pioneer Hi-Bred International, Inc. Sunflower seeds with enhanced saturated fatty acid contents
AU743305C (en) 1997-01-17 2006-03-30 Maxygen, Inc. Evolution of whole cells and organisms by recursive sequence recombination
US5929300A (en) * 1997-07-15 1999-07-27 The United States Of America As Represented By The Secretary Of Agriculture Pollen-based transformation system using solid media
WO1999053050A1 (fr) 1998-04-08 1999-10-21 Commonwealth Scientific And Industrial Research Organisation Procedes et moyens d'obtention de phenotypes modifies
US20050086718A1 (en) 1999-03-23 2005-04-21 Mendel Biotechnology, Inc. Plant transcriptional regulators of abiotic stress
US7897843B2 (en) 1999-03-23 2011-03-01 Mendel Biotechnology, Inc. Transcriptional regulation of plant biomass and abiotic stress tolerance
EP1950306A1 (fr) 1999-11-17 2008-07-30 Mendel Biotechnology, Inc. Gènes de tolérance au stress environnemental
CA2390597A1 (fr) 1999-11-17 2001-05-25 Mendel Biotechnology, Inc. Genes de resistance aux elements pathogenes
EP2045262B1 (fr) 1999-12-28 2013-05-29 Bayer CropScience NV Protéines insecticides provenant de Bacillus thuringiensis
EP1406483A4 (fr) 2000-08-22 2005-05-25 Mendel Biotechnology Inc Genes servant a modifier des caracteristiques de plantes iv
US7517975B2 (en) 2000-09-26 2009-04-14 Pioneer Hi-Bred International, Inc. Nucleotide sequences mediating male fertility and method of using same
EP1988099B1 (fr) 2001-01-09 2012-11-14 Bayer CropScience NV Protéines insecticides de Bacillus thuringiensis
DE10212892A1 (de) 2002-03-20 2003-10-09 Basf Plant Science Gmbh Konstrukte und Verfahren zur Regulation der Genexpression
EP2360179A1 (fr) 2002-03-22 2011-08-24 Bayer BioScience N.V. Nouvelles protéines insecticides à base de Bacillus thuringiensis
EP2036984B1 (fr) 2002-07-26 2012-02-22 BASF Plant Science GmbH Reversion de l'effet sélectif négatif d'un protéin de marquage comme procédure de sélection
DK1546336T3 (da) 2002-09-18 2012-04-10 Mendel Biotechnology Inc Polynukleotider og polypeptider i planter.
WO2004081184A2 (fr) 2003-03-07 2004-09-23 Seminis Vegetable Seeds, Inc. Transformation sans marqueur
IL157538A0 (en) 2003-08-21 2004-03-28 Bar Ilan Res & Dev Company Ltd Plant resistant to cytoplasm-feeding parasites
CA2604807C (fr) 2005-04-19 2018-06-12 Basf Plant Science Gmbh Methodes ameliorees controlant une expression genique
CA2625061A1 (fr) 2005-07-08 2007-01-18 Universidad Nacional Autonoma De Mexico Nouvelles proteines bacteriennes avec activite pesticide
AU2006298844B2 (en) 2005-09-20 2012-01-12 Basf Plant Science Gmbh Methods for controlling gene expression using ta-siRAN
PL1999141T3 (pl) 2006-03-21 2011-10-31 Bayer Cropscience Nv Nowe geny kodujące białka owadobójcze
EP2041284B1 (fr) 2006-07-05 2021-05-26 Arkansas State University Research and Development Institute Production de stilbènes et de leurs dérivés dans des cultures de racines végétales chevelues
CA2657843A1 (fr) 2006-07-19 2008-01-24 The Regents Of The University Of California Expression de la superoxyde dismutase vegetale resistant a une regulation du micro-arn
AU2007289109B2 (en) 2006-08-31 2012-11-15 Monsanto Technology Llc. Methods for rapidly transforming monocots
CA2674499A1 (fr) 2007-02-06 2008-08-14 Basf Plant Science Gmbh Utilisation de genes de l'alanine racemase en vue de conferer aux plantes une resistance aux nematodes
US20100011463A1 (en) 2007-02-06 2010-01-14 Basf Plant Science Gmbh Compositions and Methods Using RNA Interference for Control of Nematodes
ES2383716T3 (es) 2007-02-08 2012-06-25 Basf Plant Science Gmbh Composiciones y métodos que utilizan ARN de interferencia de un gen del tipo OPR3 para el control de nemátodos
BRPI0807204A2 (pt) 2007-02-09 2014-06-03 Basf Plant Science Gmbh Molécula de dsrna, coleção de moléculas de dsrna, planta transgênica, e, método para preparar uma planta transgênica
CN101679995A (zh) 2007-03-15 2010-03-24 巴斯福植物科学有限公司 线虫几丁质酶基因用于控制植物寄生性线虫的用途
US9994621B2 (en) 2007-06-01 2018-06-12 Bayer Cropscience N.V. Genes encoding insecticidal proteins
WO2009020458A1 (fr) 2007-08-03 2009-02-12 Pioneer Hi-Bred International, Inc. Séquences de nucléotides de msca1 affectant la fertilité mâle des plantes et leur procédé d'utilisation
CN101952445A (zh) 2007-12-21 2011-01-19 关键基因公司 毛状体特异性启动子
US8367899B2 (en) 2007-12-31 2013-02-05 E I Du Pont De Neumours And Company Gray leaf spot tolerant maize and methods of production
CN101280315B (zh) 2008-05-20 2010-09-01 中国农业科学院油料作物研究所 毛白杨木质素单体合成基因4-cl及应用
CN102124025A (zh) 2008-08-27 2011-07-13 巴斯夫植物科学有限公司 抗线虫的转基因植物
US20100083400A1 (en) 2008-09-30 2010-04-01 Kindiger Bryan K Lolium Multiflorum Line Inducing Genome Loss
EP2527450A1 (fr) 2008-12-11 2012-11-28 BASF Plant Science GmbH Résistance de nématode spécifique aux racines de plante
WO2010106163A1 (fr) 2009-03-20 2010-09-23 Basf Plant Science Company Gmbh Plantes transgéniques résistantes aux nématodes
ES2879599T3 (es) 2009-06-08 2021-11-22 Nunhems Bv Plantas tolerantes a la sequía
JP2012531216A (ja) 2009-07-01 2012-12-10 バイエル・クロップサイエンス・エヌ・ヴェー グリホサート耐性が増強された植物を得るための方法および手段
CA2770572A1 (fr) 2009-08-25 2011-03-03 Basf Plant Science Company Gmbh Plantes transgeniques resistantes aux nematodes
WO2011069953A1 (fr) 2009-12-09 2011-06-16 Basf Plant Science Company Gmbh Méthode d'augmentation de la résistance aux champignons de végétaux par silençage du gène smt1 des champignons
AU2010343143A1 (en) 2009-12-28 2012-06-28 Pioneer Hi-Bred International, Inc. Sorghum fertility restorer genotypes and methods of marker-assisted selection
BR112012018616A2 (pt) 2010-01-26 2017-01-10 Pioneer Hi Bred Int marcador de polinucleotídeo, polinucleotídeo isolado, polipeptídeo transportador abc isolado, planta, célula, semente, método para seleção de uma planta ou germoplasma de soja, método de introgressão de um alelo de resistência a herbicida em uma planta de soja, método para conferir tolerância ou tolerância melhorada a um ou mais herbicidas, método para controlar de modo seletivo plantas daninhas em um campo contendo uma cultura
WO2011104153A1 (fr) 2010-02-23 2011-09-01 Basf Plant Science Company Gmbh Plantes transgéniques résistantes aux nématodes
WO2011147968A1 (fr) 2010-05-28 2011-12-01 Nunhems B.V. Plantes dotées d'une taille de fruit accrue
EP2590996B1 (fr) 2010-07-08 2016-05-25 Bayer CropScience NV Protéine transportrice de glucosinolate et ses utilisations
WO2012074868A2 (fr) 2010-12-03 2012-06-07 Ms Technologies, Llc Expression optimisée de molécules d'acide nucléique codant pour la résistance au glyphosate dans cellules végétales
US20140026256A1 (en) 2010-12-20 2014-01-23 Basf Plant Science Company Gmbh Nematode-Resistant Transgenic Plants
EA201390918A1 (ru) 2010-12-22 2013-11-29 Пайонир Хай-Бред Интернэшнл, Инк. Qtl, ассоциированные с полевой устойчивостью всего растения к sclerotinia, и способы ее идентификации
US8648230B2 (en) 2011-03-18 2014-02-11 Ms Technologies, Llc Regulatory regions preferentially expressing in non-pollen plant tissue
EP2535416A1 (fr) 2011-05-24 2012-12-19 BASF Plant Science Company GmbH Développement d'une pomme de terre résistante au phytophthora avec rendement amélioré
BR112013030724B1 (pt) 2011-05-31 2020-10-27 Keygene N.V gene quimérico, vetor, célula hospedeira, uso de uma molécula de ácido nucleico e método para produzir uma planta transgênica possuindo resistência almentada à praga de inseto
US20150059018A1 (en) 2011-10-19 2015-02-26 Keygene N.V. Methods and compositions for producing drimenol
WO2013134651A1 (fr) 2012-03-09 2013-09-12 Board Of Trustees Of Michigan State University Procédé d'amélioration de la tolérance à la sécheresse des plantes par l'expression de ndr1
CA2867535A1 (fr) 2012-03-20 2013-09-29 Dow Agrosciences Llc Marqueurs moleculaires de basse teneur d'acide palmitique chez le tournesol (helianthus annus), et leurs procedes d'utilisation
RU2014151361A (ru) 2012-05-18 2016-07-10 Пайонир Хай-Бред Интернэшнл, Инк. Последовательности индуцируемого промотора для регулируемой экспрессии и способы применения
US9598707B2 (en) 2012-11-26 2017-03-21 Arkansas State University-Jonesboro Method to increase the yield of products in plant material
US10462994B2 (en) 2013-01-29 2019-11-05 Basf Plant Science Company Gmbh Fungal resistant plants expressing HCP7
BR112015017345A2 (pt) 2013-01-29 2017-11-21 Basf Plant Science Co Gmbh método para aumentar a resistência aos fungos em uma planta, construção de vetor recombinante, planta transgênica, método para produção de planta transgência, uso de qualquer um dos ácidos nucleicos exógenos, parte que pode ser colhida de uma planta transgênica, produto derivado de uma planta, método para produção de um produto e método para cultivar uma planta resistente a fungos
CA2891424A1 (fr) 2013-01-29 2014-08-07 Basf Plant Science Company Gmbh Plantes resistantes aux champignons exprimant ein2
US9783817B2 (en) 2013-03-04 2017-10-10 Arkansas State University Methods of expressing and detecting activity of expansin in plant cells
WO2014135682A1 (fr) 2013-03-08 2014-09-12 Basf Plant Science Company Gmbh Végétaux résistants aux pathogènes fongiques exprimant mybtf
WO2014142647A1 (fr) 2013-03-14 2014-09-18 Wageningen Universiteit Souches fongiques ayant une production améliorée d'acide citrique et d'acide itaconique
US9714429B2 (en) 2014-01-28 2017-07-25 Arkansas State University Regulatory sequence of cupin family gene
WO2015193653A1 (fr) 2014-06-16 2015-12-23 Consejo Nacional De Investigaciones Cientificas Y Tecnicas Gènes et protéines chimériques de résistance à l'oxydation et plantes transgéniques les comprenant
BR112017016688B1 (pt) 2015-02-04 2024-01-23 Basf Plant Science Company Gmbh Método para aumentar a resistência fúngica, método para a produção de um produto e método para criar uma planta resistente a fungos
JP6978152B2 (ja) 2015-09-04 2021-12-08 キージーン ナムローゼ フェンノートシャップ 複相胞子生殖遺伝子
WO2017139544A1 (fr) 2016-02-11 2017-08-17 Pioneer Hi-Bred International, Inc. Qtl associés à l'identification de la résistance à la verse dans le soja et procédés permettant l'identification
WO2017184500A1 (fr) 2016-04-18 2017-10-26 Bloomsburg University of Pennsylvania Compositions et procédés d'administration de molécules à des plantes
EP3054014A3 (fr) 2016-05-10 2016-11-23 BASF Plant Science Company GmbH Utilisation d'un fongicide sur des plantes transgéniques.
DK3472187T3 (da) 2016-06-20 2022-04-25 Univ Louisiana State Grønalgebicarbonat-transporter og anvendelser deraf
CN113166736A (zh) 2018-08-13 2021-07-23 奥尔胡斯大学 具有改变的激动剂特异性和亲和性的基因改变的LysM受体
AU2019321028A1 (en) 2018-08-13 2021-03-04 Aarhus Universitet Genetically altered plants expressing heterologous receptors that recognize lipo-chitooligosaccharides
KR20210138563A (ko) 2018-12-06 2021-11-19 바게닝겐 유니버시테이트 식물 nin-유전자를 사이토킨에 반응성이 되도록 유전적으로 변경시키는 방법
BR112021018680A2 (pt) 2019-03-21 2021-11-23 Univ Of Essex Enterprises Limited Métodos para aumentar a biomassa em uma planta através da estimulação da regeneração de rubp e transporte de elétrons
AU2020285344A1 (en) 2019-05-29 2021-11-11 Keygene N.V. Gene for parthenogenesis
CN114667292A (zh) 2019-07-11 2022-06-24 加利福尼亚大学董事会 用生长调节因子(grf)、grf相互作用因子(gif)或嵌合grf-gif改进植物再生的方法
GB201911068D0 (en) 2019-08-02 2019-09-18 Univ Edinburgh Modified higher plants
CA3145892A1 (fr) 2019-08-02 2021-02-11 Martin C. JONIKAS Motifs proteiques de liaison a rubisco et leurs utilisations
BR112022002923A2 (pt) 2019-08-19 2022-05-10 Univ Aarhus Receptores de exopolissacarídeo modificados para reconhecer e estruturar microbiota
EP4110928A1 (fr) 2020-02-28 2023-01-04 Cambridge Enterprise Limited Méthodes, plantes et compositions pour surmonter la suppression des nutriments de la symbiose mycorhizienne
WO2021233904A1 (fr) 2020-05-19 2021-11-25 Aarhus Universitet Motifs de récepteur lysm
AU2021363100A1 (en) 2020-10-13 2023-05-25 Keygene N.V. Modified promoter of a parthenogenesis gene
EP4347845A2 (fr) 2021-05-26 2024-04-10 The Board of Trustees of the University of Illinois Plantes en c4 à efficacité photosynthétique accrue
KR20240034182A (ko) 2021-06-03 2024-03-13 마젠 애니멀 헬스 인코포레이티드 사이토카인 수준을 변경하고 갓 태어난 돼지에게 수동 면역을 제공하기 위한 코로나바이러스 스파이크 단백질의 경구 투여
EP4508204A1 (fr) 2022-04-11 2025-02-19 The Regents of University of California Procédés de criblage de gain de plante de mutations de fonction et compositions associées
AR131388A1 (es) 2022-12-15 2025-03-12 Univ Aarhus Activación sintética de receptores transmembrana multiméricos
WO2024161012A2 (fr) 2023-02-03 2024-08-08 Aarhus Universitet Amélioration de la fixation de l'azote à l'aide du modèle fun
WO2024189170A1 (fr) 2023-03-14 2024-09-19 Aarhus Universitet Kinases du récepteur nfr1 génétiquement modifiées
WO2024189171A1 (fr) 2023-03-14 2024-09-19 Aarhus Universitet Kinases du récepteur nfr5 génétiquement modifiées
WO2024233373A1 (fr) 2023-05-05 2024-11-14 The Board Of Trustees Of The University Of Illinois Cadres de lecture ouverts en amont modifiés pour moduler la relaxation du npq
US20240409951A1 (en) 2023-06-09 2024-12-12 Aarhus Universitet Symrk phosphorylation for root nodule organogenesis
US20250092418A1 (en) 2023-08-28 2025-03-20 Niab Methods of genetically altering a plant nin-gene to be responsive to auxin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8501856A1 *

Also Published As

Publication number Publication date
WO1985001856A1 (fr) 1985-05-09

Similar Documents

Publication Publication Date Title
EP0160692A1 (fr) Procede de transfert de genes exogenes dans des plantes en utilisant le pollen comme vecteur
CN103602657B (zh) Eat1基因的应用及恢复eat1基因缺失导致水稻雄性不育的方法
JP2021520223A (ja) 植物ヘテロシスの利用方法
WO2020248969A1 (fr) Plante de lignée de maintien de stérilité mâle et son utilisation
WO2016054236A1 (fr) Sauvetage d'embryons in situ et récupération d'hybrides non génétiquement modifiés à partir de croisements intergénétiques
JPH0646697A (ja) 外部から誘導し得るプロモーター配列を用いた小胞子形成の制御
CN115843674A (zh) 玉米单倍体诱导系的选育方法及其应用
Rose et al. The transfer of cytoplasmic and nuclear genomes by somatic hybridisation
WO2020213728A1 (fr) Plante de brassica rapa à stérilité mâle cytoplasmique dont la croissance est améliorée
Wenzel et al. New strategy to tackle breeding problems of potato
US12137650B2 (en) Methods for promoting production of viable seeds from apomictic guayule plants
WO2024108657A1 (fr) Gène de stérilité mâle récessif nucléaire photosensible ghpsm5 et son application dans le coton
US6583335B1 (en) Direct transformation of higher plants through pollen tube pathway
Kiyoharu Tissue culture and genetic engineering in rice
Mujeeb-Kazi et al. A simplified and effective protocol for production of bread wheat haploids (n= 3x= 21, ABD) with some application areas in wheat improvement
CN105671055B (zh) 水稻生殖发育基因mmd2的应用及恢复水稻雄性不育的方法
Li et al. Construction of a novel female sterility system for hybrid rice
CN117296710B (zh) 一种快速创制细胞质雄性不育系的方法
Brar et al. Application of biotechnology in hybrid rice
JPH04505553A (ja) 雄性発生を受けるトウモロコシの能力を高めるための方法及びそれから生成される生成物
CN114591967B (zh) 玉米tcp基因在杂交育种中的应用
Al-Ahmad et al. Infertile interspecific hybrids between transgenically mitigated Nicotiana tabacum and Nicotiana sylvestris did not backcross to N. sylvestris
JP2002534102A (ja) タバコ属種間雑種およびその後代
US20240164270A1 (en) Watermelon gene conferring a high number of male flowers
CN107964550A (zh) 一种纯合转基因油菜的制备方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19851008