[go: up one dir, main page]

DE19958472A1 - Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs - Google Patents

Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs

Info

Publication number
DE19958472A1
DE19958472A1 DE19958472A DE19958472A DE19958472A1 DE 19958472 A1 DE19958472 A1 DE 19958472A1 DE 19958472 A DE19958472 A DE 19958472A DE 19958472 A DE19958472 A DE 19958472A DE 19958472 A1 DE19958472 A1 DE 19958472A1
Authority
DE
Germany
Prior art keywords
composite material
acid
active ingredient
agents
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19958472A
Other languages
English (en)
Inventor
Peter Schmiedel
Maren Jekel
Thomas Gassenmeier
Wolfgang Von Rybinski
Arnd Kessler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE19958472A priority Critical patent/DE19958472A1/de
Priority to PCT/EP2000/011765 priority patent/WO2001040429A1/de
Priority to AU18599/01A priority patent/AU1859901A/en
Priority to US09/729,007 priority patent/US20020013252A1/en
Priority to CA002327536A priority patent/CA2327536A1/en
Publication of DE19958472A1 publication Critical patent/DE19958472A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0034Fixed on a solid conventional detergent ingredient
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3719Polyamides or polyimides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Detergent Compositions (AREA)

Abstract

Es wird ein teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs beansprucht, enthaltend einen Wirkstoff oder eine Zubereitung, die diesen Wirkstoff im Gemisch mit einer LCST-Substanz enthält, wobei das Material beim Durchlaufen einer oder mehrerer Wärmebehandlungen in einem flüssigen Medium zumindest teilweise unverändert bleibt und nach dem Abkühlen im Anschluß an die Wärmebehandlung der Wirkstoff freigesetzt wird.

Description

Die vorliegende Erfindung betrifft ein teilchenförmiges Kompositmaterial zur Freisetzung eines Wirkstoffs, enthaltend einen Wirkstoff oder eine Zubereitung, die den Wirkstoff im Gemisch mit einer LCST-Substanz enthält; die Verwendung dieses Kompositmaterials in verschiedenen Anwendungen sowie ein Wasch- und Reinigungsmittel, das das Kompositmaterial enthält.
Die gesteuerte Freisetzung von Wirkstoffen spielt überall dort eine Rolle, wo der Wirkstoff nicht unmittelbar nach der Zuführung sondern erst in einer späteren Stufe eines mehrstufigen Verfahren seine Wirkung entfalten soll. Vielfach müssen die Wirkstoffe, die erst in einer späteren Stufe dosiert werden sollen, manuell zugeführt werden.
Im pharmazeutischen Bereich nutzt man bei peroral zu verabreichenden Wirkstoffen das unterschiedliche Lösungsverhalten von Polymeren im sauren und alkalischen Milieu, d. h. wie im Magen und im Darm, aus, indem derartige Polymere zur Beschichtung von Tabletten etc. eingesetzt werden. Medikamente, die in den Darm gelangen sollen, werden üblicherweise mit einem Magensaft-resistenten Polymer beschichtet, welches sich erst im Darm auflöst.
In anderen Verfahren werden Temperaturkurven durchlaufen, so zum Beispiel bei der Steri­ lisation und Pasteurisierung von Lebensmitteln.
Auch Wasch- und Reinigungsverfahren weisen mehrere Aufheiz- und Abkühlphasen auf, wobei insbesondere in der letzten Verfahrensstufe, im sogenannten Klarspülgang, verschiedene Wirkstoffe zugesetzt werden. Diese Wirkstoffe werden in den üblichen Wasch- und Reinigungsverfahren in der Regel als separate Mittel zugesetzt, sind aber nicht im eigentlichen Wasch- beziehungsweise Reinigungsmittel enthalten.
In der internationalen Patentanmeldung WO98/49910 wird ein verkapseltes Material offenbart, wo mindestens ein Teil des Materials während einer Hitzebehandlung in einer wässerigen Umgebung verkapselt ist und nach dem Abkühlen nach dieser Hitzebehandlung freigesetzt wird. Dieses Material ist mit einer Schicht aus einem hydrophoben filmbildenden Material und einer Schicht aus einem Material mit unterer kritischer Entmischungstemperatur (LCST) unterhalb der Temperatur der Hitzebehandlung beschichtet. Als eine mögliche Anwendung der offenbarten verkapselten Materialien ist die Lebensmittelindustrie, wo dieses Material in Lebensmitteln, die sterilisiert werden, eingesetzt wird.
Das Aufbringen von Schichten ist technisch sehr aufwendig und erfordert bei der Herstellung von teilchenförmigen Materialien einen zusätzlichen Arbeitsgang.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein Material zur Verfügung zu stellen, dass einen Wirkstoff enthält, der in einem Verfahren, das mehrere Temperaturstufen durchläuft, erst nach einer Wärmebehandlung freigesetzt wird, wenn das Material in einem Verfahren in flüssigen Medien eingesetzt wird und das in einfacher Weise hergestellt werden kann.
Überraschenderweise wurde festgestellt, wenn man Wirkstoffe, die eine oder mehrere Tem­ peraturstufen durchlaufen, erst nach einer Wärmebehandlung freigesetzt werden, wenn man derartige Wirkstoffe oder Wirkstoffzubereitungen mit einer LCST-Substanz vermischt und zu Teilchen weiter verarbeitet.
Gegenstand der vorliegenden Erfindung ist ein teilchenförmiges Kompositmaterial zur ge­ steuerten Freisetzung eines Wirkstoffs, enthaltend einen Wirkstoff oder eine Zubereitung, die diesen Wirkstoff im Gemisch mit einer LCST-Substanz enthält, wobei das Material beim Durchlaufen einer oder mehrerer Wärmebehandlungen in einem flüssigen Medium zumindest teilweise unverändert bleibt und nach dem Abkühlen im Anschluß an die Wärmebehandlung der Wirkstoff freigesetzt wird.
Bei LCST-Substanzen handelt sich um Substanzen, die bei niedrigen Temperaturen eine bessere Löslichkeit aufweisen als bei höheren Temperaturen. Sie werden auch als Substanzen mit unterer kritischer Entmischungstemperatur bezeichnet. Diese Substanzen sind in der Regel Polymere. Je nach Anwendungsbedingungen sollte die untere kritische Entmischung­ stemperatur zwischen Raumtemperatur und der Temperatur der Wärmebehandlung, zum Beispiel zwischen 20°C, vorzugsweise 30°C und 100°C liegen, insbesondere zwischen 30°C und 50°C. Die LCST-Substanzen sind vorzugsweise ausgewählt aus alkylierten und/oder hydroxyalkylierten Polysacchariden, Celluloseethern, Polyisopropylacrylamid, Copolymeren des Polyisopropylacrylamids sowie Blends dieser Substanzen.
Beispiele für alkylierte und/oder hydroxyalkylierte Polysaccharide sind Hydroxypropyl­ methylcellulose (HPMC), Ethyl(hydroxyethyl)cellulose (EHEC), Hydroxypropylcellulose (HPG), Methylcellulose (MC), Ethylcellulose (EC), Carboxymethylcellulose (CMC), Carboxymethylmethylcellulose (CMMC), Hydroxybutylcellulose (HBC), Hydroxybutylmethylcellulose (HBMC), Hydroxyethylcellulose (HEC), Hydroxyethylcarboxymethylcellulose (HECMC), Hydroxyethylethylcellulose (HEEC), Hydroxypropylcellulose (HPC), Hydroxypropylcarboxymethylcellulose (HPCMC), Hydroxy­ ethylmethylcellulose (HEMC), Methylhydroxyethylcellulose (MHEC), Methylhydroxyethylpro­ pylcellulose (MHEPC), Methylcellulose (MC) und Propylcellulose (PC) und deren Gemische, wobei Carboxymethylcellulose, Methylcellulose, Methylhydroxyethylcellulose und Methylhy­ droxyproplcellulose sowie die Alkalisalze der CMC und die leicht ethoxylierte MC oder Gemi­ sche der voranstehenden bevorzugt sind.
Weitere Beispiele für LCST-Substanzen sind Cellulosether sowie Gemische von Celluloseethern mit Carboxymethylcellulose (CMC). Weitere Polymere, die eine untere kritische Entmischungstemperatur in Wasser zeigen und die ebenfalls geeignet sind, sind Polymere von Mono- oder Di-N-alkylierten Acrylamiden, Copolymere von Mono- oder Di-N-substituierten Acrylamiden mit Acrylaten und/oder Acrylsäuren oder Gemische von miteinander verschlungenen Netzwerken der oben genannten (Co)Polymere. Geeignet sind außerdem Polyethylenoxid oder Copolymere davon, wie Ethylenoxid/Propylenoxidcopolymere und Pfropfcopolymere von alkylierten Acrylamiden mit Polyethylenoxid, Polymethacrylsäure, Polyvinylalkohol und Copolymere davon, Polyvinylmethylether, bestimmte Proteine wie Poly(VATGVV), eine sich wiederholende Einheit in dem natürlichen Protein Elastin und bestimmte Alginate. Gemische aus diesen Polymeren mit Salzen oder Tensiden können ebenfalls als LCST-Substanz verwendet werden. Durch derartige Zusätze oder durch den Vernetzungsgrad der Polymere kann die LCST (untere kritische Entmischungstemperatur) entsprechend modifiziert werden.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden die erfindungsgemäß eingesetzten Wirkstoffe mit einem weiteren Material beschichtet, welches bei einer Temperatur oberhalb der unteren Entmischungstemperatur der LCST-Substanz löslich ist bzw. einen Schmelzpunkt oberhalb dieser Temperatur oder eine retardierte Löslichkeit aufweist, also oberhalb der unteren Entmischungstemperatur der LCST-Schicht freigesetzt werden kann.
Diese Schicht dient dazu, das Gemisch aus Wirkstoff und LCST-Substanz vor Wasser oder anderen Medien, die diese vor der Wärmebehandlung auflösen können, zu schützen. Diese weitere Schicht sollte bei Raumtemperatur nicht flüssig sein und hat vorzugsweise einen Schmelzpunkt oder Erweichungspunkt bei einer Temperatur, die gleich oder oberhalb der unteren kritischen Entmischungstemperatur des LCST-Polymers liegt. Besonders bevorzugt liegt der Schmelzpunkt dieser Schicht zwischen der unteren kritischen Entmischungstemperatur und der Temperatur der Wärmebehandlung. In einer besonderen Ausgestaltung dieser Ausführungsform werden die LCST-Polymere und die weitere Substanz miteinander vermischt und auf das zu verkapselnde Material aufgebracht.
Die weitere Substanz weist - je nach Anwendung - vorzugsweise einen Schmelzbereich auf, der zwischen etwa 35°C und etwa 75°C liegt. Das heißt im vorliegenden Fall, dass der Schmelzbereich innerhalb des angegebenen Temperaturintervalls auftritt und bezeichnet nicht die Breite des Schmelzbereichs.
Die oben genannten Eigenschaften werden in der Regel von sogenannten Wachsen erfüllt. Unter "Wachsen" wird eine Reihe natürlicher oder künstlich gewonnener Stoffe verstanden, die in der Regel über 40°C ohne Zersetzung schmelzen und schon wenig oberhalb des Schmelzpunktes verhältnismäßig niedrigviskos und nicht fadenziehend sind. Sie weisen eine stark temperatur­ abhängige Konsistenz und Löslichkeit auf. Nach ihrer Herkunft teilt man die Wachse in drei Gruppen ein, die natürlichen Wachse, chemisch modifizierte Wachse und die synthetischen Wachse.
Zu den natürlichen Wachsen zählen beispielsweise pflanzliche Wachse wie Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, oder Montanwachs, tierische Wachse wie Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), oder Bürzelfett, Mineralwachse wie Ceresin oder Ozokerit (Erdwachs), oder petrochemische Wachse wie Petrolatum, Paraffinwachse oder Mikrowachse.
Zu den chemisch modifizierten Wachsen zählen beispielsweise Hartwachse wie Montanesterwachse, Sassolwachse oder hydrierte Jojobawachse.
Unter synthetischen Wachsen werden in der Regel Polyalkylenwachse oder Polyalkylenglycolwachse verstanden. Als Hüllmaterialien einsetzbar sind auch Verbindungen aus anderen Stoffklassen, die die genannten Erfordernisse hinsichtlich des Erweichungspunkts erfüllen. Als geeignete synthetische Verbindungen haben sich beispielsweise höhere Ester der Phthalsäure, insbesondere Dicyclohexylphthalat, das kommerziell unter dem Namen Unimoll® 66 (Bayer AG) erhältlich ist, erwiesen. Geeignet sind auch synthetisch hergestellte Wachse aus niederen Carbonsäuren und Fettalkoholen, beispielsweise Dimyristyl-Tartrat, das unter dem Namen Cosmacol ETLP (Condea) erhältlich ist. Umgekehrt sind auch synthetische oder teilsynthetische Ester aus niederen Alkoholen mit Fettsäuren aus nativen Quellen einsetzbar. In diese Stoffklasse fällt beispielsweise das Tegin® 90 (Goldschmidt), ein Glycerinmonostearat­ palmitat. Auch Schellack, beispielsweise Schellack-KPS-Dreiring-SP (Kalkhoff GmbH) einsetzbar.
Ebenfalls zu den Wachsen im Rahmen der vorliegenden Erfindung werden beispielsweise die sogenannten Wachsalkohole gerechnet. Wachsalkohole sind höhermolekulare, wasserunlösliche Fettalkohole mit in der Regel etwa 22 bis 40 Kohlenstoffatomen. Die Wachsalkohole kommen beispielsweise in Form von Wachsestern höhermolekularer Fettsäuren (Wachssäuren) als Hauptbestandteil vieler natürlicher Wachse vor. Beispiele für Wachsalkohole sind Lignocerylalkohol (1-Tetracosanol), Cetylalkohol, Myristylalkohol oder Melissylalkohol. Die Umhüllung der erfindungsgemäß umhüllten Feststoffpartikel kann gegebenenfalls auch Wollwachsalkohole enthalten, worunter man Triterpenoid- und Steroidalkohole, beispielsweise Lanolin, versteht, das beispielsweise unter der Handelsbezeichnung Argowax® (Pamentier & Co) erhältlich ist. Ebenfalls zumindest anteilig als Bestandteil der Umhüllung einsetzbar sind im Rahmen der vorliegenden Erfindung Fettsäureglycerinester oder Fettsäureakanolamide aber gegebenenfalls auch wasserunlösliche oder nur wenig wasserlösliche Polyalkylenglycolverbindungen.
Weitere geeignete hydrophobe Stoffe mit einem Schmelzpunkt oberhalb der LCST des da­ runterliegenden Beschichtungsmaterials sind gesättigte aliphatische Kohlenwasserstoffe (Paraffine).
Als Beschichtungsmaterialien eignen sich auch alle wasserlöslichen, in Wasser dispergierbaren und wasserunlöslichen Polymere, die einen Schmelzpunkt aufweisen, der oberhalb der unteren kritischen Entmischungstemperatur des erfindungsgemäß eingesetzten LCST-Polymers liegt oder oberhalb dieser Temperatur löslich sind. Geeignete Polymere sind bei Raumtemperatur feste Polyethylenglycole, Polyvinylalkohole, Polyacrylsäure und deren Derivate sowie Gelatine.
Mitunter kann es zum Schutz des Kompositmaterials bereits ausreichen, wenn es durch ein wasserlösliches Coating von zunächst kaltem Wasser abgeschirmt wird. Dieses wasserlösliche Coating muß lediglich eine ausreichend verzögerte Löslichkeit aufweisen, so dass die Schicht hinreichend lange stabil ist. Hierfür können z. B. Polyalkylenglycole mit bevorzugt höherem Molekulargewicht eingesetzt werden.
Die Herstellung des erfindungsgemäßen Kompositmaterials erfolgt in an sich bekannter Weise. In einer möglichen Ausführungsform werden die LCST-Substanz und der Wirkstoff gemischt und gegebenenfalls mit weiteren Komponenten und Hilfsmitteln zu einem teilchenförmigen Material verarbeitet. Diese Verarbeitung erfolgt in Abhängigkeit vom Aggregatzustand der zu vermischenden Bestandteile. Liegt zum Beispiel einer der Bestandteile in fester Form und andere in flüssiger Form vor, so kann der feste Bestandteil als Träger für die flüssigen dienen. Für den Fall, dass alle Komponenten in fester Form vorliegen, hat es sich als geeignet erwiesen, diese Teilchen zu verpressen oder einem Granulierverfahren zu unterwerfen. In Abhängigkeit von den Verfahrensbedingungen lässt sich die Festigkeit des Kompositmaterials einstellen, die wiederum Einfluss auf die Lösungskinetik des fertigen Kompositmaterials hat.
Ein wesentlicher Vorteil des teilchenförmigen Kompositmaterials gemäß der vorliegenden Erfindung ist, dass Wirkstoffe in einer Verfahrensstufe nach einem Erwärmungsschritt frei­ gesetzt werden. Es gibt eine Vielzahl von Verfahren, in der die einzelnen Komponenten einen Erwärmungsschritt durchlaufen, z. B. in der Lebensmittel-, Futtermittel- und auch Non-Food- Industrie, zum Beispiel in Pasteurisierungs- oder Sterilisationsprozessen. In diesen Verfahren dient der Erwärmungsschritt dazu, Mikroorganismen zu zerstören oder das Produkt (z. B. Gläser oder Flaschen etc.) zu verschließen. Ein erneutes Öffnen dieser Produkte ist nicht möglich, ohne dass eine erneute Kontaminierung auftritt. Derartige Verfahren werden auch in der pharmazeutischen Industrie eingesetzt, worin die Produkte aseptisch abgefüllt werden müssen. Die Zugabe von weiteren Bestandteilen während oder nach des aseptischen Nachfüllens ist nur möglich, wenn diese weiteren Bestandteile ebenfalls steril sind. Die Freisetzung von weiteren Bestandteilen nach dem Erwärmungsschritt, ohne die Verpackung etc. öffnen zu müssen, bietet eine Vielzahl von Vorteilen.
Auch bei Wasch- und Reinigungsvorgängen sowohl im gewerblichen Bereich als auch im Haushaft werden verschiedene Temperaturstufen durchlaufen. Insbesondere bei maschinellen Vorgängen werden in den Klarspülgängen, die einer Wasch- oder Reinigungsstufe bei erhöhter Temperatur folgen, in der Regel weitere Komponenten zugesetzt. Diese späteren Verfahrensstufen sind in der Regel Klarspülgänge, in denen die Anwender, je nach Vorgang, bestimmte Wirkstoffe zusetzen. Die Dosierung dieser Wirkstoffe erfolgt in der Regel separat entweder manuell oder über speziell dafür vorgesehene Vorrichtungen. Auch bei diesen Verfahren bietet das erfindungsgemäße Kompositmaterial eine Vielzahl von Vorteilen.
Das erfindungsgemäße teilchenförmige Kompositmaterial kann in einer Vielzahl von Anwen­ dungen eingesetzt werden. Demgemäß betrifft ein weiterer Gegenstand der vorliegenden Erfindung die Verwendung des oben beschriebenen Kompositmaterials in pharmazeutischen und kosmetischen Produkten, Lebensmitteln, Wasch- und Reinigungsmitteln sowie Klebstoffen. Die einzusetzenden Wirkstoffe werden auf den entsprechenden Anwendungszweck abge­ stimmt.
Beispiele für Wirkstoffe, die erst in einer Verfahrensstufe nach einem Erwärmungsschritt freigesetzt werden, sind z. B. in der Lebensmittelindustrie Vitamine, Proteine, Peptide, Hy­ drolysate, nahrungsergänzende Mittel, etc. Beispiele für Wirkstoffe, die in allen Erwär­ mungsschritten, auch außerhalb der Nahrungsmittelindustrie, eingesetzt werden können, sind Farbstoffe, Antioxidantien, Verdickungsmittel, Enzyme, Konservierungsmittel etc.
Als Wirkstoffe in Wasch- und Reinigungsmitteln kommen Enzyme, Duftstoffe, Farbstoffe, Säuren, Bleichmittel sowie Bleichaktivatoren bzw. -katalysatoren in Betracht.
Maschinelle Geschirrspülmittel enthalten als Wirkstoff(e) vorzugsweise Klarspültenside, Tenside, Duftstoffe, Farbstoffe, Belagsinhibitoren, Korrosionsinhibitoren, oder Bleichmittel, bevorzugt einen Aktivchlorträger.
Textilwaschmittel enthalten als Wirkstoff(e) vorzugsweise Enzyme, Duftstoffe, Farbstoffe, Fluoreszenzmittel, optische Aufheller, Einlaufverhinderer, Fluoreszenzmittel, optische Aufheller, Einlaufverhinderer, Avivagekomponenten, Knitterschutzmittel, antimikrobielle Wirkstoffe, Germizide, Fungizide, Antioxidantien, Antistatika, Bügelhilfsmittel, Phobier- und Imprägniermittel sowie UV-Absorber und Duftstoffe. Diese Wirkstoffe werden erfindungsgemäß mit einer LCST- Substanz konfektioniert und können in das erfindungsgemäße Mittel eingearbeitet werden. Im Waschverfahren werden sie in einem Spülgang nach dem Hauptspül- oder -waschgang freigesetzt.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein Wasch- und Reinigungsmittel, das Tenside, Builder sowie gegebenenfalls weitere übliche Inhaltsstoffe enthält und das mindestens ein teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffes oder eine Zubereitung enthält, die den Wirkstoff im Gemisch mit einer LCST- Substanz enthält, wobei das Kompositmaterial nach dem Durchlaufen von einer oder mehreren Temperaturstufen nach einer Wärmebehandlung in einem flüssigen Medium zumindest teilweise unverändert bleibt und nach dem Abkühlen im Anschluß an die Wärmebehandlung freigesetzt wird.
Das Wasch- und Reinigungsmittel läßt sich besonders vorteilhaft in maschinellen Verfahren einsetzen, wo es in einem Klarspülgang nach dem Waschschritt freigesetzt werden soll. Bei­ spiele sind die maschinelle Textilwäsche und das maschinelle Reinigen von Geschirr sowohl im Haushalt als auch im gewerblichen Bereich. Die eingearbeiteten Wirkstoffe können gezielt in einem Spülgang nach dem Hauptspül- oder -waschgang freigesetzt werden.
Die Wasch- und Reinigungsmittel enthalten neben den Wirkstoffen als weitere Inhaltsstoffe mindestens ein Tensid, vorzugsweise ausgewählt aus den anionischen, nichtionischen, kat­ ionischen und amphoteren Tensiden. Die Tenside liegen vorzugsweise in einer Menge von 0,1 bis 50 Gew.-%, vorzugsweise von 0,1 bis 40 Gew.-% und insbesondere von 0,1 bis 30 Gew.-%, bezogen auf die Zusammensetzung, vor.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO bis 7 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus die­ sen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Bei­ spiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Auch nichtionische Tenside, die EO- und PO-Gruppen zusammen im Molekül enthalten, sind erfindungsgemäß einsetzbar. Hierbei können Blockcopolymere mit EO-PO-Blockeinheiten bzw. PO-EO- Blockeinheiten eingesetzt werden, aber auch EO-PO-EO-Copolymere bzw. PO-EO-PO- Copolymere. Selbstverständlich sind auch gemischt alkoxylierte Niotenside einsetzbar, in denen EO- und PO-Einheiten nicht blockweise sondern statistisch verteilt sind. Solche Produkte sind durch gleichzeitige Einwirkung von Ethylen- und Propylenoxid auf Fettalkohole erhältlich.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der reinen primären geradkettigen oder methylver­ zweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vor­ zugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1, 2 bis 1,4.
Eine weitere Klasse nichtionischer Tenside sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethyl­ aminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel I,
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicher­ weise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel II,
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoff­ atomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N- Aryloxy-substituierten Verbindungen können beispielsweise durch Umsetzung mit Fettsäu­ remethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhy­ droxyfettsäureamide überführt werden.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsul­ fonate, Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disul­ fonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende al­ kalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulf­ oxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z. B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäu­ rehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3- Alkylsulfate sind geeignete Aniontenside.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäuregly­ cerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sul­ fierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myri­ stinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Tensidzusammensetzungen bzw. Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18- Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht, die insbesondere bei höheren pH-Werten eingesetzt werden. Geeignet sind gesättigte und ungesättigte Fettsäuresei­ fen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern-, Olivenöl- oder Talgfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Tri­ ethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Eine weitere Gruppe von Inhaltsstoffen sind die Gerüststoffe. In den erfindungsgemäßen Wasch- und Reinigungsmitteln können dabei alle üblicherweise in Wasch- und Reinigungs­ mitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Car­ bonate, organische Cobuilder und - wenn keine ökologischen Bedenken gegen ihren Einsatz bestehen - auch die Phosphate.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1.H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5. yH2O bevorzugt.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3, 3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharten Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Rönt­ genstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beu­ gungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEAAugusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa2O.(1-n)K2O.Al2O3.(2-2,5)SiO2.(3,5-5,5)H2O
beschrieben werden kann. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersub­ stanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkali­ metallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtri­ phosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbe­ sondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natriumtrimetaphosphat (Na3P3O9) und Maddrell'sches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Do­ decahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3 hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z. B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3 Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-­ 1,836 gcm-34, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf <200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Ka­ liumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Ins­ besondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Graham'sches Salz, Kurrol'sches und Maddrell'sches Salz. Alle höheren Na­ trium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n = 3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Graham'sches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%igen Lösung (< 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natri­ umkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripoly­ phosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
Als organische Cobuilder können in den erfindungsgemäßen maschinellen Geschirrspülmitteln insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citro­ nensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein der­ artiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Buil­ derwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Rei­ nigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adi­ pinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alka­ limetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Po­ lystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vor­ zugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei ver­ schiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten. Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyaspa­ raginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dial­ dehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcar­ bonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlehydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Poly­ saccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Ebenfalls geeignet ist ein am C6 des Saccharidrings oxidiertes Produkt.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindi­ succinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkan­ phosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alte Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
Eine weitere Klasse von Aktivsubstanzen, die in den erfindungsgemäßen Mitteln enthalten sein können, sind Bleichmittel, die ausgewählt werden können aus der Gruppe der Sauerstoff- oder Halogen-Bleichmittel, insbesondere der Chlorbleichmittel.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophos­ phate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Auch beim Einsatz der Bleichmittel ist es möglich, auf den Einsatz von Tensiden und/oder Gerüststoffen zu verzichten, so daß reine Bleichmitteltabletten herstellbar sind. Sollen solche Bleichmitteltabletten zur Textilwäsche eingesetzt werden, ist eine Kombination von Natriumpercarbonat mit Natriumsesquicarbonat bevorzugt, unabhängig davon, welche weiteren Inhaltsstoffe in den Formkörpern enthalten sind. Werden Reinigungs- oder Bleichmitteltabletten für das maschinelle Geschirrspülen hergestellt, so können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z. B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphthoesäure und Magnesium-monoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-nonenyl­ amidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperoxy­ sebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4- disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
Als Bleichmittel können auch Chlor oder Brom freisetzende Verbindungen enthalten sein. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoin­ verbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet. Die voran­ stehend genannten Verbindungen werden vorzugsweise in Geschirrspülmitteln eingesetzt, wobei ihr Einsatz in Textilwaschmitteln nicht ausgeschlossen sein soll.
Um eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die erfin­ dungsgemäßen Mittel eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C- Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perben­ zoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acyl­ gruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylen­ diamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5- triazin (DADHT), acylierte Glycolurile, insbesondere 1,3,4,6-Tetraacetylglycoluril (TAGU), N- Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), acylierte Hydroxycarbonsäuren, wie Triethyl-O-acetylcitrat (TEOC), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, Isatosäureanhydrid und/oder Bernsteinsäureanhydrid, Carbonsäureamide, wie N-Methyldiacetamid, Glycolid, acylierte mehrwertige Alkohole, ins­ besondere Triacetin, Ethylenglycoldiacetat, Isopropenylacetat, 2,5-Diacetoxy-2,5-dihydrofuran und die aus den deutschen Patentanmeldungen DE 196 16 693 und DE 196 16 767 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren in der europäischen Patentanmeldung EP 0 525 239 beschriebene Mischungen (SORMAN), acylierte Zucker­ derivate, insbesondere Pentaacetylglucose (PAG), Pentaacetylfructose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin bzw. Gluco­ nolacton, Triazol bzw. Triazolderivate und/oder teilchenförmige Caprolactame und/oder Caprolactamderivate, bevorzugt N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam und N-Acetylcaprolactam, die aus den internationalen Patentanmeldungen WO-A-94/27970, WO-A-94/28102, WO-A-94/28103, WO-A-95/00626, WO-A-95/14759 und WO-A-95/17498 bekannt sind. Die aus der deutschen Patentanmeldung DE-A-196 16 769 bekannten hydrophil substituierten Acylacetale und die in der deutschen Patentanmeldung DE-A-196 16 770 sowie der internationalen Patentanmeldung WO-A-95/14075 beschriebenen Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch die aus der deutschen Patentanmeldung DE-A-44 43 177 bekannten Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Ebenso können Nitrilderivate wie Cyanopyridine, Nitrilquats und/oder Cyanamidderivate eingesetzt werden. Bevorzugte Bleichaktivatoren sind Natrium-4-(octanoyloxy)-benzolsulfonat, Undecenoyloxybenzolsulfonat (UDOBS), Natriumdodecanoyloxybenzolsulfonat (DOBS), Decanoyloxybenzoesäure (DOBA, OBC 10) und/oder Dodecanoyloxybenzolsulfonat (OBS 12). Derartige Bleichaktivatoren sind im üblichen Mengenbereich von 0,01 bis 20 Gew.-%, vorzugsweise in Mengen von 0,1 bis 15 Gew.-%, insbesondere 1 Gew.-% bis 10 Gew.-%, bezogen auf die gesamte Zusammensetzung, enthalten.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch so­ genannte Bleichkatalysatoren enthalten sein. Bei diesen Stoffen handelt es sich um bleich­ verstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru- Amminkomplexe sind als Bleichkatalysatoren geeignet, wobei solche Verbindungen bevorzugt eingesetzt werden, die in der DE 197 09 284 A1 beschrieben sind.
Als Enzyme kommen in den erfindungsgemäßen Wasch- und Reinigungsmitteln insbesondere solche aus der Klasse der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen zur Entfernung von Anschmutzungen wie protein-, fett- oder stärkehaltigen Verfleckungen bei. Zur Bleiche können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen.
Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis etwa 4,5 Gew.-% betragen. Die Enzyme können in Wasch- und Reinigungsverfahren sowohl während der Wärmebehandlung als auch in dem Spülgang nach der Wärmebehandlung, also im Gemisch mit der LCST-Substanz, eingesetzt werden.
Farb- und Duftstoffe können den erfindungsgemäßen Mitteln zugesetzt werden, um den äs­ thetischen Eindruck der entstehenden Produkte zu verbessern und dem Verbraucher neben der Leistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Di­ methylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethyl­ phenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Par­ fümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Die Duftstoffe können direkt in die erfindungsgemäßen Reinigungsmittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich bei­ spielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können. Auch das Einarbeiten in das er­ findungsgemäße Kompositmaterial ist möglich, so daß die Duftstoffe erst im Klarspülgang freigesetzt werden, was zu einem Dufteindruck beim Öffnen der Maschine führt.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält das in den erfindungsgemäßen Mitteln eingearbeitete Kompositmaterial Tenside als Wirkstoffe. Die Anwesenheit von Tensiden im Klarspülgang eines maschinellen Geschirrspülverfahrens wirkt sich positiv auf den Glanz und die Verringerung von Kalkablagerungen aus. Als Wirkstoffe im Klarspülgang werden üblicherweise lediglich schwachschäumende nichtionische Tenside eingesetzt, wobei der Einsatz anderer Tenside, z. B. anionischer Tenside, nicht ausgeschlossen werden soll.
Als weitere Wirkstoffe, die in das Kompositmaterial eingearbeitet werden können oder auch schon im Hauptspül- oder -waschgang freigesetzt werden, können die als maschinelle Ge­ schirrspülmittel eingesetzten Mittel Korrosionsinhibitoren enthalten. Die Korrosionsinhibitoren werden insbesondere zum Schutze des Spülgutes oder der Maschine enthalten, wobei be­ sonders Silberschutzmittel im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Über­ gangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigem werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan- und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)- Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
Wasch- und Reinigungsmittel, die zur Textilwäsche eingesetzt werden, können als Wirkstoffe, die erst im Spülgang freigesetzt werden, kationische Tenside enthalten. Beispiele für die in den erfindungsgemäßen Mitteln verwendbaren kationischen Tenside sind insbesondere quartäre Ammoniumverbindungen. Bevorzugt sind Ammoniumhalogenide wie Alkyltrimethylammonium­ chloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchloride, z. B. Cetyltri­ methylammoniumchlorid, Stearyltrimethylammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethylammoniumchlorid, Lauryldimethylbenzylammoniumchlorid und Tricetylmethyl­ ammoniumchlorid. Weitere erfindungsgemäß verwendbare kationische Tenside stellen die quaternisierten Proteinhydrolysate dar.
Erfindungsgemäß ebenfalls geeignet sind kationische Silikonöle wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethyl­ silylamodimethicon), Dow Corning 929-Emulsion (enthaltend ein hydroxyl-amino-modifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt; diquaternäre Polydimethylsiloxane, Quaternium-80).
Alkylamidoamine, insbesondere Fettsäureamidoamine wie das unter der Bezeichnung Tego Amid®S 18 erhältliche Stearylamidopropyldimethylamin, zeichnen sich neben einer guten kon­ ditionierenden Wirkung speziell durch ihre gute biologische Abbaubarkeit aus.
Ebenfalls sehr gut biologisch abbaubar sind quaternäre Esterverbindungen, sogenannte "Esterquats", wie die unter dem Warenzeichen Stepantex® vertriebenen Methylhydroxyalkyl­ dialkoyloxyalkylammoniummethosulfate.
Ein Beispiel für ein als kationisches Tensid einsetzbares quaternäres Zuckerderivat stellt das Handelsprodukt Glucquat®100 dar, gemäß CTFA-Nomenklatur ein "Lauryl Methyl Gluceth-10 Hydroxypropyl Dimonium Chloride".
Die erfindungsgemäßen Wasch- und Reinigungsmittel können sowohl in fester bis gelförmiger als auch als Pulver, Granulate, Extrudate oder als Formkörper (Tabletten) vorliegen. Die einzelnen Formen sind durch übliche Herstellverfahren, die dem Fachmann aus dem Stand der Technik bekannt sind, herstellbar.
Das erfindungsgemäße Mittel enthält den Wirkstoff in Form des oben beschriebenen Kom­ positmaterials, so dass der Wirkstoff im Hauptspül- oder -waschgang (und auch in optionalen Vorspülgängen) nicht bzw. nur in untergeordnetem Maße freigesetzt wird. Hierdurch wird erreicht, dass die Wirkstoffe erst im Klarspülgang ihre Wirkung entfalten. Neben dieser chemischen Konfektionierung ist je nach Typ der Geschirrspülmaschine bzw. Textil­ waschmaschine eine physikalische Konfektionierung erforderlich, damit das wirkstoffhaltige Kompositmaterial beim Wasserwechsel in der Maschine nicht abgepumpt wird und damit dem Klarspülgang nicht mehr zur Verfügung steht.
Haushaltsübliche Geschirrspülmaschinen enthalten beispielsweise vor der Laugenpumpe, welche das Wasser bzw. die Reinigungslösung nach den einzelnen Reinigungsgängen aus der Maschine pumpt, einen Siebeinsatz, der ein Verstopfen der Pumpe durch Schmutzreste verhindern soll. Die Konfektionierung des Kompositmaterials ist hinsichtlich seiner Größe und Form vorzugsweise so gestaltet, dass es den Siebeinsatz der Geschirrspülmaschine nach dem Reinigungsgang, d. h. nach Belastung durch Bewegung in der Maschine und der Reinigungslösung, nicht passiert. Auf diese Weise wird sichergestellt, dass im Klarspülgang der Wirkstoff vorhanden ist und erst in diesem Spülgang freigesetzt wird und den gewünschten Klarspüleffekt bringt. Im Rahmen der vorliegenden Erfindung bevorzugte maschinelle Geschirrspülmittel sind dadurch gekennzeichnet, dass das den Wirkstoff enthaltende Material bzw. der Wirkstoff selbst derart konfektioniert ist, dass sie Teilchengrößen zwischen 2 und 30 mm, vorzugsweise zwischen 2,5 und 25 mm und insbesondere zwischen 3 und 20 mm aufweist.
In einer Ausführungsform der vorliegenden Erfindung wird das Kompositmaterial pulverförmigen oder granulären Maschinengeschirrspülmitteln zugemischt.
In einer weiteren bevorzugten Ausführungsform wird Kompositmaterial gemeinsam mit den Inhaltsstoffen der Maschinengeschirrspülmitteln zu einem Kombinationsprodukt aus Geschirr­ spülmittel und Klarspüler verarbeitet. Derartige Produkte stellen vorzugsweise sogenannte Formkörper, in Stand der Technik auch als Tabletten bezeichnet, dar.
Die Herstellung der Kombinationsprodukte kann in an sich bekannter Weise erfolgen. In einer möglichen Ausführungsform werden die Formkörper und das erfindungsgemäße Kom­ positmatecial separat hergestellt und anschließend miteinander verbunden, dabei können die Formkörper bereits für die Partikel vorgefertigte Aussparungen aufweisen. Das Verbinden kann beispielsweise durch einfaches Einlegen in die Aussparung oder Verkleben der beiden festen Komponenten erfolgen.
In einer weiteren Ausführungsform wird das erfindungsgemäße Kompositmaterial oder das Vorgemisch dafür in einer geeigneten Tablettiervorrichtung mit dem Vorgemisch für das Ge­ schirrspülmittel zu Formkörpern verarbeitet.
In den erfindungsgemäßen Wasch- und Reinigungsmitteln kann das den Wirkstoff enthaltende Kompositmaterial mit den vorstehend genannten Größen aus der Matrix der anderen teilchenförmigen Inhaltsstoffe herausragen, die anderen Partikel können aber ebenfalls Größen aufweisen, die im genannten Bereich liegen, so dass insgesamt ein Wasch- und Reinigungsmittel formuliert wird, das aus großen Reinigungsmittelpartikeln und den Wirkstoff enthaltenden Partikeln besteht. Insbesondere, wenn die den Wirkstoff enthaltenden Partikel eingefärbt sind, beispielsweise also eine rote, blaue, grüne oder gelbe Farbe aufweisen, ist es aus optischen Gründen für das Erscheinungsbild des Produkts, d. h. des gesamten Reini­ gungsmittels von Vorteil, wenn diese Partikel sichtbar größer sind als die Matrix aus den Teilchen der übrigen Inhaltsstoffe des Mittels. Hier sind erfindungsgemäße teilchenförmige Wasch- und Reinigungsmittel bevorzugt, die (ohne Berücksichtigung der Klarspülerpartikel) Teilchengrößen zwischen 200 und 3000 µm, vorzugsweise zwischen 300 und 2500 µm und insbesondere zwischen 400 und 2000 µm aufweisen.
Der optische Reiz solcher Zusammensetzungen kann außer der Einfärbung des Komposit­ materials auch durch kontrastierende Einfärbung der Pulvermatrix oder durch die Form des Kompositmaterials erhöht werden. Da bei der Herstellung des Kompositmaterials auf technisch unkomplizierte Verfahren zurückgegriffen werden kann, ist es problemlos möglich, diese in den unterschiedlichsten Formen anzubieten. Neben der Partikelform, die annähernd Kugelgestalt aufweist, sind beispielsweise zylindrische oder würfelförmige Partikel herstell- und einsetzbar. Auch andere geometrische Formen lassen sich realisieren. Spezielle Produktausgestaltungen können beispielsweise sternchenförmiges Kompositmaterial enthalten. Auch Scheiben bzw. Formen, die als Grundfläche Pflanzen und Tierkörper, beispielsweise Baum, Blume, Blüte, Schaf, Fisch usw. zeigen, sind problemlos herstellbar. Interessante optische Anreize lassen sich auf diese Weise auch dadurch schaffen, daß man, wenn das Kompositmaterial im Klarspülgang eines maschinellen Geschirrspülverfahrens freigesetzt wird, in Form eines stilisierten Glases herstellt, um den Klarspüleffekt auch im Produkt optisch zu unterstreichen. Der Phantasie sind hierbei keine Grenzen gesetzt.
Werden die erfindungsgemäßen Reinigungsmittel als Pulvermischung formuliert, so kann - insbesondere bei stark unterschiedlichen Größen von Kompositmaterial, das z. B. Klarspü­ lerpartikeln, und Reinigungsmittel-Matrix - einerseits bei Rüttelbelastung des Pakets eine teilweise Entmischung eintreten, andererseits kann die Dosierung in zwei aufeinanderfolgenden Reinigungsgängen unterschiedlich sein, da der Verbraucher nicht immer zwingend gleich viel Reinigungsmittel und Kompositmaterial, z. B. Klarspüler, dosiert. Sollte gewünscht sein, technisch eine immer gleiche Menge pro Reinigungsgang einzusetzen, kann dies über die dem Fachmann geläufige Verpackung der erfindungsgemäßen Mittel in Beuteln aus wasserlöslicher Folie realisiert werden. Auch teilchenförmige Wasch- und Reinigungsmittel, bei denen eine Dosiereinheit in einen Beutel aus wasserlöslicher Folie eingeschweißt vorliegt, sind Gegenstand der vorliegenden Erfindung.
Hierdurch hat der Verbraucher nur noch einen Beutel, der beispielsweise ein Reinigungsmittel- Pulver und mehrere optisch hervortretende im Kompositmaterial eingearbeitete Wirkstoffe enthält, in das Dosierfach seiner Wasch- bzw. Geschirrspülmaschine einzulegen. Diese Ausführungsform der vorliegenden Erfindung ist daher eine optisch reizvolle Alternative zu herkömmlichen Reinigungsmitteltabletten.
Beispiel
Es wird ein maschinelles Geschirrspülmittel auf folgende Weise hergestellt:
60 Gew.-% Klarspültensid (Polytergent SLF 18 B 45 der Firma Oiin Chemicals) werden auf 20 Gew.-% Trägermaterial (PolyTrap der Firma Advanced Polymer Systems) aufgebracht, so dass ein rieselfähiges Granulat entsteht. Zu diesem Granulat werden 20 Gew.-% einer 10%igen Lösung von Poly-N-Isopropylacrylamid (PIPAAm) in Aceton zugemischt. Nach weitgehendem Verdampfen des Lösungsmittels wird das erhaltene Granulat in einer Tablettenpresse zu Presslingen von etwa 1 g verpresst. Diese Presslinge werden anschließend im Tauchverfahren mit Paraffin (Schmelzpunkt 50°C) umhüllt.
Diese Zubereitung wird auf verschiedene Weisen zusammen mit einem gewöhnlichen Ge­ schirrspülmittel (Somat; Handelsprodukt der Anmelderin) dosiert:
  • 1. Es wird zusammen mit handelsüblichem Somat-Pulverreiniger in das Dosierkästchen der Geschirrspülmaschine gegeben.
  • 2. Es wird in eine Kavität einer Somat-Reinigertablette eingeklebt bzw. lose eingelegt.
  • 3. Es wird in einer Tablettenpresse in das lose Vorgemisch einer Somat-Reinigertablette eingelegt und mit diesem zusammen zu einem Formkörper verpresst.
Die Funktion dieser Reinigungsmittelkonfektionierungen wird anschließend in einer handels­ üblichen Haushaltsgeschirrspülmaschine der Firma Miele G 683SC getestet. Es zeigt sich in allen Fällen wie gewünscht, dass sich der Somat-Reiniger sowohl als Pulver als auch als Tablette im Reinigungsgang (wahlweise 55°C- oder 65°C-Programm) auflöst, während die den Klarspüler enthaltende Formulierung bis zum Beginn des Klarspülganges erhalten bleibt. Sie zerfällt in den ersten Minuten des Klarspülganges und setzt wie gewünscht das Klarspültensid frei.

Claims (15)

1. Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs, enthaltend einen Wirkstoff oder eine Zubereitung, die diesen Wirkstoff im Gemisch mit einer LCST-Substanz enthält, wobei das Material beim Durchlaufen einer oder mehrerer Wärmebehandlungen in einem flüssigen Medium zumindest teilweise unverändert bleibt und nach dem Abkühlen im Anschluß an die Wärmebehandlung der Wirkstoff freigesetzt wird.
2. Kompositmaterial nach Anspruch 1, dadurch gekennzeichnet, dass die Wirkstoffzu­ bereitung in eine Matrix aus einer LCST-Substanz eingebettet ist.
3. Kompositmaterial nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das LCST- Polymer ausgewählt ist aus alkylierten und/oder hydroxyalkylierten Polysacchariden, Celluloseethern, Polyisopropylacrylamid, Copolymeren des Polyisopropylacrylamids sowie Blends dieser Substanzen.
4. Kompositmaterial nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die LCST-Temperatur zwischen 20°C und 100°C liegt.
5. Kompositmaterial nach einem der Ansprüch 1 bis 4, dadurch gekennzeichnet, dass die Wärmebehandlung bei einer Temperatur zwischen 20°C und 150°C, vorzugsweise zwischen 30°C und 95°C durchgeführt wird.
6. Kompositmaterial nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es mit einer weiteren Substanz beschichtet ist, die bei einer Temperatur oberhalb der unteren Entmischungstemperatur der LCST-Substanz löslich ist bzw. einen Schmelzpunkt oberhalb dieser Temperatur oder eine retardierte Löslichkeit aufweist.
7. Verwendung des Kompositmaterials nach einem der Ansprüche 1 bis 6 in pharmazeu­ tischen und kosmetischen Produkten, Konservierungsmitteln, Lebensmitteln, Wachs­ tumsregulatoren, Farbstoffen, Duftstoffen, Pestiziden und Herbiziden, Klebstoffen sowie Wasch- und Reinigungsmitteln.
8. Wasch- und Reinigungsmittel enthaltend übliche Inhaltsstoffe, dadurch gekennzeichnet, dass es ein teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffes oder eine Zubereitung enthält, die den Wirkstoff im Gemisch mit einer Substanz mit unterer kritischer Entmischungstemperatur enthält, wobei das Material beim Durchlaufen einer oder mehrerer Wärmebehandlungen in einem flüssigen Medium zumindest teilweise unverändert bleibt und nach dem Abkühlen im Anschluß an die Wärmebehandlung freigesetzt wird.
9. Wasch- und Reinigungmittel nach Anspruch 8, dadurch gekennzeichnet, dass es in fester Form, insbesondere als Pulver, Granulat, Extrudat oder als Formkörper vorliegt.
10. Wasch- und Reinigungmittel nach einem der Ansprüche 8 oder 9, dadurch gekenn­ zeichnet, dass es ein Textilwaschmittel ist und als Wirkstoffe Avivagekomponeten, Enzyme, Duftstoffe, Farbstoffe, Fluoreszenzmittel, optische Aufhelfer, Einlaufverhinderer, Knitterschutzmittel, antimikrobielle Wirkstoffe, Germizide, Fungizide, Antioxidantien, Antistatika, Bügelhilfsmittel, Phobier- und Imprägniermittel, UV-Absorber und beliebige Gemische der voranstehenden enthält.
11. Wasch- und Reinigungsmittel nach einem der Ansprüche 8 oder 9, dadurch ge­ kennzeichnet, dass es ein maschinelles Geschirrspülmittel ist und als Wirkstoff Klarspüler, Tenside, Duftstoffe, Farbstoffe, Belagsinhibitoren, Korrosionsinhibitoren, oder Bleichmittel, bevorzugt einen Aktivchlorträger, enthält.
12. Wasch- und Reinigungsmittel nach Anspruch 11, dadurch gekennzeichnet, dass das Kompositmaterial einen partikulären Klarspüler enthält.
13. Wasch- und Reinigungsmittel nach Anspruch 12, dadurch gekennzeichnet, dass der partikuläre Klarspüler Teilchengrößen zwischen 2 und 30 mm, vorzugsweise zwischen 2,5 und 25 mm und insbesondere zwischen 3 und 20 mm aufweist.
14. Wasch- und Reinigungsmittel nach einem der Ansprüche 11 bis 13, dadurch gekenn­ zeichnet, dass das Kompositmaterial pulverförmigen oder granulären Maschinenge­ schirrspülmitteln zugemischt wird.
15. Wasch- und Reinigungsmittel nach einem der Ansprüche 11 bis 13, dadurch gekenn­ zeichnet, dass das Kompositmaterial in einen Formkörper eingebettet wird.
DE19958472A 1999-12-04 1999-12-04 Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs Withdrawn DE19958472A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE19958472A DE19958472A1 (de) 1999-12-04 1999-12-04 Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs
PCT/EP2000/011765 WO2001040429A1 (de) 1999-12-04 2000-11-25 Teilchenförmiges kompositmaterial zur gesteuerten freisetzung eines wirkstoffs
AU18599/01A AU1859901A (en) 1999-12-04 2000-11-25 Particulate composite material for controlled release of an active agent
US09/729,007 US20020013252A1 (en) 1999-12-04 2000-12-04 Particulate composite material for the controlled release of an active ingredient
CA002327536A CA2327536A1 (en) 1999-12-04 2000-12-04 Particulate composite material for the controlled release of an active ingredient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19958472A DE19958472A1 (de) 1999-12-04 1999-12-04 Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs

Publications (1)

Publication Number Publication Date
DE19958472A1 true DE19958472A1 (de) 2001-06-07

Family

ID=7931406

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19958472A Withdrawn DE19958472A1 (de) 1999-12-04 1999-12-04 Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs

Country Status (5)

Country Link
US (1) US20020013252A1 (de)
AU (1) AU1859901A (de)
CA (1) CA2327536A1 (de)
DE (1) DE19958472A1 (de)
WO (1) WO2001040429A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10035849A1 (de) * 2000-07-24 2002-02-21 Henkel Kgaa Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10163142A1 (de) * 2001-12-20 2003-07-10 Henkel Kgaa Polymere Duftkapseln und ihre Herstellung
FR2838345A1 (fr) * 2002-04-12 2003-10-17 Oreal Utilisation de polymeres hydrosolubles ou hydrodispersibles a unites a lcst comme agent tenseur dans des compositions cosmetiques, notamment antirides
WO2003086342A1 (en) * 2002-04-12 2003-10-23 L'oreal Cosmetic, esp. anti-wrinkle compositions containing water-soluble or -dispersible lcst polymers
US20070082573A1 (en) * 2005-10-11 2007-04-12 The Procter & Gamble Company Water stable fibers and articles comprising starch, and methods of making the same
WO2012140064A1 (de) * 2011-04-12 2012-10-18 Basf Se Verfahren zur herstellung von beschichtungen auf basis von lcst-polymeren
US9752105B2 (en) 2012-09-13 2017-09-05 Ecolab Usa Inc. Two step method of cleaning, sanitizing, and rinsing a surface
US8871699B2 (en) 2012-09-13 2014-10-28 Ecolab Usa Inc. Detergent composition comprising phosphinosuccinic acid adducts and methods of use
US9994799B2 (en) 2012-09-13 2018-06-12 Ecolab Usa Inc. Hard surface cleaning compositions comprising phosphinosuccinic acid adducts and methods of use
US20140308162A1 (en) 2013-04-15 2014-10-16 Ecolab Usa Inc. Peroxycarboxylic acid based sanitizing rinse additives for use in ware washing
DE102016119102A1 (de) * 2016-10-07 2018-04-12 Forschungszentrum Jülich GmbH Translokation von synthetischen Polymeren durch Lipidmembrane

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492646A (en) * 1988-01-19 1996-02-20 Allied Colloids Limited Polymeric matrix particle compositions containing coacervate polymer shell
US5484610A (en) * 1991-01-02 1996-01-16 Macromed, Inc. pH and temperature sensitive terpolymers for oral drug delivery
NL1007696C1 (nl) * 1997-05-01 1998-11-03 Inst Voor Agrotech Onderzoek Omhulde stof met gecontroleerde afgifte.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10035849A1 (de) * 2000-07-24 2002-02-21 Henkel Kgaa Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs

Also Published As

Publication number Publication date
WO2001040429A1 (de) 2001-06-07
CA2327536A1 (en) 2001-06-04
US20020013252A1 (en) 2002-01-31
AU1859901A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
DE10019936A1 (de) Wasch- und Reinigungsmittel
DE10148571B4 (de) Semiautomatische Dosierung
EP1194523B1 (de) Wasch- oder reinigungsmittel-portion
DE19944416A1 (de) Klarspülmittel
DE19958472A1 (de) Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs
DE10060533A1 (de) Maschinelle Geschirrspülmittel und Klarspüler mit Geruchsabsorber
DE19948667A1 (de) Reinigungsmittelkomponente mit doppelkontrollierter Duftfreisetzung
DE10003429A1 (de) Wasch- oder Reinigungsmittelportion mit kontrollierter Wirkstofffreisetzung
DE19957262A1 (de) Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel
EP1670885A1 (de) Keimreduzierendes wasch- oder reinigungsmittel und verfahren zu seiner herstellung
DE10035849A1 (de) Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs
DE10062585A1 (de) Teilchenförmiges Additiv für Wasch- und Reinigungsmittel
DE19934704A1 (de) Wasch- und Reinigungsmittelformkörper mit Dispersionsmitteln
DE19914363A1 (de) Maschinelle Geschirrspülmittel mit teilchenförmigem Klarspüler
DE10360842A1 (de) Waschmittelsystem mit verzögerter Färbemittelwirkung
DE10110886A1 (de) Wasch- und/oder Reinigungsmittel
DE19958471A1 (de) Wasch- und Reingigungsmittel
EP1461410A2 (de) Mittel enthaltender formkörper mit erhöhter lagerstabilität
EP1173538B1 (de) Leistungsgesteigerte reinigungsmitteltabletten für das maschinelle geschirrspülen
DE19960096A1 (de) Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel
DE10134309A1 (de) Coextrusion von Wasch- und Reinigungsmitteln
DE10049657C2 (de) Maschinelles Geschirreinigungsverfahren und maschinelle Geschirrspülmittel mit verbessertem Korrosionsschutz
DE10111508A1 (de) Modifizierte Cyanacrylatester, daraus hergestellte Nano- oder Mikrokapseln und deren Verwendung in Wasch- oder Reinigungsmitteln
DE19914364A1 (de) Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel
DE10058646A1 (de) Waschmittel-,Spülmittel-oder Reinigungsmittel-Portion mit kontrollierter Wirkstoff-Freisetzung

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee