DK161461B - PROCEDURE FOR CRACKING AND DEVELOPING CARBON HYDRODES - Google Patents
PROCEDURE FOR CRACKING AND DEVELOPING CARBON HYDRODES Download PDFInfo
- Publication number
- DK161461B DK161461B DK219883A DK219883A DK161461B DK 161461 B DK161461 B DK 161461B DK 219883 A DK219883 A DK 219883A DK 219883 A DK219883 A DK 219883A DK 161461 B DK161461 B DK 161461B
- Authority
- DK
- Denmark
- Prior art keywords
- zeolite
- catalyst
- silica
- process according
- oil
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/02—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
- C10G47/10—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
- C10G47/12—Inorganic carriers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
- C10G11/04—Oxides
- C10G11/05—Crystalline alumino-silicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/58—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
- C10G45/60—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
- C10G45/64—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/02—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
- C10G47/10—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
- C10G47/12—Inorganic carriers
- C10G47/16—Crystalline alumino-silicate carriers
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Description
DK 161461 BDK 161461 B
Opfindelsen angår en fremgangsmåde til katalytisk hy-drokrakning og hydroafvoksning af et carbonhydridholdigt udgangsmateriale til fremstilling af destillater med lavt hældepunkt og tunge brændstofolier med reduceret vis-5 kositet.The invention relates to a process for catalytic hydrocracking and hydro-dewaxing of a hydrocarbon-containing starting material for the production of low pour point distillates and heavy fuel oils of reduced viscosity.
Katalytisk afvoksning af carbonhydridolier for at reducere den temperatur, ved hvilken separation af voks-agtige carbonhydrider forekommer, er en kendt proces.Catalytic dewaxing of hydrocarbon oils to reduce the temperature at which separation of waxy hydrocarbons occurs is a known process.
En proces af denne natur er beskrevet i The Oil and 10 Gas Journal dateret 6 januar 1975, på side 69 - 73.A process of this nature is described in The Oil and 10 Gas Journal dated January 6, 1975, on pages 69 - 73.
U.S.A. patent nr. 3 668 113 og U.S.A. patent nr.U.S.A. U.S. Patent No. 3,668,113 and U.S.A. patent no.
3 894 938 beskriver også afvoksning efterfulgt af hy-droefterbehandling.3,894,938 also discloses dewaxing followed by hydrotherapy.
Reissue patent nr. 28 398 beskriver en fremgangsmåde 15 til katalytisk afvoksning med en katalysator omfatten de en zeolit af typen ZSM-5. En komponent til frembringelse af hydrogenering/dehydrogenering kan være tilstede .Reissue Patent No. 28,398 discloses a method 15 for catalytic dewaxing with a catalyst comprising a zeolite of type ZSM-5. A hydrogenation / dehydrogenation generation component may be present.
En fremgangsmåde til hydroafvoksning af en gasolie med 20 en katalysator af typen ZSM-5 er beskrevet i U.S.A. pa tent nr. 3 956 102.A process for hydro-dewaxing a gas oil with a ZSM-5 catalyst is described in U.S.A. pa tent No. 3 956 102.
En mordenit-katalysator indeholdende et metal fra gruppe IV eller gruppe VIII anvendes til at afvokse et destillat med lavt viskositetsindex fra et voksagtigt rå-25 materiale, som beskrevet i U.S.A. patent nr. 4 110 056.A mordenite catalyst containing a Group IV or Group VIII metal is used to degrade a low viscosity index distillate from a waxy crude material, as described in U.S.A. Patent No. 4,110,056.
U.S.A. patent nr. 3 755 138 beskriver en fremgangsmåde til forsigtig opløsningsmiddel-afvoksning for at fjerne voks af høj kvalitet fra et smøremiddel-udgangsmateriale, hvilket derpå afvokses ad katalytisk vej til det 30 specificerede hældepunkt.U.S.A. Patent No. 3 755 138 discloses a process for gentle solvent dewaxing to remove high quality wax from a lubricant starting material which is then catalytically dewaxed to the specified pour point.
22
DK 161461BDK 161461B
U.S.A. patent nr. 3 923 641 beskriver en fremgangsmåde til hydrokrakning af naphthaer under anvendelse af zeolit beta som katalysator.U.S.A. Patent No. 3,923,641 discloses a process for hydrocracking naphthas using zeolite beta as a catalyst.
Hydrokrakning er en kendt proces, og man har anvendt 5 forskellige zeolit-katalysatorer til hydrokraknings- processer, men disse katalysatorer har sædvanligvis lidt af de ulemper, at de ikke har tilvejebragt produktudbytter, der har gode temperaturegenskaber hvad angår flydeevnen, især reduceret hældepunkt og visko-10 sitet, skønt de på effektiv måde kan tilvejebringe de stillatudbytter, hvoraf en eller flere egenskaber stemmer overens med destillatets tilstræbte anvendelse. De katalysatorer, der anvendes til hydrokrakning, omfatter en sur komponent og en hydrogeneringskomponent. Hy-15 drogeneringskomponenten kan være et ædelmetal, såsom platin.eller palladium, eller et ikke ædelt metal, såsom nikkel, molybdæn eller u/olfram eller- en kombination af disse metaller. Den sure krakningskomponent kan være et amorft materiale, såsom en sur lerart eller 20 amorft silica-alumina, eller som et alternativ en zeo lit. Storporede zeolitter, såsom zeolitterne X og Y, har konventionelt været anvendt til dette formål, fordi de hovedsagelige komponenter af udgangsmaterialerne (gasolier, bundfraktioner fra koksovne, reducerede rå-25 olier, recirkulerede olier, bundfraktioner fra en fluidiseret katalytisk krakningsenhed)er højeremole-kylære carbonhydrider, der ikke vil træde ind i den i interne porestruktur af zeolitterne med mindre porer og derfor ikke vil undergå nogen konvertering. Hvis 30 voksagtige udgangsmaterialer, såsom Amal-gasolie, hydrokrakkes med en storporet katalysator, såsom i zeolit Y i kombination med en hydrogeneringskompo-nent vil viskositeten af olien således reduceres ved at krakke det meste af 343 °C+ materialet til materi-35 ale, der koger mellem 343°C og 165 °C. Den resterende del af 343 °C+ materialet, der ikke er konverteret, inde- 3Hydrocracking is a known process and 5 different zeolite catalysts have been used for hydrocracking processes, but these catalysts usually suffer from the disadvantages of not providing product yields that have good temperature properties in terms of flowability, especially reduced pour point and viscosity. -10 site, although they can effectively provide the scaffold yields, one or more of which are consistent with the distillate's intended use. The catalysts used for hydrocracking include an acidic component and a hydrogenation component. The hydrogenation component may be a noble metal such as platinum or palladium, or a non-precious metal such as nickel, molybdenum or olefin or a combination of these metals. The acidic cracking component may be an amorphous material, such as an acidic clay or amorphous silica alumina, or alternatively a zeolite. Large-pore zeolites, such as zeolites X and Y, have been conventionally used for this purpose because the major components of the starting materials (gas oils, coke oven bottom fractions, reduced crude oils, recycled oils, fluid fractionated catalytic cracking unit) are high molecular weight. hydrocarbons which will not enter it into the internal pore structure of the smaller pores zeolites and therefore will not undergo any conversion. Thus, if 30 waxy starting materials such as Amal gas oil are hydrocracked with a large pore catalyst such as in zeolite Y in combination with a hydrogenation component, the viscosity of the oil will be reduced by cracking most of the 343 ° C + material into materials that boils between 343 ° C and 165 ° C. The remaining 343 ° C + material that has not been converted contains 3
DK 161461BDK 161461B
holder størsteparten af de paraffiniske komponenter i udgangsmaterialet, fordi aromaterne fortrinsvis konverteres til paraffiner. Det ikke konverterede 343 °C+ materiale bibeholder derfor et højt hældepunkt, såle-5 des at det sluttelige produkt også vil have et rela tivt højt hældepunkt på ca. 10 °C. Selvom viskositeten er reduceret, er hældepunktet således stadig uacceptabelt. Selvom betingelserne tilpasses således, at der fremkommer fuldstændig eller næsten fuldstændig 10 konvertering, vil de højeremolekylære carbonhydrider, der foreligger i udgangsmaterialet, principielt poly-cycliske aromater, udsættes for krakning, således at dette fører til yderligere reduktioner af produktets viskositet. Krakningsprodukterne vil dog inkludere en 15 væsentlig andel af ligekædede komponenter (n-paraffi- ner), der i tilfælde af, at de selv har en tilstrækkeligt høj molekylvægt, hvilket de ofte har, vil udgøre en voksagtig komponent i produktet. Det sluttelige produkt kan derfor være af forholdsvis mere voksagtig 20 natur end udgangsmaterialet, og det kan som følge der af have et hældepunkt, der er lige så utilfredsstillende eller endog mere utilfredsstillende. En yderligere ulempe ved at arbejde under høje konverteringsbetingelser er, at hydrogenforbruget forøges. Forsøg på 25 at reducere molekylvægten af disse ligekædede, paraffiniske produkter vil kun tjene til at frembringe meget lette fraktioner, f.eks. propan, hvorved det ønskede væskeudbytte forringes.holds most of the paraffinic components of the starting material because the aromatics are preferably converted to paraffins. The unconverted 343 ° C + material therefore maintains a high pour point, so that the final product will also have a relatively high pour point of approx. 10 ° C. Thus, although the viscosity is reduced, the pour point is still unacceptable. Although the conditions are adjusted to achieve complete or almost complete conversion, the high molecular weight hydrocarbons present in the starting material, principally polycyclic aromatics, will be subjected to cracking, resulting in further reductions in the viscosity of the product. However, the cracking products will include a substantial proportion of straight-chain components (n-paraffins) which, in case they themselves have a sufficiently high molecular weight, which they often will constitute a waxy component of the product. Therefore, the final product may be of a relatively more waxy nature than the starting material, and may consequently have a pouring point which is equally unsatisfactory or even more unsatisfactory. A further disadvantage of working under high conversion conditions is that hydrogen consumption is increased. Attempts to reduce the molecular weight of these straight-chain paraffin products will only serve to produce very light fractions, e.g. propane, thereby reducing the desired liquid yield.
Under afvoksningsprocessen anvender man på den anden 30 side en zeolit med små porer eller en formselektiv zeo lit, såsom ZSM-5, som den sure komponent af katalysatoren, og de normale og let forgrenede paraffiner, der foreligger i udgangsmaterialet, vil være i stand til at træde ind i den interne porestruktur af zeolitten, 35 således at de vil undergå konvertering. Størstedelen,During the dewaxing process, on the other hand, a small pore zeolite or a form-selective zeolite such as ZSM-5 as the acidic component of the catalyst and the normal and slightly branched paraffins present in the starting material will be capable of to enter the internal pore structure of the zeolite so that they will undergo conversion. The majority,
DK 161461 BDK 161461 B
4 : i et typisk tilfælde ca. 70% af udgangsmaterialet, kogende over 343 °C, vil forblive ukonverteret på grund af, at molekylærvoluminøse, aromatiske komponenter, især de polycycliske aromater, ikke er i stand til ^ at træde ind i zeolitten. De paraffiniske vokskompo nenter vil derfor fjernes, således at man sænker hældepunktet af produktet, men de andre komponenter vil forblive, således at det sluttelige produkt vil have en uacceptabel høj viskositet, selv om hældepunktet 10 kan være tilfredsstillende.4: in a typical case, approx. 70% of the starting material, boiling above 343 ° C, will remain unconverted because molecularly volatile aromatic components, especially the polycyclic aromatics, are unable to enter the zeolite. Therefore, the paraffinic wax components will be removed to lower the pour point of the product, but the other components will remain so that the final product will have an unacceptably high viscosity, although pour point 10 may be satisfactory.
Det har nu vist sig, at de tunge carbonhydridolier samtidigt kan hydrokrakkes og hydroafvokses til fremstil- j ! ling af et flydende produkt med tilfredsstillende hæl- j depunkt og viskositet. Dette ønskværdige resultat op-15 nås under anvendelse af en katalysator, der indeholder zeolit beta som en sur komponent til at inducere krakningsreaktionerne. Katalysatoren omfatter fortrinsvis en hydrogeneringskomponent for at inducere hydrogeneringsreaktioner. Hydrogeneringskomponenten kan være 20 et ædelt metal eller et ikke ædelt metal, og det er fortrinsvis af en konventionel type, f.eks. nikkel, wolfram, cobalt, molybdæn eller kombinationer af disse metaller.It has now been found that the heavy hydrocarbon oils can be simultaneously hydrocracked and hydro-dewaxed for production. of a liquid product with satisfactory heel point and viscosity. This desirable result is achieved using a catalyst containing zeolite beta as an acidic component to induce the cracking reactions. The catalyst preferably comprises a hydrogenation component to induce hydrogenation reactions. The hydrogenation component may be a precious metal or a non-precious metal, and it is preferably of a conventional type, e.g. nickel, tungsten, cobalt, molybdenum or combinations of these metals.
Ifølge opfindelsen tilvejebringes der en fremgangsmåde 25 til krakning og afvoksning af en tung carbonhydridolie, hvilken fremgangsmåde omfatter, at man kontakter olien i med en katalysator, der omfatter zeolit beta. iAccording to the invention, there is provided a method for cracking and dewaxing a heavy hydrocarbon oil, comprising contacting the oil with a catalyst comprising zeolite beta. in
Ved fremgangsmåden ifølge opfindelsen opvarmer man car-bonhydrid-udgangsmaterialet med katalysatoren under j 30 konverteringsbetingelser, der er passende for.hydrokrak- ning. Under konverteringen undergår de aromater og naphthener, der er tilstede i udgangsmaterialet, hydro-krakningsreaktioner, såsom dealkylering, ringåbning og 5In the process of the invention, the hydrocarbon starting material is heated with the catalyst under conversion conditions suitable for hydrocracking. During the conversion, the aromatics and naphthenes present in the starting material undergo hydrocracking reactions such as dealkylation, ring opening and
DK 161461 BDK 161461 B
krakning, efterfulgt af hydrogenering. De langkædede paraffiner, der er tilstede i udgangsmaterialet, bliver sammen med de paraffiner, der produceres ved hydro-krakningen af aromaterne, desuden konverteret til pro-5 dukter, der er mindre voksagtige end de ligekædede n- paraffiner, hvorved der frembringes en samtidig afvoks-ning. Anvendelsen af zeolit beta antages at være enestående i denne henseende, idet der herved ikke blot frembringes en reduktion af viskositeten af produktet 10 ved hydrokrakning, men også en samtidig reduktion af hældepunktet ved katalytisk hydroafvoksning.cracking, followed by hydrogenation. In addition, the long-chain paraffins present in the starting material, together with the paraffins produced by the hydro-cracking of the aromatics, are converted into products less waxy than the straight-chain n-paraffins, thereby producing a simultaneous dewaxing -ing. The use of zeolite beta is believed to be unique in this regard, thereby producing not only a reduction of the viscosity of the product 10 by hydrocracking, but also a simultaneous reduction of the pour point by catalytic hydrodevelopment.
Ved processen muliggøres det, at tunge udgangsmaterialer, såsom gasolier, der koger over 343 °C, kan konverteres til produkter med destillatområder svarende 15 til kogepunkter under 343 °C, men i modsætning til kendte processer, der gør brug af storporede katalysatorer, såsom zeolit Y, vil hydrogenforbruget blive reduceret, selv om produktet vil svare til de ønskede specifikationer for hældepunkt og viskositet. I mod-20 sætning til afvoksningsprocesser, der gør brug af form- selektive katalysatorer, såsom zeolit ZSM-5, foregår der hovedsageligt en konvertering, der omfatter krakning af aromatiske komponenter, hvilket sikrer en acceptabel lav viskositet af produktet i det pågældende destillat-25 område. Den foreliggende fremgangsmåde er således i stand til at frembringe en hovedsagelig konvertering sammen med en samtidig afvoksning. Dette opnås desuden med et reduceret hydrogenforbrug i sammenligning med de andre typer processer. Det er også muligt at arbejde 30 med partiel konvertering, hvorved man påvirker økonomien i hydrogenforbruget, mens man stadig opfylder kravene til hældepunkt og viskositet. Processen frembringer også forbedret selektivitet for produktionen af materialer i destillatområdet; udbyttet af gas og produkter, der 35 koger under destillatområdet, reduceres.The process allows heavy starting materials, such as gas oils boiling above 343 ° C, to be converted into products with distillate ranges corresponding to boiling points below 343 ° C, but contrary to known processes using large pore catalysts such as zeolite Y, hydrogen consumption will be reduced, although the product will meet the desired pour point and viscosity specifications. In contrast to dewaxing processes using form selective catalysts, such as zeolite ZSM-5, there is mainly a conversion involving cracking of aromatic components, which ensures an acceptable low viscosity of the product in that distillate. territory. Thus, the present method is capable of producing a major conversion together with a simultaneous dewaxing. This is also achieved with a reduced hydrogen consumption compared to the other types of processes. It is also possible to work 30 with partial conversion, thus affecting the economy of hydrogen consumption while still meeting the pour point and viscosity requirements. The process also produces improved selectivity for the production of materials in the distillate range; the yield of gas and products boiling under the distillate range is reduced.
66
DK 161461 BDK 161461 B
Som før anført kombinerer, processen elementer af hy-drokrakning og afvoksning. Den katalysator, der anvendes i processen, har en sur komponent og en hydrogene-ringskomponent, der kan være af den konventionelle ty-5 pe. Den sure komponent omfatter zeolit beta, der er beskrevet i U.S.A. patent nr. 3 303 069 og Re 28 341, og der skal henvises til disse patenter hvad angår de- | taljer om denne zeolit og dens fremstilling. j i }As previously mentioned, the process combines elements of hydrocracking and dewaxing. The catalyst used in the process has an acidic component and a hydrogenation component which may be of the conventional type. The acidic component comprises zeolite beta described in U.S.A. Patent Nos. 3,303,069 and Re 28,341, and reference is made to these patents with respect to the | talks about this zeolite and its manufacture. j i}
Zeolit beta er en krystallinsk aluminiumsilica-zeolit j 10 med en porestørrelse, dér er over 5 Ångstrøm. Sammensæt- j ningen af zeolitten som beskrevet i U.S.A. patent nr.Zeolite beta is a crystalline aluminum silica zeolite j 10 with a pore size, where there is more than 5 Angstroms. The composition of the zeolite as described in U.S.A. patent no.
3 303 069 og Re 28 341, i den tilstand, hvori den forekommer, når den netop er syntetiseret, kan udtrykkes på følgende måde: j i 15 [XNa(1.0i0.1-X)TEA]AlQ2.YSi02.WH20 j hvor X er under 1, fortrinsvis under 0,7; TEA repræsenterer tetraethylammonium-ioner; Y er større end 5, men under 100, og W er op til ca. 60 (det har vist sig, at hydratationsgraden kan være større end oprindeligt be-20 stemt, hvor W var defineret som værende op til 4), i afhængighed af hydratationsgraden af den tilsetedeværen-de kation. TEA-komponenten beregnes ved differens ud i fra- den analyserede værdi af natrium og det teoretis- ! ke forhold mellem kation og strukturelt aluminium, der j 25 skal være lig 1. j ' I den fuldt basebyttede form har zeolit beta- sammensætningen: i [RM(lifl.l-X)H]..A102.YSi02.WH20 i j j hvor X, Y og W har de værdier, der er angivet i det fo- ] regående, og n er valensen af metallet M. j i 30 I den delvist basebyttede form, der opnås på basis af 73 303 069 and Re 28 341, in the state in which it has just been synthesized, can be expressed as follows: ji 15 [XNa (1.0i0.1-X) TEA] AlQ2.YSi02.WH20 j where X is below 1, preferably below 0.7; TEA represents tetraethylammonium ions; Y is greater than 5 but less than 100 and W is up to approx. 60 (it has been found that the degree of hydration may be greater than originally determined where W was defined as being up to 4), depending on the degree of hydration of the added cation. The TEA component is calculated by difference based on the analyzed value of sodium and the theoretical! c ratio of cation to structural aluminum which should be equal to 1. j 'In the fully base-exchanged form, the zeolite has the beta composition: in [RM (lifl.lX) H] .. A102.YSi02.WH 2 O where X, Y and W have the values given above and n is the valence of the metal M. ji 30 In the partially base-exchanged form obtained on the basis of 7
DK 161461BDK 161461B
den initiale natriumform af zeolitten ved ionbytning uden calcinering, har zeolit beta formlen: (ΐΐΰ.1-X)TEA]A102.YSi02.WH20 Når zeolitten anvendes i katalysatorerne, forekommer 5 den i det mindste delvist på hydrogenform for at til vejebringe den ønskede sure funktionalitet til de krakningsreaktioner, der skal finde sted. Det foretrækkes normalt at anvende zeolitten i en form, der har tilstrækkelig sur funktionalitet til at give den en alfa-10 værdi på 1 eller derover. Alfa-værdien, der er et mål for zeolittens sure funktionalitet, er sammen med detaljer for målingen deraf beskrevet i U.S.A. patent nr. 4 016 218 og i J. Catalysis, bind V_I, side 278-287 (1966), og der henvises til disse publikationer med 15 henblik på sådanne detaljer. Den sure funktionalitet kan kontrolleres ved basebytning af zeolitten, især med alkalimetalkationer, såsom natrium, ved vanddampbehandling eller ved kontrol af forholdet silica: alumina i zeolitten.the initial sodium form of the zeolite by ion exchange without calcination, the zeolite beta has the formula: (ΐΐΰ.1-X) TEA] A102.YSi02.WH20 When the zeolite is used in the catalysts, it appears at least partially in hydrogen form to provide the desired acidic functionality for the cracking reactions to take place. It is usually preferred to use the zeolite in a form which has sufficient acidic functionality to give it an alpha value of 1 or greater. The alpha, which is a measure of the acidic functionality of the zeolite, is, along with details of the measurement thereof, described in U.S.A. Patent No. 4,016,218 and in J. Catalysis, Vol. V, pages 278-287 (1966), and reference is made to these publications for such details. The acidic functionality can be controlled by base exchange of the zeolite, especially with alkali metal cations such as sodium, by water vapor treatment or by controlling the silica: alumina ratio in the zeolite.
20 Når zeolit beta er syntetiseret i alkalimetalformen, kan den konverteres til hydrogenformen ved dannelse af den intermediære ammoniumform som resultat af ammo-niumionbytning og calcinering af ammoniumformen til dannelse af hydrogenformen. Udover hydrogen formen kan 25 man anvende andre former af zeolitten, hvori det oprindelige alkalimetal er blevet reduceret til mindre end ca. 1,5 vægt-%. Det oprindelige alkalimetal i zeolitten kan således ved ionbytning erstattes med andre passende metalkationer, herunder f.eks. nikkel, 30 kobber, zink, palladium, calcium og de sjældne jord arters metaller.When zeolite beta is synthesized in the alkali metal form, it can be converted to the hydrogen form by forming the intermediate ammonium form as a result of ammonium ion exchange and calcining the ammonium form to form the hydrogen form. In addition to the hydrogen form, other forms of the zeolite can be used in which the original alkali metal has been reduced to less than ca. 1.5% by weight. Thus, the original alkali metal in the zeolite can be replaced by ion exchange with other suitable metal cations, including e.g. nickel, 30 copper, zinc, palladium, calcium and the rare earth metals.
Udover, at zeolit beta udviser en sammensætning som de-In addition to zeolite beta exhibiting a composition such as
DK 161461BDK 161461B
iin
8 I8 I
i i i fineret i det foregående, kan den også karakteriseres j ved sine røntgendiffraktionsdata, der er angivet i U.S.A. ] patent nr. 3 308 069 og Re. 28 341. De signifikante j d-værdier (Ångstrøm, stråling: K alfa dublet af kobber, j 5 Geiger-tæller-spektrometer) er som vist i den følgende tabel 1: TABEL 1 ! - j d-værdier af reflektioner i zeolit betai i in the veneer of the foregoing, it may also be characterized j by its x-ray diffraction data given in U.S.A. ] Patent No. 3,308,069 and Re. 28 341. The significant j d values (Angstrom, radiation: K alpha doubled by copper, j 5 Geiger counter spectrometer) are as shown in the following Table 1: TABLE 1! - j d values of reflections in zeolite beta
11.40 +0.2 I11.40 +0.2 I
1Q 7.40 + 0.2 I1Q 7.40 + 0.2 I
6.70 + 0.2 I6.70 + 0.2 I
4.25 + 0.1 ! i4.25 + 0.1! in
3.97 + 0.1 I3.97 ± 0.1 I
3.00 + 0.1 j 15 2.20 + 0.1 i3.00 + 0.1 j 15 2.20 + 0.1 i
De foretrukne former af zeolit beta til am/endelse i processen er de former, der har højt silica-indhold, med et forhold silica: alumina på mindst 30:1. Det har ! faktisk vist sig, at zeolit beta kan fremstilles med forhold silica: alumina over det maksimum på 100:1, 20 der er specificeret i U.S.A. patenterne 3 308 069 ogThe preferred forms of zeolite beta for am / end in the process are those having high silica content, with a silica: alumina ratio of at least 30: 1. It has ! in fact, it has been found that zeolite beta can be manufactured with a silica: alumina ratio above the maximum of 100: 1, 20 specified in U.S.A. patents 3,308,069 and
Re. 28 341, og disse former af zeolitten tilvejebrin-ger de beds'te egenskaber ved processen.' Forhold på mindst 50:1 og fortrinsvis mindst 100:1 eller endog højere, f.eks. 250:1, 500:1, kan anvendes.Re. 28 341, and these forms of the zeolite provide the best properties of the process. ' Ratio of at least 50: 1 and preferably at least 100: 1 or even higher, e.g. 250: 1, 500: 1, can be used.
i 25 De forhold silica: alumina, hvortil der her er henvist, | er de strukturelle forhold eller gitterværksforholdene, ‘ dvs. forholdet mellem de SiO,- og A10.-tetraedre, der ;The ratios of silica: alumina referred to herein | are the structural conditions or the gridwork conditions, 'i.e. the ratio of the SiO 2 to A 10 tetrahedra which;
^ ** I^ ** I
tilsammen udgør den struktur, hvoraf zeolitten består. itogether they form the structure of which the zeolite consists. in
Det bør forstås, at dette forhold kan afvige fra det 30 forhold silica: alumina, der er bestemt ved forskelli-It should be understood that this ratio may differ from the ratio of silica: alumina determined by different
DK 161461 BDK 161461 B
9 ge fysiske og kemiske metoder. F.eks. kan en total kemisk analyse omfatte aluminium, der er tilstede i form af kationer, der er associeret med de sure positioner på zeolitten, hvorved der fremkommer et lavt 5 forhold silica:alumina. Hvis på lignende måde forholdet er bestemt ved termogravimetrisk analyse (TGA) af ammoniakdesorption, kan man opnå en lav ammoniak-titrering, hvis kationisk aluminium forhindrer bytning af ammoniumionerne på de sure positioner. Disse uregel-10 mæssigheder er særligt besværlige, når man gør brug af visse behandlinger, såsom den i det følgende beskrevne dealuminiseringsmetode, der resulterer i tilstedeværelsen af ionisk aluminium, der er frigjort fra zeolitstrukturen. Man bør derfor omhyggeligt drage om-15 sorg for at sikre, at forholdet silica: alumina i git terværket er bestemt korrekt.9 ge physical and chemical methods. Eg. For example, a total chemical analysis may comprise aluminum present in the form of cations associated with the acidic positions of the zeolite to give a low ratio of silica: alumina. Similarly, if the ratio is determined by thermogravimetric analysis (TGA) of ammonia desorption, a low ammonia titration can be obtained if cationic aluminum prevents the exchange of the ammonium ions at the acidic positions. These irregularities are particularly troublesome when using certain treatments, such as the dealuminization method described below which results in the presence of ionic aluminum released from the zeolite structure. Care should therefore be taken to ensure that the silica: alumina ratio in the git crosslink is determined correctly.
Forholdet silica: alumina af zeolitten kan bestemmes ved naturen af de udgangsmaterialer, der anvendes ved fremstillingen deraf, og deres mængder i forhold til 20 hinanden. Man kan derfor opnå nogen variation i for holdet ved at ændre den relative koncentration af si-lica-præcursoren i forhold til alumina-præcursoren, men definitive grænser for det maksimalt opnåelige forhold silica: alumina af zeolitten kan iagttages. For zeolit 25 beta er denne grænse sædvanligvis ca. 100:1 (skønt man kan opnå højere forhold), og for forhold over denne værdi er andre metoder sædvanligvis nødvendige til fremstilling af den ønskede zeolit med højt indhold af silica. En sådan metode omfatter dealuminisering ved 30 ekstraktion med syre, og denne metode omfatter, at man kontakter zeolitten med en syre, fortrinsvis en mineralsyre, såsom saltsyre. Dealuminiseringsprocessen skrider let frem ved omgivelsernes temperatur og let hævede temperaturer, og den forekommer med minimale tab af 35 krystallinitet, til dannelse af former med højt indhold 10The ratio of silica: alumina of the zeolite can be determined by the nature of the starting materials used in its preparation and their amounts relative to one another. Therefore, some variation in the ratio can be obtained by changing the relative concentration of the silica precursor relative to the alumina precursor, but definite limits on the maximum achievable ratio of silica: alumina of the zeolite can be observed. For zeolite 25 beta, this limit is usually approx. 100: 1 (although higher ratios can be obtained), and for ratios above this value, other methods are usually required to prepare the desired high silica zeolite. Such a method involves dealuminization by acid extraction and this method involves contacting the zeolite with an acid, preferably a mineral acid such as hydrochloric acid. The dealuminization process proceeds readily at ambient temperature and slightly elevated temperatures, and occurs with minimal losses of 35 crystallinity to form high content forms 10
DK 161461BDK 161461B
åf silica beta med forhold silica: alumina på mindst 100:1, hvorved forhold på 200:1 eller endog højere let kan opnås.also of silica beta with a silica: alumina ratio of at least 100: 1, thereby obtaining ratios of 200: 1 or even higher easily.
Zeolitten anvendes hensigtsmæssigt på hydrogenformen j } 5 til dealuminiseringsprocessen, skøn-t andre kationiske j former også kan anvendes, f.eks. natriumformen. Hvis j disse andre former anvendes, bør der anvendes tilstræk- | !The zeolite is suitably used in the hydrogen form j for the dealuminization process, although other cationic j forms can also be used, e.g. sodium. If j these other forms are used, sufficient | !
kelig syre til at muliggøre, at de oprindelige kationer Sacid to enable the original cations S
\ i zeolitten kan erstattes med protoner. Mængden af 10 zeolit i blandingen zeolit/syre bør generelt ligge mel lem 5 og 60 vægt-?0.\ The zeolite can be replaced with protons. The amount of 10 zeolite in the zeolite / acid mixture should generally be between limbs 5 and 60 weight- 0.
Syren kan være en mineralsyre, dvs. en uorganisk syre | eller en organisk syre. Typiske uorganiske syrer, som j kan anvendes, omfatter mineralsyrer, såsom salt-, svovl-, i j 15 salpeter- og phosphorsyrer, peroxydisulfonsyre, dithion- | syre, sulfaminsyre, peroxymonosvovlsyre, amidodisulfonsyre, nitrosulfonsyre, chlorsvovlsyre og salpetersyrling. Repræsentative organiske syrer, som kan anvendes, omfatter myresyre, trichloreddikesyre og trifluoreddi-20 kesyre.The acid may be a mineral acid, ie. an inorganic acid | or an organic acid. Typical inorganic acids which can be used include mineral acids such as hydrochloric, sulfuric, nitric and phosphoric acids, peroxydisulfonic acid, dithionic acid. acid, sulfamic acid, peroxymonosulfuric acid, amidodisulfonic acid, nitrosulfonic acid, chlorosulfuric acid and nitric acid. Representative organic acids which may be used include formic acid, trichloroacetic acid and trifluoroacetic acid.
Koncentrationen af tilsat syre bør være en sådan, at man· ikke sænker pH af reaktionsblandingen til et uøn- j sket lavt niveau, hvilket kunne påvirke krystallinite-ten af den zeolit, der behandles. Den aciditet, som 25 zeolitten kan tolerere, vil i det mindste delvist af- ] hænge af forholdet silica:alumina af udgangsmaterialet. ]The concentration of added acid should be such that one does not lower the pH of the reaction mixture to an undesirably low level, which could affect the crystallinity of the zeolite being treated. The acidity that the zeolite can tolerate will depend, at least in part, on the silica: alumina ratio of the starting material. ]
Det har generelt vist sig, at zeolit beta kan modstå j koncentreret syre uden utilbørligt tab af krystallini- tet, men som en generel retningslinie vil syrekoncen- i 30 trationen ligge mellem 0,1 N og 4,0 N, sædvanligvis J i j mellem 1 og 2 N. Disse værdier har gyldighed uafhængigt af forholdet silica: alumina af den som udgangsmateriale tjenende zeolit beta. Stærkere syrer har tendens til iIn general, it has been found that zeolite beta can withstand concentrated acid without undue loss of crystallinity, but as a general guideline the acid concentration will be between 0.1 N and 4.0 N, usually J 1 between 1 and 2 N. These values are valid regardless of the silica: alumina ratio of the starting zeolite beta. Stronger acids tend to i
DK 161461 BDK 161461 B
11 at frembringe en relativt større grad af aluminium-fjernelse end svagere syrer.11 to produce a relatively greater degree of aluminum removal than weaker acids.
Dealuminiseringsreaktionen skrider let fremad ved omgivelsernes temperatur, men let hævede temperaturer 5 kan anvendes, f.eks. op til 100 °C. Varigheden af eks traktionen vil påvirke forholdet silica: alumina af produktet, fordi ekstraktionen, der er diffusionskontrolleret, er tidsafhængig. På grund af, at zeolitterne bliver progressivt mere resistente over for tab af 10 krystallinitet, efterhånden som forholdet silicaialu- mina vokser, altså at den bliver mere stabil, når aluminiummet fjernes, kan man anvende højere temperaturer og mere koncentrerede syrer henimod afslutningen af behandlingen end ved begyndelsen deraf, uden ledsagende 15 risiko for tab af krystallinitet.The dealuminization reaction proceeds easily at ambient temperature, but slightly elevated temperatures 5 can be used, e.g. up to 100 ° C. The duration of the extraction will affect the silica: alumina ratio of the product because the extraction, which is diffusion controlled, is time dependent. Because the zeolites become progressively more resistant to loss of crystallinity as the silica alumina ratio grows, i.e., to become more stable as the aluminum is removed, higher temperatures and more concentrated acids towards the end of treatment can be used than at the beginning thereof, without the accompanying risk of loss of crystallinity.
Efter ekstraktionsbehandlingen bliver produktet vasket frit for urenheder med vand, fortrinsvis med destilleret vand, indtil det udgående vaskevand har en pH-vær-di i det approximative interval mellem 5 og 8.After the extraction treatment, the product is washed free of impurities with water, preferably with distilled water, until the outgoing wash water has a pH in the approximate range between 5 and 8.
20 De krystallinske dealuminiserede produkter, der er frem kommet under anvendelse af metoden ifølge opfindelsen, har i det væsentlige den samme krystallografiske struktur som den som udgangsmateriale tjenende aluminasi-licatzeolit, men med forøgede forhold silica: alumina.The crystalline dealuminized products obtained using the method according to the invention have essentially the same crystallographic structure as the starting alumina alloy litholite but with increased silica: alumina ratio.
25 Formlen for den dealuminiserede zeolit beta vil derfor væreThe formula for the dealuminized zeolite beta will therefore be
[xM(ll0.1-X)H]A109.YSi0„.WH90 TT L L L[xM (100.1-X) H] A109.YSi0 „.WH90 TT L L L
hvor X er under 1, fortrinsvis under 0,75, Y er mindst 100, fortrinsvis mindst 150 og W er op til 60. M er et 30 metal, fortrinsvis et overgangsmetal eller et metal fra gruppe ΙΑ, 2A eller 3A, eller en blanding af metal-wherein X is less than 1, preferably less than 0.75, Y is at least 100, preferably at least 150, and W is up to 60. M is a metal, preferably a transition metal or a group ΙΑ, 2A or 3A metal, or a mixture of metal
DK 161461BDK 161461B
12 -i ler. Forholdet silica: alumina, Y, vil sædvanligvis ligge i intervallet 100:1 til 500:1, især 150:1 til 300:1, f.eks. 200:1 eller mere. Røntgenstråle-diffraktionsmøn-steret af den dealuminiserede zeolit vil være stort 5 set det samme som for den oprindelige zeolit, som vist i den før anførte tabel 1.12 -lil. The ratio of silica: alumina, Y, will usually be in the range of 100: 1 to 500: 1, especially 150: 1 to 300: 1, e.g. 200: 1 or more. The X-ray diffraction pattern of the dealuminized zeolite will be substantially the same as that of the original zeolite, as shown in Table 1 before.
Om ønsket kan zeolitten vanddampbehandles før syreex-traktion, således at man forøger forholdet silica:alu- i mina og gør zeolitten mere stabil over for syren. Damp- 10 behandlingen karr også tjene til at forøge den lethed, hvormed syren fjernes, og til at fremme retentionen af krystallinitet under extraktionsproceduren. j i ]If desired, the zeolite can be steam treated before acid extraction, thus increasing the silica: aluminum ratio and making the zeolite more stable to the acid. The steam treatment also serves to increase the ease with which the acid is removed and to promote the retention of crystallinity during the extraction procedure. j i]
Zeolit beta anvendes fortrinsvis i kombination med en ] ! hydrogeneringskomponent, der sædvanligvis afledes af ! i 15 et metal fra grupperne UA, VIA eller VIIIA i det pe- j riodiske system. Foretrukne ikke ædle metaller er så- i danne som wolfram, vanadium, molybdæn, nikkel, cobalt, chrom og mangan, og de foretrukne ædelmetaller er platin, palladium, iridium og rhodium. Kombinationer af ' 20 ikke ædle metaller, såsom cobalt-molybdæn, cobålt- nikkel, nikkel-wolfram eller cobalt-nikkel-wolfram er ' exceptionelt anvendelige til mange udgangsmaterialer, j i og ved en foretrukken kombination omfatter hydrogene- i j riseringskomponenten fra 0,7 til 7 vægt-% nikkel og 2,1 j ! 25 til ca. 21 vægt-% wolfram, udtrykt som metal. Hydroge- j neringskomponenten kan ionbyttes på zeolitten, impræg- ! neres deri eller blandes dermed på fysisk måde. Hvis j metallet skal imprægneres i eller ionbyttes på zeo- jZeolite beta is preferably used in combination with a]! hydrogenation component usually derived from! in a metal from the groups UA, VIA or VIIIA in the periodic table. Preferred non-precious metals are such as tungsten, vanadium, molybdenum, nickel, cobalt, chromium and manganese, and the preferred precious metals are platinum, palladium, iridium and rhodium. Combinations of 20 non-precious metals such as cobalt-molybdenum, cobalt-nickel, nickel-tungsten or cobalt-nickel-tungsten are exceptionally useful for many starting materials, and in a preferred combination, the hydrogenation component comprises from 0.7 to 7 wt.% Nickel and 2.1 j! 25 to approx. 21 wt% tungsten, expressed as metal. The hydrogenation component can be ion exchanged on the zeolite, impregnated! are nourished therein or physically mixed therewith. If the j metal is to be impregnated in or ion exchanged on zeo- j
litten, kan dette f.eks. gøres ved at behandle zeo- Ileft, this may e.g. is done by treating zeo- I
30 litten med en platinmetal-holdig ion. Passende platin- i forbindelser omfatter chlorplatinsyre, platinchlorid og forskellige forbindelser indeholdende platinaminkom- \ i plex.30 left with a platinum metal-containing ion. Suitable platinum compounds include chloroplatinic acid, platinum chloride and various compounds containing platinum amine complex.
DK 161461 BDK 161461 B
1313
Katalysatoren kan behandles ved hjælp af konventionelle præsulfideringsbehandlinger, f.eks. ved at opvarme i nærværelse af hydrogensulfid, for at konvertere oxidformer af metallet, såsom CoO eller NiO, til de-5 res tilsvarende sulfider.The catalyst can be treated by conventional presulfidation treatments, e.g. by heating in the presence of hydrogen sulfide, to convert oxide forms of the metal, such as CoO or NiO, into corresponding sulfides.
Metalforbindelserne kan enten være forbindelser, hvori metallet er tilstede i forbindelsens kation, eller forbindelser, hvori den er tilstede i forbindelsens anion. Man kan anvende begge typer forbindelser. Pla-10 tinforbindelser, hvori metallet foreligger i form af en kation eller et kationisk komplex, f.eks. Pt (NH^) , er særligt anvendelige, ligesom anioniske· komplexer, såsom vanadat- og wolframationer. Kationiske former af andre metaller er også meget anvendelige, fordi 15 de kan ionbyttes på zeolitten eller imprægneres deri.The metal compounds can be either compounds in which the metal is present in the cation of the compound, or compounds in which it is present in the anion of the compound. Both types of connections can be used. Platinum compounds in which the metal is in the form of a cation or a cationic complex, e.g. Pt (NH 2), are particularly useful, as are anionic complexes, such as vanadate and tungsten fractions. Cationic forms of other metals are also very useful because they can be ion exchanged on the zeolite or impregnated therein.
Før anvendelsen bør zeolitten dehydratiseres i det mindste partielt. Dette kan gøres ved at opvarme til en temperatur i intervallet mellem 200 °C og 600 °C i luft eller i en indifferent atmosfære, såsom nitro-20 gen, i 1 til 48 timer. Dehydratisering kan også gennem føres ved lavere temperaturer blot ved at anvende vakuum, men der kræves længere tid til at opnå dehydratisering i tilstrækkeligt omfang.Prior to use, the zeolite should be dehydrated at least partially. This can be done by heating to a temperature in the range of 200 ° C to 600 ° C in air or in an inert atmosphere, such as nitrogen, for 1 to 48 hours. Dehydration can also be carried out at lower temperatures simply by applying vacuum, but longer time is required to achieve sufficient dehydration.
Det kan være ønskeligt at inkorporere katalysatoren i 25 et andet materiale, der er resistent over for tempera turen og andre betingelser, der anvendes i processen.It may be desirable to incorporate the catalyst into another material resistant to the temperature and other conditions used in the process.
Sådanne matrix-materialer omfatter syntetiske og naturligt forekommende stoffer, såsom uorganiske materialer, f.eks. ler, silica og metaloxider. Disse sid-30 ste kan enten være naturligt forekommende eller i form af gelatinøse bundfald eller geler, herunder blandinger af silica og metaloxider. Naturligt forekommende lerarter kan blandes med zeolitten, herunder sådanne 14Such matrix materials include synthetic and naturally occurring substances such as inorganic materials, e.g. clay, silica and metal oxides. These latter can be either naturally occurring or in the form of gelatinous precipitates or gels, including mixtures of silica and metal oxides. Naturally occurring clays can be mixed with the zeolite, including such 14
DK 161461BDK 161461B
af montmorillonit- og kaolin-familierne. Lerarterne kan anvendes i den rå tilstand, sådan som de oprindeligt fremkommer ved minedrift, eller de kan initialt udsættes for calcinering, syrebehandling eller kemisk 5 modifikation.of the montmorillonite and kaolin families. The clays may be used in the crude state as they initially appear in mining, or may initially be subjected to calcination, acid treatment or chemical modification.
Zeolitten kan blandes med et porøst matrixmateriale, såsom alumina, silica-alumina, silica-magnesia, si-lica-zirconia, silica-thoria, silica-beryllia, sili- ' ca-titania, samt tertiære blandinger, såsom silica-10 alumina-thoria, silica-alumina-zirconia, magnesia og silica-magnesia-zirconia. Matrixen kan foreligge i | form af en cogel. De relative andele af zeolitkompo- i j nent og gelmatrix af uorganisk oxid på vandfri basis j kan variere i stort omfang, hvorved zeolitindholdet j 15 ligger mellem 10 og 99 vægt-?i af den tørre blanding, j sædvanligvis mellem 25 og 80 vægt-50. Selve matrixen j kan besidde katalytiske egenskaber, generelt af sur | natur. j \The zeolite can be mixed with a porous matrix material such as alumina, silica-alumina, silica-magnesia, silica-zirconia, silica-thoria, silica-beryllia, silica-titania, and tertiary mixtures such as silica-alumina. thoria, silica-alumina-zirconia, magnesia and silica-magnesia-zirconia. The matrix can be in | form of a cogel. The relative proportions of zeolite component and gel matrix of anhydrous oxide on anhydrous basis j can vary widely, whereby the zeolite content j 15 is between 10 and 99 weight percent of the dry mixture, usually between 25 and 80 weight 50 . The matrix itself j may possess catalytic properties, generally of acid | nature. j \
Udgangsmaterialet til brug ved fremgangsmåden ifølge opfin- ] 20 delsen omfatter en tung carbonhydridolie, såsom gasolie,The starting material for use in the process of the invention comprises a heavy hydrocarbon oil such as gas oil,
bundfraktioner fra koksovntårne, reduceret råolie, Ibottom fractions from coke oven towers, reduced crude oil, I
i bundfraktioner fra vakuumtårne, afasfalterede vakuum- residier, bundfraktioner fra en fluidiseret katalytisk krakningsenhed eller cirkulerende olier. Olier afledt 25 af kul, skiferier eller tjæresand kan også behandles på denne måde. Olier af denne art koger sædvanligvis over 343 °C, skønt processen også er anvendelig til olier, der har initiale kogepunkter, der er så lave som 260 °C.in bottom fractions from vacuum towers, decontaminated vacuum residues, bottom fractions from a fluidized catalytic cracking unit, or circulating oils. Oils derived from coal, shale or tar sands can also be treated in this way. Oils of this kind usually boil above 343 ° C, although the process is also applicable to oils having initial boiling points as low as 260 ° C.
Disse tunge olier omfatter højmolekylære, langkædede pa-30 raffiner og højmolekylære aromater med en stor andel af aromater med sammensmeltede ringe. Under behandlingen bliver aromaterne med sammensmeltede ringe og naphthenerne krakket ved hjælp af den sure katalysator, og de paraf-finiske krakningsprodukter undergår sammen med paraffiniske 15These heavy oils include high molecular weight, long chain paraffins and high molecular weight aromatics with a high proportion of fused ring aromatics. During the treatment, the fused ring aromatics and the naphthenes are cracked by the acidic catalyst and the paraffinic cracking products undergo together with paraffinic 15
DK 161461BDK 161461B
komponenter af det initiale udgangsmateriale konvertering til iso-paraffiner med et vist omfang af krakning til materialer med lavere molekylvægt. Hydrogene-ring af umættede sidekæder på de monocycliske krak-5 ningsremanenser af de oprindelige polycycliske forbin delser katalyseres af hydrogeneringskomponenten til dannelse af substituerede monocycliske aromater, der er i høj grad ønskværdige slutprodukter. Olieudgangsmaterialet bestående af tunge carbonhydrider vil nor-10 malt indeholde en væsentlig mængde, der koger over 230 °C og vil normalt have et initialt kogepunkt på ca. 290 °C, især ca. 340 °C. Typiske kogeintervaller vil være ca. 340 °C til 565 °C eller ca. -340 °C til 510 °C, men olier med et snævrere kogeinterval kan na-15 turligvis behandles, f.eks. sådanne med et kogeinter val på ca. 340 °C til 455 °C. Tunge gasolier er ofte af denne art, ligesom cirkulerende olier og andre ikke-residuale materialer. Det er muligt at co-behandle materialer, der koger under 260 °C, men konverterings-20 graden vil være lavere for sådanne komponenter. Ud gangsmaterialer, der indeholder lettere fraktioner af denne art, vil normalt have et initialt kogepunkt over 150 °C.components of the initial starting material conversion to iso-paraffins with a certain amount of cracking to lower molecular weight materials. Hydrogenation of unsaturated side chains on the monocyclic cracking residues of the original polycyclic compounds is catalyzed by the hydrogenation component to form substituted monocyclic aromatics which are highly desirable end products. The heavy hydrocarbon oil starting material will normally contain a substantial amount of boiling above 230 ° C and will normally have an initial boiling point of approx. 290 ° C, especially approx. 340 ° C. Typical cooking intervals will be approx. 340 ° C to 565 ° C or approx. -340 ° C to 510 ° C, but oils with a narrower boiling range can of course be treated, e.g. such with a boiling interval of approx. 340 ° C to 455 ° C. Heavy gas oils are often of this nature, as are circulating oils and other non-residual materials. It is possible to co-treat materials boiling below 260 ° C, but the conversion rate will be lower for such components. Starting materials containing lighter fractions of this kind will usually have an initial boiling point above 150 ° C.
Fremgangsmåden ifølge opfindelsen har særlig anvende-25 lighed i forbindelse med i høj grad paraffiniske ud gangsmaterialer, fordi man med udgangsmaterialer af denne art kan opnå den største forbedring af hældepunktet. De fleste udgangsmaterialer vil dog indeholde en vis mængde af polycycliske aromater.The process according to the invention has particular utility in connection with highly paraffinic starting materials, because with the starting materials of this kind the greatest improvement of the pour point can be achieved. However, most starting materials will contain a certain amount of polycyclic aromatics.
30 Fremgangsmåden gennemføres under betingelser af lig nende art som dem, der anvendes til konventionel hy-drokrakning, skønt anvendelsen af de i høj grad sili-ciumholdige zeolit-katalysatorer muliggør, at man kan reducere de totale trykkrav. Man kan hensigtsmæssigtThe process is carried out under conditions similar to those used for conventional hydrocracking, although the use of the highly silicon-containing zeolite catalysts enables the overall pressure requirements to be reduced. One can expediently
DK 161461 BDK 161461 B
16 i i anvende procestemperaturer mellem 230 °C og 500 °C, skønt temperaturer over 425 °C normalt ikke vil blive anvendt, fordi de termodynamiske forhold af hydrokrak-ningsreaktionerne bliver ugunstige ved temperaturer 5 over dette punkt. Generelt vil man anvende temperatu rer på 300 °C til 425 °C, Det totale tryk ligger sædvanligvis i intervallet mellem 500 og 20.000 kPa, og man vil normalt foretrække de højere tryk inden for dette interval over 7000 kPa. Processen gennemføres 10 i nærværelse af hydrogen, og det partielle hydrogen- tryk vil normalt ligge mellem 600 og 6000 kPA. Forholdet mellem hydrogen og det som udgangsmateriale tjenende carbonhydrid (hydrogencirkulationsforholdet) vil normalt ligge mellem 10 og 3500 n.1.1 . Rumhastigheden ! 15 af udgangsmaterialet vil normalt ligge mellem 0,1 og j 20 LHSV, fortrinsvis mellem 1,0 og 10 LHSV. Ved lave j konverteringer vil n-paraffinerne i udgangsmaterialet i fortrinsvis konverteres til iso-pa.raf finer, men ved højere konverteringer under mere extreme betingelser 20 vil iso-paraffinerne også blive konverteret. Produk tet indeholder små mængder af fraktioner, der koger under 150 °C, og i de fleste tilfælde vil produktet have et kogeinterval mellem 150 °C og 340 °C.16 in using process temperatures between 230 ° C and 500 ° C, although temperatures above 425 ° C will not normally be used because the thermodynamic conditions of the hydrocracking reactions become unfavorable at temperatures 5 above this point. Generally, temperatures of 300 ° C to 425 ° C will be used. The total pressure is usually in the range between 500 and 20,000 kPa, and the higher pressures within this range are usually preferred over 7000 kPa. The process is carried out in the presence of hydrogen, and the partial hydrogen pressure will normally be between 600 and 6000 kPA. The ratio of hydrogen to the starting hydrocarbon (hydrogen circulation ratio) will normally be between 10 and 3500 n.1.1. Space speed! 15 of the starting material will normally be between 0.1 and 20 LHSV, preferably between 1.0 and 10 LHSV. At low j conversions, the n-paraffins in the starting material are preferably converted to iso-paraffin veneer, but at higher conversions under more extreme conditions, the iso-paraffins will also be converted. The product contains small amounts of fractions boiling below 150 ° C and in most cases the product will have a boiling range between 150 ° C and 340 ° C.
Konverteringen kan gennemføres ved at bringe udgangs- ! 25 materialet i kontakt med en fixeret, stationær masse ;The conversion can be accomplished by bringing the output! The material in contact with a fixed stationary mass;
af katalysator, en fixeret fluidiseret masse eller Iof catalyst, a fixed fluidized mass, or I
en transportmasse. En simpel konfiguration er en si- vemasseoperation, hvori man lader det tilførte mate- j ] riale sive gennem en stationær, fixeret masse. Med en ' 30 sådan konfiguration er det ønskeligt at initiere reaktionen med frisk katalysator ved en moderat tempera- ! tur, der naturligvis hæves, efterhånden som katalysatoren ældes, for at bibeholde katalytisk aktivitet. Katalysatoren kan f.eks. regenereres ved kontakt ved for-35 højet temperatur med hydrogengas eller ved brænding ia mass of transport. A simple configuration is a screen mass operation in which the feed material is let through a stationary, fixed mass. With such a configuration, it is desirable to initiate the reaction with fresh catalyst at a moderate temperature. course, which naturally increases as the catalyst ages, to maintain catalytic activity. The catalyst can e.g. regenerated by contact at elevated temperature with hydrogen gas or by burning i
DK 161461 BDK 161461 B
17 luft eller anden oxygenholdig gas.17 air or other oxygen-containing gas.
Et præliminært hydrobehandlingstrin for at fjerne nitrogen og svovl og for at mætte aromater til naphthe-ner uden væsentlig konvertering af kogeintervallet 5 vil sædvanligvis forbedre katalysatorens egenskaber og muliggøre anvendelsen af lavere temperaturer, højere rumhastigheder, lavere tryk eller kombinationer af disse betingelser.A preliminary hydrotreating step to remove nitrogen and sulfur and to saturate aromatics to naphthanes without significant conversion of the boiling interval 5 will usually improve the catalyst properties and allow the use of lower temperatures, higher room rates, lower pressures or combinations of these conditions.
Fremgangsmåden ifølge opfindelsen illustreres ved de 10 følgende eksempler. Alle dele og andele i disse eksemp ler er på vægtbasis, med mindre andet er angivet.The process of the invention is illustrated by the following 10 examples. All parts and parts of these examples are by weight unless otherwise specified.
EKSEMPEL 1EXAMPLE 1
Dette eksempel illustrerer fremstillingen af en katalysator.This example illustrates the preparation of a catalyst.
15 En blanding af zeolit beta (Si020^=30) med en krystal- li tetstørrelse under 0,05^,u og en lige så stor gamma-alumina på vandfri basis blev extruderet til dannelse af 1,5 mm tabletter. Tabletterne blev calcineret ved 540 °C i nitrogen, magnesium-ionbyttet og derpå calci-20 neret i luft.A mixture of zeolite beta (SiO 2 O = 30) with a crystalline size below 0.05 µ, u and an equal anhydrous gamma alumina was extruded to form 1.5 mm tablets. The tablets were calcined at 540 ° C in nitrogen, the magnesium ion exchanged and then calcined in air.
100 g af det luftcalcinerede extrudat blev imprægneret med 13,4 g ammoniumwolframat (72,3¾ W) i 60 ml vand, fulgt af tørring ved 115 °C og calcinering i luft ved 540 °C. Extrudatet blev derpå imprægneret med 15,1 25 g nikkelnitrat-hexahydrat i 60 ml vand, og de våde tabletter blev tørret og calcineret ved 540 °0Γ100 g of the air-calcined extrudate was impregnated with 13.4 g of ammonium tungsten (72.3¾ W) in 60 ml of water, followed by drying at 115 ° C and calcination in air at 540 ° C. The extrudate was then impregnated with 15.1 25 g of nickel nitrate hexahydrate in 60 ml of water and the wet tablets were dried and calcined at 540 ° 0Γ
Den sluttelige katalysator havde et nikkelindhold på ca. 4 vægt-?o som NiO og et beregnet wolframindhold på ca. 10,0 vægt-?o som W0^. Natriumindholdet var underThe final catalyst had a nickel content of approx. 4 by weight as NiO and a calculated tungsten content of approx. 10.0 by weight as W0 ^. The sodium content was below
DK 161461 BDK 161461 B
18 .18.
0,5 vægt-% som natriumoxid.0.5% by weight as sodium oxide.
EKSEMPEL 2EXAMPLE 2
Dette.eksempel beskriver fremstillingen af zeolit beta med højt silicaindhold.This example describes the preparation of high silica zeolite beta.
5 En prøve af zeolit beta i den form, hvori den forelig ger netop efter syntesen og med et forhold silicasalu-mina på 30:1 blev calcineret i strømmende nitrogen ved 500 °C i 4 timer, fulgt af luft ved den samme temperatur i 5 timer. Den calcinerede zeolit blev derpå kogt un- .A sample of zeolite beta in the form in which it exists just after the synthesis and with a silica alumina ratio of 30: 1 was calcined in flowing nitrogen at 500 ° C for 4 hours, followed by air at the same temperature for 5 hours. hours. The calcined zeolite was then boiled un-.
10 der tilbagesvaling med 2 N saltsyre ved 95 °C i 1 time til |Reflux with 2N hydrochloric acid at 95 ° C for 1 hour to |
fremstilling af en dealuminiseret form for zeolit beta Jpreparation of a dealuminized form of zeolite beta J
med højt indhold af silica og med et forhold silica: i i alumina på 280:1, en alfa-værdi på 20 og en krystal- j linitet på 80% i forhold til den oprindelige, der an- ! 15 tages at være 100% krystallinsk. jwith a high content of silica and with a ratio of silica: i in alumina of 280: 1, an alpha value of 20 and a crystallinity of 80% compared to the original one which! 15 is taken to be 100% crystalline. j
Zeolitten blev ionbyttet til ammoniumformen med IN ammoniumchloridopløsning ved 90 °C tilbagesvaling i 1 time fulgt af ionbytning med 1 N magnesiumchlorid-opløsning ved 90 °C tilbagesvaling i 1 time. Platin 20 blev indført i zeolitten ved ionbytning af tetraamin- ; kompléxet ved stuetemperatur. Den metalbyttede zeolit blev grundigt vasket og ovntørret ved luftcalcinering-ved 350 °C i 2 timer. Den færdige katalysator indeholdt 0,6% platin og tabletteret, knust og klassificeret til 25 0,35 til 0,5 mm. | i EKSEMPEL 3-5 j , :The zeolite was ion exchanged to the ammonium form with 1N ammonium chloride solution at 90 ° C reflux for 1 hour followed by ion exchange with 1N magnesium chloride solution at 90 ° C reflux for 1 hour. Platinum 20 was introduced into the zeolite by ion exchange of tetraamine-; complex at room temperature. The metal-exchanged zeolite was thoroughly washed and oven-dried by air calcination-at 350 ° C for 2 hours. The finished catalyst contained 0.6% platinum and tableted, crushed and graded to 0.35 to 0.5 mm. | in Examples 3-5,
Katalysatoren fra eks. 1 blev evalueret for den kataly- ; tiske konvertering af en arabisk let gasolie (HUGO) , med et kogepunktsinterval mellem 354 og 580 °C. Af sam- 30 menligningsgrunde tildannede man også en magnesiumion-The catalyst from Example 1 was evaluated for the catalyst; conversion of an Arabic light gas oil (HUGO), with a boiling range between 354 and 580 ° C. For comparison, a magnesium ion form was also prepared.
DK 161461 BDK 161461 B
19 byttet katalysator af zeolit Y (SiC^/A^O^ = 5) ved extrudering med en lige så stor mængde af gamma-alu-mina og med imprægnering til et indhold af 4 vægt-% nikkel og 10 vægt-% u/olfram.19 exchanged catalyst of zeolite Y (SiC₂ / A₂O₂ = 5) by extrusion with an equal amount of gamma-alumina and impregnated to a content of 4% by weight nickel and 10% by weight u / rem ain.
5 Sammensætningen af udgangsmaterialet, de anvendte be tingelser og produktanalysen er angivet i den følgende tabel 2.5 The composition of the starting material, the conditions used and the product analysis are given in the following Table 2.
TABEL 2TABLE 2
Hydrokrakninq/afvoksninq 10 Føde-Hydrocracking / dewaxing 10
Eks. nr. materiale 3 4Ex. No. of material 3 4
Katalysator - Mg beta MgYCatalyst - Mg beta MgY
Betingelser;conditions;
Temp., QC - 423 414 15 Tryk, kPa - 70dtj 7000 LHSl/, hr"1 - 0,54 0,54 H2, n.1.1.~1 - 1674 1318 H2 forbrug, n.1.1 1 - 125 193 343 °C + konvertering, 20 vægt-% - 62,2 56,6Temp. QC - 423 414 15 Pressure, kPa - 70dtj 7000 LHSl /, hr "1 - 0.54 0.54 H2, n.1.1. ~ 1 - 1674 1318 H2 consumption, n.1.1 1 - 125 193 343 ° C + conversion, 20% by weight - 62.2 56.6
Egenskaber: Tør gas + - 3,5 4,1 C,. - 165 °C naptha, vægt-% - 16,6 24,7 165 °C - 343 °C destillat, 25 vægt-% - 40,6 26,3 343 °C + vægt-% 100 37,8 44,0 343 °C + hældepunkt, °C 40 -1 35 343 °C + 95% 552 468 528 faktisk kogepunkt, °C 1 °C + egenskaber; 30 Massefylde, °API 22,0Features: Dry gas + - 3.5 4.1 C ,. - 165 ° C naptha, wt% - 16.6 24.7 165 ° C - 343 ° C distillate, 25 wt% - 40.6 26.3 343 ° C + wt% 100 37.8 44.0 343 ° C + pour point, ° C 40 -1 35 343 ° C + 95% 552 468 528 actual boiling point, ° C 1 ° C + properties; Density, ° API 22.0
Hydrogen, vægt-% 12,07 12,7 13,7Hydrogen,% by weight 12.07 12.7 13.7
Svovl 2,45 0,04 0,03Sulfur 2.45 0.04 0.03
Nitrogen 600 80 18Nitrogen 600 80 18
DK 161461 BDK 161461 B
20 j TABEL 2 (fortsat) Hældepunkt, °C 40 -1 3520 µ TABLE 2 (continued) Pour point, ° C 40 -1 35
Paraffiner, vol—S 24,0 31 40Paraffins, vol — S 24.0 31 40
Naphthener, vol-K 25,3 28 35 5 Aromater, νο1-?ό 50,7 41 25Naphthenes, vol-K 25.3 28 35 5 Aromatics, νο1-? ,7 50.7 41 25
Som det fremgår af den ovenstående tabel 2 sænkede beta-katalysatoren i betydeligt omfang hældepunktet af 343 °C+ produktet ved en relativt høj konvertering på ca. 6Q?i, mens de produkter, der fremkom med zeolit 10 Y katalysatorer, forblev voksagtige. Hertil kommer, at beta-katalysatoren konverterede betydeligt mere af de højtkogende komponenter i chargen, hvilket resul- jAs shown in Table 2 above, the beta catalyst significantly lowered the pour point of the 343 ° C + product at a relatively high conversion of approx. 6Q? I, while the products obtained with zeolite 10 Y catalysts remained waxy. In addition, the beta catalyst converted significantly more of the high-boiling components of the batch, resulting
terede i et kogepunkt for slutproduktet på ca. 60 °Cat a boiling point of the final product of approx. 60 ° C
lavere end opnået med katalysatoren i eks. 4. Hydro- j j 15 genforbruget var også betydeligt lavere, uanset om det beregnes på absolut basis eller i forhold til konverteringen.lower than achieved with the catalyst in Example 4. Hydrogen consumption was also significantly lower, whether calculated on an absolute basis or in relation to the conversion.
Med henblik på sammenligning med eks. 3 hydrokrakkede man en lignende arabisk let HVG0 med et kogepunktsom-20 råde mellem 370 °C og 550 °C over en med sjældne jord arters metaller ionbyttet ultrastabil zeolit Y (5102:41^0^ = 75). Zeolitten fremstilles ved vanddamp-calcinering og syredealuminisering af zeolit Y til et gitterværksforhold SiO^^^O^ på 75:1, efterfulgt af | 25 ionbytning med sjældne jordarters metaller, extrude- ring med en lige så stor mængde af gamma-alumina og imprægnering til et indhold af 2 vægt-% nikkel og 7 vægt~% wolfram.For comparison with Example 3, a similar Arab light HVG0 with a boiling range between 370 ° C and 550 ° C over a rare earth metal ion exchange ultrafast zeolite Y (5102: 41 ^ 0 ^ = 75) was hydrocracked. . The zeolite is prepared by water vapor calcination and acid denumination of zeolite Y to a lattice-to-SiO ^^ O ratio of 75: 1, followed by | 25 ion exchange with rare earth metals, extrusion with an equal amount of gamma alumina, and impregnation to a content of 2 wt% nickel and 7 wt% tungsten.
Sammensætningen af udgangsmaterialerne, de anvendte 30 betingelser og produktanalysen er angivet i den neden stående tabel 3.The composition of the starting materials, the conditions used and the product analysis are given in Table 3 below.
iin
DK 161461 BDK 161461 B
21 TABEL 321 TABLE 3
Hydrokrakninq over REY katalysator Føde-Hydrocracking over REY catalyst
Eks. nr. materiale 5 5 Betingelser;Ex. no. material 5 5 Conditions;
Temp. , °C - 416Temp. , ° C - 416
Tryk, kPa - 7000 L H S V, hr-1 - 0,67 H2, n.1.1.'1 - 1338 10 Η2 forbrug, n.1.1 ^ - 143 343 °C + konvertering, vægt-% - 60,4Pressure, kPa - 7000 L H S V, hr-1 - 0.67 H2, n.1.1.'1 - 1338 10 Η2 consumption, n.1.1
Egenskaber; Tør gas + - 3,6 - 165 °C naphtha, vægt-% - 14,2 15 165 °C - 343 °C destillat, vægt-% - 41,4 343 °C + vægt-% 100 39,6 343 °C + hældepunkt, °C 43 32 343 °C + 95% TBP, °C 540 504 20 343 °C+ egenskaber;Properties; Dry gas + - 3.6 - 165 ° C naphtha, wt% - 14.2 165 ° C - 343 ° C distillate, wt% - 41.4 343 ° C + wt% 100 39.6 343 ° C + pour point, ° C 43 32 343 ° C + 95% TBP, ° C 540 504 20 343 ° C + properties;
Massefylde, °API 21,7Density, API 21.7
Hydrogen, vægt-% 12,17 13,26Hydrogen, wt% 12.17 13.26
Svovl 2,41 0,01Sulfur 2.41 0.01
Nitrogen 555 33 25 Hældepunkt, °C 43 32Nitrogen 555 33 25 Pour point, ° C 43 32
Udbytter;yields;
Paraffiner, νο1-?ό 19 41Paraffins, νο1-? Ό 19 41
Naphthener, vol-% 27 26Naphthenes, vol% 27 26
Aromater, vol-% 54 33Aromatics, vol% 54 33
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37942182A | 1982-05-18 | 1982-05-18 | |
US37942182 | 1982-05-18 |
Publications (4)
Publication Number | Publication Date |
---|---|
DK219883D0 DK219883D0 (en) | 1983-05-17 |
DK219883A DK219883A (en) | 1983-11-19 |
DK161461B true DK161461B (en) | 1991-07-08 |
DK161461C DK161461C (en) | 1991-12-16 |
Family
ID=23497202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK219883A DK161461C (en) | 1982-05-18 | 1983-05-17 | PROCEDURE FOR CRACKING AND DEVELOPING CARBON HYDRODES |
Country Status (21)
Country | Link |
---|---|
EP (1) | EP0094827B1 (en) |
JP (1) | JPH0631327B2 (en) |
KR (1) | KR910001498B1 (en) |
AR (1) | AR244779A1 (en) |
AT (1) | ATE15910T1 (en) |
AU (1) | AU563075B2 (en) |
BR (1) | BR8302595A (en) |
CA (1) | CA1196880A (en) |
DE (1) | DE3360923D1 (en) |
DK (1) | DK161461C (en) |
ES (1) | ES522482A0 (en) |
FI (1) | FI71504C (en) |
GR (1) | GR78562B (en) |
IN (1) | IN158145B (en) |
MY (1) | MY8700240A (en) |
NO (1) | NO831715L (en) |
NZ (1) | NZ204093A (en) |
PH (1) | PH17912A (en) |
PT (1) | PT76706B (en) |
SG (1) | SG77586G (en) |
ZA (1) | ZA833588B (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4839025A (en) * | 1979-10-15 | 1989-06-13 | Union Oil Company Of California | Mild hydrocracking with a catalyst containing non-hydrolyzable halogen |
EP0140608B1 (en) * | 1983-10-13 | 1987-04-08 | Mobil Oil Corporation | Catalyst and process for hydrocracking and dewaxing hydrocarbon oils |
US4568655A (en) * | 1984-10-29 | 1986-02-04 | Mobil Oil Corporation | Catalyst composition comprising Zeolite Beta |
AU4817385A (en) * | 1984-10-29 | 1986-05-08 | Mobil Oil Corporation | Hydrotreating and dewaxing |
AU575451B2 (en) * | 1984-12-27 | 1988-07-28 | Mobil Oil Corporation | Catalytic cracking of paraffinic feedstocks with zeolite beta |
ATE45177T1 (en) * | 1984-12-27 | 1989-08-15 | Mobil Oil Corp | HYDROCRACKING AND CATALYTIC DEWAXING PROCESSES. |
US4911823A (en) * | 1984-12-27 | 1990-03-27 | Mobil Oil Corporation | Catalytic cracking of paraffinic feedstocks with zeolite beta |
AU587032B2 (en) * | 1985-06-21 | 1989-08-03 | Mobil Oil Corporation | Hydrocracking process usung zeolite beta |
US4612108A (en) * | 1985-08-05 | 1986-09-16 | Mobil Oil Corporation | Hydrocracking process using zeolite beta |
US4898846A (en) * | 1986-03-21 | 1990-02-06 | W. R. Grace & Co.-Conn. | Cracking catalysts with octane enhancement |
US4788378A (en) * | 1986-05-13 | 1988-11-29 | Mobil Oil Corporation | Dewaxing by isomerization |
US4788370A (en) * | 1986-05-13 | 1988-11-29 | Mobil Oil Corporation | Catalytic conversion |
US4859312A (en) * | 1987-01-12 | 1989-08-22 | Chevron Research Company | Process for making middle distillates using a silicoaluminophosphate molecular sieve |
US4851109A (en) * | 1987-02-26 | 1989-07-25 | Mobil Oil Corporation | Integrated hydroprocessing scheme for production of premium quality distillates and lubricants |
US4812223A (en) * | 1987-05-01 | 1989-03-14 | Mobil Oil Corporation | Hydrocracking naphthas using mildly steamed, noble metal-containing zeolite beta |
FR2678180B1 (en) * | 1991-06-27 | 1995-01-27 | Inst Francais Du Petrole | CATALYST FOR CRACKING HYDROCARBON CHARGES RICH IN NAPHTHENIC COMPOUNDS AND / OR PARAFFINS COMPRISING A ZEOLITH OF STRESS INDEX INDEX AND A MATRIX. |
FR2778410B1 (en) * | 1998-05-06 | 2000-08-18 | Inst Francais Du Petrole | HYDROCRACKING PROCESS WITH A CATALYST BASED ON ZEOLITE BETA AND OF GROUP VII B ELEMENT |
ES2207134T3 (en) * | 1998-05-06 | 2004-05-16 | Institut Francais Du Petrole | CATALIZER BASED ON ZEOLITA BETA AND PROMOTER AND HYDROCRACHING PROCEDURE. |
EP0967014B1 (en) * | 1998-06-25 | 2006-03-15 | Institut Français du Pétrole | Hydrocracking catalyst comprising zeolite Beta and a group VB element |
IT1311512B1 (en) * | 1999-03-12 | 2002-03-13 | Agip Petroli | CATALYTIC COMPOSITION FOR UPGRADING OF HYDROCARBONIC MIXTURES. |
EP1658896A3 (en) * | 2002-06-28 | 2006-08-02 | Haldor Topsoe E A/S | Process for the preparation of a catalyst comprising zeolite beta and its use in a hydrocarbon conversion process |
EP1762606A1 (en) | 2005-09-13 | 2007-03-14 | Shell Internationale Researchmaatschappij B.V. | A process for hydrodesulphurisation of a hydrocarbonaceous feedstock |
US8263517B2 (en) * | 2007-12-28 | 2012-09-11 | Exxonmobil Research And Engineering Company | Hydroprocessing catalysts with low surface area binders |
KR101354235B1 (en) * | 2010-04-14 | 2014-02-13 | 에스케이이노베이션 주식회사 | Catalyst for hydrodewaxing process and a method of preparing the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3308069A (en) | 1964-05-01 | 1967-03-07 | Mobil Oil Corp | Catalytic composition of a crystalline zeolite |
JPS514515B2 (en) * | 1972-08-03 | 1976-02-12 | ||
US3923641A (en) | 1974-02-20 | 1975-12-02 | Mobil Oil Corp | Hydrocracking naphthas using zeolite beta |
CA1064890A (en) * | 1975-06-10 | 1979-10-23 | Mae K. Rubin | Crystalline zeolite, synthesis and use thereof |
CA1117457A (en) * | 1977-03-28 | 1982-02-02 | Christopher Olavesen | Catalytic dewaxing with a hydrogen form zeolite l catalyst |
US4222855A (en) * | 1979-03-26 | 1980-09-16 | Mobil Oil Corporation | Production of high viscosity index lubricating oil stock |
US4434047A (en) * | 1981-11-13 | 1984-02-28 | Standard Oil Company (Indiana) | Catalytic dewaxing-hydrotreating process |
-
1983
- 1983-05-03 NZ NZ204093A patent/NZ204093A/en unknown
- 1983-05-09 AU AU14377/83A patent/AU563075B2/en not_active Expired
- 1983-05-13 NO NO831715A patent/NO831715L/en unknown
- 1983-05-16 CA CA000428199A patent/CA1196880A/en not_active Expired
- 1983-05-16 AR AR83293040A patent/AR244779A1/en active
- 1983-05-17 EP EP83302774A patent/EP0094827B1/en not_active Expired
- 1983-05-17 DE DE8383302774T patent/DE3360923D1/en not_active Expired
- 1983-05-17 BR BR8302595A patent/BR8302595A/en unknown
- 1983-05-17 FI FI831724A patent/FI71504C/en not_active IP Right Cessation
- 1983-05-17 PH PH28918A patent/PH17912A/en unknown
- 1983-05-17 PT PT76706A patent/PT76706B/en unknown
- 1983-05-17 ES ES522482A patent/ES522482A0/en active Granted
- 1983-05-17 DK DK219883A patent/DK161461C/en not_active IP Right Cessation
- 1983-05-17 AT AT83302774T patent/ATE15910T1/en not_active IP Right Cessation
- 1983-05-18 IN IN619/CAL/83A patent/IN158145B/en unknown
- 1983-05-18 GR GR71391A patent/GR78562B/el unknown
- 1983-05-18 ZA ZA833588A patent/ZA833588B/en unknown
- 1983-05-18 KR KR1019830002183A patent/KR910001498B1/en not_active IP Right Cessation
- 1983-05-18 JP JP58085986A patent/JPH0631327B2/en not_active Expired - Lifetime
-
1986
- 1986-09-25 SG SG775/86A patent/SG77586G/en unknown
-
1987
- 1987-12-30 MY MY240/87A patent/MY8700240A/en unknown
Also Published As
Publication number | Publication date |
---|---|
PT76706A (en) | 1983-06-01 |
FI71504C (en) | 1987-01-19 |
GR78562B (en) | 1984-09-27 |
DK161461C (en) | 1991-12-16 |
ATE15910T1 (en) | 1985-10-15 |
JPH0631327B2 (en) | 1994-04-27 |
AU1437783A (en) | 1983-11-24 |
ES8407089A1 (en) | 1984-08-16 |
FI831724L (en) | 1983-11-19 |
BR8302595A (en) | 1984-01-17 |
DE3360923D1 (en) | 1985-11-07 |
AR244779A1 (en) | 1993-11-30 |
JPS58210994A (en) | 1983-12-08 |
CA1196880A (en) | 1985-11-19 |
ZA833588B (en) | 1984-12-24 |
FI71504B (en) | 1986-10-10 |
ES522482A0 (en) | 1984-08-16 |
EP0094827A1 (en) | 1983-11-23 |
MY8700240A (en) | 1987-12-31 |
NO831715L (en) | 1983-11-21 |
AU563075B2 (en) | 1987-06-25 |
KR840004776A (en) | 1984-10-24 |
NZ204093A (en) | 1985-01-31 |
PH17912A (en) | 1985-01-25 |
SG77586G (en) | 1987-02-27 |
DK219883A (en) | 1983-11-19 |
FI831724A0 (en) | 1983-05-17 |
EP0094827B1 (en) | 1985-10-02 |
PT76706B (en) | 1985-11-28 |
DK219883D0 (en) | 1983-05-17 |
KR910001498B1 (en) | 1991-03-09 |
IN158145B (en) | 1986-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK161461B (en) | PROCEDURE FOR CRACKING AND DEVELOPING CARBON HYDRODES | |
CA1201672A (en) | Catalytic dewaxing process | |
US4486296A (en) | Process for hydrocracking and dewaxing hydrocarbon oils | |
US4501926A (en) | Catalytic dewaxing process with zeolite beta | |
US4554065A (en) | Isomerization process to produce low pour point distillate fuels and lubricating oil stocks | |
AU2002314751B2 (en) | Process for isomerization dewaxing of hydrocarbon streams | |
JP3522755B2 (en) | Preparation method of alumina-bound zeolite catalyst | |
US4518485A (en) | Hydrotreating/isomerization process to produce low pour point distillate fuels and lubricating oil stocks | |
US4913797A (en) | Catalyst hydrotreating and dewaxing process | |
US4757041A (en) | Catalysts for cracking and dewaxing hydrocarbon oils | |
EP1651738B1 (en) | Hydrocarbon conversion process and catalyst | |
US3790472A (en) | Hydrocracking process for producing lubricating oils | |
US4762813A (en) | Hydrocarbon conversion catalyst | |
US4869803A (en) | Hydrocarbon conversion process for selectively making middle distillates | |
CA1204717A (en) | Hydrocracking process with improved distillate selectivity | |
US5284573A (en) | Simultaneous catalytic hydrocracking and hydrodewaxing of hydrocarbon oils with zeolite beta | |
US5128024A (en) | Simultaneous catalytic hydrocracking and hydrodewaxing of hydrocarbon oils with zeolite beta | |
US4767734A (en) | Hydrocarbon conversion process and catalyst for selectively making middle distillates | |
JP2563910B2 (en) | Method for producing hydrocracking catalyst | |
CA1226268A (en) | Catalyst and process for hydrocracking and dewaxing hydrocarbon oils | |
NO831712L (en) | Isomerization. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |