[go: up one dir, main page]

EP0054298B1 - Method and apparatus for the optimum heat tranfer of carriers of reversible and heterogeneous evaporation processes - Google Patents

Method and apparatus for the optimum heat tranfer of carriers of reversible and heterogeneous evaporation processes Download PDF

Info

Publication number
EP0054298B1
EP0054298B1 EP81110444A EP81110444A EP0054298B1 EP 0054298 B1 EP0054298 B1 EP 0054298B1 EP 81110444 A EP81110444 A EP 81110444A EP 81110444 A EP81110444 A EP 81110444A EP 0054298 B1 EP0054298 B1 EP 0054298B1
Authority
EP
European Patent Office
Prior art keywords
carrier
heat
reversible
heat pipe
heterogeneous evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81110444A
Other languages
German (de)
French (fr)
Other versions
EP0054298A2 (en
EP0054298A3 (en
Inventor
Gert Dr. Vaubel
Rolf Rathert
Alfred Dr. Ritter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Studiengesellschaft Kohle gGmbH
Original Assignee
Studiengesellschaft Kohle gGmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle gGmbH filed Critical Studiengesellschaft Kohle gGmbH
Priority to AT81110444T priority Critical patent/ATE10545T1/en
Publication of EP0054298A2 publication Critical patent/EP0054298A2/en
Publication of EP0054298A3 publication Critical patent/EP0054298A3/en
Application granted granted Critical
Publication of EP0054298B1 publication Critical patent/EP0054298B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/12Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type using desorption of hydrogen from a hydride
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor

Definitions

  • the present invention relates to a method for optimized heat transfer from carriers of reversible, heterogeneous evaporation processes for the purpose of generating heat or cold, in which use is made of the principle of the heat pipe.
  • Heat pipes also called heat pipes in Anglo-Saxon, are known from US Pat. No. 2,350,348 and the work of P.D. Dunn et al. THERE. Reay, Heat Pipes, Pergamon Press 1976 known. Because of their outstanding heat transfer performance, they are increasingly finding their way into technology. Heat pipes that work according to the thermosiphon principle are particularly easy to manufacture. However, the prerequisite for this is that the evaporation zone of the heat pipe is arranged below the condensation zone.
  • Reversible, heterogeneous evaporation is a generally known principle and can take place with or without chemical changes. Gas absorption on carriers such as activated carbon, for example, is purely physical in nature. Examples of reversible, heterogeneous evaporation processes with chemical conversion are the formation and decomposition of metal hydrides and the ammonia elimination and addition to calcium chloride ammonia. Regardless of whether these processes are chemical or physical in nature, the evaporation or expulsion process is always endothermic, while the opposite absorption process is exothermic.
  • EP-A-0 041 244 which falls under Article 54 (3) EPC, has proposed a method and a device for the energy-saving production of useful heat from the environment or from waste heat.
  • the heat reaction is used in the formation and decomposition of a metal hydride.
  • the switchable heat exchangers are replaced by heat pipes.
  • the upper or lower end of a heat pipe protrudes into the vessel with the metal hydride and conducts the heat or cold generated during the reaction via the heat pipe.
  • the heat transfer from the metal hydride as a carrier to the heat pipe takes place only in a relatively small area and is therefore only very slow and incomplete.
  • the device according to the invention for carrying out the method thus consists of a heat pipe, which is connected at the bottom to a heat source and at the top to a heat sink, contains a low-boiling liquid and a carrier of a reversible, heterogeneous evaporation process, as well as an inlet and outlet for the gas of the reversible, heterogeneous evaporation process.
  • the position of the carrier of the reversible, heterogeneous evaporation within the heat pipe can be changed from outside. This can be done, for example, in that the carrier of the reversible, heterogeneous evaporation process contains an iron core and can be moved from the outside by a magnet inside the heat pipe.
  • a preferred embodiment consists of two heat pipes arranged one above the other, which are separated from one another by the carrier of the reversible, heterogeneous evaporation process.
  • Another embodiment makes use of the principle of the absorption heat pump, so that the mechanically compressing pump can be dispensed with.
  • the speed of heat transfer increases if the carrier material is geometrically designed so that the largest possible contact area for the low-boiling liquid.
  • Structurally simple and mecha Devices in which the carrier of the reversible, heterogeneous evaporation process, the gas used in each case and the liquid and vapor of the low-boiling liquid used in each case are compatible with one another are niche. This is because there can be a direct contact between the carrier surface and the low-boiling liquid or its vapor, as a result of which the heat transfer is considerably intensified, in particular if the carrier is geometrically designed so that it has a large surface.
  • this solution contains both the vapor of the low-boiling liquid and the gas of the reversible, heterogeneous evaporation in the gas phase
  • the supply line to the interior of the heat pipe must be provided with a pressure-resistant, semipermeable membrane that easily separates the gas from the vapor separating boiling liquid and thus prevents the steam from escaping from the heat pipe.
  • Another possibility is to envelop the carrier of the reversible, heterogeneous evaporation process and thereby separate it from the low-boiling liquid and / or its vapor. As a result, the steam is not mixed with the gas, so that no separation by a semipermeable membrane is necessary.
  • all carriers of reversible, heterogeneous evaporation processes can be used to carry out the process according to the invention; the process is preferably suitable for the energy-saving production of useful heat from the environment or from waste heat with the aid of metal hydrides and hydrogen.
  • the carrier compact 4) is either moved into the region of the heat source or the heat sink by means of the magnet 7).
  • the low-boiling liquid surrounds it and can absorb heat relatively quickly.
  • the gas to be reacted for example hydrogen
  • the membrane 8 the surface for absorption of the hydrogen gas being considerably enlarged through the central bore 5).
  • FIG. 2 shows in the simplest way an embodiment in which two heat pipes are connected to the carrier 4) of the reversible, heterogeneous evaporation process in the interior of the heat pipe in such a way that the two carriers are connected to one another via a gas line 10) and a pump (not shown), so that both heat pipes can be rotated together by 180 ° so that the carrier 4) is located in one heat pipe and the carrier 4) is in the other heat pipe at the bottom.
  • FIG. 3 schematically shows two heat pipes arranged one above the other, which are separated from one another by the carrier 4) of the reversible, heterogeneous evaporation process.
  • the two supports are connected to one another via a gas line 10) and a pump (not shown).
  • the lower end of the two lower heat pipes is in a heat source 2) and the upper part of the two upper heat pipes in a heat sink 1).
  • FIG. 4 shows one of the two pairs of heat pipes arranged one above the other in more detail, 11) representing the coating which is impermeable to the easily evaporating solvent and its vapor.
  • FIG. 5 shows an embodiment in which the lower heat pipe is in turn separated from the carrier 4) by a covering 11) which is impermeable to the easily evaporating solvent 3) and its vapor.
  • the upper heat pipe contains not only a low-boiling liquid and its vapor, but also the gas which can evaporate reversibly heterogeneously from the carrier 4). The steam of lightly them The solvent and the gas, which can reversibly evaporate from the carrier, are separated from one another on the pressure-resistant, semipermeable membrane 8).
  • FIG. 6 shows an embodiment in which the lower heat pipe has baffles 12) on which the condensate reaches the inner wall of the reaction vessel 9) due to gravity and evaporates again in the area of the heat source 2).
  • the carrier 4) has on the one hand central bores 5) into which the low-boiling liquid of the upper heat pipe can collect. Furthermore, it has channels 13), in which the steam of the lower heat pipe condenses while releasing heat.
  • a cycle of absorption and desorption is described in more detail below using the example of a metal hydride support:
  • the hydrogen flows through the hydrogen connection lines 10) and the membranes 8) into the reaction vessel 9) due to external overpressure.
  • the heat released in the reaction of the hydrogen storage causes the temperature of the metal hydride 4) support to rise to a temperature which is above the temperature of the heat sink 1).
  • the liquid 3) in the bores 5) evaporates and condenses again in the area of the heat sink 1). Heat is thus transported from the metal hydride 4) to the heat sink 1).
  • the hydrogen flows out of the reaction vessel 9) due to the internal overpressure through the membranes 8).
  • the reaction taking place when the hydrogen is released from the hydride requires heat and brings about a cooling of the metal hydride 4) to a temperature below the heat source 2).
  • the vapor of the low-boiling liquid 3) present in the reaction vessel 9) below the metal hydride condenses with heat being given off on the surface of the condensation channels 13) of the metal hydride 4).
  • the condensate reaches the inner wall of the reaction vessel 9) via the guide surface 12) and evaporates again in the area of the heat source 2). Heat is therefore transported from the heat source 2) to the metal hydride 4).
  • FIG. 7 shows a further embodiment in which the carrier 4 is immersed in a liquid with good thermal conductivity, for example mercury, and in turn a good heat exchange takes place in and on the carrier.
  • the carrier is immersed in an upper and a lower heat pipe and the two heat pipes are predominantly separated from one another by the carrier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

A process for the optimized heat transfer from carriers of reversible, heterogeneous evaporation processes for the purpose of generating heat and cold by means of the principle of the heat pipe is described, which comprises arranging the carrier of the reversible, heterogeneous evaporation process in the interior of a heat pipe. Moreover, this application describes the apparatus for carrying out the process in which a heat pipe is provided with a heat source at the bottom and with a heat sink at the top and exhibits a carrier of a reversible, heterogeneous evaporation process and a feed line and discharge line for the gas of the reversible, heterogeneous evaporation process.

Description

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur optimierten Wärmeübertragung von Trägern reversibler, heterogener Verdampfungsvorgänge zum Zwecke der Wärme- oder Kälteerzeugung, bei dem von dem Prinzip des Wärmerohres Gebrauch gemacht wird. Wärmerohre, im Angelsächsischen auch « heat pipes genannt, sind aus dem US-Patent 2 350 348 sowie der Arbeit von P.D. Dunn u. D.A. Reay, Heat Pipes, Pergamon Press 1976 bekannt. Sie finden wegen ihrer überragenden Wärmetransportleistung zunehmend Eingang in die Technik. Besonders einfach herzustellen sind Wärmerohre, welche nach dem Thermosyphonprinzip arbeiten. Voraussetzung hierfür ist jedoch, daß die Verdampfungszone des Wärmerohres unterhalb der Kondensationszone angeordnet ist.The present invention relates to a method for optimized heat transfer from carriers of reversible, heterogeneous evaporation processes for the purpose of generating heat or cold, in which use is made of the principle of the heat pipe. Heat pipes, also called heat pipes in Anglo-Saxon, are known from US Pat. No. 2,350,348 and the work of P.D. Dunn et al. THERE. Reay, Heat Pipes, Pergamon Press 1976 known. Because of their outstanding heat transfer performance, they are increasingly finding their way into technology. Heat pipes that work according to the thermosiphon principle are particularly easy to manufacture. However, the prerequisite for this is that the evaporation zone of the heat pipe is arranged below the condensation zone.

Reversible, heterogene Verdampfung ist ein generell bekanntes Prinzip und kann mit oder ohne chemische Veränderung verlaufen. Rein physikalischer Natur ist beispielsweise die Gasabsorption an Trägern wie Aktivkohle. Beispiele für reversible, heterogene Verdampfungsvorgänge mit chemischer Umsetzung sind Bildung und Zersetzung von Metallhydriden sowie die Ammoniakabspaltung und -anlagerung an Calciumchloridammoniakat. Unabhängig davon, ob diese Vorgänge chemischer oder physikalischer Natur sind, ist der Verdampfungs- oder Austreibprozeß stets endotherm, während der gegenläufige Absorptionsprozeß exotherm verläuft.Reversible, heterogeneous evaporation is a generally known principle and can take place with or without chemical changes. Gas absorption on carriers such as activated carbon, for example, is purely physical in nature. Examples of reversible, heterogeneous evaporation processes with chemical conversion are the formation and decomposition of metal hydrides and the ammonia elimination and addition to calcium chloride ammonia. Regardless of whether these processes are chemical or physical in nature, the evaporation or expulsion process is always endothermic, while the opposite absorption process is exothermic.

Die Anwendung reversibler, heterogener Verdampfungsvorgänge an einem Träger haben in der Vergangenheit stets unter dem erheblichen Nachteil gelitten, daß die Wärmeübertragung vom Träger auf seine Umgebung sehr langsam und sehr wenig effizient verläuft, da die Trägermaterialien im allgemeinen schlechte Wärmeleitfähigkeit aufweisen. Dies führt zu unerwünscht großen Zyklenzeiten beim Betrieb periodisch arbeitender Geräte wie Kältemaschinen oder Wärmepumpen sowie zu entsprechend groß und voluminös ausgelegten Geräten, da nur kann die geforderten Wärmetransportleistungen erbracht werden können.The use of reversible, heterogeneous evaporation processes on a carrier has always suffered in the past from the considerable disadvantage that the heat transfer from the carrier to its surroundings is very slow and very inefficient, since the carrier materials generally have poor thermal conductivity. This leads to undesirably long cycle times when operating periodically operating devices such as chillers or heat pumps as well as correspondingly large and voluminous devices, since only the required heat transport performance can be provided.

In der EP-A-0 041 244, die unter Artikel 54(3) EPÜ fällt, ist ein Verfahren und eine Vorrichtung zur energiesparenden Gewinnung von Nutzwärme aus der Umgebung oder aus Abfallwärme vorgeschlagen worden. Hierbei wird beispielsweise die Wärmereaktion bei der Bildung und Zersetzung eines Metallhydrids ausgenutzt. In einer bevorzugten Ausführungsform werden die umschaltbaren Wärmeaustauschers durch Wärmerohre ersetzt. Bei den dort beschriebenen Vorrichtungen ragt das obere oder untere Ende eines Wärmerohres in das Gefäß mit dem Metallhydrid ein und leitet die bei der Reaktion entstehende Wärme bzw. Kälte über das Wärmerohr ab. Die Wärmeübertragung vom Metallhydrid als Träger auf das Wärmerohr findet nur in einem relativ kleinen Bereich statt und ist demzufolge nur sehr langsam und unvollständig.EP-A-0 041 244, which falls under Article 54 (3) EPC, has proposed a method and a device for the energy-saving production of useful heat from the environment or from waste heat. Here, for example, the heat reaction is used in the formation and decomposition of a metal hydride. In a preferred embodiment, the switchable heat exchangers are replaced by heat pipes. In the devices described there, the upper or lower end of a heat pipe protrudes into the vessel with the metal hydride and conducts the heat or cold generated during the reaction via the heat pipe. The heat transfer from the metal hydride as a carrier to the heat pipe takes place only in a relatively small area and is therefore only very slow and incomplete.

Es wurde jetzt gefunden, daß man das Verfahren zur Wärmeübertragung von Trägern reversibler, heterogener Verdampfungsvorgänge zum Zwecke der Wärme- oder Kälteerzeugung mit Hilfe des Prinzips des Wärmerohres dadurch optimieren kann, daß man den Träger des reversiblen, heterogenen Verdampfungsvorganges in das Innere eines Wärmerohres einbringt. Hierdurch werden in überraschend einfacher und effizienter Weise die Wirkungen reversibler, heterogener Verdampfungsvorgänge auf Trägern durch das Prinzip des Wärmerohres übertragen.It has now been found that the method for heat transfer from carriers of reversible, heterogeneous evaporation processes for the purpose of heating or cooling can be optimized with the principle of the heat pipe by introducing the carrier of the reversible, heterogeneous evaporation process into the interior of a heat pipe. As a result, the effects of reversible, heterogeneous evaporation processes on carriers are transferred in a surprisingly simple and efficient manner by the principle of the heat pipe.

Die erfindungsgemäße Vorrichtung zur Durchführung des Verfahrens besteht somit aus einem Wärmerohr, welches unten mit einer Wärmequelle und oben mit einer Wärmesenke verbunden ist, eine leicht siedende Flüssigkeit und einen Träger eines reversiblen, heterogenen Verdampfungsvorganges enthält sowie eine Zu- bzw. Ableitung für das Gas des reversiblen, heterogenen Verdampfungsvorganges aufweist.The device according to the invention for carrying out the method thus consists of a heat pipe, which is connected at the bottom to a heat source and at the top to a heat sink, contains a low-boiling liquid and a carrier of a reversible, heterogeneous evaporation process, as well as an inlet and outlet for the gas of the reversible, heterogeneous evaporation process.

Zur Durchführung des erfindungsgemäßen Verfahrens bieten sich mehrere prinzipielle Wege an. Beispielsweise kann man zwei Wärmerohre mit dem Träger des reversiblen, heterogenen Verdampfungsvorganges im Innern des Wärmerohres so miteinander verbinden, daß die beiden Träger über eine Gasleitung und Pumpe miteinander verbunden sind und beide Wärmerohre miteinander um 180° so gedreht werden können, daß sich jeweils in einem Wärmerohr der Träger oben und im anderen Wärmerohr der Träger unten befindet. Ein gewisser Nachteil dieser Lösung besteht darin, daß im Grunde das gesamte Aggregat um 180° drehbar gebaut sein muß, was einen gewissen Aufwand an Technik und Energie zur Folge hat.There are several basic ways of carrying out the method according to the invention. For example, you can connect two heat pipes with the carrier of the reversible, heterogeneous evaporation process inside the heat pipe so that the two carriers are connected to each other via a gas line and pump and both heat pipes can be rotated together by 180 ° so that each rotates in one Heat pipe the carrier is on top and in the other heat pipe the carrier is below. A certain disadvantage of this solution is that basically the entire unit must be rotatable through 180 °, which results in a certain amount of technology and energy.

Eine weitere Möglichkeit besteht darin, daß die Position des Trägers der reversiblen, heterogenen Verdampfung innerhalb des Wärmerohres von außen gesteuert verändert werden kann. Dies kann beispielsweise dadurch erfolgen, daß der Träger des reversiblen, heterogenen Verdampfungsvorganges einen Eisenkern enthält und von außen durch einen Magneten innerhalb des Wärmerohres verschoben werden kann.Another possibility is that the position of the carrier of the reversible, heterogeneous evaporation within the heat pipe can be changed from outside. This can be done, for example, in that the carrier of the reversible, heterogeneous evaporation process contains an iron core and can be moved from the outside by a magnet inside the heat pipe.

Eine bevorzugte Ausführungsform besteht aus zwei übereinander angeordneten Wärmerohren, die durch den Träger des reversiblen, heterogenen Verdampfungsvorganges voneinander getrennt sind.A preferred embodiment consists of two heat pipes arranged one above the other, which are separated from one another by the carrier of the reversible, heterogeneous evaporation process.

Eine weitere Ausführungsform macht von dem Prinzip der Absorptionswärmepumpe Gebrauch, so daß auf die mechanisch verdichtende Pumpe verzichtet werden kann.Another embodiment makes use of the principle of the absorption heat pump, so that the mechanically compressing pump can be dispensed with.

In allen Fällen erhöht sich selbstverständlich die Geschwindigkeit des Wärmeüberganges, wenn das Trägermaterial geometrisch so gestaltet ist, daß eine möglichst große Berührungsfläche für die leicht siedende Flüssigkeit besteht.In all cases, of course, the speed of heat transfer increases if the carrier material is geometrically designed so that the largest possible contact area for the low-boiling liquid.

Konstruktiv besonders einfach und mechanisch unaufwendig sind solche Vorrichtungen, in denen der Träger des reversiblen, heterogenen Verdampfungsvorganges, das jeweils verwendete Gas sowie Flüssigkeit und Dampf der jeweils verwendeten leicht siedenden Flüssigkeit mit einander verträglich sind. Es kann dann nämlich eine unmittelbare Berührung der Trägeroberfläche mit der leicht siedenden Flüssigkeit bzw. seinem Dampf stattfinden, wodurch der Wärmeübergang erheblich intensiviert wird, insbesondere wenn der Träger geometrisch so gestaltet ist, daß er eine große Oberfläche aufweist.Structurally simple and mecha Devices in which the carrier of the reversible, heterogeneous evaporation process, the gas used in each case and the liquid and vapor of the low-boiling liquid used in each case are compatible with one another are niche. This is because there can be a direct contact between the carrier surface and the low-boiling liquid or its vapor, as a result of which the heat transfer is considerably intensified, in particular if the carrier is geometrically designed so that it has a large surface.

Da bei dieser Lösung in der Gasphase sowohl der Dampf der leicht siedenden Flüssigkeit als auch das Gas der reversiblen, heterogenen Verdampfung vorhanden ist, muß die Zuleitung zum Inneren des Wärmerohres mit einer druckfesten, semipermeablen Membran versehen sein, die das Gas von dem Dampf der leicht siedenden Flüssigkeit abtrennt und somit einen Austritt des Dampfes aus dem Wärmerohr verhindert.Since this solution contains both the vapor of the low-boiling liquid and the gas of the reversible, heterogeneous evaporation in the gas phase, the supply line to the interior of the heat pipe must be provided with a pressure-resistant, semipermeable membrane that easily separates the gas from the vapor separating boiling liquid and thus prevents the steam from escaping from the heat pipe.

Eine weitere Möglichkeit besteht darin, den Träger des reversiblen, heterogenen Verdampfungsvorganges zu umhüllen und dadurch von der leicht siedenden Flüssigkeit und/oder ihrem Dampf abzutrennen. Hierdurch kommt es nicht zur Vermischung des Dampfes mit dem Gas, so daß auch keine Abtrennung durch eine semipermeable Membran notwendig ist.Another possibility is to envelop the carrier of the reversible, heterogeneous evaporation process and thereby separate it from the low-boiling liquid and / or its vapor. As a result, the steam is not mixed with the gas, so that no separation by a semipermeable membrane is necessary.

Bei der Ausführungsform, bei der zwei Wärmerohre übereinander angeordnet sind, ist es prinzipiell möglich, das obere und das untere Wärmerohr mit verschiedenen, leicht siedenden Flüssigkeiten zu füllen und dadurch die Verhältnisse in den beiden Wärmerohren zu optimieren. Wenn beispielsweise die Wärmequelle Energie relativ niedriger Temperatur zuführt, im Träger der reversiblen, heterogenen Verdampfung jedoch relativ hohe Temperaturen entstehen, sollten Siedepunkte der beiden Flüssigkeiten in dem oberen und unteren Wärmerohr entsprechend angepaßt gewählt werden. Insbesondere bei Verwendung von Metallhydriden ist es auf diese Weise möglich, Energie niedriger Temperatur in Energie hoher Temperatur zu transformieren und als Nutzwärme zur Verfügung zu stellen.In the embodiment in which two heat pipes are arranged one above the other, it is in principle possible to fill the upper and the lower heat pipe with different, low-boiling liquids and thereby to optimize the conditions in the two heat pipes. For example, if the heat source supplies energy at a relatively low temperature, but relatively high temperatures arise in the carrier of the reversible, heterogeneous evaporation, the boiling points of the two liquids in the upper and lower heat pipes should be selected accordingly. In this way, in particular when using metal hydrides, it is possible to transform low-temperature energy into high-temperature energy and to make it available as useful heat.

Zur Durchführung des erfindungsgemäßen Verfahrens können prinzipiell alle Träger reversibler, heterogener Verdampfungsvorgänge eingesetzt werden, vorzugsweise ist das Verfahren geeignet zur energiesparenden Gewinnung von Nutzwärme aus der Umgebung oder aus Abfallwärme mit Hilfe von Metallhydriden und Wasserstoff.In principle, all carriers of reversible, heterogeneous evaporation processes can be used to carry out the process according to the invention; the process is preferably suitable for the energy-saving production of useful heat from the environment or from waste heat with the aid of metal hydrides and hydrogen.

Einige zur Durchführung des erfindungsgemäßen Verfahrens geeignete Vorrichtungen sind in den nachfolgenden Figuren näher erläutert.Some devices suitable for carrying out the method according to the invention are explained in more detail in the following figures.

Figur 1 zeigt ein Wärmerohr, in welchem die Position des Trägers des reversiblen, heterogenen Verdampfungsvorganges innerhalb des Wärmerohres von außen gesteuert verändert werden kann. In dieser Figur bedeuten :

  • 1) eine Wärmesenke
  • 2) eine Wärmequelle
  • 3) das Kondensat einer leicht siedenden Flüssigkeit
  • 4) einen gepreßten Träger, beispielsweise einen Preßling aus Metallhydrid
  • 5) eine Zentralbohrung in diesen Preßling
  • 6) einen eingepreßtern Eisenring
  • 7) einen Magneten zum Verschieben des Trägerkernes innerhalb des Wärmerohres
  • 8) eine semipermeale Membran
  • 9) die Wand des Wärmerohres, das zugleich Reaktionsgefäß ist und aus einem nicht-magnetischen Material besteht. Sofern es sich um ein Metallhydrid als Träger handelt, muß dieses Material obendrein wasserstoffbeständig sein.
FIG. 1 shows a heat pipe in which the position of the carrier of the reversible, heterogeneous evaporation process inside the heat pipe can be changed in a controlled manner from the outside. In this figure:
  • 1) a heat sink
  • 2) a heat source
  • 3) the condensate of a low-boiling liquid
  • 4) a pressed carrier, for example a compact made of metal hydride
  • 5) a central bore in this compact
  • 6) a pressed-in iron ring
  • 7) a magnet for moving the carrier core within the heat pipe
  • 8) a semi-permeable membrane
  • 9) the wall of the heat pipe, which is also a reaction vessel and consists of a non-magnetic material. If it is a metal hydride as a carrier, this material must also be resistant to hydrogen.

Zur Durchführung des erfindungsgemäßen Verfahrens wird mittels des Magneten 7) der Trägerpreßling 4) entweder in den Bereich der Wärmequelle oder der Wärmesenke verschoben. Beim Eintauchen des Trägers in die Wärmequelle wird er von der leicht siedenden Flüssigkeit rundherum umspült und kann relativ rasch Wärme aufnehmen. Befindet sich der Träger im Bereich der Wärmesenke, kann das zu reagierende Gas, beispielsweise Wasserstoff, bei einem Hydrid durch die Membran 8) in den Metallhydridkern eindrigen, wobei durch die Zentralbohrung 5) die Oberfläche zur Absorption des Wasserstoffgases erheblich vergrößert ist.To carry out the method according to the invention, the carrier compact 4) is either moved into the region of the heat source or the heat sink by means of the magnet 7). When the carrier is immersed in the heat source, the low-boiling liquid surrounds it and can absorb heat relatively quickly. If the carrier is in the area of the heat sink, the gas to be reacted, for example hydrogen, can penetrate into the metal hydride core in the case of a hydride through the membrane 8), the surface for absorption of the hydrogen gas being considerably enlarged through the central bore 5).

Figur 2 zeigt in einfachster Weise eine Ausführungsform, bei der zwei Wärmerohre mit dem Träger 4) des reversiblen, heterogenen Verdampfungsvorganges im Innern des Wärmerohres so miteinander verbunden sind, daß die beiden Träger über eine Gasleitung 10) und eine nicht mitgezeichnete Pumpe miteinander verbunden sind, so daß beide Wärmerohre miteinander um 180° so gedreht werden können, daß sich jeweils in einem Wärmerohr der Träger 4) oben und im anderen Wärmerohr der Träger 4) unten befindet.FIG. 2 shows in the simplest way an embodiment in which two heat pipes are connected to the carrier 4) of the reversible, heterogeneous evaporation process in the interior of the heat pipe in such a way that the two carriers are connected to one another via a gas line 10) and a pump (not shown), so that both heat pipes can be rotated together by 180 ° so that the carrier 4) is located in one heat pipe and the carrier 4) is in the other heat pipe at the bottom.

Figur 3 zeigt in schematischer Weise je zwei Wärmerohre übereinander angeordnet, die durch den Träger 4) des reversiblen, heterogenen Verdampfungsvorganges voneinander getrennt sind. Die beiden Träger sind über eine Gasleitung 10) und eine nicht mitgezeichnete Pumpe miteinander verbunden. Außerdem befindet sich jeweils das untere Ende der beiden unteren Wärmerohre in einer Wärmequelle 2) und der obere Teil der beiden oberen Wärmerohre in einer Wärmesenke 1).FIG. 3 schematically shows two heat pipes arranged one above the other, which are separated from one another by the carrier 4) of the reversible, heterogeneous evaporation process. The two supports are connected to one another via a gas line 10) and a pump (not shown). In addition, the lower end of the two lower heat pipes is in a heat source 2) and the upper part of the two upper heat pipes in a heat sink 1).

In der Figur 4 ist eines der beiden Paare übereinander angeordneter Wärmerohre ausführlicher dargestellt, wobei 11) die für das leicht verdampfende Lösungsmittel und seinen Dampf undurchlässige Umhüllung darstellt.FIG. 4 shows one of the two pairs of heat pipes arranged one above the other in more detail, 11) representing the coating which is impermeable to the easily evaporating solvent and its vapor.

Figur 5 stellt eine Ausführungsform dar, bei der das untere Wärmerohr wiederum durch eine für das leicht verdampfende Lösungsmittel 3) und seinen Dampf undurchlässige Umhüllung 11) vom Träger 4) abgetrennt ist. Das obere Wärmerohr hingegen enthält außer einer leicht siedenden Flüssigkeit und ihrem Dampf auch das Gas, das von dem Träger 4) reversibel heterogen verdampfen kann. Der Dampf des leicht siedenden Lösungsmittels und das Gas, welches von dem Träger reversibel verdampfen kann, werden an der druckfesten, semipermeablen Membran 8) voneinander getrennt.FIG. 5 shows an embodiment in which the lower heat pipe is in turn separated from the carrier 4) by a covering 11) which is impermeable to the easily evaporating solvent 3) and its vapor. The upper heat pipe, on the other hand, contains not only a low-boiling liquid and its vapor, but also the gas which can evaporate reversibly heterogeneously from the carrier 4). The steam of lightly them The solvent and the gas, which can reversibly evaporate from the carrier, are separated from one another on the pressure-resistant, semipermeable membrane 8).

Figur 6 stellt eine Ausführungsform dar, bei der das untere Wärmerohr Leitbleche 12) aufweist, an denen das Kondensat infolge der Schwerkraft an die Innenwand des Reaktionsgefäßes 9) gelangt und im Bereich der Wärmequelle 2) erneut verdampft. Der Träger 4) weist einerseits zentrale Bohrungen 5) auf, in den sich die leicht siedende Flüssigkeit des oberen Wärmerohres ansammeln kann. Weiterhin weist es Kanäle 13) auf, in denen unter Wärmeabgabe die Kondensation des Dampfes des unteren Wärmerohres erfolgt. Am Beispiel eines Metallhydridträgers wird im folgenden ein Zyklus aus Absorption und Desorption ausführlicher beschrieben :FIG. 6 shows an embodiment in which the lower heat pipe has baffles 12) on which the condensate reaches the inner wall of the reaction vessel 9) due to gravity and evaporates again in the area of the heat source 2). The carrier 4) has on the one hand central bores 5) into which the low-boiling liquid of the upper heat pipe can collect. Furthermore, it has channels 13), in which the steam of the lower heat pipe condenses while releasing heat. A cycle of absorption and desorption is described in more detail below using the example of a metal hydride support:

In der ersten Phase, der Wasserstoffeinlagerung, strömt der Wasserstoff aufgrund äußeren Überdrucks durch die Wasserstoffanschlußleitungen 10) und die Membranen 8) in das Reaktionsgefäß 9). Die bei der Reaktion der Wasserstoffeinlagerung frei werdende Wärme bewirkt eine Temperaturerhöhung des Trägers aus Metallhydrid 4) auf eine Temperatur, die oberhalb der Temperatur der Wärmesenke 1) liegt. Die Flüssigkeit 3) in den Bohrungen 5) verdampft und kondensiert wieder im Bereich der Wärmesenke 1). Es erfolgt also ein Wärmetransport von dem Metallhydrid 4) zur Wärmesenke 1). In der zweiten Phase der Wasserstoffaustreibung strömt der Wasserstoff aufgrund des inneren Überdrucks durch die Membranen 8) aus dem Reaktionsgefäß 9). Die bei der Freisetzung des Wasserstoffs aus dem Hydrid ablaufende Reaktion benötigt Wärme und bewirkt eine Abkühlung des Metallhydrids 4) auf eine untershalb der Wärmequelle 2) liegenden Temperatur. Der im Reaktionsgefäß 9) unterhalb des Metallhydrids vorhandene Dampf der leicht siedenden Flüssigkeit 3) kondensiert unter Wärmeabgabe an der Oberfläche der Kondensationskanäle 13) des Metallhydrids 4). Das Kondensat gelangt infolge der Schwerkraft über die Leitfläche 12) an die Innenwand des Reaktionsgefäßes 9) und verdampft wieder im Bereich der Wärmequelle 2). Es erfolgt also ein Wärmetransport von der Wärmequelle 2) zum Metallhydrid 4).In the first phase, the hydrogen storage, the hydrogen flows through the hydrogen connection lines 10) and the membranes 8) into the reaction vessel 9) due to external overpressure. The heat released in the reaction of the hydrogen storage causes the temperature of the metal hydride 4) support to rise to a temperature which is above the temperature of the heat sink 1). The liquid 3) in the bores 5) evaporates and condenses again in the area of the heat sink 1). Heat is thus transported from the metal hydride 4) to the heat sink 1). In the second phase of the hydrogen expulsion, the hydrogen flows out of the reaction vessel 9) due to the internal overpressure through the membranes 8). The reaction taking place when the hydrogen is released from the hydride requires heat and brings about a cooling of the metal hydride 4) to a temperature below the heat source 2). The vapor of the low-boiling liquid 3) present in the reaction vessel 9) below the metal hydride condenses with heat being given off on the surface of the condensation channels 13) of the metal hydride 4). As a result of gravity, the condensate reaches the inner wall of the reaction vessel 9) via the guide surface 12) and evaporates again in the area of the heat source 2). Heat is therefore transported from the heat source 2) to the metal hydride 4).

Figur 7 zeigt eine weitere Ausführungsform, bei der der Träger 4 in eine Flüssigkeit mit guter Wärmeleitfähigkeit, beispielsweise Quecksilber eintaucht und dadurch wiederum ein guter Wärmeaustausch im und am Träger stattfindet. Auch bei dieser Ausführungsform taucht der Träger in ein oberes und ein unteres Wärmerohr ein und sind die beiden Wärmerohre überwiegend durch den Träger voneinander getrennt.FIG. 7 shows a further embodiment in which the carrier 4 is immersed in a liquid with good thermal conductivity, for example mercury, and in turn a good heat exchange takes place in and on the carrier. In this embodiment too, the carrier is immersed in an upper and a lower heat pipe and the two heat pipes are predominantly separated from one another by the carrier.

Claims (14)

1. A process for the optimized heat transfer from carriers of reversible heterogeneous evaporation processes for the purpose of generating heat or cold by using the principle of a heat pipe (9), characterized in that the carrier of the reversible heterogeneous evaporation process (4) is introduced into the interior of the heat pipe (9).
2. The process according to claim 1, characterized in that two heat pipes are arranged one above the other and these are separated by the carrier of the reversible heterogeneous evaporation process.
3. The process according to claim 1, characterized in that the position of the carrier of the reversible heterogeneous evaporation process inside the heat pipe can be controllably changed from outside.
4. The process according to claim 1, characterized in that two heat pipes are connected to the carrier of the reversible heterogeneous evaporation process (4) inside the heat pipe so that the two carriers are connected to each other via a gas conduit (10) and pump and both of the heat pipes may be rotated by 180° so that in one heat pipe the carrier is at the top and in the other heat pipe the carrier is at the bottom, respectively.
5. The process according to any one of claims 1 to 4, characterized in that the carrier of the reversible heterogeneous evaporation process, the respectively used gas and liquid and vapor of the respectively used low-boiling liquid are compatible with each other.
6. The process according to claim 5, characterized in that the gas being reversibly evaporated at the carrier (4) is separated from the vapor of the low-boiling liquid on a pressure-resistant semipermeable membrane (8).
7. The process according to any one of claims 1 to 4, characterized in that the carrier of the reversible heterogeneous evaporation process (4) has been separated from the readily evaporating liquid by a sheathing (11) which is at least impermeable for the readily evaporating solvent and its vapor.
8. The process according to claim 2, characterized in that the upper and lower chambers of the heat pipe divided in two compartments are filled with two different readily evaporating liquids.
9. The process according to any one of claims 1 to 4, characterized in that the carrier of the reversible heterogeneous evaporation process (4) is geometrically shaped so that a contact area which is as large as possible exists for the low-boiling liquid.
10. A device for carrying out the process according to claim 1, consisting of a heat pipe (9) which at its bottom is connected to a heat source (2) and at its top is connected to a heat sink (1), which contains a low-boiling liquid and which contains a carrier of a reversible heterogeneous evaporation process (4) and a feed pipe and discharge pipe for the gas of the reversible heterogeneous evaporation process.
11. The device according to claim 10, characterized in that the carrier of the reversible heterogeneous evaporation process (4) contains an iron core (6) and can be shifted within the heat pipe by using a magnet (7) from outside.
12. The device according to claim 10, characterized in that the carrier of the reversible heterogeneous evaporation process (4) separates an upper and a lower heat pipes from one another.
13. The device according to any one of claims 10 to 12, characterized in that the gas of the reversible heterogeneous evaporation process is separated from the vapor of the low-boiling liquid by means of a pressure-resistant semipermeable membrane (8).
14. The device according to any one of claims 10 to 12, characterized in that the carrier of the reversible heterogeneous evaporation process (4) has been separated from the readily evaporating liquid and/or the vapor thereof by a sheathing (11
EP81110444A 1980-12-17 1981-12-15 Method and apparatus for the optimum heat tranfer of carriers of reversible and heterogeneous evaporation processes Expired EP0054298B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81110444T ATE10545T1 (en) 1980-12-17 1981-12-15 METHOD AND DEVICE FOR OPTIMIZED HEAT TRANSFER FROM CARRIERS OF REVERSIBLE, HETEROGENE EVAPORATION PROCESSES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3047632 1980-12-17
DE19803047632 DE3047632A1 (en) 1980-12-17 1980-12-17 METHOD AND DEVICE FOR THE OPTIMIZED HEAT TRANSFER OF CARRIERS REVERSIBLE, HETEROGENIC EVAPORATION PROCEDURES

Publications (3)

Publication Number Publication Date
EP0054298A2 EP0054298A2 (en) 1982-06-23
EP0054298A3 EP0054298A3 (en) 1983-01-19
EP0054298B1 true EP0054298B1 (en) 1984-11-28

Family

ID=6119424

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81110444A Expired EP0054298B1 (en) 1980-12-17 1981-12-15 Method and apparatus for the optimum heat tranfer of carriers of reversible and heterogeneous evaporation processes

Country Status (8)

Country Link
US (1) US4421156A (en)
EP (1) EP0054298B1 (en)
JP (1) JPS57127791A (en)
AT (1) ATE10545T1 (en)
CA (1) CA1159445A (en)
DE (2) DE3047632A1 (en)
DK (1) DK153106C (en)
IE (1) IE52645B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510759A (en) * 1981-09-17 1985-04-16 Agency Of Industrial Science & Technology Metalhydride container and metal hydride heat storage system
NL9102072A (en) * 1991-12-11 1993-07-01 Beijer Raadgevend Tech Bureau HEAT ACCUMULATOR, METHOD FOR THE PRODUCTION THEREOF, AND ENERGY SYSTEM INCLUDED WITH SUCH A HEAT ACCUMULATOR.
US5699853A (en) * 1996-08-30 1997-12-23 International Business Machines Corporation Combined heat sink and sink plate
US6000463A (en) * 1999-01-19 1999-12-14 Thermal Corp. Metal hydride heat pump
US20080283221A1 (en) * 2007-05-15 2008-11-20 Christian Blicher Terp Direct Air Contact Liquid Cooling System Heat Exchanger Assembly
DE102013108601A1 (en) * 2013-08-08 2015-02-12 Viessmann Werke Gmbh & Co Kg Heat exchanger
EP3265737A4 (en) * 2015-03-02 2019-03-06 Sylvan Source Inc. High-efficiency desalination
DE102015103731B4 (en) * 2015-03-13 2020-01-02 Matthias Görich Device for heat transfer, thermodynamic cycle plant with such a device and method for manufacturing the device for heat transfer
CN105547024B (en) * 2016-01-27 2017-08-04 北方工业大学 An energy-saving device that automatically utilizes ambient cold and heat sources

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1614185A (en) * 1922-06-20 1927-01-11 Selden Co Process of carrying on catalytic reactions
US2044951A (en) * 1933-02-28 1936-06-23 Servel Inc Refrigeration
US2104847A (en) * 1935-04-19 1938-01-11 Kemper P Brace Jet refrigerating system with osmotic pump
DE1943122A1 (en) * 1969-08-25 1971-03-11 Bbc Brown Boveri & Cie Switchable heat pipe
DE1953501A1 (en) * 1969-10-20 1970-06-18 Euratom Starting up heat transfer tubes with solid filling
US3950947A (en) * 1969-12-24 1976-04-20 U.S. Philips Corporation Hot-gas machine comprising a heat transfer device
US3666005A (en) * 1970-07-06 1972-05-30 Robert David Moore Jr Segmented heat pipe
FR2145816A5 (en) * 1971-07-13 1973-02-23 Anvar
US3924674A (en) * 1972-11-07 1975-12-09 Hughes Aircraft Co Heat valve device
US3812905A (en) * 1972-11-17 1974-05-28 Xerox Corp Dynamic barrier for heat pipe
JPS5136658A (en) * 1974-09-25 1976-03-27 Sumitomo Shipbuild Machinery HIITOPAIPU
LU72213A1 (en) * 1975-04-04 1977-02-01
US4161211A (en) * 1975-06-30 1979-07-17 International Harvester Company Methods of and apparatus for energy storage and utilization
US4044819A (en) * 1976-02-12 1977-08-30 The United States Of America As Represented By The United States Energy Research And Development Administration Hydride heat pump
NL7601906A (en) * 1976-02-25 1977-08-29 Philips Nv CYCLIC DESORPTION COOLING MACHINE RESP. - HEAT PUMP.
US4039023A (en) * 1976-02-25 1977-08-02 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for heat transfer, using metal hydrides
JPS6026174B2 (en) * 1976-05-19 1985-06-22 株式会社日立製作所 Defect detection device
US4106554A (en) * 1977-07-25 1978-08-15 Westinghouse Electric Corp. Heat pipe heat amplifier
DE2808876A1 (en) * 1978-03-02 1979-09-13 Heidenheimer Waermevertriebs G Heat pump system using hydride formation - having exchanger unit contg. metal which liberates hydrogen endothermically and absorbs it exothermally using reversible compressor
DE3020565A1 (en) * 1980-05-30 1981-12-10 Studiengesellschaft Kohle mbH, 4330 Mülheim METHOD AND DEVICE FOR ENERGY-SAVING PRODUCT HEAT FROM THE ENVIRONMENT OR FROM WASTE HEAT

Also Published As

Publication number Publication date
EP0054298A2 (en) 1982-06-23
DE3167512D1 (en) 1985-01-10
IE812962L (en) 1982-06-17
ATE10545T1 (en) 1984-12-15
US4421156A (en) 1983-12-20
EP0054298A3 (en) 1983-01-19
DK153106B (en) 1988-06-13
IE52645B1 (en) 1988-01-06
CA1159445A (en) 1983-12-27
DK153106C (en) 1988-10-31
DE3047632A1 (en) 1982-07-22
DK558081A (en) 1982-06-18
JPS57127791A (en) 1982-08-09

Similar Documents

Publication Publication Date Title
DE69315700T2 (en) Absorption heat pump with direct heat exchange between the expeller of a second circuit and the absorber and condenser of a first circuit
DE3788760T2 (en) Device for the simultaneous transfer of heat and material.
DE3038493C1 (en) Plant for heating and drying parts under vacuum by steam condensation and separation of a second high-boiling liquid
DE69220232T2 (en) Double temperature heat pump system
EP0054298B1 (en) Method and apparatus for the optimum heat tranfer of carriers of reversible and heterogeneous evaporation processes
CH619908A5 (en)
CH629248A5 (en) METHOD FOR STORING AND REMOVING HEATING ENERGY, AND SYSTEM FOR CARRYING OUT THIS METHOD.
DE1619741A1 (en) Multi-stage evaporator
DE2900153A1 (en) SPRAY GENERATOR FOR ABSORPTION COOLING SYSTEMS
DE2248565A1 (en) DISTILLATION PROCESS AND APPARATUS
DE2645251C2 (en) Process for the preparation and recovery of diisopropanolamine from a mixture containing 1- (2-hydroxypropyl) -4-methyl-oxazolidone- (2)
DE3026954A1 (en) HEAT AND FABRIC EXCHANGER
EP0025986A1 (en) Method and apparatus for the utilisation of heat taken up at low temperature
DE3408193A1 (en) Method for raising the temperature of heat and heat pump
DE2622699A1 (en) STORAGE ELEMENT FOR A SORPTIONAL HEAT STORAGE SYSTEM
DE69711261T2 (en) Control method of a thermochemical reaction or adsorption between a solid and a gas
DE2619577A1 (en) COOLING SYSTEM
DE2011110A1 (en) Method and device for generating cold energy at very low temperatures
DE872938C (en) Method and device for carrying out exothermic catalytic gas reactions
DE2923480A1 (en) METHOD FOR STORAGE, IN PARTICULAR, LOW TEMPERATURE HEAT
DE3129957C2 (en)
DE2754981A1 (en) Recovery system for domestic waste water heat - has several evaporators and common condenser with low pressure distilled water
DE528691C (en) Process for heat or cold generation or for water production or drying with the help of atmospheric air
DE884037C (en) Method and device for the production of vapors of organic compounds dissolved in a gas
AT527315B1 (en) Process for the production of hydrogen by steam reforming of water and methanol

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19830708

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 10545

Country of ref document: AT

Date of ref document: 19841215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3167512

Country of ref document: DE

Date of ref document: 19850110

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921112

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921116

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19921119

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19921120

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921123

Year of fee payment: 12

Ref country code: BE

Payment date: 19921123

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19921126

Year of fee payment: 12

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921231

Year of fee payment: 12

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931215

Ref country code: GB

Effective date: 19931215

Ref country code: AT

Effective date: 19931215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931231

Ref country code: CH

Effective date: 19931231

Ref country code: BE

Effective date: 19931231

BERE Be: lapsed

Owner name: STUDIENGESELLSCHAFT KOHLE G.M.B.H.

Effective date: 19931231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931215

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941112

Year of fee payment: 14

EUG Se: european patent has lapsed

Ref document number: 81110444.7

Effective date: 19940710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960903