[go: up one dir, main page]

EP0151078B1 - Lichtstarker Massenspektrometer mit Mehrfach- und Simultanauslesung - Google Patents

Lichtstarker Massenspektrometer mit Mehrfach- und Simultanauslesung Download PDF

Info

Publication number
EP0151078B1
EP0151078B1 EP85400127A EP85400127A EP0151078B1 EP 0151078 B1 EP0151078 B1 EP 0151078B1 EP 85400127 A EP85400127 A EP 85400127A EP 85400127 A EP85400127 A EP 85400127A EP 0151078 B1 EP0151078 B1 EP 0151078B1
Authority
EP
European Patent Office
Prior art keywords
sector
electrostatic
radial plane
lens
magnetic sector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85400127A
Other languages
English (en)
French (fr)
Other versions
EP0151078A2 (de
EP0151078A3 (en
Inventor
Georges Slodzian
François Costa de Beauregard
Bernard Daigne
François Girard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office National dEtudes et de Recherches Aerospatiales ONERA
Universite Paris Sud
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Universite Paris Sud
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA, Universite Paris Sud filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Publication of EP0151078A2 publication Critical patent/EP0151078A2/de
Publication of EP0151078A3 publication Critical patent/EP0151078A3/fr
Application granted granted Critical
Publication of EP0151078B1 publication Critical patent/EP0151078B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/28Static spectrometers
    • H01J49/32Static spectrometers using double focusing
    • H01J49/326Static spectrometers using double focusing with magnetic and electrostatic sectors of 90 degrees
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/28Static spectrometers
    • H01J49/32Static spectrometers using double focusing
    • H01J49/322Static spectrometers using double focusing with a magnetic sector of 90 degrees, e.g. Mattauch-Herzog type

Definitions

  • the invention relates to a charged clarity particle separator or mass spectrometer for the identification and simultaneous measurement of several elements.
  • the spectrometer is intended to receive a beam of charged particles or ions, composed by particles of different masses (M - M 1 , M 2 , Kt, etc.), animated by slightly different kinetic energies.
  • M particles of different masses
  • M 2 particles of different masses
  • Kt etc.
  • V eV
  • a mass spectrometer generally has an entrance slit, after which the beam passes into an electrostatic sector, then into a magnetic sector.
  • the purpose of this arrangement is to deflect the particles, in a selective manner as to their mass and as much as possible independently of their energy. The deviation occurs in a so-called radial plane which is the plane of symmetry of the instrument and which is perpendicular to the large dimension of the entry slit.
  • the particle beam therefore has a radial component, and a perpendicular component, in what is called the vertical section.
  • the quality of a mass spectrometer is defined by its separating power M / AM, where AM is the smallest difference in mass that can be distinguished with the instrument.
  • AM the smallest difference in mass that can be distinguished with the instrument.
  • this separating power would only depend on the dimensions of the entrance slit.
  • the images of the entry slit, or lines are distorted by the optical defects of the device, called aberrations. These aberrations depend mainly on the energy dispersion AV of the ions, and on the beam opening which is limited by the opening slit which is inserted most of the time before the magnetic sector.
  • the best spectrometer is the most sensitive, that is to say the one that accepts the beam with the greatest geometric extent. This ability is called “clarity" of the spectrometer.
  • clarity can only be increased by reducing the harmful effect of aberrations.
  • the problem is therefore to produce a mass spectrometer with high clarity, capable of simultaneous multiple detection and which has a high separating power.
  • a first object of the present invention is to correct the proper aberrations of the spectrometer, in particular of its magnetic sector, and also of its electrostatic sector.
  • a second object of the present invention is, using a transfer optic placed upstream of the mass spectrometer itself, to improve the adaptation and the transfer of the ion beam on the input of the spectrometer.
  • the device proposed here comprises an inlet slot, followed by an electrostatic sector, then a magnetic sector.
  • An opening slot can be inserted between the electrostatic and magnetic sectors or, in a conventional manner, at the entrance to the electrostatic sector.
  • This assembly makes it possible to deflect a beam of particles in the radial plane perpendicular to the large dimension of the entry slit.
  • the magnetic sector has a planar entry face, inclined on the axis of the particle beam, and an exit face also planar, the plane of which passes through the intersection of the entry face with the axis of the particle beam. This is the arrangement of the actual magnetic faces which differ from the material faces due to the leakage fields.
  • the means recommended by this prior French patent consists of having a first lens electric (18) between the entrance slit (10) and the energy diaphragm (20) and a second electric lens (22) between the energy diaphragm (20) and the magnetic sector (24).
  • the Patent specifies the role of these lenses, in relation to the aperture diaphragm and the adjustable energy diaphragm.
  • the input face of the magnetic sector (24) is inclined by an angle e which happens to be equal to 26.6 °.
  • This use of an inclined entry face makes it possible to define a focal point which is at a distance of twice the radius in the direction perpendicular to the plane of symmetry of the device.
  • the focusing plane (26) is offset behind the magnetic field, by an angle ⁇ which is here equal to 8.1 °.
  • the spectrometer comprises means such as a quadrupole having an object focus at the level of the real image that the electrostatic sector of the entry slot gives in the radial plane, to supply the sector magnetic a beam of particles which is parallel at least in the radial plane, and which has, moreover, for each energy of the band ⁇ AV, the appropriate inclination so that the magnetic sector has an achromatic functioning at the level of all the lines of the mass spectrum.
  • the trajectories in the vertical section also produce second order opening aberrations in the radial plane (aberrations in b 2 , where b is the inclination of a trajectory by relative to the radial plane).
  • a second characteristic of the invention involves the transfer optic. This is arranged in cooperation with the spectrometer itself, so that in its vertical section, the particle beam has a neck between the entrance slit and the electrostatic sector; there is then provided, at this necking, a first hexapole, arranged to compensate for the second order opening aberrations created by the electrostatic sector for the trajectories located in the radial plane, aberrations at a 2 , and for the radial component other trajectories.
  • the location chosen for the hexapole means that the latter does not introduce ab 2 aberrations from the opening in the vertical section.
  • Second order opening aberrations related to the electrostatic sector can be determined, this sector being for example of the spherical type.
  • the transfer optic is arranged to apply a particle beam which is substantially parallel in vertical section to the entry slit.
  • a converging lens is provided between the entry slit and the first hexapole (this converging lens being capable of providing post-acceleration).
  • the hexapole is centered on the conjugate point of the entry slit by said converging lens, in the vertical section of the beam.
  • the transfer optic comprises two electrostatic lenses, cooperating to produce a constriction of the beam at the level of the entry slot in the radial plane. Between these two electrostatic lenses is provided a lens with slits arranged so that the beam is parallel in vertical section at the level of the entry slit. It is then the converging (post-acceleration) lens, which ensures the convergence of the beam at the abovementioned point of necking, in vertical section.
  • Yet another aspect of the invention concerns the correction of chromatic aberrations, that is to say in energy dispersion.
  • the quadrupole is placed so as to combine with an appropriate magnification these two centers of chromatic rotation.
  • the quadrupole combines the center of chromatic rotation of the electrostatic sector with the center of chromatic rotation of the magnetic sector corresponding to a given radius, that is to say, to a given mass.
  • the quadrupole is also arranged so that each energy arrives on the magnetic sector with the appropriate inclination; it follows that the chromatic dispersion is completely canceled for the mass considered after leaving the magnetic sector while for the other masses the chromatic dispersion is canceled at their line. This correction occurs within the limit of the energy band ⁇ ⁇ V defined by the means disposed upstream of the transfer optic or by a filtering slot placed in P3.
  • the quadrupole is arranged so that its focal point coincides with the real image that the electrostatic sector of the entry slot gives in the radial plane, this quadrupole being followed by means of compensating for its divergence in the section vertical, so that the particle beam is then parallel in its two transverse dimensions.
  • the means for compensating for the divergence of the quadrupole in vertical section are advantageously a lens with slits.
  • the device comprises a second hexapole, disposed after the electrostatic sector and substantially centered on the real image that the electrostatic sector of the entry slot gives in the radial plane.
  • This arrangement allows the reduction of mixed aberrations, for the trajectories located in the radial plane, with exact compensation for a chosen mass. For the other masses, the aberration is considerably reduced.
  • the chromatic, that is to say energy, filtering of the particle beam takes place here upstream of the transfer optic. In a variant, it takes place at the level of this second hexapole. This then comprises two hexapoles framing an energy filtering slot.
  • the present invention relates to a charged particle separator, or mass spectrometer, with multiple simultaneous detection and high clarity.
  • mass spectrometers In contrast to mass spectrographs, which use a photographic plate as their final detector, mass spectrometers do not necessarily need their detection zone, the focal exit surface of the magnetic sector, to be a plane.
  • the spectrometer has at its input a transfer optic 1.
  • the nature of this can depend on the characteristics of the particle beam applied to the input or "point-source" S.
  • the transfer optic 1 ends at level d an FE 20 entry slot, which constitutes the entrance to the mass spectrometer itself.
  • the spectrometer comprises, behind the entry slit FE 20, an electrostatic sector SE 23, then a magnetic sector SM 30, upstream of which an opening slit FO 29 is provided.
  • This set of means has the function deflecting the particle beam in a radial plane perpendicular to the large dimension of the FE 20 input slot.
  • the radial plane is that of FIGS. 1 and 2A.
  • the main organ of a mass spectrometer is its magnetic sector, whose dispersive action depends on both the mass and the energy of each particle; this dispersive action manifests itself by trajectories in an arc of a circle, the radius of which is greater or less depending on mass and energy. It is known to associate with such a magnetic sector an electrostatic sector which precedes it, and which for its part has a dispersive action but only as a function of the energy of the particles. Both sectors are combined so that the dispersive action of the electrostatic sector compensates for the energy dispersive action of the magnetic sector. It then remains in principle, at the exit from the magnetic sector, only the dispersive action as a function of mass.
  • the magnetic sector SM 30 has a planar entry face 31, inclined on the axis of the particle beam, and an exit face 32 also planar, the plane of which passes through l intersection 33 of the entry face 31 with the axis of the particle beam.
  • This arrangement has the advantage of providing the same deflection angle regardless of the mass.
  • the deflection angle is equal to twice the angle of the exit face 32 with the axis of the particle beam at the entrance to the magnetic sector SM 30. It also follows that, for a beam parallel to the at the input, the particles at the output of the magnetic sector are focused on a plane PF 35 which also passes through point 33.
  • a first aberration is known as a second order aperture aberration of the magnetic sector.
  • this type of aberration lies in the fact that two symmetrical trajectories with respect to the central trajectory at the entrance to the magnetic sector will intersect after the sector at a point situated outside this central trajectory; the offset between the point of intersection and the central trajectory is proportional to the square of the angular inclination a of each of the intersecting trajectories relative to the central trajectory (hence the second order in a 2 ).
  • a first aspect of the invention consists in correcting this type of second order opening aberration, at the level of the magnetic sector itself.
  • 34 the normal to the axis of the particle beam which is located on the side of the concavity which will be impressed on the beam by the magnetic sector SM 30.
  • e the angle formed by the entry face 31 of the SM 30 magnetic sector with this normal 34.
  • 8 the beam deflection angle in the SM 30 magnetic sector.
  • the present invention relates to a mass spectrometer with very high clarity, that is to say an apparatus accepting beams with the greatest geometric extent, and with simultaneous detection, which makes the correction of aberrations very delicate.
  • the invention recommends an appropriate inclination of the input face of the magnetic sector, so that it has an operation devoid of second order aperture aberrations for all masses - all beam trajectories located in the radial plane - provided of course that the aberrations in the opening of the electrostatic sector have been corrected beforehand.
  • the particle beam available at the outlet of the electrostatic sector SE 23 has a necking at a point P3 (FIG. 2A).
  • means are provided downstream of this point P3 to ensure that the magnetic sector SM 30 receives a particle beam which is parallel in the radial plane.
  • One way of doing this is to arrange the single quadrupole QP 26 so that its focus -object coincides with the point of necking P3.
  • the position of the quadrupole QP 26 is determined so that the inclination of each of the parallel beams corresponding to the various energies is appropriate to give an achromatic operation at the level of the lines located in the plane PF 35 and this simultaneously for all the masses.
  • FIG. 1 shows that two parallel beams corresponding to the energies V ⁇ ⁇ V, focus at the same point on the plane PF 35; the ordinate is dilated to make the figure legible.
  • FIG. 2A shows in the radial plane a parallel beam leaving the quadrupole QP 26.
  • FIG. 2C shows that the QP quadrupole 26, on the contrary, has a diverging action in vertical section. This divergent action is in turn compensated for by an electrostatic lens with slits LF 27. At the output thereof, there is therefore also a parallel beam, which crosses exactly the small dimension of the opening slit FO 29.
  • the particle beam is parallel in its two transverse dimensions, downstream of the slit lens LF 27, until it is applied to the input face 31 of the magnetic sector SM 30.
  • the electrostatic sector SE 23 and the magnetic sector SM 30 each have a respective virtual chromatic rotation center.
  • chromatic is used here in relation to the energy dispersion.
  • the particles following the central trajectory before entering the electrostatic sector and having an energy slightly different from the nominal energy of the beam will leave the electrostatic sector SE 23 with inclined trajectories. When the energy varies, these inclined trajectories seem to rotate around a point which is called the center of chromatic rotation.
  • the magnetic sector SM 30 has a center of chromatic rotation, towards which particles with similar energies and the same mass must converge with the appropriate angle so that they end up after deviation, at the same point of the focal plane PF 35 and with the same angle (trajectories combined) whatever the energy in the ⁇ AV band.
  • means are provided for combining the two respective chromatic centers of rotation of the electrostatic sector SE 23 and the magnetic sector SM 30.
  • the quadrupole QP 26 can do this in a very simple manner with magnification appropriate. This allows a complete correction of the chromatic or energetic dispersion of the particle beam for a mass, the quadrupole being moreover arranged to provide for the other masses, trajectories of different energies with the appropriate inclination.
  • FIGS. 1, 2A, 2B, 3A and 3B Reference will first be made to FIGS. 1, 2A, 2B, 3A and 3B for the description of the transfer optics as well as of the input of the spectrometer 2.
  • the beam of charged particles applied to the input of the transfer optic 1 is presented with a necking at point S.
  • This beam of ions is composed of particles of different masses, which are animated by slightly different kinetic energies.
  • V their average kinetic energy, which is prime in electron volts, and ⁇ AV the energy dispersion.
  • the beam has in principle a symmetry of revolution at the point S.
  • Such a beam can consist of secondary ions emitted by a sample subjected to a primary ion beam concentrated on its surface.
  • a first unipotential electrostatic lens LE 11 gives an image of the source point S at a point 51.
  • PC plates 12 can be provided allowing the beam to be recentered on the optical axis.
  • a lens with slots LF 13 is provided.
  • FIGS. 2A and 3A show that this slotted lens has no effect on the trajectories of ions situated in the radial plane.
  • the slotted lens LF 13 makes these trajectories converge at a point of necking S2.
  • a second LE 14 electrostatic lens is placed after the LF 13 slit lens.
  • the lens LE 14 gives points S and 51 an image P situated at the level of the entry slit FE 20 and centered on the axis of the latter.
  • the lens LE 14 is placed so that its focus is substantially at point S2, this lens therefore providing sensitive rays or trajectories. ment parallel extending along the FE 20 input slot, according to its large dimension ( Figure 3B).
  • magnification at the level of the entry slit FE 20 in the radial plane is obtained by playing on the excitation potential of the electrostatic lenses LE 11 and LE 14.
  • a converging electrostatic lens denoted PA 21, which allows a controlled post-acceleration, and then a first HP hexapole 22.
  • the PA lens 21 acts, in the vertical section of the particle beam, to produce a necking thereof at a point located upstream of the electrostatic sector SE 23.
  • the first hexapole HP 22 is centered at this necking.
  • This HP hexapole 22 is arranged to compensate for the second order opening aberrations created by the electrostatic sector SE 23 for the trajectories located in the radial plane. At first order, it has no action, and therefore does not modify the trajectories located in vertical section. Furthermore, as already indicated, the hexapole does not introduce b 2 type aberrations on the trajectories in the vertical section thanks to the fact that the necking of the beam in this section is located in the center of the hexapole .
  • the PA 21 post-acceleration lens plays another role. This role consists in modifying the opening angle for the spectrometer 2 proper. Correlatively, seen for the rest of the spectrometer, the necking produced by the transfer optic in P at the level of the entry slit in the radial plane, is transferred to P1 by the post-acceleration lens PA 21. This makes it possible to '' increase the clarity of the spectrometer after removing or correcting the most important aberrations. Post-acceleration brings ions from V energy to Vp energy.
  • the main-object plane of the post-acceleration lens PA 21 is located in the plane of the entrance slit FE 20, so that the spectrometer sees an entrance slit located at P1, in the main plane image of the PA 21 lens.
  • the size of the Gaussian image has not changed. For a given separating power, only the opening angle available at the entrance increases.
  • the spectrometer is arranged so that the image focal point of the post-acceleration lens PA 21 is located in the center of the HP hexapole 22, at point P2.
  • Post-acceleration also makes it possible to reduce the relative energy dispersion from AVN to AVNp, which leads to a decrease in mixed aberrations and aberrations in (AVNP) 2.
  • the Applicants have chosen the ratio VNp of the order of a quarter, which implies, for negative ions of incident energy of ⁇ 5 kV, to put all the conductors constituting the spectrometer and located downstream of the PA 21 post-acceleration lens at a voltage of ⁇ 15 kV.
  • the spectrometer comprises a second hexapole (HP 25), arranged after the electrostatic sector (SE 23), and centered on the real image which the electrostatic sector (SE 23) of the slot (FE 20) gives in the radial plane. .
  • HP 25 is centered on P3 allows correction of mixed aberrations to be carried out without having to touch up the setting of the hexapole HP 22 which corrects opening aberrations (independence of the settings).
  • the energy filtering is carried out upstream of the transfer optic.
  • the second HP 25 hexapole In a variant, it is carried out at the level of the second HP 25 hexapole. The latter then comprises two hexapoles framing an energy filtering slot (not shown).
  • FIGS. 1, 2A, 2C, 2D show certain details of the structure of the magnetic sector. This comprises a magnet, not shown, which cooperates with two pole pieces 32A and 32B, the shape of which is given by the views illustrated in the radial plane.
  • the invention makes it possible to considerably facilitate these corrections, by effecting them by adjustments which do not require displacement of the components of the spectrometer, and which are made as independent as possible from each other. .
  • the particle separator of the invention would make it possible, like a spectrograph, to use a photographic plate for the collection of particles deviated, and having undergone mass analysis.
  • a series of separate collecting devices such as electronic multipliers whose input surface will be sensitive to the impact of charged particles from the magnetic sector SM 30 .
  • the half-angle at the top is of the order of 10 -2 radians for a separating power M / AM of the order of 4,000.
  • the magnetic circuit is at ground potential, but non-magnetic electrodes placed inside the air gap are brought to a potential of + 15 kV in operation in post-accelerated mode. Finally, a magnetic shunt limits the leakage of the field on the entry face of the magnetic sector.
  • a mufticollector assembly consisting of ion-electron converters followed by electron multipliers.
  • the optical elements (except the magnet) are placed in a structural piece of stainless steel which ensures the mechanical positions of the various devices and serves as a vacuum enclosure.
  • a cryogenic pumping unit makes it possible to obtain the desired ultra-vacuum.
  • the magnet is connected to the previous device by an elastic and sealed system, which includes means for mechanical alignment of the optical axes.
  • FIGS. 5A and 5B, and 6A and 6B for a better illustration of the operations with and without post-acceleration, respectively.
  • FIG. 5A shows that, in the radial plane, the trajectories pass without alteration through the slit lens LF 13, to join the second electrostatic lens LE 14, and focus in principle at point P.
  • the post-acceleration lens PA 21 brought to 10 kV, produces a focal point apparent at point P1, downstream of the spectrometer. It is therefore from this point P1 that the trajectories applied to the HP hexapole 22 will start.
  • the distance between points P1 and P, or more exactly between the planes PHi and PHO is 11 mm .
  • the settings of the transfer optics are modified so that the trajectories begin to converge as soon as they exit the second electrostatic lens LE 14. They pass through the entry slit FE 20, to further converge a little more at the level of the lens PA 21, and lead fially to the same point of necking P2 as previously.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Claims (11)

1. Massenspektrometer mit einem Eintrittsspalt (FE 20), auf den ein elektrostatischer Sektor (SE 23) folgt, sodann ein magnetischer Sektor (SM 30), dem ein Öffnungsspaft (FO 29) vorangeht, wobei die Montage so gewählt ist, daß ein Partikelstrahl in eine Radialebene senkrecht zur Längserstreckung des Eingangsspaltes (FE 20) abgebogen wird, wobei der magnetische Sektor (SM 30) eine Ebene, gegenüber der Achse des Partikelstrahles geneigte Eingangsseite (31) aufweist und eine gleichermaßen ebene Ausgangsseite (32), deren Ebene durch den Schnittpunkt (33) der Eingangsseite (31) mit der Achse des Partikelstrahles hindurchgeht, dadurch gekennzeichnet, daß es optische Mittel (QP 26) aufweist mit einem Brennpunkt-Objekt auf dem Niveau des reellen Bildes, das der elektrostatische Sektor (SE 23) des Eintrittsspaltes in der Radialebene ergibt, so daß dem magnetischen Sektor (SM 30) ein Partikelstrahl geliefert wird, der parallel in der Radialebene verläuft, wobei die optischen Mittel derart angeordnet sind, daß dieser paralle Strahl für jede Energie der ankommenden Partikel die entsprechende Schräglage darstellt, damit der magnetische Sektor achromatisch arbeitet, und zwar im wesentlichen für alle Partikelmassen, und daß ε den Winkel zwischen der Eintrittsseite (31) mit der Normalen (34) zu der Strahlachse darstellt, die auf deren Ablenkungsseite verläuft, während 9 den Ablenkungswinkel des Strahles in dem magnetischen Sektor (SM30) darstellt und diese beiden Winkel folgende Beziehung erfüllen:
tg θ/2 · tg (θ - ε) = 2

so daß die Öffnungs-Aberrationen der zweiten Ordnung, die von dem magnetischen Sektor an den in der Radialebene gelegenen Trajektorien erzeugt wurden, verschwinden.
2. Spektrometer nach Anspruch 1 mit einer Übertragungsoptik (1), die stromauf des Eingangsspaltes (FE 20) angeordnet ist, dadurch gekennzeichnet, daß der Partikelstrahl bei Betrachtung seines Vertikalschnittes senkrecht zur Radialebene eine Einschnürung zwischen dem Eintrittsspalt (FE 20) und dem elektrostatischen Sektor (SE 23) aufweist und das in Höhe dieser Einschnürung ein erster Hexapol (HP 22) vorgesehen ist zum kompensieren der Öffnungs-Aberrationen der zweiten Ordnung, die durch den elektrostatischen Sektor (SE 23) an den in der Radialebene gelegenen Trajektorien erzeugt werden, ohne daß hierdurch Aberrationen der gleichen Ordnung an den Trajektorien im Vertikalschnitt eingeführt werden.
3. Spektrometer nach Anspruch 2, dadurch gekennzeichnet, daß die Übertragungsoptik (1) an dem Eintrittsspalt einen Partikelstrahl erzeugt, der im wesentlichen parallel im Vertikalschnitt verläuft und das eine Sammellinse (PA 21) zwischen dem Eintrittsspalt (FE 20) und dem ersten Hexapol (HP 22) vorgesehen ist und dieser Hexapol (HP 22) mittels der genannten Sammellinse (PA 21) im Vertikalschnitt des Strahles auf den konjugierten Punkt des Eintrittsspaltes (FE 20) zentriert wird.
4. Spektrometer nach Anspruch 3, dadurch gekennzeichnet, daß die Sammellinse (PA 21) gleichzeitig eine Linse zur Nachbeschleunigung ist und zu mindest eine zusätzliche Elektrode aufweist, um die regelbare Konvergenz sicherzustellen.
5. Spektrometer nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Übertragungsoptik (1) zwei elektrostatische Linsen (LE 11, LE 14) aufweist, die zusammenwirken, um eine Einschnürung des Strahle in Höhe des Eintrittsspaltes (FE 20) in der Radialebene herbeizuführen, und daß sie zwischen den beiden elektrostatischen Linsen eine Linse mit Spaften (LF 13) aufweist, um den Strahl im wesentlichen parallel im Vertikalschnitt in der Höhe des Eintrittsspaites zu haften.
6. Spektrometer nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß der elektrostatische Sektor (SE 23) und der magnetische Sektor (SM 30) virtuelle chromatische Rotationszentren besitzen, daß ein optisches Mittel der Art eines Ouadropols (QP 26) so positioniert, daß die beiden chromatischen Rotationszentren mit einer geeigneten Verstärkung konjugiert werden, so daß eine totale Korrektur der chromatischen Dispersion des Partikelstrahles für eine gegebene Masse ermöglicht wird und sich die Korrektur für die anderen Massen in der Brennebene (PF 35) des magnetiSektors (SM 30) vollzieht.
7. Spektrometer nach Anspruch 6, dadurch gekennzeichnet, daß der Quadropol (QP 26) gefolgt ist von Mitteln zur Kompensation seiner Divergenz in dem Vertikalschnitt, derart, daß der Partikelstrahl anschließend in seinen beiden Querrichtungen parallel ist.
8. Spektrometer nach Anspruch 7, dadurch gekennzeichnet, daß die Mittel zur Kompensation der Divergenz des Quadropols im Vertikalschnitt eine Linse mit Spalten (LF 27) aufweisen.
9. Spektrometer nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, daß er eine zweiten Hexapol (HP 25) aufweist, der hinter dem elektrostatischen Sektor (SE 23) angeordnet ist und der auf das reelle Bild zentriert ist, das der elektrostatische Sektor (SE 23) des Eintrittsspaltes (FE 20) in der Radialebene ergibt, woraus eine Verringerung der gemischten Öffnungs- und chromatischen Aberrationen für die in der Radialebene liegenden Trajektorien resultiert bei exakter Kompensation für eine gewählte Masse.
10. Spektrometer nach Anspruch 9, dadurch gekennzeichnet, daß der zweite Hexapol (HP 25) zwei Hexapoie aufweist, die einen Fifterspalt mit Energie einrahmen.
11. Spektrometer nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß e - 90° und tg e - 1/2 beträgt.
EP85400127A 1984-01-27 1985-01-25 Lichtstarker Massenspektrometer mit Mehrfach- und Simultanauslesung Expired EP0151078B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8401332 1984-01-27
FR8401332A FR2558988B1 (fr) 1984-01-27 1984-01-27 Spectrometre de masse, a grande clarte, et capable de detection multiple simultanee

Publications (3)

Publication Number Publication Date
EP0151078A2 EP0151078A2 (de) 1985-08-07
EP0151078A3 EP0151078A3 (en) 1986-08-20
EP0151078B1 true EP0151078B1 (de) 1989-12-27

Family

ID=9300554

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85400127A Expired EP0151078B1 (de) 1984-01-27 1985-01-25 Lichtstarker Massenspektrometer mit Mehrfach- und Simultanauslesung

Country Status (6)

Country Link
US (1) US4638160A (de)
EP (1) EP0151078B1 (de)
JP (1) JPS6110843A (de)
DE (1) DE3575048D1 (de)
FR (1) FR2558988B1 (de)
SU (1) SU1600645A3 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3522340A1 (de) * 1985-06-22 1987-01-02 Finnigan Mat Gmbh Linsenanordnung zur fokussierung von elektrisch geladenen teilchen und massenspektrometer mit einer derartigen linsenanordnung
JPS6477853A (en) * 1987-09-18 1989-03-23 Jeol Ltd Mapping type ion microanalyzer
JPH0224950A (ja) * 1988-07-14 1990-01-26 Jeol Ltd 同時検出型質量分析装置
JPH02304854A (ja) * 1989-05-19 1990-12-18 Jeol Ltd 同時検出型質量分析装置
US5019712A (en) * 1989-06-08 1991-05-28 Hughes Aircraft Company Production of focused ion cluster beams
JPH03269943A (ja) * 1990-03-20 1991-12-02 Jeol Ltd 同時検出型質量分析装置
FR2666171B1 (fr) * 1990-08-24 1992-10-16 Cameca Spectrometre de masse stigmatique a haute transmission.
JP3727047B2 (ja) * 1999-07-30 2005-12-14 住友イートンノバ株式会社 イオン注入装置
US6984821B1 (en) * 2004-06-16 2006-01-10 Battelle Energy Alliance, Llc Mass spectrometer and methods of increasing dispersion between ion beams
US20060043285A1 (en) * 2004-08-26 2006-03-02 Battelle Memorial Institute Method and apparatus for enhanced sequencing of complex molecules using surface-induced dissociation in conjunction with mass spectrometric analysis
FR2942072B1 (fr) * 2009-02-06 2011-11-25 Cameca Spectrometre de masse magnetique achromatique a double focalisation.
LU92130B1 (en) * 2013-01-11 2014-07-14 Ct De Rech Public Gabriel Lippmann Mass spectrometer with optimized magnetic shunt
WO2017075470A1 (en) * 2015-10-28 2017-05-04 Duke University Mass spectrometers having segmented electrodes and associated methods
LU101794B1 (en) * 2020-05-18 2021-11-18 Luxembourg Inst Science & Tech List Apparatus and method for high-performance charged particle detection

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7004207A (de) * 1969-07-30 1971-02-02
JPS4864989A (de) * 1971-12-10 1973-09-07
JPS5829577B2 (ja) * 1980-06-13 1983-06-23 日本電子株式会社 二重収束質量分析装置
US4389571A (en) * 1981-04-01 1983-06-21 The United States Of America As Represented By The United States Department Of Energy Multiple sextupole system for the correction of third and higher order aberration

Also Published As

Publication number Publication date
FR2558988A1 (fr) 1985-08-02
SU1600645A3 (ru) 1990-10-15
US4638160A (en) 1987-01-20
JPH0359544B2 (de) 1991-09-10
FR2558988B1 (fr) 1987-08-28
JPS6110843A (ja) 1986-01-18
DE3575048D1 (de) 1990-02-01
EP0151078A2 (de) 1985-08-07
EP0151078A3 (en) 1986-08-20

Similar Documents

Publication Publication Date Title
EP0151078B1 (de) Lichtstarker Massenspektrometer mit Mehrfach- und Simultanauslesung
EP0188961B1 (de) Gerät zur Höchstauflösungsmikroanalyse einer festen Probe
FR2620858A1 (fr) Instrument de spectrometrie de masse d'ions secondaires avec formation directe de l'image
FR2584234A1 (fr) Testeur de circuit integre a faisceau d'electrons
FR2544914A1 (fr) Perfectionnements apportes aux spectrometres de masse
FR2532111A1 (fr) Lentille d'emission et d'objectif electrostatique combinee
EP0095969A1 (de) Elektronenkanone mit Feldemissionskathode und magnetischer Linse
FR2484182A1 (fr) Ensemble comportant deux aimants pour devier un faisceau de particules chargees
EP2394290B1 (de) Magnetisches achromatisches massenspektrometer mit doppelfokussierung
EP0669461B1 (de) Dreigitterionenoptische Vorrichtung
BE893804A (fr) Systeme de visualisation d'images en couleur
EP0389342A1 (de) Mehrteilige elektromagnetische Linse mit veränderbarer Brennweite
FR2460080A1 (fr) Tube de camera de television a focalisation electrostatique
EP3005397A1 (de) Elektrostatische linse mit dielektrischer halbleitender membran
EP0473488A2 (de) Stigmatisches Massenspektrometer mit hoher Transmission
EP0925599B1 (de) Energiefilter, transmissionselektronenmikroskop und assoziiertes energiefilterungsverfahren
EP0155890B1 (de) Bildwandlerröhre mit Spaltenabtastung
EP0319402B1 (de) Verwendung einer Elektronenkanone für eine Kathodenstrahlröhre
FR3060771B1 (fr) Zoom optique modulaire a format d'image reglable
FR2563047A1 (fr) Ensemble de canons d'electrons pour recepteur de television couleur
LU92981B1 (en) Extraction system for charged secondary particles for use in a mass spectrometer or other charged particle device
FR2818002A1 (fr) Bobinage d'enroulement pour lentille magnetique et lentille magnetique comportant un tel bobinage
WO1987002177A1 (fr) Spectrographe de masse
FR2525813A1 (fr) Source d'ions pour spectrometrie de masse de haute precision et son procede d'application
EP0124440A1 (de) Hochhelligkeitsmassenspektrometer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL SE

Designated state(s): DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19860929

17Q First examination report despatched

Effective date: 19880224

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3575048

Country of ref document: DE

Date of ref document: 19900201

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85400127.8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20031230

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040115

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040121

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040128

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20050124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20050125

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

EUG Se: european patent has lapsed
NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20050125