DE2722333A1 - Verfahren zur herstellung eines katalysators - Google Patents
Verfahren zur herstellung eines katalysatorsInfo
- Publication number
- DE2722333A1 DE2722333A1 DE19772722333 DE2722333A DE2722333A1 DE 2722333 A1 DE2722333 A1 DE 2722333A1 DE 19772722333 DE19772722333 DE 19772722333 DE 2722333 A DE2722333 A DE 2722333A DE 2722333 A1 DE2722333 A1 DE 2722333A1
- Authority
- DE
- Germany
- Prior art keywords
- catalyst
- percent
- nickel
- weight
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003054 catalyst Substances 0.000 title claims description 114
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 42
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 42
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 41
- 239000000292 calcium oxide Substances 0.000 claims description 38
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 36
- 239000002245 particle Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 22
- 239000004568 cement Substances 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 150000002816 nickel compounds Chemical class 0.000 claims description 14
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 238000005245 sintering Methods 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000004898 kneading Methods 0.000 claims description 7
- -1 calcium aluminates Chemical class 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 229940043430 calcium compound Drugs 0.000 claims description 5
- 150000001674 calcium compounds Chemical class 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 2
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 claims description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 claims 1
- 239000011396 hydraulic cement Substances 0.000 claims 1
- DOLZKNFSRCEOFV-UHFFFAOYSA-L nickel(2+);oxalate Chemical compound [Ni+2].[O-]C(=O)C([O-])=O DOLZKNFSRCEOFV-UHFFFAOYSA-L 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 38
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 27
- 229910052799 carbon Inorganic materials 0.000 description 27
- 229930195733 hydrocarbon Natural products 0.000 description 25
- 150000002430 hydrocarbons Chemical class 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 21
- 229910052759 nickel Inorganic materials 0.000 description 19
- 239000007858 starting material Substances 0.000 description 18
- 239000012808 vapor phase Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 14
- 239000010419 fine particle Substances 0.000 description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 229910052717 sulfur Inorganic materials 0.000 description 10
- 239000011593 sulfur Substances 0.000 description 10
- 230000008021 deposition Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000002407 reforming Methods 0.000 description 8
- 239000004480 active ingredient Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 230000036571 hydration Effects 0.000 description 5
- 238000006703 hydration reaction Methods 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000008246 gaseous mixture Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 238000000629 steam reforming Methods 0.000 description 4
- 238000004227 thermal cracking Methods 0.000 description 4
- 230000008033 biological extinction Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 101100189378 Caenorhabditis elegans pat-3 gene Proteins 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 241000158147 Sator Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- MZZINWWGSYUHGU-UHFFFAOYSA-J ToTo-1 Chemical compound [I-].[I-].[I-].[I-].C12=CC=CC=C2C(C=C2N(C3=CC=CC=C3S2)C)=CC=[N+]1CCC[N+](C)(C)CCC[N+](C)(C)CCC[N+](C1=CC=CC=C11)=CC=C1C=C1N(C)C2=CC=CC=C2S1 MZZINWWGSYUHGU-UHFFFAOYSA-J 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- JEZHBSJTXKKFMV-UHFFFAOYSA-N calcium nickel Chemical compound [Ca].[Ni] JEZHBSJTXKKFMV-UHFFFAOYSA-N 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- FMQXRRZIHURSLR-UHFFFAOYSA-N dioxido(oxo)silane;nickel(2+) Chemical compound [Ni+2].[O-][Si]([O-])=O FMQXRRZIHURSLR-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- HZPNKQREYVVATQ-UHFFFAOYSA-L nickel(2+);diformate Chemical compound [Ni+2].[O-]C=O.[O-]C=O HZPNKQREYVVATQ-UHFFFAOYSA-L 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/78—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/40—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Hydrogen, Water And Hydrids (AREA)
Description
17. Mai 1977 P 11 615 -60/co
TOTO ENGINEERING CORPORATION
5,2-bancM, 3-chome, Kastuni gas eki Chiyoda-ku, Tokyo, Japan
Verfahren zur Herstellung eines Katalysators
Die Erfindung betrifft einen Katalysator zur Herstellung von Wasserstoff als Hauptbestandteil enthaltenden gasförmigen Gemischen
durch Dampfphasenreformieren von Kohlenwasserstoffen.
Die Verwendung des erfindungsgemäßen Katalysators ermöglicht beim Dampfphasenreformieren die Verwendung schwererer Kohlenwasserstoffe,
wie Kerosin und Gasöl, die bei Verwendung herkömmlicher Katalysatoren nicht eingesetzt werden können. Solche schwereren
Kohlenwasserstoffe lassen sich kontinuierlich über längere Zeiträume
zu wasserstoffreichen gasförmigen Gemischen dampfreformieren. Darüber hinaus ist der Katalysator der Erfindung auch für
leichte Ausgangskohlenwasserstoffe, wie Erdgas, Äthan, Propan, Butan und Straight run -Naphtha geeignet.
Nickelkatalysatoren finden in weitem Umfang als Katalysatoren für das Dampfphasenreformieren Verwendung. Es ist jedoch bekannt,
daß Nickelkatalysatoren durch den in den Ausgangskohlenwasserstoffen enthaltenen Schwefel rasch desaktiviert werden und daß deshalb
die Vorbehandlung der Ausgangskohlenwasserstoffe zur Entfernung der Hauptmenge des Schwefels besonders wichtig ist. Im
allgemeinen liegt die.Schwjafe^oleranz bei einem sehr niedrigen
Wert, z.B. bei etwa 0,2 ppm.
Darüber hinaus kann es nach Maßgabe der Art der Ausgangskohlenwasserstoffe
und/oder der Reaktionsbedingungen zu einem übermäßigen Fortschreiten der Thermocrackung der Kohlenwasserstoffe
unter dem Einfluß der hohen Nickelaktivität kommen, und der auf diese Weise gebildete Kohlenstoff scheidet sich auf der Katalysatoroberfläche
ab, schneidet den Katalysator von den Reaktanten ab und unterdrückt auf diese Weise die Dampfphasenreformierung.
Dies führt zur Anwesenheit inaktiven Katalysators in der Reaktionszone, so daß nur die Thermocrackung der Kohlenwasserstoffe
stattfindet, was eine rasche Ansammlung von Kohlenstoff in der Reaktionszone bedingt. Auf diese Weise füllt sich der Raum in
der Reaktionszone innerhalb kurzer Zeit mit Kohlenstoff.
Der Stand der Technik macht somit eine hochwirksame Entschwefelung
der Ausgangskohlenwasserstoffe erforderlich. Auch die Abscheidung von Kohlenstoff auf der Katalysatoroberfläche stellt
ein fatales Hemmnis bezüglich einer kontinuierlichen katalytischen Vergasung dar.
Zur Verhinderung der Ablagerung von Reaktionskohlenstoff auf der Oberfläche des Nickelkatalysators hat man eine Herabsetzung der
hohen Nickelaktivität in Betracht gezogen, und die Einverleibung einer Verbindung eines Metalls, wie Kalium, in die Katalysatormasse
in der Praxis durchgeführt. Diese Maßnahme ist jedoch bei schweren Ausgangskohlenwasserstoffen unwirksam, obwohl bei leichten
Ausgangskohlenwasserstoffen eine gewisse Wirksamkeit gegeben ist.
Die durch den Zusatz von Kalium oder dergl. zu dem Nickelkatalysator
erzielte Verbesserung bringt jedoch einige Probleme mit sich, z.B. eine übermäßige Herabsetzung der Eigenaktivität des
Nickels, eine Beeinträchtigung des Katalysators infolge Verdampfung der Zusatzstoffe sowie das Anhaften der verdampften Stoffe
an kühleren Teilen der Anlage.
Ein Verfahren zur Herstellung nickelfreier Katalysatoren, die für
das Dampfreformieren, die katalytische partielle Oxidation und die katalytische Thermocrackung geeignet sind, ist in der US-PS
3 969 542 beschrieben.
Bei den in der US-PS 3 969 542 beschriebenen Katalysatoren handelt
es sich um nickelfreie, feste, gesinterte Produkte, die aus Erdalkalimetalloxiden und Aluminiumoxid nach einem bestimmten
Verfahren erhalten werden. Sie besitzen eine bemerkenswerte Schwefelbeständigkeit und die Ablagerung von Kohlenstoff hemmende
Eigenschaften. Darüber hinaus treten bei ihnen durch Verdampfung von Katalysatorbestandteilen verursachte Probleme nicht auf.
Zur weiteren Verbesserung der Katalysatoren der US-PS 3 969 542 bezüglich der Aktivitätssteigerung wurden im Rahmen der Erfindung
umfangreiche Versuche mit Katalysatorzusätzen durchgeführt.
Erfindungsgemäß wurde gefunden, daß bei Einverleibung einer gewissen
Menge feiner Nickeloxidteilchen, die nach einer speziellen Methode hergestellt worden sind, in ein Katalysatorsystem der
US-PS 3 969 542 die gewünschte hohe Aktivität erreicht wird. Darüber hinaus hält die hohe Katalysatoraktivität lange Zeit vor,
selbst wenn eine große Menge an Schwefelverunreinigungen in den Ausgangskohlenwasserstoffen enthalten ist.
Die hohe Aktivität ermöglicht die Erzielung guter Ergebnisse, z.B. eine Herabsetzung der Temperatur in der Dampfphasenreformierzone
oder eine Erhöhung der Kapazität des Reaktionsbehälters. Die lang anhaltende große Aktivität des Katalysators ermöglicht
ferner den Einsatz billiger, unreiner Ausgangskohlenwasserstoffe schlechter Qualität.
Der Katalysator der Erfindung enthält 10 bis 30 Gewichtsprozent Nickel als Nickeloxid, 20 bis 60 Gewichtsprozent Calcium als
Calciumoxid, 10 bis 70 Gewichtsprozent Aluminium als Aluminiumoxid und vorzugsweise unter 1 Gewichtsprozent, insbesondere unter
0,5 Gewichtsprozent, Siliciumdioxid als Verunreinigung. Für die Herstellung des Katalysators werden verwendet:
709884/0672
Als Ausgangsmaterial für die Nickelkomponente feine Teilchen aus Nickeloxid, erhalten durch Erhitzen einer Nickelverbindung,
die durch Erhitzen auf Temperaturen im Bereich von 400 bis 8OO°C in Gegenwart von Sauerstoff zu Nickeloxid, vorzugsweise von Verunreinigungen
freiem Nickeloxid, zersetzt wird; als Ausgangsmaterial für die Calciumkomponente Calciumoxid als
solches oder eine pulvrige Calciumverbindung, die beim Erhitzen eine Zersetzung zu Calciumoxid, vorzugsweise von Verunreinigungen
freiem Calciumoxid, eingeht; und
als Ausgangsmaterial für die Aluminiumkomponente Aluminiumoxidzement
hoher Reinheit. Die Herstellung des Katalysators erfolgt durch Vermischen und Verkneten der Ausgangsstoffe mit Wasser,
Verformung (unter Bildung der Katalysatorteilchen) und Klimatisierung der Katalysatorteilchen bzw. der Masse in hochfeuchter
Atmosphäre bei Temperaturen im Bereich von 5 bis 35°C, vorzugsweise 10 bis 250C,für eine Dauer von über 1 Tag zur Hydratisierung
und Härtung der Zementkomponente der Katalysatorteilchen, sowie Sintern der Katalysatorteilchen bei einer Temperatur im
Bereich von 550 bis 1200°C.
Bei den aktiven Katalysatorbestandteilen handelt es sich um Calciumoxid
und Nickeloxid. Der Katalysator enthält Aluminiumoxid als hitzebeständiges Bindemittel zur festen Verbindung der beiden
aktiven Bestandteile.
Die wirksame Menge der Nickeloxidkomponente im Katalysator beträgt
10 bis 30 Gewichtsprozent. Wenn der Nickeloxidgehalt in diesem Bereich liegt, besitzt der Katalysator eine hohe Aktivität.
Bei Verwendung dieses Katalysators wird der Methangehalt des durch Dampfphasenreformieren von Kohlenwasserstoffen erhaltenen
gasförmigen Gemisches gering gehalten. Somit kann auch die für das Dampfphasenreformieren erforderliche Temperatur herabgesetzt
werden.
Im folgenden wird die Erfindung anhand der Zeichnungen erläutert. Es zeigen:
709884/0672
Fig. 1 in Form einer graphischen Darstellung den Zusammenhang zwischen dem Methangehalt des Produktgases und dem NiO-Gehalt
des Katalysators,
Fig. 2 in Form einer graphischen Darstellung den Zusammenhang zwischen dem Gewicht des auf dem Katalysator abgeschiedenen
Kohlenstoffs und dem Dampf/Kohlenstoff-Verhältnis in der Reaktionszone,
und
Fig. 3 in Form einer graphischen Darstellung den Zusammenhang
zwischen der Druckfestigkeit des Katalysators und dessen CaO-Gehalt.
Im folgenden beziehen sich alle Prozentangaben auf das Gewicht, falls nicht anders angegeben.
Fig. 1 zeigt den Zusammenhang zwischen der Methanmenge in dem durch Dampfreformieren erhaltenen Produktgas, wenn der Nickelgehalt
des Katalysators, bei konstantem Calciumoxidgehalt des Katalysators von 40 Prozent, von 5 bis 30 Prozent variiert.
Es werden folgende Dampfreformbedingungen angewendet:
Als Ausgangsmaterial dient ein Gasöl mit 85,9 Prozent Kohlenstoff,
13,64 Prozent Wasserstoff und 0,41 Prozent Schwefel. Die Reaktionstemperatur
beträgt 95O°C, das Dampf/Kohlenstoff-Molverhältnis
beträgt 2,99 , und die Verweilzeit in der Reaktionszone beträgt 0,06 Sekunden.
Wenn die Nickelmenge, berechnet auf Nickeloxid, in der Katalysatorzusammensetzung
unter 17 Prozent liegt, erhöhen sich auch die anderen restlichen Kohlenwasserstoffe, zusätzlich zu Methan, im
Produktgas.
Das für die Einverleibung des Nickeloxids in den Katalysator ver
wendete Ausgangsmaterial wird vor dem Vermischen mit den Ausgangsmaterialien für die anderen Katalysatorkomponenten auf besondere
Weise getrennt hergestellt. Für diesen Zweck werden feine Teilchen aus Nickeloxid verwendet, die erhalten werden durch Erhitzen
einer reines Nickeloxid bildenden Nickelverbindung auf Temperaturen von 400 bis 800°C in Gegenwart von Sauerstoff zur physikali-
öOOwC in Gegenwa
709884/0172
sehen und chemischen Veränderung, wobei durch die Crackwirkung
während der Dehydratisierung die thermische Zersetzung und Oxidation eine Unterteilung zu feinen Teilchen stattfindet.
Obwohl zahlreiche Nickelverbindungen als Ausgangsverbindungen zur Umwandlung in Nickeloxid, selbst durch Erhitzen auf Temperaturen
unterhalb von 4OO°C geeignet sind, ist die Umwandlung in
Nickeloxid bei Temperaturen unterhalb von 400°C unzureichend, und in den Ausgangsstoffen enthaltene Bindungen verbleiben noch
in gewissem Umfang, wodurch das erhaltene Nickeloxid unrein ist und darüber hinaus in den Ausgangsverbindungen enthaltene andere
Elemente als Nickel ebenfalls in dem Oxidationsprodukt verbleiben. Erhitzt man demgegenüber die Nickelverbindung auf eine Temperatur
von über 800°C, so kommt es zu einer allmählichen Agglomeration der feinen Nickeloxidteilchen, wodurch der ursprünglich
gewünschte Zustand, d.h., das Vorliegen unabhängiger, separater, kleiner Teilchen, verloren geht. Somit wird die strikte Auswahl
der Ausgangsverbindung als thermisch zu crackende Nickeloxid-Vorstufe bedeutungslos, wenn man derart hohe Temperaturen anwendet.
Der Grund dafür, daß die thermische Crackung in Gegenwart von Sauerstoff durchgeführt wird, liegt darin, daß beim Erhitzen
der Ausgangsnickelverbindung, insbesondere einer organischen Nickelverbindung, in Abwesenheit von Sauerstoff in reduzierender
Atmosphäre metallisches Nickel entsteht, durch Wachstum der Kristalle aus metallischem Nickel Brockenbildung eintritt, und darüber
hinaus der in den organischen Nickelverbindungen enthaltene Kohlenstoff zurückbleibt, an den gesinterten Nickelklumpen
haftet und diese überzieht. Zur Verhinderung der genannten Erscheinung wird deshalb das Erhitzen in Gegenwart von Sauerstoff
durchgeführt.
Zur Verhinderung der Bildung von Kohlenstoff, der selbst bei hoher Temperatur relativ stabil ist, wenn er derart vorliegt,
daß er an feinen Nickelteilchen haftet, wird es bevorzugt, die
mit
AusgangsnickelverbindungYeinem Sauerstoff enthaltenden Gas, wie
AusgangsnickelverbindungYeinem Sauerstoff enthaltenden Gas, wie
Luft, vom Beginn des Erhitzens an in Berührung zu bringen.
709884/0672
Die auf diese Weise sorgfältig hergestellten feinen Nickeloxidteilchen
besitzen einen Schmelzpunkt von etwa 199O°C. Die einzelnen feinen Teilchen besitzen im allgemeinen einen Teilchendurchmesser
von unter 1 μ, meistens unter 0,5 μ.
Die in dem Katalysator der Erfindung verwendeten feinen Nickeloxidteilchen
besitzen einen Teilchendurchmesser von unter 10 μ. Als Ausgangsmaterial zur Herstellung dieser feinen Nickeloxidteilchen
kann jede Nickelverbindung dienen, die in Gegenwart von Sauerstoff eine thermische Zersetzung zu reinem Nickeloxid, frei
von Verunreinigungen, eingeht. Beispiele hierfür sind anorganische Nickelverbindungen, wie Nickelhydroxid, -nitrat, -carbonat
und -sulfid, sowie organische Nickelverbindungen, wie Nickelformiat, -acetat oder -oxalat.
Calciumoxid, d.h. einer der wichtigsten Bestandteile des Katalysators,
beschleunigt die Dampfphasenreformreaktion und hat insbesondere einen bemerkenswerten Einfluß auf die Verhinderung der
Kohlenstoffabscheidung. In Gegenwart von Calciumoxid beobachtet man keinerlei Vergiftungswirkung auf den Katalysator infolge des
in den Ausgangskohlenwasserstoffen enthaltenen Schwefels.
Deshalb ist in diesem Katalysator Calciumoxid in großer Menge von 20 bis 60 Prozent, bezogen auf das Gesamtgewicht des Katalysators,
vorhanden. Dies steht im Gegensatz zur Verwendung geringer Mengen Calciumoxid in den herkömmlichen Katalysatoren, die
Calciumoxid als bloßen Bestandteil des hierin enthaltenen atalysatorträgers enthalten.
Der Zusammenhang zwischen dem Calciumoxidgehalt und der Menge des abgeschiedenen Kohlenstoffs ist in Fig. 2 dargestellt.
Die für die Versuche, deren Ergebnisse in Fig 2 dargestellt sind, verwendeten Katalysatoren besitzen Nickeloxidgehalte von 15 und
18 Gewichtsprozent. Die Reaktionstemperaturen betragen 800 und 900°C. Als Ausgangskohlenwasserstoff dient das gleiche Gasöl wie
in Fig. 1.
709814/0672
Man beobachtet keine Kohlenstoffabscheidung, wenn der Calciumoxidgehalt
30 Prozent und das Dampf/Kohlenstoff-Molverhältnis 3,0 oder mehr betragen. Liegt der Calciumoxidgehalt über 50 Prozent,
so findet selbst bei einem Dampf/Kohlenstoff-Molverhältnis
von 1,5 oder darüber keine Kohlenstoffabscheidung statt.
Fig. 3 zeigt die Veränderung in der Druckfestigkeit eines gesinterten
Katalysators mit einem konstanten Nickeloxidgehalt von 15 Prozent und veränderlichem Calciumoxidgehalt. Am festesten
ist der Katalysator mit einem Calciumoxidgehalt von 20 Prozent.
Ein Teil des Calciumoxids ist in dem Aluminiumoxidzement enthalten,
in dem das Calciumoxid als Calciumaluminat anwesend ist. Der Rest des zur Lieferung von Calciumoxid verwendeten Ausgangsmaterials
in dem Katalysator kann aus Calciumoxid oder einer beliebigen Calciumverbindung, wie Calciumcarbonat, bestehen, die
durch die Anwendung hoher Temperaturen in der Schlußsinterphase des erfindungsgemäßen Katalysatorherstellungsverfahrens eine
thermische Zersetzung zu reinem Calciumoxid erfährt.
In Abwesenheit einer großen Menge Calciumoxid würde das in dem Katalysator enthaltene Nickeloxid bei den zur Herstellung des
Katalysators angewendeten hohen Sintertemperatüren und den beim
Dampfphasenreformprozeß angewendeten hohen Temperaturen mit Aluminiumoxid
unter Bildung von Nickelaluminat reagieren, das bei der Dampfphasenreformreaktion eine niedrige Aktivität besitzt.
Auf diese Weise würde sich das Nickelaluminat in der Katalysatortextur während der Verwendung des Katalysators bei hoher Temperatur
über einen großen Zeitraum bilden. Während der Reaktion nimmt die Menge an Nickelaluminat allmählich zu, und dies würde
eine ernsthafte Erniedrigung der Katalysatoraktivität mit sich bringen. Wie vorstehend dargelegt, enthält jedoch der erfindungsgemäße
Katalysator eine große Menge Calciumoxid, das während des Aluminiumoxidzement-Brennvorgangs (Herstellung des Aluminiumoxidzements)
und der Sinterbehandlung des Katalysatorherstellungsverfahrens fest mit Aluminiumoxid reagiert hat. Demgemäß wird
die Reaktion von Nickeloxid mit Aluminiumoxid unter Bildung von Nickelaluminat unterdrückt.und somit tritt auch keine Herabset-
709884/0872
zung der Katalysatoraktivität ein. Ein Calciumoxidgehalt des Katalysators von mindestens 20 Prozent ist somit kritisch.
Das Aluminiumoxid dient zur Erzielung der mechanischen Festigkeit,
die zur Herstellung stabiler Katalysatorformkörper erforderlich ist. Das Aluminiumoxid wird in den Katalysator
als Aluminiumoxidzement hoher Reinheit eingebaut. Aluminiumoxidzement wird in einer Menge von über 8 Gewichtsprozent, bezogen
auf das Gesamtgewicht der gesamten Ausgangsstoffe, verwendet. Die Herstellung des Aluminiumoxidzements kann gemäß der US-PS
3 969 542 erfolgen, auf die hier vollinhaltlich Bezug genommen wird.
Es ist bekannt, daß es im allgemeinen von Vorteil ist, hitzebeständigen
Massen zur Erzielung einer hohen Festigkeit Siliciumdioxid einzuverleiben. Wenn jedoch der Katalysator der Erfindung
mehr als 1 Prozent Siliciumdioxid enthält, wird seine Fähigkeit, die Abscheidung von Kohlenstoff auf der Oberfläche des Katalysators
zu verhindern, ernsthaft herabgesetzt.
Demgemäß wählt man als Aluminiumoxidzement als Ausgangsmaterial zur Herstellung des Katalysators einen qualitativ hochwertigen
Zement, der im wesentlichen nur aus Aluminiumoxid und Calciumoxid besteht und nur eine möglichst geringe Menge an Verunreinigungen,
insbesondere nicht mehr als 1 Prozent Siliciumdioxid, enthält.
Die Anwesenheit von Siliciumdioxid verursacht eine Verschlechterung
bezüglich der Fähigkeit, die Abscheidung von Kohlenstoff zu verhindern, und darüber hinaus kommt es zur Bildung von Komponenten
mit geringer Aktivität, wie Nickelsilikat, Nickelalumosilikat oder Nickelcalciumsilikat, in der Katalysatortextur.
Die obere Toleranzgrenze an Siliciumdioxid im Katalysator beträgt 1 Prozent, vorzugsweise 0,5 Prozent.
Die Gründe, warum der Katalysator ausgezeichnete Eigenschaften besitzt, sind nachfolgend ,4£sjyijfciert.
Der Gehalt an Calciumoxid (aktiverBestandteil) ist hoch, jedoch ohne die mechanische Festigkeit der Katalysatorformkörper herabzusetzen.
In herkömmlichen Katalysatoren verbleiben die aktiven Bestandteile,
wie Nickel, als Bestandteile der als Ausgangsstoffe verwendeten Vorstufen bis zur letzten Stufe des Katalysatorherstellungsverfahrens,
und nicht notwendige Komponenten der Vorstufen, mit Ausnahme der aktiven Nickeloxidkomponente, werden aus den
Katalysatorformkorpern durch die in der abschließenden Sinterstufe
des Katalysatorherstellungsverfahrens angewendeten hohen Temperaturen oder in der Anfangsstufe der Verwendung des Katalysators
für den Dampfphasenreformprozeß entfernt. Deshalb wird die Textur um die Teilchen der aktiven Bestandteile herum porös, und
die Teilchen der aktiven Bestandteile sind in den Katalysatortexturen nicht stabil fixiert. Andererseits sind in dem Katalysator
der Erfindung feine Nickeloxidteilchen, die bei den hohen, während der Anwendung des Katalysators auftretenden Temperaturen
stabil sind, in der Katalysatortextur einverleibt, und deshalb ist die Porosität der Katalysatortextur um die feinen Nickeloxidteilchen
herum gering, und die Nickeloxidteilchen sind in der Textur fest fixiert. Darüber hinaus sind in dem zuletzt genannten
Katalysator Calciumoxidteilchen, die eine große Kapazität bezüglich
der Inhibierung der Kohlenstoffabscheidung und eine hohe Schwefelbeständigkeit
besitzen, in großer Menge in innigem Kontakt mit den Nickeloxidteilchen enthalten.
Wenn die Entfernung der nicht notwendigen Komponenten aus der Vorstufe
des herkömmlichen Katalysators unzureichend ist, bleibt ein Teil der nicht-notwendigen Komponenten auf der Oberfläche des
Katalysators zurück und wirkt als Keim für die Kohlenstoffabscheidung.
Erfindungsgemäß tritt dieses Phänomen jedoch nicht auf.
Bei dem erfindungsgemäßen Katalysator ist die Teilchengröße des
Nickeloxids sehr gering, und demgemäß werden die Nickeloxidteilchen gleichmäßig in der Katalysatortextur verteilt, wenn man
sie mit den anderen Ausgangsmaterialien des Katalysators vermischt. Weiterhin ist in dem Katalysator der Erfindung nur eine
709884/0672
sehr begrenzte Menge an schädlichen Verunreinigungen, wie Siliciumdioxid,
enthalten, und der Gehalt an aktiven Bestandteilen ist sehr hoch.
Wenn das Wiegen und Vermischen der aktiven Bestandteile in einem nassen System erfolgt, z.B. durch Copräzipitation, wobei eine
aktive Bestandteile enthaltende Vorstufe zusammen mit anderen Stoffen, z.B. Träger-bildenden Stoffen, ausgefällt wird, oder
nach der Tauchmethode, bei der die Trägersubstanz in eine Vorstufenlösung eingetaucht wird, wobei diese Methoden häufig bei
der Herstellung herkömmlicher Katalysatoren Anwendung finden, ist eine genaue Kontrolle des Mischvorgangs schwierig, die Katalysatorqualität
schwankt , und die Reproduzierbarkeit der Katalysatoreigenschaften ist gering. Bei dem Katalysator der Erfindung
ist jedoch das Wiegen und Vermischen der Ausgangsstoffe durch Verwendung der trockenen Ausgangsstoffe sehr präzise, so
daß eine gute Qualitätskontrolle gewährleistet ist.
In der Praxis ist es sehr wichtig, daß ein Katalysator zufriedenstellende
Eigenschaften, sowohl hinsichtlich der mechanischen Festigkeit als auch seiner Aktivität besitzt. In dieser Hinsicht
ist von Bedeutung, daß die Katalysatoren der Erfindung bei Temperaturen gesintert werden, die höher als die bei der Verwendung
des Katalysators auftretenden Temperaturen sind, wodurch die Bindungen zwischen den Teilchen der Komponenten durch eine heiße
Festphasenreaktion verstärkt werden. Darüber hinaus besitzen sie infolge der Hydratisierungseigenschaft des Aluminiumoxidzements
bereits eine hohe Festigkeit.
Es ist bemerkenswert, daß das Nickel des erfindungsgemäßen Katalysators
durch Schwefelverunreinigungen, die in den Ausgangskohlenwasserstoffen
enthalten sind, nicht desaktiviert wird. Die Gründe hierfür sind noch nicht geklärt. Es wird jedoch angenommen,
daß das in großer Menge in inniger Berührung mit feinen Nickeloxidteilchen enthaltene Calciumoxid einen großen Einfluß
auf dieses vorteilhafte Ergebnis ausübt.
Aufgrund der Eigenschaften des vorstehend beschriebenen Kataly-
709814/0872
sators können schwere Kohlenwasserstoffe mit hohem Schwefelgehalt,
die als Ausgangsmaterial für den Dampfphasenreformprozeß in Gegenwart herkömmlicher Katalysatoren infolge der Bildung einer
großen Menge an Kohlenstoffabscheidungen unter den verschiedensten
Bedingungen nicht als Ausgangsmaterial verwendet werden können, bei Anwendung des erfindungsgemäßen Katalysators für den
Dampfphasenreformprozeß eingesetzt werden. Auf diese Weise können schwerere Kohlenwasserstoffe bei Reaktionstemperaturen im Bereich
von 700 bis 10000C unter einem Druck von Atmosphärendruck bis zu
einem erhöhten Druck von z.B. 300 atm dem Dampfphasenreformprozeß unter Bildung eines gasförmigen, hauptsächlich aus Wasserstoff
bestehenden gasförmigen Gemisches kontinuierlich für einen längeren Zeitraum unterworfen werden.
Die Herstellung des Katalysators ist nachfolgend beschrieben.
Feine Teilchen (Teilchendurchmesser unter 10 μ) aus Nickeloxid,
die wie vorstehend beschrieben, sorgfältig hergestellt worden sind, werden als Ausgangsmaterial, das während der nachfolgenden
Katalysatorbehandlungsstufen in Calciumoxid umgewandelt werden kann, mit hydraulischem Aluminiumoxidzement vermischt. Hierbei
werden die Komponenten präzise im trocknen Zustand eingewogen, worauf Vermischen und Verkneten zusammen mit Wasser erfolgt.
Um bei den Teilchen des Ausgangsmaterials Klumpenbildung infolge von während des Verknetens gebildeter Wärme zu verhindern, werden
die Ausgangsstoffe unter Verwendung einer Knetvorrichtung, z.B. einer Hochgeschwindigkeits- Mastiziervorrichtung, rasch miteinander
verknetet.
Die untere Grenze des Wassergehaltes vor dem Verkneten beträgt 3 Prozent, bezogen auf das Gesamtgewicht des Gemisches. Die
obere Grenze unterliegt an sich keiner besonderen Beschränkung.
Nach dem Verkneten wird das Gemisch aus den Ausgangsstoffen zu der gewünschten Form, z.B. Granulat, Kügelchen, Hohlzylindern oder
Zylindern konfektioniert. Geeignete Verfahren hierzu sind z.B. die Verarbeitung auf dem Walzenstuhl, das Extrudieren, die
709884/0672
Verformung unter Druck, Gießverfahren oder ähnliche übliche Verfahren
zur Herstellung von Katalysatorformkörpern.
Zur Verhinderung der Klumpenbildung oder zur Erhöhung der Homogenität
des verkneteten Gemisches, selbst wenn man während des Verknetens eine geringe Menge Wasser zusetzt, fügt man gegebenenfalls
eine bestimmte Menge eines die Klumpenbildung unterdrückenden Mittels, eines Dispergators oder eines Antibackmittel hinzu.
Nach dem Verkneten findet eine allmähliche Erhöhung der mechanischen
Festigkeit der Formkörper infolge der Hydratisierung des Aluminiumoxidzements statt. Die Formkörper werden bei Raumtemperatur
und hochfeuchter Umgebungsatmosphäre mit einer relativen Feuchtigkeit von über 60 Prozent für einen Zeitraum von über
1 Tag zur Verhinderung einer heterogenen Hydratisierung und zur Bewirkung der Härtung der Formkörper gehärtet. Die Formkörper
werden bei einer Temperatur unterhalb von 35O°C getrocknet und
dann bei einer Temperatur unter 1200°C, jedoch über der Temperatur (700 bis 10000C), bei der die Verwendung des Katalysators
erfolgt, gesintert.
Bei der Sinterungsbehandlung wird die Calciumverbindung in den
Formkörpern dehydratisiert und thermisch zersetzt zu Calciumoxid, wodurch eine heiße Festkörperreaktion ohne Bildung einer geschmolzenen
flüssigen Phase unter Bedingungen stattfindet, bei denen die feinen Nickeloxidteilchen gleichmäßig in dem Calciumoxid und
dem Aluminiumoxidzement, der eine ausgezeichnete Maßhaltegenauigkeit bei hoher Temperatur besitzt, dispergiert werden, wodurch
ein fester, luftdurchlässiger poröser Körper entsteht, in dem feine Teilchen aus Nickeloxid, Calciumoxid und Aluminiumoxid
gleichmäßig verteilt sind.
Der auf diese Weise nach der Sinterbehandlung erhaltene Katalysa
tor besitzt eine poröse Textur mit einer scheinbaren Porosität
von 45 bis 75 Prozent, sowie ein Schüttgewicht von 1,0 bis 1,8. Der Katalysator besitzt eine ausreichende Festigkeit gegenüber
Schlägen oder Belastungen während des Transports oder infolge der Aufgabe oder Anhäufung in der Reaktionszone, so daß er für
709884/0672
die Praxis geeignet ist. Beim Eintauchen des Katalysators in siedendes
Wasser für einen Zeitraum von über 1 Stunde tritt kein Zerfall des Katalysators ein. Die Gewichtszunahme infolge der
Hydratisierung durch das Eintauchen beträgt 10 bis 30 Prozent, Form und Volumen bleiben jedoch unverändert, und es findet kein
Cracken statt.
Das Beispiel erläutert die Erfindung. Alle Teile- und Prozentangaben
beziehen sich auf das Gewicht, falls nicht anders angegeben.
Basisches Nickelcarbonat wird in einem feuerfesten Behälter vorgelegt,
der dann in einem auf 8000C befindlichen elektrischen
Ofen 3 Stunden in Luft erhitzt wird, um eine Umwandlung in feine Nickeloxidteilchen zu erreichen. Dann läßt man die Teilchen
abkühlen.
Die feinen Teilchen aus Nickeloxid werden mit Aluminiumoxidzement hoher Reinheit von 97 Prozent, der 79,0 Prozent Al3O3, 18,7 Pro-
zent CaO, 0,1 Prozent SiO
2'
0,3 Prozent Fe3O3 und 0,4 Prozent
MgO enthält und einen Glühverlust von 1,5 Prozent (Teilchengröße: % unter 74 μ) besitzt, und mit ausgefälltem Calciumcarbonat
einer Teilchengröße von unter 15 μ in den in Tabelle I angegebenen
Gewichtsverhältnissen vermischt.
Rezeptur Nr. Nickeloxid (Gew.-%)
ausgefälltes Calciumcarbonat (Gew.-%)
Aluminiumoxidzement (Gew.-%)
Tabelle | 1 | I | 2 | 5 | 3 | ,5 | 4 | 9 | 5 | ,7 |
17 | 25, | 1 | 17 | ,0 | 10, | 3 | 13 | ,0 | ||
30 | ,1 | 27, | 19 | 57, | 68 | |||||
,6 | ||||||||||
52,3
47,4
63,5
.31,8
18,3
Zur Verbesserung der Cohäsion wird bei jeder in Tabelle I aufgeführten
Rezeptur 1 Teil pulvrige Methylcellulose pro 100 Teile
70988A/0672
Masse zugesetzt. Nachdem man mit 26 Teilen Wasser versetzt hat, wird das Gemisch 3 Minuten in einer Mastiziervorrichtung geknetet,
Unmittelbar danach wird das Gemisch in einem wassergekühlten Extruder zu Pellets mit einem Durchmesser von 12,5 mm und einer
Länge von 12 mm konfektioniert.
Die Formkörper werden dann 2 Tage zum Zwecke der Härtung in einem geschlossenen Behälter bei einer Temperatur von 100C und einer
relativen Feuchte von über 80 Prozent gehalten, um eine vollständige Hydratisierung des Zements zu bewirken.
Die gehärteten Formkörper werden dann durch Erhitzen in einem Ofen auf Temperaturen bis zu 3 500C getrocknet. Dann steigert man
die Temperatur im Ofen auf 1100°C und hält 3 Stunden bei dieser
Temperatur, um die Formkörper zu sintern.
Die physikalischen Eigenschaften der gesinterten Produkte sind
in Tabelle II zusammengestellt.
Tabelle | II | 2 | 7 | 3 | 0 | 4 | 5 | |
Rezeptur Nr. | 1 | 29, | 6 | 2O, | 1 | 15,0 | 19,8 | |
NiO | 20,0 | 41, | 06 | 55, | 07 | 33,5 | 20,1 | |
Al2O3 | 47,5 | 0, | 17 | 0, | 21 | 0,05 | 0,03 | |
SiO2 | 0,06 | 0, | 6 | 0, | 5 | 0,14 | 0,10 | |
Fe2O3 | 0,19 | 27, | 32 | 23, | 36 | 50,0 | 59,3 | |
CaO | 31,5 | 0, | 27 | 0, | 36 | 0,39 | 0,40 | |
MgO | 0,36 | 0, | 7 | 0, | 3 | 0,21 | 0,15 | |
Na2O + K2O | 0,31 | 55, | 48 | 53, | 27 | 61,1 | 68,6 | |
scheinbare Porosi tät (%) |
56,4 | 3, | 53 | 3, | 53 | 2,90 | 3,44 | |
scheinbares spezifi sches Gewicht |
3,22 | 1, | 1, | 1,13 | 1,08 | |||
Schüttdichte | 1,33 | |||||||
709884/0672
Ein Leichtöl, das 85,92 Prozent Kohlenstoff, 13,64 Prozent Wasserstoff
und 0,41 Prozent (4100 ppm) Schwefel enthält, wird der Dampfphasenreformierung bei einem Dampf/Kohlenstoff-Molverhältnis
von 2,99 in Gegenwart der gesinterten Pellets als Katalysator unter Atmosphärendruck unterworfen. Die Ergebnisse sind in
Tabelle III zusammengestellt.
Bei der in Tabelle III aufgeführten "Extinktionstemperatur" handelt
es sich um eine Temperatur, bei der kein gewünschter Kohlenwasserstoff festgestellt werden kann, nachdem die Menge des
Kohlenwasserstoffs abnimmt, wenn die Reaktionstemperatur unter den Bedingungen eines konstanten Dampf/Kohlenstoff-Verhältnisses
und einer konstanten Zufuhr der Ausgangsmaterialien ansteigt. In der Praxis läßt sich die Extinktionstemperatur bezüglich eines
Kohlenwasserstoffs durch Extrapolation aus einer graphischen
Darstellung bestimmen, die den Zusammenhang zwischen der Reaktionstemperatur
und der Produktgaszusammensetzung wiedergibt.
Nach Beendigung des Dampfphasenreformprozesses wird in keinem Fall auf der Oberfläche des Katalysators Kohlenstoffabscheidung
beobachtet.
709884/0672
- 17 -
Rezeptur Nr. Reaktionsbedingungen Temp. (0C)
Verweilzeit (sec x 100) Reaktionszeit (Std.) Zusammensetzung des
jteaktionsprodukts (Vol.-%)
Vergasungsgrad
Extinktionstemperatur der jcohlenwasserstoffe im
Produkt
1· | 900 | 950 | ■ to | 900 | 950 | 890 830 800 |
3 | 900 | 950 | 4 | 900 | 950 |
965
900 860 |
5 | 90Q | 950 |
6,9 85 64,3 15,8 13,0 1,0 99,5 |
6,4 5 65,1 16,2 13,3 '.ι4 100 |
7,2 5 65,5 17,3 11,6 5,6 100 |
6,5 " 5 65,8 17,4 11,6 5,2 100 |
6,9 5 64,9 16,7 12,6 5j8 100 |
6,4 5 65>T 16j9 • -12,1 5,3 100 |
5 61,9 15,9 12,6 7,0 2,6 99fO |
6,9 5 63,7 16,0 12,5 6,5 99,0 |
6,5 5 63,0 15,8 13,0 6,7' 99,5 |
6,3 5 64,6' 16,1 13,4 5I9 100 |
|||||||
910
850 6 . 815 |
900 840 ; ' '810 |
N) 910 N) N) 855 £ '. 825 W |
Claims (8)
1. Verfahren zur Herstellung gesinterter Katalysator-Formkörper,
dadurch gekennzeichnet, daß man durch Vermischen und Verkneten mit Wasser ein verformbares Gemisch aus
(a) feinteiligem, im wesentlichen reinem Nickeloxid mit einer
maximalen Teilchengröße von unter etwa 10 μ,
(b) Calciumoxidteilchen oder Teilchen aus einer Calclumverbindung oder einem Gemisch aus Calciumverbindungen, die
durch Erhitzen auf Sintertemperatur in reines, von Verunreinigungen freies Calciumoxid umgewandelt werden können,
und
(c) einem hydraulischen Aluminiumoxidzement, der im wesentlichen aus Calciumaluminaten besteht, wobei die Menge
des Zementes (c) mindestens 8 Gewichtsprozent, bezogen auf die Summe der Gewichte der Bestandteile (a), (b)
und (c), beträgt, und wobei die Bestandteile (a), (b) und (c) in solchen Mengen vorhanden sind, um gesinterte
Katalysator-Formkörper mit der nachstehend genannten Zusammensetzung
zu ergeben,
herstellt, das verformbare Gemisch zu Formkörpern verformt,
die Formkörper bei einer Temperatur von 5 bis 35°C und einer relativen
Luftfeuchte von über 60 Prozent für eine Dauer von über Tag aushärtet, um den Zement zu hydratisieren und zu härten,
« 70988WQ672
TELEFON (OBO) 999SSQ TELEX O8-9B38O TELEGRAMME MONAPAT TELEKOPIEREFt
die Formkörper bei einer Temperatur unterhalb von 35O°C trocknet
,
und schließlich die getrockneten Formkörper der Sinterung bei Temperaturen im Bereich von 550 bis 12000C unterwirft, wobei die
gesinterten Katalysator-Formkörper im wesentlichen aus 1O bis 30 Gewichtsprozent Nickeloxid, 20 bis 60 Gewichtsprozent Calciumoxid
und 10 bis 70 Gewichtsprozent Aluminiumoxid bestehen und unter 1 Gewichtsprozent Siliciumdioxid enthalten.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Komponente (a) erhalten hat durch Erhitzen auf 400 bis 8000C
in Gegenwart eines Sauerstoff enthaltenden Gases einer Nickelverbindung oder eines Gemisches aus Nickelverbindungen, die beim Erhitzen
unter den genannten Bedingungen Nickeloxid zu bilden vermögen .
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man die Komponente (a) mit einer Teilchengröße von unter 1 μ erhält.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man
als Nickelverbindung Nickelhydroxid, -nitrat, -carbonat, -sulfid, -formiat, -acetat und/oder Nickeloxalat verwendet.
5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man mindestens 3 Gewichtsprozent Wasser,
bezogen auf das Gesamtgewicht des Gemisches , verwendet.
6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man die Härtung der Formkörper in ~.
einem geschlossenen Behälter durchführt.
7. Gesinterter Katalysator, erhalten gemäß einem der Ansprüche 1 bis 6, gekennzeichnet durch einen Siliciumdioxidgehalt von
unter 0,5 Gewichtsprozent.
709884/0672
8. Gesinterter Katalysator nach Anspruch 7, gekennzeichnet durch eine scheinbare Porosität von 45 bis 75 Prozent und eine
Schüttdichte von 1,0 bis 1,8.
709884/0672
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8627276A JPS5311893A (en) | 1976-07-20 | 1976-07-20 | Catalysts |
Publications (1)
Publication Number | Publication Date |
---|---|
DE2722333A1 true DE2722333A1 (de) | 1978-01-26 |
Family
ID=13882174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19772722333 Withdrawn DE2722333A1 (de) | 1976-07-20 | 1977-05-17 | Verfahren zur herstellung eines katalysators |
Country Status (10)
Country | Link |
---|---|
US (1) | US4101449A (de) |
JP (1) | JPS5311893A (de) |
AR (1) | AR225591A1 (de) |
AU (1) | AU505781B2 (de) |
CA (1) | CA1090319A (de) |
DD (1) | DD132052A5 (de) |
DE (1) | DE2722333A1 (de) |
FR (1) | FR2358924A1 (de) |
GB (1) | GB1571865A (de) |
NL (1) | NL7706186A (de) |
Families Citing this family (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2816035C2 (de) * | 1978-04-13 | 1982-08-12 | Süd-Chemie AG, 8000 München | Fließbettkatalysator zur Herstellung von synthetischem Erdgas durch CO-Methanisierung |
FR2439040A1 (fr) * | 1978-10-16 | 1980-05-16 | Matsushita Electric Ind Co Ltd | Surfaces revetues comprenant un liant renfermant un ou plusieurs oxydes, capables de decomposer des huiles |
JPS55154303A (en) * | 1979-05-18 | 1980-12-01 | Toyo Eng Corp | Method and apparatus for steam-reforming hydrocarbon |
US4331451A (en) * | 1980-02-04 | 1982-05-25 | Mitsui Toatsu Chemicals, Inc. | Catalytic gasification |
US4415484A (en) * | 1982-04-26 | 1983-11-15 | United Technologies Corporation | Autothermal reforming catalyst |
US4451578A (en) * | 1982-04-26 | 1984-05-29 | United Technologies Corporation | Iron oxide catalyst for steam reforming |
AU4695985A (en) * | 1984-09-04 | 1986-03-13 | Mitsubishi Jukogyo Kabushiki Kaisha | Process for reforming methanol |
GB8910623D0 (en) * | 1989-05-09 | 1989-06-21 | Ici Plc | Catalyst |
US5149893A (en) * | 1989-05-09 | 1992-09-22 | Imperial Chemical Industries Plc | Catalytic hydrogenation process |
DE69103191T2 (de) * | 1990-04-17 | 1994-12-08 | Nippon Kokan Kk | Herstellung eines Katalysators und seine Verwendung zur Herstellung von Phenol. |
US5268512A (en) * | 1990-04-17 | 1993-12-07 | Nkk Corporation | Catalyst and process for producing phenol |
US5756421A (en) * | 1992-09-10 | 1998-05-26 | Council Of Scientific & Industrial Research | Composite catalysts containing transitional and alkaline earth metal oxides useful for oxidative conversion of methane (or natural gas) to carbon monoxide and hydrogen (or synthesis gas) |
JP3389412B2 (ja) * | 1996-05-16 | 2003-03-24 | 東洋エンジニアリング株式会社 | 改良された低級炭化水素用水蒸気改質触媒 |
GB9619724D0 (en) * | 1996-09-20 | 1996-11-06 | Ici Plc | Catalyst |
US6261991B1 (en) * | 1999-03-25 | 2001-07-17 | Toyo Engineering Corporation | Steam-reforming catalyst for hydrocarbons |
US7335346B2 (en) * | 1999-08-17 | 2008-02-26 | Battelle Memorial Institute | Catalyst and method of steam reforming |
US20040077496A1 (en) * | 2002-07-26 | 2004-04-22 | Shizhong Zhao | Catalyst |
US7378369B2 (en) * | 2002-07-26 | 2008-05-27 | Sud-Chemie Inc. | Nickel supported on titanium stabilized promoted calcium aluminate carrier |
US7449167B2 (en) * | 2004-07-08 | 2008-11-11 | Air Products And Chemicals, Inc. | Catalyst and process for improving the adiabatic steam-reforming of natural gas |
US8114176B2 (en) * | 2005-10-12 | 2012-02-14 | Great Point Energy, Inc. | Catalytic steam gasification of petroleum coke to methane |
US7922782B2 (en) * | 2006-06-01 | 2011-04-12 | Greatpoint Energy, Inc. | Catalytic steam gasification process with recovery and recycle of alkali metal compounds |
JP5371181B2 (ja) * | 2006-06-26 | 2013-12-18 | 独立行政法人国立環境研究所 | 水素含有ガス製造方法および水素含有ガス製造装置 |
CN101795761A (zh) * | 2007-08-02 | 2010-08-04 | 格雷特波因特能源公司 | 负载催化剂的煤组合物,制造方法和用途 |
WO2009048723A2 (en) * | 2007-10-09 | 2009-04-16 | Greatpoint Energy, Inc. | Compositions for catalytic gasification of a petroleum coke and process for conversion thereof to methane |
JP4436424B2 (ja) * | 2007-12-27 | 2010-03-24 | 新日本製鐵株式会社 | タール含有ガスの改質方法 |
US20090165384A1 (en) * | 2007-12-28 | 2009-07-02 | Greatpoint Energy, Inc. | Continuous Process for Converting Carbonaceous Feedstock into Gaseous Products |
US20090165376A1 (en) * | 2007-12-28 | 2009-07-02 | Greatpoint Energy, Inc. | Steam Generating Slurry Gasifier for the Catalytic Gasification of a Carbonaceous Feedstock |
CA2713661C (en) * | 2007-12-28 | 2013-06-11 | Greatpoint Energy, Inc. | Process of making a syngas-derived product via catalytic gasification of a carbonaceous feedstock |
US7897126B2 (en) * | 2007-12-28 | 2011-03-01 | Greatpoint Energy, Inc. | Catalytic gasification process with recovery of alkali metal from char |
WO2009086361A2 (en) * | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Catalytic gasification process with recovery of alkali metal from char |
WO2009086374A2 (en) * | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Catalytic gasification process with recovery of alkali metal from char |
CN101910373B (zh) * | 2007-12-28 | 2013-07-24 | 格雷特波因特能源公司 | 从焦炭中回收碱金属的催化气化方法 |
US20090165379A1 (en) * | 2007-12-28 | 2009-07-02 | Greatpoint Energy, Inc. | Coal Compositions for Catalytic Gasification |
US20090170968A1 (en) * | 2007-12-28 | 2009-07-02 | Greatpoint Energy, Inc. | Processes for Making Synthesis Gas and Syngas-Derived Products |
US8297542B2 (en) | 2008-02-29 | 2012-10-30 | Greatpoint Energy, Inc. | Coal compositions for catalytic gasification |
US20090220406A1 (en) * | 2008-02-29 | 2009-09-03 | Greatpoint Energy, Inc. | Selective Removal and Recovery of Acid Gases from Gasification Products |
CN101959996B (zh) | 2008-02-29 | 2013-10-30 | 格雷特波因特能源公司 | 用于气化作用的颗粒状组合物及其制备和连续转化 |
US8361428B2 (en) * | 2008-02-29 | 2013-01-29 | Greatpoint Energy, Inc. | Reduced carbon footprint steam generation processes |
US8709113B2 (en) * | 2008-02-29 | 2014-04-29 | Greatpoint Energy, Inc. | Steam generation processes utilizing biomass feedstocks |
WO2009111345A2 (en) * | 2008-02-29 | 2009-09-11 | Greatpoint Energy, Inc. | Catalytic gasification particulate compositions |
US8286901B2 (en) | 2008-02-29 | 2012-10-16 | Greatpoint Energy, Inc. | Coal compositions for catalytic gasification |
US8114177B2 (en) * | 2008-02-29 | 2012-02-14 | Greatpoint Energy, Inc. | Co-feed of biomass as source of makeup catalysts for catalytic coal gasification |
US7926750B2 (en) * | 2008-02-29 | 2011-04-19 | Greatpoint Energy, Inc. | Compactor feeder |
US20090217575A1 (en) * | 2008-02-29 | 2009-09-03 | Greatpoint Energy, Inc. | Biomass Char Compositions for Catalytic Gasification |
WO2009111330A1 (en) * | 2008-02-29 | 2009-09-11 | Greatpoint Energy, Inc. | Processes for making adsorbents and processes for removing contaminants from fluids using them |
CN101981163B (zh) | 2008-04-01 | 2014-04-16 | 格雷特波因特能源公司 | 从气体物流中分离甲烷的方法 |
CN101983228A (zh) * | 2008-04-01 | 2011-03-02 | 格雷特波因特能源公司 | 从气流中除去一氧化碳的酸性变换方法 |
CN102112585B (zh) * | 2008-06-27 | 2013-12-04 | 格雷特波因特能源公司 | 用于sng生产的三列催化气化系统 |
KR101256288B1 (ko) | 2008-09-19 | 2013-04-23 | 그레이트포인트 에너지, 인크. | 탄소질 공급원료의 기체화 방법 |
US8647402B2 (en) | 2008-09-19 | 2014-02-11 | Greatpoint Energy, Inc. | Processes for gasification of a carbonaceous feedstock |
WO2010033846A2 (en) | 2008-09-19 | 2010-03-25 | Greatpoint Energy, Inc. | Char methanation catalyst and its use in gasification processes |
CN102197117B (zh) | 2008-10-23 | 2014-12-24 | 格雷特波因特能源公司 | 碳质原料的气化方法 |
AU2009335163B2 (en) | 2008-12-30 | 2013-02-21 | Greatpoint Energy, Inc. | Processes for preparing a catalyzed coal particulate |
CN102272267A (zh) | 2008-12-30 | 2011-12-07 | 格雷特波因特能源公司 | 制备催化的碳质微粒的方法 |
WO2010132551A2 (en) | 2009-05-13 | 2010-11-18 | Greatpoint Energy, Inc. | Processes for hydromethanation of a carbonaceous feedstock |
US8268899B2 (en) * | 2009-05-13 | 2012-09-18 | Greatpoint Energy, Inc. | Processes for hydromethanation of a carbonaceous feedstock |
CN104119956B (zh) | 2009-05-13 | 2016-05-11 | 格雷特波因特能源公司 | 含碳原料的加氢甲烷化方法 |
WO2011017630A1 (en) * | 2009-08-06 | 2011-02-10 | Greatpoint Energy, Inc. | Processes for hydromethanation of a carbonaceous feedstock |
WO2011034890A2 (en) * | 2009-09-16 | 2011-03-24 | Greatpoint Energy, Inc. | Integrated hydromethanation combined cycle process |
AU2010310849B2 (en) | 2009-10-19 | 2013-05-02 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
US8479833B2 (en) | 2009-10-19 | 2013-07-09 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
CN102639435A (zh) | 2009-12-17 | 2012-08-15 | 格雷特波因特能源公司 | 整合的强化采油方法 |
US8669013B2 (en) | 2010-02-23 | 2014-03-11 | Greatpoint Energy, Inc. | Integrated hydromethanation fuel cell power generation |
US8652696B2 (en) | 2010-03-08 | 2014-02-18 | Greatpoint Energy, Inc. | Integrated hydromethanation fuel cell power generation |
JP5559422B2 (ja) | 2010-04-26 | 2014-07-23 | グレイトポイント・エナジー・インコーポレイテッド | バナジウム回収を伴う炭素質フィードストックの水添メタン化 |
US8653149B2 (en) | 2010-05-28 | 2014-02-18 | Greatpoint Energy, Inc. | Conversion of liquid heavy hydrocarbon feedstocks to gaseous products |
US8748687B2 (en) | 2010-08-18 | 2014-06-10 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
CA2815243A1 (en) | 2010-11-01 | 2012-05-10 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
CN103391989B (zh) | 2011-02-23 | 2015-03-25 | 格雷特波因特能源公司 | 伴有镍回收的碳质原料加氢甲烷化 |
US9127221B2 (en) | 2011-06-03 | 2015-09-08 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
CN103974897A (zh) | 2011-10-06 | 2014-08-06 | 格雷特波因特能源公司 | 碳质原料的加氢甲烷化 |
CN104685039B (zh) | 2012-10-01 | 2016-09-07 | 格雷特波因特能源公司 | 附聚的颗粒状低煤阶煤原料及其用途 |
CN104704089B (zh) | 2012-10-01 | 2017-08-15 | 格雷特波因特能源公司 | 附聚的颗粒状低煤阶煤原料及其用途 |
CN104685038B (zh) | 2012-10-01 | 2016-06-22 | 格雷特波因特能源公司 | 附聚的颗粒状低煤阶煤原料及其用途 |
CN104704204B (zh) | 2012-10-01 | 2017-03-08 | 格雷特波因特能源公司 | 用于从原始的低煤阶煤原料产生蒸汽的方法 |
CN103157477B (zh) * | 2013-03-26 | 2014-12-24 | 北京化工大学 | 氧化镍掺杂钛酸钠-二氧化钛复合光催化剂及其制备方法 |
US10464872B1 (en) | 2018-07-31 | 2019-11-05 | Greatpoint Energy, Inc. | Catalytic gasification to produce methanol |
US10344231B1 (en) | 2018-10-26 | 2019-07-09 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with improved carbon utilization |
US10435637B1 (en) | 2018-12-18 | 2019-10-08 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation |
US10618818B1 (en) | 2019-03-22 | 2020-04-14 | Sure Champion Investment Limited | Catalytic gasification to produce ammonia and urea |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2122026A1 (de) * | 1970-05-05 | 1971-11-18 | Produits Chimiques, Pechiney-Saint-Gobain, Neuilly-Sur-Seine (Frankreich) | Katalysatoren für das Reformieren von Kohlenwasserstoffen mit Wasserdampf |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3001952A (en) * | 1958-05-22 | 1961-09-26 | Catalysts & Chem Inc | Nickel-kaolin-hydraulic cement catalyst |
NL268083A (de) * | 1961-08-16 | |||
FR1379478A (fr) * | 1964-01-14 | 1964-11-20 | Perfectionnements aux traltements catalytiques d'hydrocarbures et nouveaux catalyseurs destinés à ces traitements | |
US3391089A (en) * | 1964-09-08 | 1968-07-02 | Girdler Corp | Catalyst for the stream reforming of naphtha and related hydrocarbons |
GB1220389A (en) * | 1967-06-02 | 1971-01-27 | Catalysts & Chem Inc | Catalyst for hydrocarbon reforming |
GB1349449A (en) * | 1970-08-26 | 1974-04-03 | Ici Ltd | Imperial chemical industries ltd steam reforming of hydrocarbons |
US3947381A (en) * | 1970-10-08 | 1976-03-30 | Imperial Chemical Industries Limited | Method of making a catalyst |
US3759678A (en) * | 1971-04-08 | 1973-09-18 | Du Pont | Reformer catalyst |
JPS515356A (ja) * | 1974-07-03 | 1976-01-17 | Tokyo Shibaura Electric Co | Tainetsuseifuenoorukeiseikeizairyo |
-
1976
- 1976-07-20 JP JP8627276A patent/JPS5311893A/ja active Granted
-
1977
- 1977-05-04 AU AU24881/77A patent/AU505781B2/en not_active Expired
- 1977-05-09 US US05/795,417 patent/US4101449A/en not_active Expired - Lifetime
- 1977-05-17 DE DE19772722333 patent/DE2722333A1/de not_active Withdrawn
- 1977-06-02 AR AR267919A patent/AR225591A1/es active
- 1977-06-03 NL NL7706186A patent/NL7706186A/xx not_active Application Discontinuation
- 1977-07-15 GB GB29761/77A patent/GB1571865A/en not_active Expired
- 1977-07-18 DD DD7700200137A patent/DD132052A5/de unknown
- 1977-07-19 CA CA283,034A patent/CA1090319A/en not_active Expired
- 1977-07-20 FR FR7722288A patent/FR2358924A1/fr active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2122026A1 (de) * | 1970-05-05 | 1971-11-18 | Produits Chimiques, Pechiney-Saint-Gobain, Neuilly-Sur-Seine (Frankreich) | Katalysatoren für das Reformieren von Kohlenwasserstoffen mit Wasserdampf |
Also Published As
Publication number | Publication date |
---|---|
CA1090319A (en) | 1980-11-25 |
JPS5311893A (en) | 1978-02-02 |
NL7706186A (nl) | 1978-01-24 |
JPS5624576B2 (de) | 1981-06-06 |
US4101449A (en) | 1978-07-18 |
DD132052A5 (de) | 1978-08-23 |
AU505781B2 (en) | 1979-11-29 |
AU2488177A (en) | 1978-11-09 |
AR225591A1 (es) | 1982-04-15 |
FR2358924A1 (fr) | 1978-02-17 |
GB1571865A (en) | 1980-07-23 |
FR2358924B1 (de) | 1983-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2722333A1 (de) | Verfahren zur herstellung eines katalysators | |
DE3220671C2 (de) | ||
DE2724352C2 (de) | Verfahren zur Herstellung eines Si-Al-O-N Formkörpers | |
DE1542505A1 (de) | Katalysator und Verfahren zu seiner Herstellung | |
EP0279389B1 (de) | Katalysator für die Dampfreformierung von Kohlenwasserstoffen | |
DE2024611A1 (de) | ||
DE3343964A1 (de) | Verfahren zur herstellung von siliziumnitridpulver mit guten sintereigenschaften | |
DE2700208A1 (de) | Polykristalliner siliziumnitrid- koerper und verfahren zu dessen herstellung | |
EP0497156B1 (de) | Verfahren zur Herstellung eines Werkstoffes auf Siliciumnitrid-Basis. | |
EP2975010B1 (de) | Zirconiumdioxid, Verwendung von Zirconiumdioxid und Verfahren zur Herstellung eines feuerfesten Erzeugnisses | |
DE2143608C3 (de) | Verfahren zur Herstellung wasserstoffreicher Gasgemische | |
DE1571354A1 (de) | Herstellung von feuerfesten Koerpern | |
DE2837850C2 (de) | Trägerloser Metallkatalysator zur rußfreien partiellen Oxidation von flüssigen Kohlenwasserstoffen mit Luft | |
EP0180858B1 (de) | Formkörper aus silikatischem Material, Verfahren zu ihrer Herstellung und Verwendung | |
DE2431983C2 (de) | Feuerfestes Calciumaluminat enthaltender Katalysator und dessen Verwendung zum Dampfreformieren von Kohlenwasserstoffen | |
DE1667109A1 (de) | Katalysator fuer die Umsetzung von Kohlenwasserstoffen mit Dampf | |
DE3023425C2 (en) | High density sintered silicon carbide - mix of silicon carbide carbon and boron sintered in carbon contg. atmos. | |
DE2216328B2 (de) | Verfahren zur herstellung eines spinellverbindungen aufweisenden traegerkatalysators und dessen verwendung | |
DE2544288C3 (de) | Verfahren zur Herstellung feuerfester Siliziumkarbid-Formkörper | |
DE3835345A1 (de) | Katalysator fuer die konvertierung von kohlenmonoxid | |
DE3709137A1 (de) | Siliciumnitrid-sinterkoerper, verfahren zu ihrer herstellung und siliciumnitridpulver | |
DE2354024A1 (de) | Verfahren zur herstellung eines keramischen materials | |
DD212492A5 (de) | Katalytische vergasung | |
DE1471369C3 (de) | Verfahren zur Herstellung eines knstal linen, feuerfesten Metalloxid Metall Korpers | |
DE1199427C2 (de) | Verfahren zur herstellung von kohlenoxyd und wasserstoff enthaltenden industriegasen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8110 | Request for examination paragraph 44 | ||
8139 | Disposal/non-payment of the annual fee |