DK157480B - PROCEDURE FOR THE MANUFACTURING OF CRIMINAL ARTICLES, SUCH AS CRIMPING HOSES, CRIME CRAFTS AND SHRINKPADS - Google Patents
PROCEDURE FOR THE MANUFACTURING OF CRIMINAL ARTICLES, SUCH AS CRIMPING HOSES, CRIME CRAFTS AND SHRINKPADS Download PDFInfo
- Publication number
- DK157480B DK157480B DK425780A DK425780A DK157480B DK 157480 B DK157480 B DK 157480B DK 425780 A DK425780 A DK 425780A DK 425780 A DK425780 A DK 425780A DK 157480 B DK157480 B DK 157480B
- Authority
- DK
- Denmark
- Prior art keywords
- polymer
- parts
- expanded
- process according
- peroxide
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 43
- 238000004519 manufacturing process Methods 0.000 title description 19
- 238000002788 crimping Methods 0.000 title 1
- 230000008569 process Effects 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 28
- 229920000642 polymer Polymers 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 24
- 239000007858 starting material Substances 0.000 claims description 19
- 150000002978 peroxides Chemical class 0.000 claims description 16
- 239000003054 catalyst Substances 0.000 claims description 15
- 239000004071 soot Substances 0.000 claims description 13
- 239000004698 Polyethylene Substances 0.000 claims description 11
- 229910000077 silane Inorganic materials 0.000 claims description 10
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 9
- 230000008018 melting Effects 0.000 claims description 9
- -1 polyethylene Polymers 0.000 claims description 9
- 239000000945 filler Substances 0.000 claims description 7
- 229920000573 polyethylene Polymers 0.000 claims description 7
- 229920000098 polyolefin Polymers 0.000 claims description 7
- 238000007493 shaping process Methods 0.000 claims description 6
- 238000009833 condensation Methods 0.000 claims description 5
- 230000005494 condensation Effects 0.000 claims description 5
- 150000001282 organosilanes Chemical class 0.000 claims description 4
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 claims description 2
- 239000004831 Hot glue Substances 0.000 claims description 2
- 239000004088 foaming agent Substances 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims 1
- 229920000578 graft copolymer Polymers 0.000 claims 1
- 239000011256 inorganic filler Substances 0.000 claims 1
- 229910003475 inorganic filler Inorganic materials 0.000 claims 1
- 229920002647 polyamide Polymers 0.000 claims 1
- 229920000728 polyester Polymers 0.000 claims 1
- 238000004132 cross linking Methods 0.000 description 45
- 239000003380 propellant Substances 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 14
- 238000005187 foaming Methods 0.000 description 11
- 238000001816 cooling Methods 0.000 description 10
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 10
- 238000001746 injection moulding Methods 0.000 description 9
- 238000000465 moulding Methods 0.000 description 8
- 229920005638 polyethylene monopolymer Polymers 0.000 description 8
- 239000011148 porous material Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000009413 insulation Methods 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000006260 foam Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 239000004156 Azodicarbonamide Substances 0.000 description 4
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 4
- 235000019399 azodicarbonamide Nutrition 0.000 description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 3
- 229920005601 base polymer Polymers 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 230000000750 progressive effect Effects 0.000 description 3
- CMDGQTVYVAKDNA-UHFFFAOYSA-N propane-1,2,3-triol;hydrate Chemical compound O.OCC(O)CO CMDGQTVYVAKDNA-UHFFFAOYSA-N 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 150000004760 silicates Chemical class 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 235000014692 zinc oxide Nutrition 0.000 description 3
- 239000005995 Aluminium silicate Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- AYOHIQLKSOJJQH-UHFFFAOYSA-N dibutyltin Chemical compound CCCC[Sn]CCCC AYOHIQLKSOJJQH-UHFFFAOYSA-N 0.000 description 2
- 239000012975 dibutyltin dilaurate Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 230000004224 protection Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- LUZSPGQEISANPO-UHFFFAOYSA-N butyltin Chemical compound CCCC[Sn] LUZSPGQEISANPO-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229920003020 cross-linked polyethylene Polymers 0.000 description 1
- 239000004703 cross-linked polyethylene Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- WMWXXXSCZVGQAR-UHFFFAOYSA-N dialuminum;oxygen(2-);hydrate Chemical class O.[O-2].[O-2].[O-2].[Al+3].[Al+3] WMWXXXSCZVGQAR-UHFFFAOYSA-N 0.000 description 1
- UMNKXPULIDJLSU-UHFFFAOYSA-N dichlorofluoromethane Chemical compound FC(Cl)Cl UMNKXPULIDJLSU-UHFFFAOYSA-N 0.000 description 1
- 229940099364 dichlorofluoromethane Drugs 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000009149 molecular binding Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000019476 oil-water mixture Nutrition 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 125000005624 silicic acid group Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 239000002569 water oil cream Substances 0.000 description 1
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/36—Feeding the material to be shaped
- B29C44/46—Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
- B29C44/50—Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
- B29C44/507—Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying extruding the compound through an annular die
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/90—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
- B29C48/901—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
- B29C48/903—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies externally
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C61/00—Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
- B29C61/003—Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C61/00—Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
- B29C61/06—Making preforms having internal stresses, e.g. plastic memory
- B29C61/0608—Making preforms having internal stresses, e.g. plastic memory characterised by the configuration or structure of the preforms
- B29C61/0616—Making preforms having internal stresses, e.g. plastic memory characterised by the configuration or structure of the preforms layered or partially layered preforms, e.g. preforms with layers of adhesive or sealing compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C61/00—Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
- B29C61/06—Making preforms having internal stresses, e.g. plastic memory
- B29C61/08—Making preforms having internal stresses, e.g. plastic memory by stretching tubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/06—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
- C08J9/10—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L43/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
- C08L43/04—Homopolymers or copolymers of monomers containing silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0022—Combinations of extrusion moulding with other shaping operations combined with cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/885—External treatment, e.g. by using air rings for cooling tubular films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/90—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
- B29C48/904—Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using dry calibration, i.e. no quenching tank, e.g. with water spray for cooling or lubrication
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/911—Cooling
- B29C48/9115—Cooling of hollow articles
- B29C48/912—Cooling of hollow articles of tubular films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/919—Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2101/00—Use of unspecified macromolecular compounds as moulding material
- B29K2101/10—Thermosetting resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/16—Fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/24—Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2301/00—Use of unspecified macromolecular compounds as reinforcement
- B29K2301/10—Thermosetting resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2707/00—Use of elements other than metals for preformed parts, e.g. for inserts
- B29K2707/04—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0049—Heat shrinkable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/26—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Description
iin
DK 157480 BDK 157480 B
Opfindelsen angår en fremgangsmåde ved fremstilling af eventuelt helt eller delvis opskummede krympeartikler, såsom krympeslanger, krympemanchetter og krympekapper, ud fra en med organosilan podet og under indvirkning af fugtighed tværbindelig, ekstruderbar polymer, 5 ved hvilken fremgangsmåde polymeren blandes med sil anen og det til podningen nødvendige peroxid og eventuelt opskumningsmiddel, og polymeren smeltes, silanen påpodes polymeren, kondensationskatalysator tilsættes, et udgangsemne formes af det podede materiale, udgangsemnet tværbindes og udvides i denne tværbundne tilstand, og 10 det således udvidede udgangsemne afkøles til fiksering af dets udvidede tilstand, hvilket afkølede emne eventuelt belægges indvendigt med en smelteklæber.BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method of producing any wholly or partially foamed shrinkage articles, such as shrink tubing, shrink sleeves, and shrink sleeves, from a grafted, organosilane cross-linked, under the influence of moisture, cross-extrudable polymer, wherein the polymer is mixed with the silo and the graft. necessary peroxide and any foaming agent and the polymer is melted, the silane is applied to the polymer, condensation catalyst is added, an starting material is formed from the grafted material, the starting material is crosslinked and expanded in this crosslinked state, and the thus expanded starting material is cooled to fix its expanded state, workpiece may be coated internally with a hot melt adhesive.
Fra beskrivelsen til AT patent nr. 188.510 er det kendt ved frem-15 stilling af krympeslanger af termoplasti ske masser at udvide en med mindre diameter ekstruderet eller sprøjtestøbt slange ved hjælp af trykluft og derved at trykke denne mod den indvendige væg af en kanal, som bestemmer en større diameter. I en efterfølgende kølezone køles den udvidede slange, således at den bibeholder den større 20 diameter. Det er imidlertid her en ulempe, at sådanne krympeslanger af termoplastisk materiale, f.eks. også af polyvinylchlorid, ikke er tilstrækkkeligt temperaturbestandige til at overholde de krav, der stilles i dag og endvidere ikke er i besiddelse af den ønskede "elastiske formhukommelse", hvilket vil sige, at de ved krympepro-25 cessen ikke er i stand til at antage deres oprindelige form i alle enkeltheder.From the specification of AT Patent No. 188,510, it is known in the manufacture of thermoplastic shrink tubing to extend a smaller diameter extruded or injection molded tube by compressed air, thereby pressing it against the interior wall of a duct which determines a larger diameter. In a subsequent cooling zone, the expanded hose is cooled to maintain the larger diameter. However, it is a disadvantage here that such shrink tubes of thermoplastic material, e.g. also of polyvinyl chloride, are not sufficiently temperature resistant to meet the requirements of today and furthermore do not possess the desired "elastic mold memory", i.e., in the shrinking process, they are unable to assume their original form in every detail.
Disse ulemper afhjælpes ved en anden kendt fremgangsmåde til fremstilling af produkter, der kan krympes ved varmebehandling, og som 30 sælges under handelsnavnet THERMOFIT . Ved denne kendte fremgangsmåde anvendes et polyolefinmateriale med stor massefylde til sprøjtestøbning af formdele. Disse dele udsættes derefter for en højintensiv elektronbestråling, således at der opnås et tværbundet tredimensionalt molekyl netværk. Derved fås en mekanisk modstands-35 dygtig formdel, der er krybefast, ikke revner og har en "elastisk formhukommelse". Dersom en krympeslange, der f.eks. er fremstillet på denne måde, trækkes på den genstand, der skal overtrækkes, og kortfristet opvarmes til over krystallitsmeltepunktet, i det nævnte tilfælde til over 135°C, krymper den hurtigt til sin oprindeligeThese disadvantages are remedied by another known method of manufacturing heat-shrinkable products which are sold under the trade name THERMOFIT. In this known method, a high density polyolefin material is used for injection molding of mold parts. These parts are then subjected to high-intensity electron irradiation to obtain a cross-linked three-dimensional molecular network. Thereby, a mechanically resistant mold part which is creep-resistant, does not crack and has an "elastic mold memory". If a shrink tubing, e.g. is prepared in this way, drawn on the object to be coated and heated briefly to above the crystallite melting point, in the said case to above 135 ° C, it rapidly shrinks to its original
DK 157480 BDK 157480 B
2 form og dimensioner og danner et fast og modstandsdygtigt overtræk.2 shape and dimensions and form a firm and resistant coating.
Ved den netop beskrevne fremgangsmåde kan der alt efter anvendelsesformålet af artiklerne anvendes forskellige basispolymerer, også 5 modificerede sådanne. Det er imidlertid en ulempe, at tværbindingen skal ske ved bestråling, inden udgangsemnerne i opvarmet tilstand udvides. Dette kræver stor forsigtighed (strålingsbeskyttelse) og betinger anvendelse af et stort apparatur, hvilket vanskeliggør og dermed fordyrer fremstillingen.In the process just described, various base polymers, including modified ones, can be used depending on the purpose of the articles. However, it is a disadvantage that the cross-linking must be done by irradiation before expanding the starting items in the heated state. This requires great care (radiation protection) and requires the use of a large apparatus, which makes it difficult and therefore expensive to manufacture.
1010
Den nævnte kendte fremgangsmåde er imidlertid også behæftet med fremstillingstekniske ulemper, idet materialer, som er tilbøjelige til at klæbe, enten slet ikke kan anvendes eller kun kan anvendes, dersom friktionen mellem slangens overflade og kanalens indervæg 15 formindskes ved hjælp af slipmidler, eller der træffes særlige foranstaltninger, som udelukker en berøring mellem kanalen og slangen. Dette er imidlertid ikke muligt på grund af kanalens dimensionering- og formgivningsfunktion. Dersom beskadigelse af slangen ved denne fremgangsmåde undgås, må der dog i hvert fald påregnes 20 overfladeruheder, der, ud over at forringe slangens udseende, kan danne angrebssteder for korrosion, som senere forårsages ved ydre påvirkninger.However, said prior art method also suffers from manufacturing technical disadvantages in that materials which are prone to adhesive can either not be used at all or can only be used if the friction between the surface of the hose and the inner wall of the duct 15 is reduced by means of abrasives or taken special measures which preclude contact between the duct and the hose. However, this is not possible due to the channel sizing and shaping function. However, if damage to the hose is avoided by this method, at least 20 surface roughnesses must be envisaged which, in addition to impairing the appearance of the hose, can form sites of corrosion attack, which are subsequently caused by external influences.
I DE offentliggørelsesskrift nr. 2.411.141 beskrives endvidere 25 fremstilling af kapper af fugttværbindeligt thermoplast og silan-pe-roxidtværbindingsmiddel til elektriske kabler, hvilke kapper ganske vist ekstruderes, men ikke udvides med henblik på opnåelse af en krympeartikel, og som heller ikke "fryses", dvs. fikseres i en sådan udvidet tilstand. Herudover bliver det i dette offentliggøre!ses-30 skift omtalte udgangsmateriale af fugttværbindeligt thermoplast og silan-peroxidtværbindingsmiddel først forblandet ved en temperatur på 60-100®C, og først derefter bliver det forarbejdede granulat ekstruderet, dvs. i en anden arbejdsgang.DE Publication No. 2,411,141 also discloses the manufacture of sheaths of moisture-resistant thermoplastic and silane peroxide crosslinking agent for electric cables, which sheaths are extruded but not expanded to obtain a shrinking article and which are not "frozen" ", i.e. fixed in such an extended state. In addition, the starting material of moisture-resistant thermoplastic and silane-peroxide cross-linking agent disclosed in this publication is first premixed at a temperature of 60-100 ° C, and only then the processed granules are extruded, ie. in another workflow.
35 DE Fremlæggelsesskift nr. 2.649.874 angår en masse, der omfatter silanpodet fugttværbindelig polyolefin og/eller copolymerisat af polyolefiner og andre monomerer, og som er beregnet til isolering af elektriske kabler, samt en fremgangsmåde til fremstilling af denne masse. Af dette trykskrift kan der i det væsentlige kun udledes detDE Publication No. 2,649,874 relates to a mass comprising silane-grafted moisture-resistant polyolefin and / or copolymer of polyolefins and other monomers, which are intended for insulation of electrical cables, and a process for producing this mass. Essentially, this print can only be deduced
DK 157480 BDK 157480 B
3 forhold, at polymere masser kan tværbindes ved påvirkning med fugtighed, selv når de indeholder en nærmere specificeret sodbe-standdel. I fremlæggelsesskiftet er der derimod ikke nogen omtale af fremstilling af krympeartikler.3 conditions that polymeric masses can be crosslinked by moisture action, even when containing a specified soda component. In the presentation change, on the other hand, there is no mention of the manufacture of shrink articles.
55
Formålet med opfindelsen er derfor at anvise en fremgangsmåde til fremstilling af krympeartikler med "elastisk formhukommelse" med samme eller i det mindste sammenlignelige egenskaber som de ved ovennævnte kendte fremgangsmåde fremstillede krympeartikler, uden at 10 det er nødvendigt at gennemføre tværbindingen ved hjælp af en forholdsvis besværlig bestråling samt at forenkle fremstillingsprocessen og gennemføre den på en sådan måde, at der kan fremstilles krympeartikler af upåklagelig kvalitet.The object of the invention is therefore to provide a method for producing shrinkage articles having "elastic shape memory" having the same or at least comparable properties as the shrinking articles produced by the above known method, without the need to carry out the crosslinking by means of a relatively cumbersome radiation, and to simplify the manufacturing process and implement it in such a way that shrinkage articles of impeccable quality can be produced.
15 Dette formål opnås med fremgangsmåden med de indledningsvis angivne foranstaltninger, når den ifølge opfindelsen er ejendommelig ved, at i det mindste kondensationskatalysatoren, silanen og peroxidet inden smeltning af polymeren sammenføjes med denne til en ensartet blanding, at silanen påpodes ved temperaturforhøjelse, og den podede 20 polymer dernæst formgives, idet smeltningen, podningen og formgivningen udføres i én arbejdsgang.This object is achieved by the process of the measures set forth at the outset when it is characterized by the fact that at least the condensation catalyst, the silane and the peroxide, before melting the polymer, are combined with it into a uniform mixture, the silane is applied at elevation of temperature and the grafted 20 polymer is then molded, the melting, grafting and shaping being carried out in one operation.
Det er her væsentligt, at fugtighedsindvirkningen foretages ved hjælp af en særlig efter fremstillingen af udgangsemnet følgende 25 anordning eller kan opnås i formen allerede ved hjælp af de fugtig-hedsmængder, der i forvejen findes i polymererne og tilsætningsstofferne, eller simpelthen ved oplagring under påvirkning af omgivelserne.It is essential here that the moisture action is made by a particular device following the preparation of the starting material or can be obtained in the mold already by the amounts of moisture already present in the polymers and additives, or simply by storage under the influence of surroundings.
30 Opfindelsen bygger nemlig på den erkendelse, at i modsætning til den velkendte, f.eks. inden for kabel teknikken anvendte peroxidiske tværbinding under varmeindvirkning, ved podning af basismaterialernes makromolekyler med reaktionsdygtige lavmolekylære forbindelser, f.eks. organo-silaner som tværbindingshjælpemiddel, der igen under 35 forløbet af sekundære reaktioner fører til en polyfunktionel kædetværbinding, dannes bundtformede tværbindingssteder, hvor flere makromolekyler over en tværbindingsknude fikseres til hinanden.The invention is based on the recognition that, contrary to the well-known, e.g. used in the cable technique peroxidic crosslinking under heat effect, by grafting the base materials macromolecules with reactive low molecular weight compounds, e.g. organo-silanes as cross-linking aids, which again during the course of secondary reactions lead to a polyfunctional chain cross-linking, are formed in the form of bundled cross-linking sites where several macromolecules are fixed to one another over a cross-linking node.
Denne særlige kemiske tværbindingsmekanisme medfører, at der i mo-lekyleområdet opstår store bindingskræfter, der ved opvarmning tilThis particular chemical cross-linking mechanism causes large bonding forces in the molecule area which, upon heating to
DK 157480 BDK 157480 B
4 termoplastisk tilstand ganske vist svækkes og derved muliggør en udvidelse, f.eks. af udgangsemnet, men efter en genopvarmning og en hurtig krympning genantager deres oprindelige styrke.4 thermoplastic state is admittedly attenuated, thereby enabling an expansion, e.g. of the starting material, but after a reheat and a rapid shrinking, their original strength resumes.
5 Krympeartikler, der er fremstillede af sådanne materialer, har derfor en "elastisk formhukommelse", og er derfor egnede til alsidige anvendelsesformål, såsom slanger og kapper, f.eks. til tryktæt og fugtighedstæt afslutning af elektriske kablers ender eller som enkelte eller flerdel te manchetter, til beskyttelse af 10 tilslutnings- eller forbindelsesstederne ved elektriske kabler eller rørbundtkabler. Egenskaberne ved krympeartiklerne fremstillet ifølge opfindelsen er ikke eller kun i uvæsentlig grad ændrede i forhold til egenskaberne ved krympeartikler, hvor tværbindingen er sket ved bestråling, hvorimod selve fremstillingen er væsentligt forenklet 15 ved hjælp af opfindelsen.Shrinkage articles made of such materials therefore have a "resilient shape memory" and are therefore suitable for versatile applications such as hoses and sheaths, e.g. for pressure-tight and moisture-tight termination of the ends of electrical cables or as single or multiple tea cuffs, for protection of the 10 connection or connection points by electrical cables or pipe bundle cables. The properties of the shrinkage articles made in accordance with the invention are not or only substantially altered in relation to the characteristics of shrinkage articles where the crosslinking has been done by irradiation, whereas the preparation itself is substantially simplified by the invention.
Til udøvelse af opfindelsen har det vist sig at være fordelagtigt at foretage tværbindingen af udgangsemnet under indvirkning af fugtighed ved forøget temperatur på 80-200°, fortrinsvis 140-180°. Udvid-20 el sen til den tilstand, i hvilken udgangsemnet skal fryses, sker i umiddelbar tilslutning hertil, d.v.s. “on line", medens udgangsemnet endnu er varmt. Dersom tværbindingsreaktionen tilvejebringes ved hjælp af formnings- eller sprøjtestøbeprocessen ved selve fremstillingen af udgangsemnet, kan en særskilt fugtighedsbehandling under 25 højere temperatur udelades. Temperaturforøgelsen inden udvidelsen kan foretages uafhængigt af fugtighedsbehandlingen, f.eks. ved mi krobølgeabsorptionsdygtige blandinger ved hjælp af UHF-opvarm-ning. Herved kan opnås en yderligere billiggørelse af fremstillingen.In carrying out the invention, it has been found advantageous to make the crosslinking of the starting material under the influence of moisture at elevated temperature of 80-200 °, preferably 140-180 °. The extension to the state in which the starting material is to be frozen takes place immediately adjacent to it, i.e. "On line" while the starting material is still hot. If the crosslinking reaction is provided by the molding or injection molding process in the actual preparation of the starting material, a separate moisture treatment below 25 can be omitted. The temperature increase prior to expansion can be carried out independently of the moisture treatment, e.g. by microwave-absorbent mixtures by means of UHF heating, thereby obtaining a further cost reduction of the preparation.
3030
Selve tværbindingen kan, således som det allerede sker ved fugtig-hedstværbinding i forbindelse med kabler, ske i en art sauna, d.v.s. i en vanddampatmosfære med forøget temperatur. Tværbindingen kan dog også ske ved anvendelse af en opvarmet glycerin-vandblånding eller 35 en olie-vandblanding, som dels frembyder den fordel, at der kan opretholdes ensartede temperaturforhold uden kompliceret styring, og dels at de komponenter, der er bedre forenelige med krympearti kl ernes polymerer, sørger for en hurtigere inddiffundering af de til tværbindingen påkrævede små vandmængder.The crosslinking itself, as is already the case with moisture crosslinking in connection with cables, can be done in a kind of sauna, i.e. in a water vapor atmosphere with increased temperature. However, the cross-linking can also be done by using a heated glycerin-water mixture or an oil-water mixture which offers the advantage that uniform temperature conditions can be maintained without complicated control and partly that the components which are better compatible with shrinkage types are polymers, provide a quicker diffusion of the small amounts of water required for the crosslinking.
DK 157480 BDK 157480 B
55
Som basismateriale kan anvendes alle polymerer, med hvilke en indkorporering af organo-silaner er mulig ved radikal initieret podning. Ifølge opfindelsen er det særligt hensigtsmæssigt af hensyn til en god forarbejdelighed at anvende polyethylen eller ethylen-5 blandingspolymerisater med vinyl acetat- eller acrylat-comonomerer som basismateriale. Som basismateriale kan dog også anvendes materialer på basis af ethyl en-propyl enkautsjuk alene eller blandet med en polyolefin.As a base material can be used all polymers with which incorporation of organo-silanes is possible by radical initiated grafting. According to the invention, it is particularly convenient for the sake of good processability to use polyethylene or ethylene blend polymers with vinyl acetate or acrylate comonomers as the base material. However, as a base material can also be used materials based on ethylene-propyl mono-rubber single or mixed with a polyolefin.
10 Som kondensationskatalysatorer til anvendelse ved fremgangsmåden ifølge opfindelsen kan benyttes tinforbindelser, som f.eks. tin-1 aurat og di butyl tindi1 aurat.As condensation catalysts for use in the process of the invention, tin compounds such as e.g. tin-1 aurate and di butyl tindi1 aurate.
Til opnåelse af UV-bestandighed og desuden til forbedring af blan-15 dingens mekaniske og rheologiske egenskaber ved fremstillingen af udgangsemnerne har det vist sig at være fordelagtigt at sætte sod til basismaterialet. Særligt egnet er såkaldte acetyl en-sodtyper med ikke-hygroskopiske egenskaber. Disse sodtyper har desuden en stor ledningsevne og i modsætning til ellers sædvanlige sodtyper er det 20 tilstrækkeligt med små mængder sod på 1,5-30, fortrinsvis 3,0-15 dele sod pr. 100 dele polymer til at give krympeartiklen antistatiske egenskaber eller eventuelt ledningsevne ved gode mekaniske og rheologiske egenskaber. Anvendelsen af ikke-hygroskopisk acetylensod er endvidere vigtig, fordi den ikke forstyrrer silantværbindingen.In order to obtain UV resistance and also to improve the mechanical and rheological properties of the mixture in the preparation of the starting materials, it has been found advantageous to add soot to the base material. Especially suitable are so-called acetyl one-soda types with non-hygroscopic properties. These soot types also have a high conductivity and, unlike other conventional soot types, small amounts of soot of 1.5-30, preferably 3.0-15 parts of soot per minute are sufficient. 100 parts polymer to give the shrinkage article antistatic properties or possibly conductivity by good mechanical and rheological properties. Furthermore, the use of non-hygroscopic acetylene sod is important because it does not interfere with the silane crosslinking.
25 En mængde på 5-40, fortrinsvis 8-20 dele ikke-hygroskopisk sod pr.An amount of 5-40, preferably 8-20 parts of non-hygroscopic soot per liter.
100 dele polymer anses derfor for mest hensigtsmæssig for de krym-peartikler, der skal fremstilles ifølge opfindelsen.Therefore, 100 parts of polymer is considered most suitable for the shrinkage articles to be made according to the invention.
Foruden eller i stedet for den som fyldstof virkende sod kan der 30 også anvendes andre ikke-hygroskopiske fyldstoffer som f.eks. kridt, kaolin eller talkum. Disse fyldstoffer anvendes fordelagtigt i mængder på 5-30 fortrinsvis 10-20 dele til 100 dele polymer. Herved kan der, foruden at der opnås en billiggørelse af blandingen og dermed af endeproduktet, også opnås en forbedring af hårdheden, 35 varmebestandigheden og trykstyrken.In addition to or instead of the soot acting as filler, other non-hygroscopic fillers such as e.g. chalk, kaolin or talc. These fillers are advantageously used in amounts of 5-30, preferably 10-20 parts to 100 parts polymer. In this way, in addition to obtaining a lowering of the mixture and thus of the end product, an improvement in the hardness, heat resistance and compressive strength can also be obtained.
Det er særligt fordelagtigt i kombination med sod henholdsvis andre fyldstoffer at tilsætte stoffer, der ved højere temperaturer på defineret måde udskiller vand, som så tilvejebringer en fugtigheds-It is particularly advantageous, in combination with soot and other fillers, to add substances which, at higher temperatures, secrete water, which then provides a moisture content.
DK 157480 BDK 157480 B
6 tværbinding i selve værktøjet. Som sådanne stoffer er navnlig partielt hydrofobe kisel syrer henholdsvis silikater eller al umini umoxidhydrater anvendelige. Sidstnævnte udskiller vand ved temperaturer over 180°C ifølge formlen 56 cross-linking in the tool itself. As such, in particular, partially hydrophobic silic acids or silicates or aluminum oxide hydrates are useful, respectively. The latter separates water at temperatures above 180 ° C according to formula 5
2A1(0H)3 -* A1203 + 3HzO2A1 (OH) 3 - * A1203 + 3HzO
Et aluminiumoxidhydrat fra firmaet Martinswerk, som kendes under handelsnavnet "Martinal A-S" eller i silaniseret form under handels-10 navnet "Martinal A-S/101" har vist sig at være særligt velegnet til udøvelse af opfindelsen. Dette fyldstof har en gennemsnitlig kornstørrelse på ca. 0,4 fim og er navnlig i den silaniserede form godt forenelig med polyethylen.An alumina hydrate from the company Martinswerk, which is known by the trade name "Martinal A-S" or in silanized form under the trade name "Martinal A-S / 101", has proven to be particularly well suited for the practice of the invention. This filler has an average grain size of approx. 0.4 µm and in particular in the silanized form is well compatible with polyethylene.
15 Ved hjælp af den nævnte sod opnås en yderligere fordel, dersom tværbindingen sker under fugtighedsindvirkning ved rumtemperatur eller en temperatur, som er lidt højere end rumtemperaturen, og der til udvidelse af udgangsemnet efterfølgende skal ske en opvarmning af den sprøjtestøbte del. I dette tilfælde kan opvarmningen nemlig 20 med stor fordel ske ved en mikrobølgebestråling, idet den valgte sod er særligt velegnet til mikrobølgeabsorption. Den temperatur, der her kan opnås, er afhængig af intensiteten af UHF-feltet, og kan styres efter ønske. En temperatur på 102-170°C, fortrinsvis på 130-150°C har vist sig at være hensigtsmæssig.By means of said soot, an additional advantage is obtained if the cross-linking occurs under the influence of humidity at room temperature or a temperature slightly higher than the room temperature, and the expansion of the starting material is subsequently heated by the injection molded part. In this case, the heating is very advantageous in the case of microwave irradiation, the soot chosen being particularly suitable for microwave absorption. The temperature obtainable here is dependent on the intensity of the UHF field and can be controlled as desired. A temperature of 102-170 ° C, preferably of 130-150 ° C, has been found to be appropriate.
2525
Det er endvidere væsentligt for den ønskede fugtighedstværbinding og dermed brugbarhed ved podning med tværbindingshjælpemidler, at disse midler, f.eks. organosil aner, forefindes i en tilstrækkelig, men samtidig i forhold til peroxiderne afmålt mængde til tilvejebringel-30 se af de til en tilbagekrympning fra den udvidede tilstand nødvendige molekylære bindingskræfter. Molforholdet mellem peroxider, der tilvejebringer radikal steder på makromolekyler, og mængden af tilsatte silaner er derfor ifølge opfindelsen fordelagtigt 1:10.Furthermore, it is essential for the desired moisture crosslinking and thus usefulness in grafting with crosslinking aids that these agents, e.g. organosil is present in a sufficient, but at the same time, relative to the peroxides metered amount to provide the molecular binding forces required for a shrinkage from the expanded state. The molar ratio of peroxides which provide radical sites to macromolecules and the amount of silanes added is therefore advantageously 1:10 according to the invention.
35 Udvidelsen af den forformede udgangsslange til dennes større diameter til dannelse af krympeslangen kan ske ved gentagne del udvidel ser, som hver afsluttes med en kalibrering af udgangsslangen, idet udvidelsen sker ved hjælp af undertryk, som mellem hver kalibrering indvirker på udgangsslangens overflade. Denne foranstaltning sikrerThe expansion of the preformed output hose to its larger diameter to form the shrink tube can be repeated by repeatedly extending each end with a calibration of the output hose, the expansion being by means of negative pressure acting on the surface of the output hose between each calibration. This measure ensures
DK 157480BDK 157480B
7 slutprodukter af høj kvalitet, dels hvad det ydre udseende angår, og dels hvad angår krympeegenskåberne. Sidstnævnte er navnlig tilfældet, dersom der anvendes materialer, som kan tværbindes henholdsvis allerede er tværbundne på tidspunktet for udvidelsen.7 high quality end products, both in terms of external appearance and partly in terms of shrink properties. The latter is especially the case if materials which can be cross-linked or are already cross-linked at the time of enlargement are used.
55
Det har vist sig at være fordelagtigt, dersom udvidelsen af udgangsslangen til slutdiameteren sker under et under undertryk stående væskebad. Herved opnås en særlig god overfladekval i te.t af det krympedygtige slutprodukt. Dette gælder navnlig, dersom denne væske, 10 f.eks. vand, samtidig tjener som smøre- eller slippemiddel under kalibreringsprocessen. Denne enkle mulighed for en automatisk smøre-eller slippemiddel forsyning, som ikke skal passes, kendes ikke ved de hidtidige kendte apparater til udvidelse af krympedygtige produkter.It has been found to be advantageous if the extension of the output hose to the final diameter occurs under a pressurized liquid bath. Hereby a particularly good surface quality is obtained in the te of the shrinkable final product. This is especially true if this liquid, e.g. water, while also serving as a lubricant or release agent during the calibration process. This simple possibility of an automated lubricant or release agent which is not to be looked after is not known in the prior art apparatus for expanding shrinkable products.
1515
Selve udvidelsen skal tilpasses det anvendte polymere materiale, f.eks. polyvinylchlorid, tværbunden eller ikke-tværbunden polyethy-len osv. Det har vist sig at være hensigtsmæssigt at lade udvidelsen foregå jævnt, d.v.s. i ensartede di ameterforøgende trin. Undertiden 20 kan det imidlertid også være fordelagtigt, dersom udvidelsen foretages i trin.The expansion itself must be adapted to the polymeric material used, e.g. polyvinyl chloride, cross-linked or non-cross-linked polyethylene, etc. It has been found appropriate to allow the expansion to take place evenly, i.e. in uniform di ameter increasing steps. However, sometimes 20 may also be advantageous if the expansion is done in steps.
Til udvidelsen af en hul formstreng, d.v.s. udgangsslangen til opnåelse af diameterforøgelsen, skal der sædvanligvis foretages en 25 forudgående varmebehandling af det i tværbunden eller ikke-tværbunden tilstand foreliggende udgangsemne. Hertil kan der f.eks. foran udvidelsesapparatet være anbragt et passende tempererbart væskebad. Opvarmningen kan dog også ske ved hjælp af varmebestråling udefra eller ved indvendig opvarmning, f.eks. over en højfrekvens-30 spole.For the expansion of a hollow mold string, i.e. In order to obtain the increase in diameter, a prior heat treatment of the starting material in the cross-linked or non-cross-linked state is usually required. For this, e.g. a suitable temperable liquid bath is arranged in front of the extension apparatus. However, the heating can also be done by external heat radiation or by internal heating, e.g. over a high frequency 30 coil.
Undertiden kan det imidlertid også være fordelagtigt, navnlig dersom der ønskes en forøgelse til flere gange den oprindelige diameter, at forbinde den stigende diameterforøgelse af udgangsslangen med en 35 jævnt tiltagende opvarmning eller gennemvarmning af udgangsslangen.However, sometimes it may also be advantageous, especially if an increase to several times the original diameter is desired, to associate the increasing diameter increase of the output hose with a steadily increasing heating or through heating of the output hose.
Der skal da alt efter den fremadskridende udvidelse foretages en passende dosering af varmemængden.According to the progressive expansion, an appropriate dosage of the heat quantity must then be made.
Ved en udvidelse, som svarer til flere gange den oprindelige diame-With an extension that corresponds to several times the original diameter
DK 157480 BDK 157480 B
8 ter af udgangsslangen (udgangsemnet), kan det undertiden ligeledes være fordelagtigt, dersom den indvendige flade af udgangsslangen under udvidelsen ved hjælp af det på den ydre overflade virkende undertryk udsættes for et såkaldt understøtningstryk. Derved kan 5 det, navnlig dersom vægtykkelsen er meget lille i forhold til den fulde diameter, forhindres, at udgangsemnet falder sammen. I denne forbindelse er det muligt, dersom det ønskes, f.eks. under de første trin af udvidelsen at anvende det indvendige understøtningstryk i udgangsslangens indre til understøtning af diameterforøgelsen 10 indefra.8 of the output hose (the output blank), it may sometimes also be advantageous if the internal surface of the output hose during expansion is subjected to a so-called support pressure during expansion by means of the negative surface acting. In this way, especially if the wall thickness is very small in relation to the full diameter, the starting material can be prevented from collapsing. In this connection it is possible, if desired, e.g. during the first steps of the expansion, to use the internal support pressure in the interior of the output hose to support the diameter increase 10 from the inside.
Fremgangsmåden ifølge opfindelsen gennemføres særligt fordelagtigt ved hjælp af et apparat, ved hvilket en såkaldt kalibrator bestående af enkelte i gennemløbsretningen efter hinanden anbragte hul skiver, 15 hvis boringsdiametre set i gennemløbsretningen øges jævnt eller trinvis, tjener til udvidelsen af den hule udgangsslange efter eller under en opvarmning. Sådanne kalibratorer er allerede kendt til fremstilling af formstofrør med ensblivende ydre dimensioner og sikrer en jævn føring over ekstremt små berøringsflader, hvorved der 20 fås overflader af høj kvalitet. Hulskiverne er endvidere alle sammenfattede i et fælles bundt eller i bundter, som er anbragt i en særskilt eventuelt tempererbar væskeførende beholder, som kan lukkes tæt. Herved opnås under emnets gennemløb gennem hul skiverne en god føring med forsvindende lille friktion. Højden af væskeniveauet, der 25 naturligvis kan indstilles, er hensigtsmæssigt valgt på en sådan måde, at hul skiverne er helt dækkede, f.eks. af vand. Oven over dette vandspejl er der f.eks. ved hjælp af passende indstilling af sugepumperne oprettet et undertryk på indtil 8 m VS, som sørger for, at væggen af udgangsslangen udsættes for en sugepåvirkning mellem 30 hver to efter hinanden følgende hulskiver, hvilket vil sige, at udgangsslangen udvides. Undertrykket virker også mellem de påfølgende hulskiver, der har større boringsdiameter end de foregående, således at der efter den allerede foretagne udvidelse fås en yderligere udvidelse osv.The method according to the invention is particularly advantageously carried out by means of an apparatus in which a so-called calibrator consisting of individual hollow discs arranged one after the other, whose bore diameters seen in the flow direction are increased evenly or stepwise, serves to expand the hollow output hose after or during warm up. Such calibrators are already known for producing plastic tubes of uniform outer dimensions and ensure a smooth guide over extremely small contact surfaces, thereby providing high-quality surfaces. The hollow discs are furthermore all summarized in a common bundle or in bundles which are placed in a separate possibly temperable liquid-carrying container which can be closed tightly. As a result, during the passage of the workpiece through the hollow slices a good guide with vanishingly small friction is obtained. The height of the liquid level, which can of course be adjusted, is suitably chosen in such a way that the hollow discs are completely covered, e.g. of water. Above this water level there are e.g. by appropriately adjusting the suction pumps, a negative pressure of up to 8 m VS is created, which ensures that the wall of the output hose is subjected to a suction influence between 30 every two consecutive hollow discs, that is, the output hose is expanded. The negative pressure also acts between the subsequent hollow discs, which have a larger bore diameter than the previous ones, so that after the expansion already made, a further expansion and so on.
35 På grund af den varmebehandlede udgangsslanges endnu blødere struktur under dens indløb i hul skivebundtet har det vist sig at være hensigtsmæssigt, at afstanden mellem hul skiverne samtidig med den stigende boringsdiameter ligeledes øges i gennemløbsretningen.Due to the even softer structure of the heat-treated output hose during its inlet into the hollow disc bundle, it has been found appropriate that the distance between the hollow discs, together with the increasing bore diameter, also be increased in the flow direction.
99
DK 157480 BDK 157480 B
Derved elimineres risikoen for, at udgangsslangen under gennemløb i sin endnu bløde tilstand trykkes ind i hulskiverne, der begrænser den, rives itu eller overrives.This eliminates the risk of the output hose being pushed into its hollow discs during its passage in its still soft state, which limits it, is torn or torn.
5 Egenskaberne af de ved fremgangsmåden ifølge opfindelsen fremstillede produkter kan varieres ved, at disse formdeles begrænsningsvægge helt eller delvis kan bestå af opskummet materiale. Foruden en betydelig materialebesparelse og dermed også en reduktion af vægten opnås yderligere en fordel i form af bedre varmeisolering og den ved 10 tværbindingen opnåede store mekaniske stabilitet i forhold til en sædvanlig skumisolering. Dersom krympeformdelens opskummede del består af et olefinpolymerisat eller olefinblandingspolymerisat opnås en krympeformdel, hvis tværbindingsgrad ligger mellem 30% og 80%. Dermed opfylder produktet de stillede krav.The properties of the products produced by the process according to the invention can be varied in that the limiting walls of these mold parts may consist wholly or partially of foamed material. In addition to significant material savings and thus also a reduction in weight, an additional advantage is obtained in the form of better heat insulation and the great mechanical stability obtained by the cross-linking compared to a conventional foam insulation. If the foamed portion of the shrink mold portion consists of an olefin polymer or olefin blend polymer, a shrink mold portion is obtained whose degree of crosslinking is between 30% and 80%. Thus, the product meets the requirements.
1515
De opskummede isoleringers mekaniske stabilitet vil foruden at være afhængig af den valgte basispolymer navnlig være afhængig af antallet, størrelsen og fordelingen af de under opskumningen dannede porer. Jo mindre disse porer er, og jo mere ensartet de er fordelt 20 over isoleringstværsnittet, jo bedre er også stabiliteten, henholdsvis jo sejere smelten er under opskumningen, jo højere opskumningsgrader opnås ved ensartet porestruktur. Dette er fysiskkemisk begrundet, idet porestørrelsen og strukturen er afgørende afhængig af drivmidlets damptryk og smeltens overfladespænding.In addition to being dependent on the base polymer selected, the mechanical stability of the foamed insulation will depend in particular on the number, size and distribution of the pores formed during the foaming. The smaller these pores are, and the more uniformly they are distributed over the insulation cross-section, the better the stability, respectively, the tougher the melt during the foaming, the higher the foaming rates achieved by uniform pore structure. This is physicochemically justified, with the pore size and structure being crucial depending on the vapor pressure of the propellant and the surface tension of the melt.
25 Overfladespændingen er imidlertid større, jo højere smeltens vis kositet er. I praksis er man derfor hidtil gået frem på den måde, at man til forøgelse af smeltens viskositet foretog en temperaturnedsættelse umiddelbart før opskumningen. Denne mulighed er imidlertid temmelig kompliceret, idet der hertil kræves en særlig fremgangsmå-30 deteknik med lange ekstrudere.25 However, the higher the surface tension, the higher the melting quality is. In practice, it has therefore been hitherto advanced in the way that a temperature reduction immediately before foaming was made to increase the viscosity of the melt. However, this possibility is rather complicated, requiring a special long-extruder method technique.
Til fremstilling af en eventuelt helt eller delvis opskummet krympe-artikel går man hensigtsmæssigt ifølge opfindelsen frem på den måde, at der først sprøjtestøbes henholdsvis ekstruderes et udgangsemne, 35 hvis begrænsningsvægge helt eller delvis bringes til opskumning og tværbindes. Derpå bliver udgangsemnet i denne opskummede og tvær-bundne tilstand udvidet, og ved afkøling og frysning fikseres dette udvidede udgangsemne i dets udvidede tilstand. Tværbindingen kan herunder ske på en hvilken som helst ønsket måde, f.eks. ved atAccording to the invention, it is expedient to prepare an optionally wholly or partially foamed shrink article in that first an injection blank is extruded or extruded, the confining walls of which are wholly or partially foamed and crosslinked. Then, the starting blank in this foamed and crosslinked state is expanded, and upon cooling and freezing, this extended starting blank is fixed in its extended state. The crosslinking can be done below in any desired manner, e.g. by
DK 157480 BDK 157480 B
10 formdelene før, under eller efter opskumningen underkastes en energi rig stråling. Smeltens temperatur kan herunder på optimal måde tilpasses drivmidlets spaltningstemperatur. På denne måde og betinget af smeltens forholdsvis store sejhed under opskumningen kan der 5 opnås en fintcellet, ensartet porestruktur over det fulde tværsnit.10 the mold parts before, during or after foaming are subjected to an energy rich radiation. The temperature of the melt can hereby be optimally adjusted to the decomposition temperature of the propellant. In this way and conditional on the relatively high toughness of the melt during foaming, a fine cell uniform pore structure can be obtained over the full cross section.
Til opskumning af blandingen, der kan tværbindes under tilstedeværelse af fugtighed, kan der anvendes såkaldte kemiske drivmidler. Dersom podningen og opskumningen imidlertid gennemføres i samme 10 forarbejdningstrin, skal det ved valget af disse drivmidler påses, at de under spaltningen af drivmidlet opstående biproprodukter ikke forstyrrer podningsprocessen. For med sikkerhed at udelukke dette kan der i stedet for de kemiske drivmidler anvendes fysiske drivmidler, f.eks. lavere fluorerede henholdsvis chlorerede kulbrinter, 15 eller kvælstof. Også disse drivmidler fører til høje opskumnings-grader, til fintcellet ensartet porestruktur og til god mekanisk stabilitet af det tværbundne produkt, uden at der bevirkes en forstyrrelse af podningsprocessen.For foaming the mixture which can be crosslinked in the presence of moisture, so-called chemical propellants can be used. However, if grafting and foaming are carried out in the same processing step, it must be ensured in the selection of these propellants that the by-products resulting from the splitting of the propellant do not interfere with the grafting process. To safely exclude this, instead of the chemical propellants, physical propellants, e.g. lower fluorinated chlorinated hydrocarbons, 15 or nitrogen respectively. These propellants also lead to high foaming rates, to the fine cell uniform pore structure and to good mechanical stability of the crosslinked product, without disturbing the grafting process.
20 Det kan undertiden være fordelagtigt, dersom de til opskumning anvendte drivmidler samtidig anvendes som bæreelement i det mindste for en del af den til tværbindingen nødvendige fugtighed. Således kan fugtige gasser, f.eks. også vanddamp, der fører til en hurtig tværbinding, indføres i blandingen. Vandlejringstiden kan dermed 25 nedsættes betydeligt.It can sometimes be advantageous if the foaming propellants are used at the same time as a carrier for at least some of the moisture needed for the crosslinking. Thus, moist gases, e.g. also water vapor leading to a fast crosslinking is introduced into the mixture. The water storage time can thus be significantly reduced.
Drivmidlerne, hvad enten de tjener som fugtighedsbæreelement eller ej, kan tilsættes blandingen på sædvanlig måde. Det er imidlertid særligt enkelt, dersom drivmidlet påtromles i pulverformet tilstand.The propellants, whether serving as a moisture carrier or not, can be added to the mixture in the usual manner. However, it is particularly simple if the propellant is drummed in powdered state.
30 Undertiden kan det dog også være fordelagtigt at opblande det podede olefinpolymerisat eller olefinblandingspolymerisat med en drivmid-delholdig polymerbatch.However, sometimes it may also be advantageous to mix the grafted olefin polymerate or olefin mixture polymerate with a propellant-containing polymer batch.
Dersom tværbindingen af det opskummede materiale, som allerede 35 forklaret, foregår under indvirkning af fugtighed, har det endvidere vist sig at være fordelagtigt at initiere tværbindingsprocessen ved anvendelse af vandudskillende drivmidler. På denne måde kan der f.eks. gås frem i alle de tilfælde, hvor den vandmængde, som isoleringen automatisk optager, under kølevandgennemløbet ikke erFurthermore, if the cross-linking of the foamed material, as already explained, occurs under the influence of moisture, it has been found to be advantageous to initiate the cross-linking process using water-separating propellants. In this way, e.g. progress in all cases where the amount of water that the insulation automatically absorbs during the cooling water flow is not
DK 157480 BDK 157480 B
π tilstrækkelig til tværbindingsprocessen.π sufficient for the crosslinking process.
En yderligere mulighed for påføring af ekstra vandmængder kan opnås ved, at der til olefinpolymerisåterne eller olefinblandingspolymeri-5 såterne tilsættes ikke-hygroskopiske metaloxider, såsom tin eller tinoxider. Disse materialer fører i forbindelse med den såkaldte siloxantværbinding allerede umiddelbart efter afslutningen af formgivningen til tværbindingsgrader på ca. 30%. Allerede denne, f.eks. ved tilsætning af zinkoxider, opnåede tværbindingseffekt 10 medfører en tydelig forhøjelse af smeltens viskositet, hvortil skal lægges den ved podningen allerede opnåede viskositet. Derved opnås en særlig sej smelte, der medfører en meget fordelagtig porestruktur af skummet. I denne forbindelse kan det undertiden være fordelagtigt, dersom tilsætningen af metaloxiderne først sker efter podning-15 en. På denne måde forhindres, at der under ekstrusionen opstår vanskeligheder, f.eks. som følge af begyndende tværbinding under podningen.A further possibility of applying additional amounts of water can be obtained by the addition of non-hygroscopic metal oxides such as tin or tin oxides to the olefin polymer juices or olefin mixture polymers. These materials, in connection with the so-called siloxane crosslinking, immediately after completion of the molding lead to crosslinking degrees of approx. 30%. Already this one, e.g. by the addition of zinc oxides, the cross-linking effect obtained 10 results in a clear increase in the viscosity of the melt, to which must be added the viscosity already obtained by grafting. Thereby, a particularly tough melt is obtained which results in a very advantageous pore structure of the foam. In this connection, it may sometimes be advantageous if the addition of the metal oxides occurs only after the inoculation. In this way, difficulties are prevented during extrusion, e.g. as a result of incipient cross-linking during grafting.
Det anvendte zinkoxid medfører yderligere fordele foruden de alle-20 rede nævnte forbedringer. Det er således kendt, at zinkoxid har indflydelse på kinetikken af de sædvanlige drivmidlers spaltningsproces, d.v.s. at spaltningstemperaturerne til dels sænkes betydeligt under tilstedeværelsen af sådanne oxider. Dermed er det muligt at lade drivmiddel spaltni ngen foregå allerede ved forholdsvis lave 25 temperaturer, hvilket ligeledes har en fordelagtig virkning på skumstrukturen. Yderligere fordele opnås med hensyn til materialets elektriske egenskaber, idet rester af ikke-spaltede drivmidler, som bliver tilbage i materialet, bliver praktisk taget uden betydning.The zinc oxide used has additional advantages in addition to the aforementioned improvements. Thus, it is known that zinc oxide influences the kinetics of the conventional propellant decomposition process, i.e. in part, the cleavage temperatures are significantly lowered in the presence of such oxides. Thus, it is possible to allow the propellant cleavage to take place already at relatively low temperatures, which also has an advantageous effect on the foam structure. Further advantages are obtained with respect to the electrical properties of the material, with residuals of un-split propellants remaining in the material becoming virtually immaterial.
30 Podningen og opskumningen af de anvendte materialer kan hensigtsmæssigt ske i samme arbejdsgang. Dette medfører en forøget driftssikkerhed og formindsket tendens til forstyrrelse af fremgangsmåden.Conveniently, the grafting and foaming of the materials used may occur in the same operation. This results in an increased reliability and reduced tendency to disrupt the process.
Den samme mulighed fås imidlertid også, dersom ifølge opfindelsen lag af opskummet materiale og massivt materiale følger skiftevis 35 efter hinanden i krympeformdel enes opbygning.However, the same possibility is also obtained if, according to the invention, layers of foamed material and solid material follow alternately one another in the shape of the shrinkage part.
Fremgangsmåden ifølge den foreliggende opfindelse illustreres under henvisning til den tilhørende tegning, hvor 12The process of the present invention is illustrated with reference to the accompanying drawing, wherein 12
DK 1 57480 BDK 1 57480 B
figur 1 illusterer fremgangsmådeforløbet ifølge eksempel 1, figur 2 viser samme udførelsesform som figur 1, men med den ændring, at der foretages en separat opvarmning af udgangsemnet, 5 figur 3 viser en anden udførelsesform for fremgangsmådeforløbet ifølge eksempel I, figur 4 viser en afbildning af temperaturforløbet og cyklusvarighed 10 under sprøjtestøbning, figur 5 viser fremgangsmådeforløbet ved fremstilling af endeløse formstrenge med krympeegenskåber, 15 figur 6 viser en forstørrelse af indløbet til den kalibrator, som er vist på figur 5, og figur 7 viser en anden udførelsesform for fremgangsmådeforløbet ved fremstilling af endeløse formstrenge med krympeegenskåber.Figure 1 illustrates the process sequence of Example 1, Figure 2 shows the same embodiment as Figure 1, but with the change that a separate heating of the starting blank is performed, Figure 3 shows another embodiment of the process sequence of Example I, Figure 4 shows a view of Figure 5 shows the process of producing endless mold strands with shrinkage cap, Figure 6 shows an enlargement of the inlet to the calibrator shown in Figure 5, and Figure 7 shows another embodiment of the process of producing endless strands of shape with shrinkage capes.
2020
Opfindelsen vil herefter blive yderligere belyst i de nedenfor anførte blandingseksempler. Alle dele er vægtdele.The invention will then be further elucidated in the mixing examples given below. All parts are parts by weight.
En blanding af følgende sammensætning 25A mixture of the following composition 25
Eksempel IExample I
Polyethylen-homopolymer (PE) (massefylde 3 0,94 g/cm , smelteindex 0,2-2,5) 100 dele vinyltrimethoxisilan 1,0-1,5 dele 30 dicumylperoxid 0,03-0,05 " katalysator (dibutyltindi 1 aurat) (Naftovin® SN/L) 0,05 sod (acetylensort Y) 15 " 35 bliver enten i allerede blandet tilstand eller som vist i fig. 1 i form af enkelte komponenter fyldt i en ekstruder 2's tragt 1. Det er hensigtsmæssigt, dersom basispolymerne og fyldstoffet - sod eller kridt eller begge dele - fordeles homogent i en forudgående blande-proces. I ekstruderen 2 sker først en homogenisering ved smeltningPolyethylene homopolymer (PE) (density 3.94 g / cm, melt index 0.2-2.5) 100 parts vinyl trimethoxysilane 1.0-1.5 parts dicumyl peroxide 0.03-0.05 "catalyst (dibutyltin 1) aurate) (Naftovin® SN / L) 0.05 sod (acetylene black Y) 15 "35 is either in already mixed state or as shown in FIG. 1 in the form of individual components filled in the funnel 1 of an extruder 2. It is convenient if the base polymers and the filler - soot or chalk or both - are distributed homogeneously in a prior mixing process. In the extruder 2, homogenization is first effected by melting
DK 157480BDK 157480B
13 og i en påfølgende zone af den samme ekstruder henholdsvis sprøjte-støbemaskine en podning af PE-molekylerne med silan ved temperaturer over 140°C, fortrinsvis mellem 160° og 200°C. Dersom der som krympe-artikler fremstilles krympekapper, der kan være med eller uden 5 gennemgangsstuds, sker overførslen af det podede materiale til formværktøjet 3 gennem sprøjtekanalen 4. Materialet kan enten her eller i forvejen tilsættes opskumningsiniti atorer, f.eks. i form af fugtig gas. I tilfælde af at der skal fremstilles krympedygtige slanger eller manchetter, kan man med fordel gå frem på den måde, at 10 der på samme måde som ved kontinuerlig fremstilling af langstrakt gods kontinuerligt ved hjælp af en ekstruder med slangeekstrude-ringsværktøj og efterfølgende vakuumkalibrering ekstruderes endeløse slanger, som derpå efter afsluttet fugtighedstværbinding blæses op til de dimensioner, som slangerne eller manchetterne skal have.13 and in a subsequent zone of the same extruder, respectively, injection molding machine extrudes the PE molecules with silane at temperatures above 140 ° C, preferably between 160 ° and 200 ° C. If shrinkage articles are manufactured which can be with or without 5 passage nozzles, the graft material is transferred to the molding tool 3 through the spray channel 4. The material can be added here or in advance to foam inserts, e.g. in the form of moist gas. In the event that shrinkable hoses or cuffs are to be manufactured, it is advantageous to proceed in the same manner as in the continuous manufacture of elongated goods continuously extruded by means of an extruder with hose extrusion tool and subsequent vacuum calibration. hoses which are then inflated to the dimensions that the hoses or cuffs must have after completion of moisture cross-linking.
1515
Uafhængigt af arten, d.v.s. den ydre form af krympeartiklerne, er det fordelagtigt, dersom den opnåede sprøjte- eller sprøjtestøbe-temperatur anvendes til at foretage en fremskyndet tværbinding i en fugtig atmosfære.Independent of the species, i.e. the outer shape of the shrinkage articles is advantageous if the obtained injection or injection molding temperature is used to effect an accelerated crosslinking in a humid atmosphere.
2020
Hertil tjener det skematisk antydede vandbad 5, som indeholder en olie-vandemulsion eller en vand-glycerinblanding for på enkel måde at sikre en temperaturkonstant samt for at fremskynde vandets inddiffundering i udgangsemnet. Efter tværbindingsprocessen sker 25 udvidelsen af udgangsemnet i dettes endnu varme tilstand f.eks.To this end, the schematically indicated water bath 5, which contains an oil-water emulsion or a water-glycerine mixture, serves in a simple manner to ensure a temperature constant as well as to accelerate the water diffusion of the starting material. After the cross-linking process, the starting material is expanded in its still hot state, e.g.
udvidelsen af kappen 6 over dornen 7, ved hjælp af hvilken kappen 6 indefra blæses op, og denne fryses i sin udvidede tilstand ved afkøling. Tværbindingen ved højere temperaturer sker i umiddelbar tilknytning til udvidelsen for at udnytte varmeindholdet.the expansion of the casing 6 over the mandrel 7 by means of which the casing 6 is inflated from the inside, and this is frozen in its expanded state upon cooling. The cross-linking at higher temperatures occurs directly in connection with the expansion to utilize the heat content.
3030
Der kan også anvendes andre fremgangsmådeforløb. Således kan der til tilvejebringelse af tværbindingen og/eller udvidelsen ske en separat forløbende opvarmning af udgangsemnerne, f.eks. som vist i fig. 2, ved hjælp af en UHF-bestråling 8, d.v.s. mikrobølgeopvarmning i 35 tilslutning til den foretagne sprøjtestøbning og udtagning af formdelen af sprøjtestøbeværktøjet 3. Tværbindingen kan dog også delvis eller helt ske i sprøjteværktøjets formhulhed ved hjælp af den henholdsvis i polymererne og tilsætningsstofferne indeholdte fugtighed og derpå fuldendes ved hjælp af en UHF-opvarmning.Other processes can also be used. Thus, in order to provide the crosslinking and / or extension, a separate progressive heating of the starting blanks, e.g. as shown in FIG. 2, using a UHF radiation 8, i.e. microwave heating in connection with the injection molding made and removal of the mold part of the injection molding tool 3. However, the cross-linking can also be partially or wholly done in the mold cavity of the injection molding by means of the moisture contained in the polymers and additives, respectively, and then completed by means of a heating arm.
DK 157480 BDK 157480 B
1414
Der kan imidlertid også tilsættes tilsætningsstoffer, såsom bestemte aluminiumoxidhydrater henholdsvis partielt hydrofoberede silikater, der ved højere temperatur udskiller små mængder H20. Den af disse additiver ved sprøjtetemperatur frigivne h^O-andel er tilstrækkelig 5 til tværbindingen. Formdelen forlader da sprøjtestøbemaskinen i tværbunden tilstand.However, additives such as certain alumina hydrates or partially hydrophobic silicates, which secrete small amounts of H2 O at higher temperatures, may also be added. The H 2 O proportion of these additives released at spray temperature is sufficient for the crosslinking. The mold part then leaves the injection molding machine in a cross-linked state.
Dersom det ikke drejer sig om fremstilling af kapper, men f.eks. om kontinuerlig ekstrusion af slanger, vil man hensigtsmæssigt gå frem 10 som vist skematisk i fig. 3, hvor den i ekstruderen 11's sprøjtehoved 10 fremstillede slange først løber gennem en vakuumkalibrator 12 og derpå indføres i et glycerin-vandbad 13, hvor den nødvendige tværbinding foretages ved temperaturer på ca. 130-180°C, fortrinsvis 160-180°C. Slangen holdes herunder på i og for sig kendt måde i 15 formen ved hjælp af et indre understøtningstryk. I køleapparatet 14 sker en afkøling, inden udgangsemnerne, slangerne eller manchetterne ved hjælp af en ikke vist klippe- eller skæreanordning afskæres og f.eks. på den i fig. 1 og 2 antydede måde udvides under opvarmning, inden der til frysning af den udvidede tilstand sker en afkøling.If it is not about the manufacture of sheaths, but for example. about continuous extrusion of hoses, it is convenient to proceed 10 as shown schematically in FIG. 3, wherein the hose made in the extruder head 10 of extruder 11 first runs through a vacuum calibrator 12 and then is introduced into a glycerin-water bath 13, where the necessary cross-linking is carried out at temperatures of approx. 130-180 ° C, preferably 160-180 ° C. The hose is then held in a manner known per se in the mold by means of an internal support pressure. In the cooling apparatus 14, cooling takes place before the output items, hoses or cuffs are cut off by means of a cutting or cutting device not shown and e.g. in the embodiment of FIG. 1 and 2 are indicated during heating before freezing of the expanded state is allowed to cool.
2020
Fig. 4 viser i et diagram den særlige fordel ved anvendelse af materialer, der kan tværbindes ved hjælp af fugtighed, i forhold til materialer, der kan tværbindes peroxidisk, ved hvilke molforholdet mellem silanmængde og peroxidandel sædvanligvis er større end 10:1.FIG. 4 shows in a diagram the particular advantage of using materials which can be crosslinked by moisture, compared to materials which can be crosslinked peroxidically, in which the molar ratio of silane to peroxide content is usually greater than 10: 1.
25 Temperaturforløbet (a) viser forholdene ved fugtighedstværbinding, og forløbet (b) er det tidsmæssige forløb ved peroxidisk tværbinding. Ved fugtighedstværbinding bliver PE-blandingen, der skal podes, både ved hjælp af konduktiv varmeovergang fra sprøjtestøbemaskinens opvarmede cylindervæg og ved hjælp af dissipationsenergi, som tilve-30 jebringes af sneglen (friktion), bragt op på den til podningen påkrævede temperatur - der findes ingen øvre temperaturgrænse - og når med denne temperatur ind i værktøjet, hvor kølingen straks begynder.The temperature course (a) shows the conditions of moisture crosslinking, and the process (b) is the temporal course of peroxidic crosslinking. In moisture crosslinking, the PE mixture to be seeded, both by conductive heat transfer from the heated cylinder wall of the injection molding machine and by the dissipation energy provided by the auger (friction), is brought up to the temperature required for the grafting - no upper temperature limit - and reaches this temperature into the tool, where cooling begins immediately.
35 Ved peroxidisk tværbinding må massen ikke overskride 130°C før formgivningen. Med denne temperatur når massen ind i værktøjet og skal her bringes op på tværbindingstemperaturen (200°C) og holdes i formen et stykke tid, inden værktøjet afkøles, således at emnet kan udtages af formen.35 In the case of peroxidic crosslinking, the mass must not exceed 130 ° C before shaping. With this temperature, the pulp reaches into the tool and here must be brought up to the cross-linking temperature (200 ° C) and kept in the mold for a while before the tool is cooled so that the workpiece can be removed from the mold.
DK 157480 BDK 157480 B
1515
Det energiforbrug, som er nødvendigt til køling under formgivningsprocessen for at undgå højere temperaturer end 130°C, er højere end det energiforbrug, der ved fugtighedstværbinding kræves til at opnå en temperatur på 200°C, fordi den af sneglen tilvejebragte 5 energi (dissipation) kan udnyttes.The energy consumption needed for cooling during the molding process to avoid higher temperatures than 130 ° C is higher than the energy consumption required by moisture crosslinking to reach a temperature of 200 ° C because of the energy provided by the auger (dissipation). can be utilized.
Andre blandinger, der med fordel kan anvendes ved fremstilling af krympeartikler ifølge opfindelsen, er følgende:Other mixtures which may advantageously be used in the manufacture of shrinkage articles according to the invention are the following:
10 Eksempel IIExample II
polyethylen-copolymer med 2-7 mol% vinyl acetat 100 dele kalcineret ler (hårdt kaolin M 100) 10 " 15 sod 10 vinyltrimethoxisilan 2,0 " peroxid .0,05-0,1 " katalysator (di butyl tindi 1 aurat (Naftovin® SN/L)) 0,05 20polyethylene copolymer with 2-7 mol% vinyl acetate 100 parts calcined clay (hard kaolin M 100) 10 "sod 10 vinyl trimethoxysilane 2.0" peroxide .0.05-0.1 "catalyst (di butyl tindi 1 aurate (Naphthovine) ® SN / L) 0.05 0.05
Eksempel IIIExample III
polyethylencopolymer med 2-7 mol% 100 dele vinyl acetat 25 ikke-hygroskopisk kridt (f.eks. Millicarb/Omya) 15 " sod 5 " vinyltrimethoxisilan 2,0 " peroxid 0,05-0,1 " 30 katalysator (di butyl ti ndi 1 aurat (Naftovin® SN/L)) 0,05 "polyethylene copolymer with 2-7 mol% 100 parts vinyl acetate 25 non-hygroscopic chalk (eg Millicarb / Omya) 15 "sod 5" vinyl trimethoxysilane 2.0 "peroxide 0.05-0.1" 30 catalyst (di butyl Ti ndi 1 aurate (Naftovin® SN / L)) 0.05 "
Eksempel IVExample IV
35 polyethylen-homopolymer 3 (massefylde 0,94 g/cm , smelteindex 0,2 - 2,5) 100 dele al uminiumoxidhydrat (f.eks. Martinal A-s/101) 2-10 "Polyethylene homopolymer 3 (density 0.94 g / cm, melt index 0.2 - 2.5) 100 parts al alumina hydrate (eg Martinal A-s / 101) 2-10 "
DK 157480 BDK 157480 B
16 sod 10 " vinyltrimethoxisilan 1,8-2,0 " peroxid 0,05-0,1 " katalysator 0,05 " 5 I stedet for aluminiumoxidhydrat kan der også anvendes partielt hydrofoberede ki selsyrer.16 soot 10 "vinyl trimethoxysilane 1.8-2.0" peroxide 0.05-0.1 "catalyst 0.05" 5 Partially hydrophobic silicic acids can also be used instead of alumina hydrate.
Blandingen ifølge eksempel I er særligt egnet til fremstilling af 10 krympeslanger, men også til fremstilling af kapper og manchetter, medens blandingen ifølge eksempel IV hovedsageligt kan anvendes med fordel til fremstilling af kapper, der efter formgivningen allerede er fuldstændigt tværbundne.The mixture of Example I is particularly suitable for the manufacture of 10 shrink tubing, but also for the manufacture of sheaths and cuffs, while the mixture of Example IV can be used mainly for the production of sheaths which are already fully cross-linked after shaping.
15 Dersom formdelene består af et opskummet materiale, ændres de nævnte blandingseksempler I-IV som følger:If the mold parts consist of a foamed material, the aforementioned mixture Examples I-IV are changed as follows:
Eksempel I-SExample I-S
20 PE-homopolymer 3 (massefylde 0,94 g/cm , smelteindex 0,2 - 2,5) 100 dele azodicarbonamid som kemisk drivmiddel 0,5-1,5 " vinyltrimethoxisilan 1,0-1,5 " 25 dicumylperoxid 0,03-0,05 " katalysator (di butylti ndi1 aurat (Naftovin® SN/L)) 0,5 sod (acetylensort Y) 2,5 "PE homopolymer 3 (density 0.94 g / cm, melt index 0.2 - 2.5) 100 parts azodicarbonamide as chemical propellant 0.5-1.5 "vinyl trimethoxysilane 1.0-1.5" dicumyl peroxide 0, 03-0.05 "catalyst (di butyltin didiurate (Naftovin® SN / L)) 0.5 sod (acetylene black Y) 2.5"
30 Eksempel II-SExample II-S
polyethylen-copolymer med 2-7 mol% vinyl acetat 100 dele azodicarbonamid (drivmiddel) 0,5 " 35 sod (Ketjenblack EC) 3,0 vinyltrimethoxisilan 2,0 " peroxid 0,05-0,1 " katalysator (di butyl tindi 1 aurat (Naftovin® SN/L)) 0,05polyethylene copolymer with 2-7 mol% vinyl acetate 100 parts azodicarbonamide (propellant) 0.5 "sod (Ketjenblack EC) 3.0 vinyl trimethoxysilane 2.0" peroxide 0.05-0.1 "catalyst (di butyl tindi 1 aurate (Naftovin® SN / L)) 0.05
DK 157480 BDK 157480 B
1717
Eksempel III-SExample III-S
polyethylen-copolymer med 2-7 mol% ethylenacrylat 100 dele 5 azodicarbonamid (drivmiddel) 0,8 " sod (Ketjenblack EC) 5 " vinyltrimethoxisilan 2,0 " peroxid 0,05-0,1 " katalysator (dibutyltindi 1 aurat 10 (Naftovin® SN/L)) 0,05polyethylene copolymer with 2-7 mol% ethylene acrylate 100 parts 5 azodicarbonamide (propellant) 0.8 "sod (Ketjenblack EC) 5" vinyl trimethoxysilane 2.0 "peroxide 0.05-0.1" catalyst (dibutyltin 1 aurate 10 (naphthovine) ® SN / L) 0.05
Eksempel IV-SExample IV-S
polyethylenhomopolymer 3 15 (massefylde 0,94 g/cm , smelteindex 0,2 - 2,5) 100 dele diphenoloxid -4,4-disulfohydrazid (drivmiddel) 0,8-1,2 " aluminiumoxidhydrat (f.eks. Marti -20 nal A-s/101) 2 -10 sod (acetylensod Noir Y 200) 10 " vinyltrimethoxisilan 1,8-0,1 " peroxid 0,05-0,1 " katalysator (dibutyltindilaurat 25 (Naftovin® SN/L)) 0,05polyethylene homopolymer 3 (density 0.94 g / cm, melt index 0.2 - 2.5) 100 parts diphenolic oxide -4,4-disulfohydrazide (propellant) 0.8-1.2 "alumina hydrate (e.g. Marti -20 nal As / 101) 2 -10 sod (acetylene sod Noir Y 200) 10 "vinyl trimethoxysilane 1.8-0.1" peroxide 0.05-0.1 "catalyst (dibutyltin dilaurate (Naftovin® SN / L)) 0.05
Andre blandingseksempler til formdele med opskummet væg er:Other mixing examples for molded wall foam components are:
Eksempel V 30 ethylenpropylen-kautsjuk (f.eks. Buna AP 407 K) 100 dele propyl en (f.eks. Hostalen PPH 1050) 80 " sod (Ketjenblack EC) 5 " 35 vinyltrimethoxisilan 1,5 " peroxid (Perkadox 14) 0,1 " katalysator (dibutyltindilaurat (Naftovin® SN/L)) 0,05 azodicarbonamid (drivmiddel) 0,5-1,5 "Example V 30 Ethylene Propylene Rubber (e.g. Buna AP 407 K) 100 parts propyl an (e.g. Hostalen PPH 1050) 80 "sod (Ketjenblack EC) 5" 35 vinyl trimethoxysilane 1.5 "peroxide (Perkadox 14) 0 1 "catalyst (dibutyltin dilaurate (Naftovin® SN / L)) 0.05 azodicarbonamide (propellant) 0.5-1.5"
DK 157480 BDK 157480 B
1818
Eksempel VIExample VI
polyethylen-homopolymeri sat (smelteindex: 1,5-2,0) 100 dele 5 sod (Ketjenblack EC) 5 " fysisk drivmiddel (f.eks. trichlorfluormethan eller di-chlorfluormethan) 0,5-2,5 " vinyltrimethoxisilan 1,5 " 10 peroxid (Luperox 270) 0,25 " katalysator (di butylti ndi1 aurat (Naftovin® SN/L)) 0,05 I stedet for aluminiumoxidhydrat kan der også anvendes partielt 15 hydrofoberede kiselsyrer.polyethylene homopolymer set (melt index: 1.5-2.0) 100 parts 5 sod (Ketjenblack EC) 5 "physical propellant (eg trichlorofluoromethane or dichlorofluoromethane) 0.5-2.5" vinyl trimethoxysilane 1.5 "10 peroxide (Luperox 270) 0.25" catalyst (di butyltindiur aurate (Naftovin® SN / L)) 0.05 Instead of alumina hydrate, partially hydrophobic silicates can also be used.
Blandingen ifølge eksempel I-S er særlig egnet til fremstilling af krympeslanger, men også til kapper og manchetter, medens blandingen ifølge eksempel IV-S hovedsageligt kan anvendes ved fremstilling af 20 kapper, der allerede efter formgivningen foreligger i helt tvær bunden tilstand.The mixture of Examples I-S is particularly suitable for the production of shrink tubing, but also for sheaths and cuffs, while the mixture of Example IV-S can be used mainly in the manufacture of 20 sheaths which are already in completely cross-linked form after shaping.
Navnlig til rationel fremstilling af krympeslanger er fremstillingen af endeløse formstrenge med krympeegenskåber væsentlig. En 25 fremgangsmåde hertil er detaljeret og udførligt vist i fig. 5 og 7.Especially for the rational manufacture of shrink tubing, the manufacture of endless mold strands with shrink properties is essential. A method for this is detailed and detailed in FIG. 5 and 7.
En fra et forråd aftrukket f.eks. fugtighedstværbunden hul formstreng 21 føres derfor som vist i fig. 5 først til et opvarmningsapparat 22. Dette apparat kan f.eks. bestå af et kar indeholdende varmt vand, men der kan også anvendes en strålingsovn.One from a store deducted e.g. The moisture cross-linked hollow mold strand 21 is therefore guided as shown in FIG. 5 first to a heater 22. This apparatus may e.g. consist of a vessel containing hot water, but a radiator can also be used.
30 Det således forbehandlede rør løber derpå ind i den f.eks. ligeledes med tempereret vand fyldte vakuumkalibrator 23. Det foran denne anbragte vandkar 24, der naturligvis også kan erstattes af sprøjtedyser eller andre egnede midler, tjener til at påføre vand som smøre- eller gi idemiddel på formstrengen 21's overflade, 35 efterhånden som denne indføres i kalibratoren 23. Som en væsentlig bestanddel indeholder kalibratoren 23 bundtet 25 af efter hinanden anbragte og med boringer for den gennemløbende streng forsynede hul skiver 26, hvis indbyrdes afstand øges i gennemløbsretningen. Kalibratoren er fyldt med vand i området 27, således at hul skiverneThe tube thus pretreated then runs into the e.g. vacuum calibrator 23. also filled with temperate water. The water tank 24 disposed in front of this, which can of course also be replaced by spray nozzles or other suitable means, serves to apply water as a lubricant or grease agent on the surface of the mold string 21 as it is introduced into the calibrator. 23. As a major component, the calibrator 23 contains the bundle 25 of consecutively arranged holes and bores for the continuous string of hollow discs 26, the spacing of which increases in the direction of passage. The calibrator is filled with water in the region 27 so as to hollow the discs
DK 157480 BDK 157480 B
19 er dækkede. I området 28 hersker oven over vandspejlet et vakuum på indtil 8 m VS. Dette vakuum indvirker mellem hul skiverne på formstrengens ydervæg, således at der eventuelt i samvirken med et understøtningstryk i selve formstrengen skridt for skridt sker en 5 udvidelse under formstrengens kontinuerlige gennemløb mellem hulskiverne, medens hver efter en udvidelse følgende hulskive sørger for kalibreringen. Det udvidede rør eller slangen 29 fryses i sin udvidede tilstand, efter at den har forladt kalibratoren, f.eks. ved at den indføres i et kølekar 30. Derpå rulles produktet op eller 10 skæres straks i salgsfærdige længder.19 are covered. In the area 28, a vacuum of up to 8 m VS is prevailed above the water level. This vacuum interacts between the hollow discs on the outer wall of the molding, so that, in conjunction with a support pressure in the molding itself, an extension occurs during the continuous passage of the molding string between the hollow discs, while each subsequent hollow disc provides the calibration. The expanded tube or hose 29 is frozen in its expanded state after leaving the calibrator, e.g. by introducing it into a refrigerator 30. Then the product is rolled up or 10 immediately cut into ready-made lengths.
Fig. 6 viser indløbet til kalibratoren 23 i større målestok end i fig. 5. På en grundplade 31 med en central boring 32 til formstrengen 21's indløb er der anbragt f.eks. tre ensartet over om-15 kredsen fordelte holdebolte 33, der igen tjener til fastholdelse af hul ski verne 26 som understøtningselementer for formstrengen. Disse hul ski ver 26 er ved indgangen på grund af den ved dette sted endnu let deformerbare streng 21 anbragt tæt ved siden af hinanden og er med fremadskridende udvidelse anbragt med større indbyrdes afstand.FIG. 6 shows the inlet to the calibrator 23 on a larger scale than in FIG. 5. On a base plate 31 with a central bore 32 to the inlet of the mold string 21, e.g. three uniformly distributed retaining bolts 33, which in turn serve to retain the hollow discs 26 as support members for the mold string. These hollow discs 26 are located at the entrance due to the yet easily deformable string 21 located adjacent to each other and are located at a greater distance from each other with progressive expansion.
20 Samtidig med den ved fremadskridende udvidelse stigende diameter af formstrengen tiltager også skivernes boringsdiameter. Vandet, som fuldstændigt omgiver hul skiverne, understøtter på grund af sin temperering udvidelsesprocessen og sørger desuden som gi idemiddel til stadighed for, at formstrengen, der kontinuerligt udvides, 25 kontinuerligt løber gennem hulskiverne og altså ikke sætter sig fast.20 At the same time, as the diameter of the die increases with increasing progress, the bore diameter of the discs also increases. The water, which completely surrounds the hollow discs, because of its tempering, supports the expansion process and furthermore, as a glue, constantly ensures that the continuous, continuous molding stream runs through the hollow discs and thus does not get stuck.
I fig. 7 ses en fra den i fig. 5 viste udførelsesform afvigende udførelsesform, ved hvilken opvarmningen og kalibreringen foretages 30 praktisk taget samtidig i den med en tempererbar væske, f.eks. også med en glycerin-vandblånding fyldte beholder 34. Den del 36, som indeholder kalibrerende hulskiver 35, er her anbragt i den bageste trediedel af denne beholder. Afkølingen af formstrengen 37 til frysning af den udvidede tilstand sker da, som allerede forklaret, i 35 et kølekar eller en kølerende 38.In FIG. 7 is a view from that of FIG. 5 differs from one embodiment in which the heating and calibration is carried out practically simultaneously in that with a temperable liquid, e.g. also filled with a glycerine-water mixing container 34. The portion 36 containing calibrating hollow discs 35 is placed here in the rear third of this container. The cooling of the mold string 37 to freeze the expanded state then takes place, as already explained, in a cooling vessel or cooling duct 38.
Claims (7)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2940719 | 1979-10-08 | ||
DE19792940719 DE2940719A1 (en) | 1979-10-08 | 1979-10-08 | METHOD FOR PRODUCING SHRINKED ARTICLES |
DE19792945048 DE2945048A1 (en) | 1979-11-08 | 1979-11-08 | Shrink article mfr. - by extruding crosslinking distending and cooling the parison |
DE2945048 | 1979-11-08 | ||
DE3001159 | 1980-01-15 | ||
DE3001159A DE3001159C2 (en) | 1980-01-15 | 1980-01-15 | Process for producing shrinkable molded parts |
Publications (3)
Publication Number | Publication Date |
---|---|
DK425780A DK425780A (en) | 1981-04-09 |
DK157480B true DK157480B (en) | 1990-01-15 |
DK157480C DK157480C (en) | 1990-06-05 |
Family
ID=27188244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK425780A DK157480C (en) | 1979-10-08 | 1980-10-08 | PROCEDURE FOR THE MANUFACTURING OF CRIMINAL ARTICLES, SUCH AS CRIMPING HOSES, CRIME CRAFTS AND CRIME |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0031868A3 (en) |
AR (1) | AR223545A1 (en) |
AU (1) | AU540996B2 (en) |
DK (1) | DK157480C (en) |
FI (1) | FI802956A (en) |
GB (1) | GB2061967B (en) |
NO (1) | NO158747C (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3133091A1 (en) * | 1981-08-21 | 1983-03-10 | kabelmetal electro GmbH, 3000 Hannover | "SHRINK SHAPE SHORT LENGTH, LIKE SHRINK CAP, HOSE CUFF AND THE LIKE" |
JPS5880332A (en) * | 1981-11-10 | 1983-05-14 | Asahi Chem Ind Co Ltd | Expandable polyolefin resin composition |
JPS58179241A (en) * | 1982-04-14 | 1983-10-20 | Toray Ind Inc | Foam of electroconductive thermoplastic resin |
FI70916C (en) * | 1983-11-04 | 1986-10-27 | Neste Oy | MEDICAL UPHOLSTERY SHEETS WITH A SILK TV POLYOLFINSKUMOCH FOERFARANDE FOER FRAMSTAELLNING AV DETTA |
DE3511299A1 (en) * | 1985-03-28 | 1986-10-09 | kabelmetal electro GmbH, 3000 Hannover | CREECH-RESISTANT SHRINK TUBE FOR END TERMINALS |
DE3702081A1 (en) * | 1987-01-24 | 1988-08-04 | Kabelmetal Electro Gmbh | METHOD FOR PRODUCING SHRINKED ARTICLES |
DE3806660C2 (en) * | 1988-03-02 | 1995-04-13 | Kabelmetal Electro Gmbh | Heat-recoverable sleeve for wrapping a substrate |
DE102004062659A1 (en) * | 2004-12-24 | 2006-07-06 | Rehau Ag + Co. | Plastic pipe manufacture involves extrusion of pipe material including cross-linking agent and applying steam to initiate cross-linking of plastic |
DE102005029677A1 (en) * | 2005-06-20 | 2006-12-21 | Greiner Extrusionstechnik Gmbh | Extrusion plant for thermo-setting plastics includes heating elements insulated from each other and with low friction surfaces placed downstream of extrusion head |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1271930B (en) * | 1954-12-15 | 1968-07-04 | Wmf Wuerttemberg Metallwaren | coffee machine |
BE791882A (en) * | 1971-11-26 | 1973-03-16 | Magyar Kabel Muevek | PROCESS FOR PREPARING RETRACTABLE POLYETHYLENE PIPES |
DE2719308A1 (en) * | 1977-04-29 | 1978-11-02 | Siemens Ag | Crosslinking blown thermoplastics tube on leaving extruder - esp. by heating before it reaches final diameter |
-
1980
- 1980-07-24 EP EP80104344A patent/EP0031868A3/en not_active Withdrawn
- 1980-09-04 AR AR282408A patent/AR223545A1/en active
- 1980-09-19 FI FI802956A patent/FI802956A/en not_active Application Discontinuation
- 1980-09-29 GB GB8031323A patent/GB2061967B/en not_active Expired
- 1980-10-07 NO NO802983A patent/NO158747C/en unknown
- 1980-10-08 AU AU63058/80A patent/AU540996B2/en not_active Ceased
- 1980-10-08 DK DK425780A patent/DK157480C/en active
Also Published As
Publication number | Publication date |
---|---|
DK425780A (en) | 1981-04-09 |
GB2061967B (en) | 1983-10-26 |
AU6305880A (en) | 1981-04-16 |
NO802983L (en) | 1981-04-09 |
AU540996B2 (en) | 1984-12-13 |
EP0031868A3 (en) | 1981-07-22 |
DK157480C (en) | 1990-06-05 |
NO158747C (en) | 1988-10-26 |
FI802956A (en) | 1981-04-09 |
EP0031868A2 (en) | 1981-07-15 |
AR223545A1 (en) | 1981-08-31 |
GB2061967A (en) | 1981-05-20 |
NO158747B (en) | 1988-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4413066A (en) | Crosslinkable polyethylene resin compositions | |
DK168327B1 (en) | Process for the preparation of thermoplastic polymer profiles by pultrusion, apparatus for use in and products obtained by the process | |
JPS5861129A (en) | Foam manufacturing method | |
DE3001159C2 (en) | Process for producing shrinkable molded parts | |
DK158500B (en) | Process for making a shaped crosslinked extruded polymeric product | |
US5073598A (en) | Method for improving the processing characteristics of polyethylene blends | |
JPS58174407A (en) | Fluorine-containing copolymer having improved extrudability | |
DK157480B (en) | PROCEDURE FOR THE MANUFACTURING OF CRIMINAL ARTICLES, SUCH AS CRIMPING HOSES, CRIME CRAFTS AND SHRINKPADS | |
EP0004034A1 (en) | Method of crosslinking poly-alpha-olefin series resins | |
US4379858A (en) | Foamed plastics | |
US4701472A (en) | Expandable polyvinyl chloride resin composition and foamed sheet prepared from the same | |
AU603786B2 (en) | Crosslinked silane-functional vinylidene chloride polymer and films or foams therefrom | |
HUT58595A (en) | Method for producing extruded foamed bodies | |
CN113292760A (en) | Cross-linked syndiotactic polypropylene foam, preparation method and application thereof | |
JPS601237A (en) | Foaming polyethylene composition | |
KR840001703B1 (en) | Process for the manufacture of shrink articles | |
JP3346027B2 (en) | Polyethylene-based electron beam cross-linked foam | |
JPH0446903Y2 (en) | ||
KR100269876B1 (en) | Polypropylene film and preparing method thereof | |
JPH10180787A (en) | Foamed fluoropolymer composite | |
JPS6254648B2 (en) | ||
JP2001138349A (en) | Method for molding polypropylene resin foamed sheet, and molded object | |
JP2000136260A (en) | Improved polypropylene foamed sheet, laminated foamed sheet from the same and their formed article | |
JP3692410B2 (en) | Method for producing water-crosslinked polypropylene resin foam | |
JPH04220440A (en) | Styrene resin foam excellent in strength and moldability in secondary foaming |