[go: up one dir, main page]

DE10062585A1 - Teilchenförmiges Additiv für Wasch- und Reinigungsmittel - Google Patents

Teilchenförmiges Additiv für Wasch- und Reinigungsmittel

Info

Publication number
DE10062585A1
DE10062585A1 DE2000162585 DE10062585A DE10062585A1 DE 10062585 A1 DE10062585 A1 DE 10062585A1 DE 2000162585 DE2000162585 DE 2000162585 DE 10062585 A DE10062585 A DE 10062585A DE 10062585 A1 DE10062585 A1 DE 10062585A1
Authority
DE
Germany
Prior art keywords
acid
water
agents
preferred
surfactants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2000162585
Other languages
English (en)
Inventor
Wolfgang Barthel
Werner Kuenzel
Juergen Haerer
Stefan Huchler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE2000162585 priority Critical patent/DE10062585A1/de
Publication of DE10062585A1 publication Critical patent/DE10062585A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38672Granulated or coated enzymes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • C11D3/502Protected perfumes
    • C11D3/505Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Es wird ein teilchenförmiges Additiv für Wasch- und Reinigungsmittel beansprucht, das übliche Aktivstoffe enthält und zumindest teilweise mit einem wasserlöslichen, wasserdispergierbaren und/oder schmelzbaren Material umhüllt ist. Durch die Umhüllung können z. B. Aktivstoffe, die als Nachbehandlungsmittel bei der Geschirrreinigung oder bei der Textilwäsche eingesetzt werden und in fester oder flüssiger Form vorliegen, mit festen Wasch- und Reinigungsmitteln kombiniert werden.

Description

Die vorliegende Erfindung betrifft ein teilchenförmiges Additiv für Wasch- und Reinigungsmittel, enthaltend übliche Aktivstoffe, ein maschinelles Geschirrspülmittel, das das Additiv enthält, sowie ein Textilwaschmittel, das das Additiv enthält.
Das maschinelle Reinigen von Geschirr und auch das Waschen von Wäsche im Haushalt erfolgt in üblichen Haushaltsgeschirrspül bzw. -waschmaschinen. Die Reinigungs- bzw. Waschverfahren umfassen üblicherweise mehrere Stufen.
Das maschinelle Reinigen von Geschirr umfaßt üblicherweise einen Vorspülgang, einen Haupt­ spülgang und einen Klarspülgang, die von Zwischenspülgängen unterbrochen werden. Bei den meisten Maschinen ist der Vorspülgang für stark verschmutzes Geschirr zuschaltbar. Im Klarspül­ gang werden aus einem Dosiertank in der Maschine Klarspülmittel zugegeben, die üblicherweise als Hauptbestandteil nichtionische Tenside enthalten. Solche Klarspüler liegen in flüssiger Form vor und sind im Stand der Technik breit beschrieben. Ihre Aufgabe besteht vornehmlich darin, Kalkflecken und Beläge auf dem gereinigten Geschirr zu verhindern. Neben Wasser und schwach­ schäumenden Niotensiden enthalten diese Klarspüler oft auch Hydrotope, pH-Stellmittel wie Citro­ nensäure oder belagsinhibierende Polymere.
Die Haushaltwäsche umfaßt in der Regel einen Hauptwaschgang und mehrere Klarspülgänge, wobei auch hier ein Vorwaschgang zugeschaltet werden kann. Die Klarspülgänge werden in der nur mit Wasser durchgeführt, wobei im letzten Klarspülgang sogenannte Wäschenachbehand­ lungsmittel, wie Weichspülkomponenten etc., zugesetzt werden können.
Sowohl bei der Geschirrreinigung als auch bei der Haushaltswäsche werden die Komponenten, die nach dem eigentlichen Reinigungs- bzw. Waschgang zugesetzt werden über separate Dosier­ kammern zugegeben. Geschirrspülmaschinene enthalten einen Vorratstank, sowie in regelmäßi­ gen Abständen mit Klarspüler aufgefüllt werden muß, wobei eine Füllung je nach Maschinentyp für 10 bis 50 Spülgänge ausreicht. Bei Waschmaschinen werden die Nachbehandlungsmittel vor jeder Wäsche in eine dafür vorgesehene Dosierkammer gegeben. Wird das Auffüllen des Tanks von Geschirrspülmaschinen vergessen, so werden insbesondere Gläser durch Kalkflecken und Beläge unansehnlich. Bei Waschmaschinen erfolgt nicht die erwünschte Textilnachbehandlung, wie die Weichspülbehandlung, und man erhält sog. harte Wäsche.
Im Stand der Technik existieren daher einige Lösungsvorschläge, sog. Nachbehandlungsmittel in die Mittel für das das maschinelle Geschirrspülen bzw. in Haushaltswaschmittel zu integrieren. Diese Lösungsvorschläge sind an die Angebotsform von kompakten Formkörpern gebunden.
So beschreibt die europäische Patentanmeldung EP-A-0 851 024 (Unilever) zweischichtige Reini­ gungsmitteltabletten, deren erste Schicht Peroxy-Bleichmittel, Builder und Enzym enthält, während die zweite Schicht Acidifizierungsmittel und ein kontinuierliches Medium mit einem Schmelzpunkt zwischen 55 und 70°C sowie Belagsinhibitoren enthält. Durch das hochschmelzende kontinuierli­ che Medium sollen die Säure(n) und Belagsinhibitor(en) verzögert freigesetzt werden und einen Klarspüleffekt bewirken.
Der Nachteil der genannten Lösungsvorschläge, die Nachbehandlungsmittel und Zusätze in die Reinigungs- bzw. Waschmittel zu integrieren, liegt darin, daß die eingesetzten Nachbehandlungs­ mittel, die häufig in flüssiger Form oder als wässerige Lösungen vorliegen, in eine feste Form überführt werden müssen.
Insbesondere, wenn die Aktivstoffe in ein hochschmelzendes Medium eingearbeitet werden, so werden sie üblicherweise der Schmelze zugesetzt, d. h. sie werden relativ hohen Temperaturen ausgesetzt. Insbesondere bei temperaturempfindlichen Aktivsubstanzen können diese Temperatu­ ren zu einer Reduzierung von deren Aktivität führen.
Der vorliegenden Erfindung lag demgemäß die Aufgabe zugrunde, eine Darreichungsform für Nachbehandlungsmittel für Geschirrspülmittel oder Textilwaschmittel oder sogenannte Waschkraft­ verstärker, die in fester oder flüssiger Form vorliegen können, zur Verfügung zu stellen, ohne daß die Aktivsubstanzen selbst in eine andere physikalische Form überführt werden müssen.
Gegenstand der vorliegenden Erfindung ist demgemäß ein teilchenförmiges Additiv für Wasch- und Reinigungsmittel, enthaltend übliche Aktivstoffe, das dadurch gekennzeichnet ist, dass das Additiv zumindest teilweise mit einem wasserlöslichen, wasserdispergierbaren und/oder schmelzbaren Material umhüllt ist.
Es wurde festgestellt, das sich Aktivstoffe, die als Nachbehandlungsmittel bei der Geschirrreini­ gung oder bei der Textilwäsche eingesetzt werden und in fester oder flüssiger Form vorliegen, sogenannte Waschkraftverstärker oder Maschinenpflgegemittel problemlos von wasserlöslichen oder wasserdispergierbaren Materialien umhüllt werden können, d. h. verkapselt werden können. Dadurch eröffnet sich die Möglichkeit ggf. flüssige Substanzen mit festen Wasch- und Reinigungs­ mitteln zu kombinieren.
Die Aktivstoffe können ganz oder teilweise umhüllt sein. Eine teilweise Umhüllung ist insbesondere dann geeignet, wenn sie nur dazu dient, die Aktivstoffe im Bereich der Umhüllung vor dem direkten Kontakt mit anderen Substanzen zu schützen. Die vollständige Umhüllung ist bevorzugt, wenn die Aktivstoffe auch von der Umgebungsluft abgetrennt werden sollen oder durch die Umhüllung eine verzögerte Freisetzung der Aktivstoffe eingestellt werden soll.
Die erfindungsgemäße Umhüllung der Additive bietet ferner die Möglichkeit, schmelzbaren Sub­ stanzen oder auch Flüssigkeiten oder Pulvern eine definierte Form zu verleihen, die von der Um­ hüllung vorgegeben werden kann.
Die im Rahmen der vorliegenden Erfindung eingesetzte Umhüllung ist wasserlöslich, wasserdis­ pergierbar und/oder schmelzbar. Das heisst, dass das Material, aus dem die Umhüllung besteht, sich nach einem bestimmten Zeitraum nach dem Einbringen in Wasser wenigstens teilweise auf­ löst oder zumindest eine Dispersion bildet oder bei Erreichen einer bestimmten Temperatur schmilzt, so dass die Umhüllung durchlässig wird und ein Stoffaustausch zwischen dem den Be­ hälter umgebenden Wasser und den vom Behälter umschlossenen Inhaltsstoffen ermöglicht wird.
Die Auswahl der Umhüllungsmaterialien erfolgt vorzugsweise in Abhängigkeit vom Einsatzzweck der erfindungsgemäßen Additive.
Wird das erfindungsgemäße Additiv als sogenannter Waschkraftverstärker eingesetzt, sollte sich die Umhüllung direkt im Anschluß auflösen und den Aktivstoff freisetzen. Das Reinigungsverfahren in einer Geschirrspülmaschine zeichnet sich dadurch aus, daß der Klarspülgang bei einer Tempe­ ratur oberhalb der Temperatur des Spülgangs liegt, üblicherweise zwischen 40 und 70°C. Es hat sich daher als geeignet erwiesen, wenn die Umhüllung sich während des Spülgangs nicht oder nur wenig löst und bei der im Klarspülgang vorliegenden Temperatur schmilzt und den bzw. die Aktiv­ stoffe freisetzt. Bei der Anwendung als Nachbehandlungsmittel bei der Textilwäsche sollte das erfindungsgemäße Additve eine solche Lösungskinetik aufweisen, daß die Aktivestoffe erst im Klarspülgang, vorzugsweise erst im letzten Klarspülgang freigesetzt werden.
Die Umhüllung besteht dabei vorzugsweise aus einem Material, das mindestens ein natürliches oder synthetisches Polymeres oder ein Gemisch aus zwei oder mehr davon enthält. Bevorzugt enthält das Material, aus dem die Umhüllung besteht, Gelatine, Polyvinylalkohol, Polyethylenglykol, Celluloseether, Alginsäure und/oder Alginate oder Pektinsäure oder ein Gemisch aus zwei oder mehr davon. Weiterhin kann das Material, aus dem die Umhüllung besteht, Zusatzstoffe enthalten, welche die Elastizität und Wasserlöslichkeit beeinflussen. Vorzugsweise enthält das Material, aus dem die Umhüllung besteht, Gelatine und einen Weichmacher, beispielsweise Glykol. Glyzerin oder Sorbitol. Der Anteil an Weichmachern am Material, aus dem die Umhüllung besteht, beträgt in der Regel etwa 10 bis etwa 40 Gew.-%.
Die Umhüllung kann grundsätzlich eine beliebige Form aufweisen, wobei rationell und kostengün­ stig herstellbare Formen in der Regel bevorzugt sind.
Hierzu gehören beispielsweise alle in Bezug auf wenigstens eine Achse rotationssymmetrischen Formen, beispielsweise die Kugelform, elliptische Formen oder zylindrische Formen, wobei als Umhüllung eine Kapsel in Form eines an beiden Enden durch Halbkugelschalen verschlossenen Zylinders bevorzugt ist. Die Umhüllung kann einteilig oder mehrteilig ausgebildet sein, wobei die einteilige oder die zweiteilige, öffenbare und verschliessbare Form, bevorzugt ist.
Die Umhüllung sollte einen solchen Rauminhalt aufweisen, daß eine übliche Dosiermenge für den gewünschten Anwendungszweck eingefüllt werden kann. Auch sollte berücksichtigt werden, daß bei der Anwendung in einer Geschirrspülmaschine oder Waschmaschine das Additiv nicht über die Laugenpumpe abgepumpt werden kann sondern durch die vorhandenen Siebe in der Maschine zurückgehalten wird. Vorzugsweise liegt der Rauminhalt für Anwendungen im Haushalt zwischen etwa 0,5 und etwa 300 ml, besonders bevorzugt zwischen etwa 0,8 und etwa 30 ml, und insbeson­ dere zwischen 1 und etwa 20 ml auf. Bei einer Anwendung im industriellen Bereich können gege­ benenfalls auch Rauminhalte von mehr als 300 ml sinnvoll sein.
Als Aktivstoffe kann das erfindungsgemäße Additiv beispielsweise solch Stoffe enthalten, die wäh­ rend des Reinigungs- oder Waschvorgangs eine verstärkende Wirkung zeigen oder die erst in ei­ nem Klarspülgang danach ihre Wirkung entfalten. Besonders geeignete Aktivstoffe sind Tenside, Gerüststoffe, Bleichmittel, Bleichaktivatoren, Farbstoffe. Duftstoffe, optischen Aufheller, Enzyme, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, Vergrauungsinhibitoren, Farbübertragungs­ inhibitoren und Korrosionsinhibitoren. Die Aktivstoffe werden unten genauer beschrieben.
Die Aktivstoffe können in an sich bekannter Weise umhüllt werden, z. B. durch Aufbringen der Hüllmaterialien aus der Schmelze oder aus Lösungen oder Dispersionen erfolgen, wobei das Lö­ sungs- bzw. Emulgiermittel durch Verdampfen entfernt wird. Auch ein Aufbringen als feines Pulver, beispielsweise durch elektrostatische Techniken, ist möglich, wenngleich diese Methode zu unre­ gelmäßigen und schlecht haftenden Beschichtungen führt. Die Hüllmaterialien können dabei in Rühr-, Misch- und Granulierapparaten auf Partikel aufgebracht werden. Bevorzugt ist aber eine Aufbringung der Hüllmaterialien in einer Wirbelschicht, wobei gleichzeitig eine Größenklassierung der Teilchen erfolgen kann.
Beim Sprühverfahren eignen sich alle in der Pharmazie und Lebensmitteltechnologie etablierten Verfahren zur Herstellung von beschichteten Tabletten, Kapseln und Partikeln. Die Polymersus­ pension bzw. -lösung wird dabei entweder diskontinuierlich in kleinen Portionen aufgesprüht, wobei die Partikel z. B. auf einem Förderband durch einen Flüssigkeitsschleier transportiert und anschlie­ ßend im Luftstrom getrocknet werden oder kontinuierlich bei gleichzeitiger Trocknung durch den eingeblasenen Luftstrom in Wirbelschicht-, Fließbett- oder Flugschichtumhüllungsgeräten ver­ sprüht. Denkbar ist auch das Dragierverfahren, wenn den Dragiersirupen LCST-Polymere in aus­ reichend hoher Konzentration zugefügt werden. Das Aufbringen weiterer Schichten kann analog erfolgen. Ein Coating in kommerziell erhältlichen Trommelcoatern ist ebenfalls möglich. Geeignet sind z. B. kommerziell erhältliche Coater, z. B. der Firmen Lödige, Driam, Manesty, GS, Glatt.
Sollten die Hüllmaterialien unter bestimmten Umständen zu klebrigen Produkten führen, kann es sinnvoll sein, die umhüllten Phasen zusätzlich noch mit feinteiligen Stoffen zu beaufschlagen ("Ab­ pudern"). Als Abpuderungsmittel kommen sämtliche feinteiligen Stoffe in Frage, wobei auch andere Waschmittelbestandteile wie Buildersubstanzen verwendet werden können. Bevorzugt werden als zusätzliche Abpuderungsmittel Zeolithe, Silikate, polymere Polycarboxylate, Carbonate, Citrate, Stärke, Cellulosederivate usw. benutzt. Auch ein Teil des ggf. vorhandenen Puffersystems kann zur Abpuderung eingesetzt werden.
In einer bevorzugten Ausführungsform werden als Hüllmaterialien vorgefertigte Kapseln verwendet, die beispielsweise als Steckkapseln im Handel erhältlich sind.
Werden als Aktivstoffe schmelzbare Substanzen eingesetzt, so hat es sich als besonders vorteil­ haft erwiesen, Halbkapseln zu verwenden, in welche die Aktivstoffe in Form ihrer Schmelze gefüllt werden. In dieser Ausführungsform werden Substanzen, die nur schwer zu portionieren und somit zu dosieren sind in eine gut dosierbare und einfach handhabbare Form überführt.
Die Additive können als eigenständige Produke oder in Kombination mit Geschirrspülmitteln oder Textilwaschmitteln eingesetzt werden.
Die erfindungsgemäßen Additive können dem Verbraucher direkt an die Hand gegeben werden, so dass er sie zusätzlich bedarfsgerecht dem Reinigungsmittel bzw. Waschmittel zudosiert. Aufgrund dieses zusätzlichen Dosierschritts würden aber außer der festen Anbietungsform und der Zugabe in das gleiche Dosierfach die Vorteile gegenüber flüssigen Mitteln minimiert. Bevorzugt ist es des­ halb, die erfindungsgemäßen Additive mit teilchenförmigen maschinellen Geschirrspülmitteln bzw. Textilwaschmittel, insbesondere solchen, die in Form von Formkörpern vorliegen, zu kombinieren.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher auch ein teilchenförmiges maschi­ nelles Geschirrspülmittel, enthaltend Gerüststoffe sowie mindestens einen weiteren Inhaltsstoff aus den Gruppen der Tenside, Enzyme, Bleichmittel, Bleichaktivatoren, Korrosionsinhibitoren, Polyme­ re, Farb- und Duftstoffe und Maschinenpflegemittel, dadurch gekennzeichnet, dass mindestens ein weiterer Inhaltsstoff mit einem wasserlöslichen, wasserdispergierbaren und/oder schmelzbaren Material umhüllt ist.
Vorzugsweise liegt der umhüllte Inhaltsstoff in Mengen von 0,5 bis 30 Gew.-%, vorzugsweise von 1 bis 25 Gew.-% und insbesondere von 2 bis 15 Gew.-%, jeweils bezogen auf das gesamte Mittel, vor.
Noch ein weiterer Gegenstand der vorliegenden Erfindung ist daher auch ein teilchenförmiges ma­ schinelles Textilwaschmittel, enthaltend Gerüststoffe sowie optional weitere Inhaltsstoffe aus den Gruppen der Tenside, Enzyme, Bleichmittel. Bleichaktivatoren, Korrosionsinhibitoren, Polymere, Farb- und Duftstoffe und Maschinenpflgemittel, dadurch gekennzeichnet, dass einer oder mehrere der weiteren Inhaltsstoffe mit einem mit einem wasserlöslichen, wasserdispergierbaren und/oder schmelzbaren Material umhüllt sind.
Die Inhaltsstoffe der maschinellen Geschirrspülmittel bzw. Textilwaschmittel werden nachfolgend beschrieben. Zum Teil können diese auch als Aktivstoffe oder Trägermaterialien in den erfindungs­ gemäßen Additiven enthalten sein.
Wichtige Inhaltsstoffe von maschinellen Geschirrspülmitteln und auch Textilwaschmitteln sind Ge­ rüststoffe. In den erfindungsgemäßen Mitteln für das maschinelle Geschirrspülen können dabei alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbe­ sondere also Zeolithe, Silikate, Carbonate, organische Cobuilder die Phosphate. Die nachstehend genannten Gerüststoffe sind auch als Trägermaterialien für Aktivsubstanzen, wie Klarspültenside.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1.H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5.yH2O be­ vorzugt.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vor­ zugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amor­ phen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, dass die Silikate bei Röntgenbeugungsexperimenten keine scharfen Rönt­ genreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehre­ re Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigen­ schaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, dass die Produkte mikrokri­ stalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Insbesondere bevorzugt sind verdichte­ te/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgena­ morphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vor­ zugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Cros­ field) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetz­ bar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S. p. A. unter dem Markennamen VEGOBOND AX® ver­ trieben wird und durch die Formel
nNa2O.(1-n)K2O.Al2O3.(2-2,5)SiO2.(3,5-5,5)H2O
beschrieben werden kann. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphos­ phate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall-(insbesondere Natrium- und Kalium-)-Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphor­ säuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterschei­ den kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, ver­ hindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3). Beide Salze sind weiße, in Wasser sehr leicht lösli­ che Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrime­ taphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3, hat einen Schmelz­ punkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Was­ serverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3, Schmelzpunkt 48° unter Verlust von 5H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3 Schmelzpunkt 35° unter Verlust von 5H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogen­ phosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Satz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahy­ drat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahy­ drat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (ent­ sprechend 39-40% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Was­ ser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasi­ ges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z. B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Ka­ liumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3 Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3 Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkali­ scher Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf < 200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lö­ sung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härte­ bildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliump­ hosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und ket­ tenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Gra­ hamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein was­ serfrei oder mit 6H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n = 3. In 100 g Wasser lösen sich bei Zimmer­ temperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Penta­ natriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtri­ phosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%igen Lösung (< 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphos­ phate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPO3)3 + 2KOH → Na3K2P3O10 + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mi­ schungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natri­ umkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripoly­ phosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkali­ umtripolyphosphat sind erfindungsgemäß einsetzbar.
Als organische Cobuilder können in den erfindungsgemäßen maschinellen Geschirrspülmitteln insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze ein­ setzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipin­ säure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäu­ ren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwir­ kung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mi­ schungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalime­ tallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gel­ permeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäu­ ren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säu­ ren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und ins­ besondere 30000 bis 40000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung einge­ setzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie bei­ spielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiede­ nen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acryl­ säure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acryl­ säure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen, beispielsweise Polyasparaginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaral­ dehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molma­ ssen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose- Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelb­ dextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Ein an C6 des Saccharidrings oxidiertes Produkt kann be­ sonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindi­ succinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) be­ vorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatz­ mengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche minde­ stens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei han­ delt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyal­ kanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vor­ zugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylen­ phosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Blei­ che enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen aus­ zubilden, als Cobuilder eingesetzt werden.
Als Tensid(e) können anionische, nichtionische, kationische und/oder amphotere Tenside bezie­ hungsweise Mischungen aus diesen eingesetzt werden.
Bevorzugt sind aus anwendungstechnischer Sicht Mischungen aus anionischen und nichtionischen Tensiden. Der Gesamttensidgehalt der Mittel liegt im Falle von Waschmitteln bei 5 bis 60 Gew.-%, bezogen auf das Gewicht des Mittels, wobei Tensidgehalte über 15 Gew.-% bevorzugt sind, wäh­ rend Reinigungsmittel für das maschinelle Geschirrspülen vorzugsweise unter 5 Gew.-% Tensid(e) enthalten.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate einge­ setzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsulfonate, Ole­ finsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18- Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Ester­ sulfonate), z. B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäu­ ren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglyce­ rinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Um­ esterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fett­ säureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlen­ stoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäu­ re, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäu­ rehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester se­ kundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten ge­ radkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Ver­ bindungen auf der basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3- Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 her­ gestellt werden und als Handelsprodukte der Shell Oil Company unter dem namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungs­ mitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalko­ holrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Ten­ side darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettal­ kohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hy­ drierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbe­ sondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2- Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthal­ ten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alko­ holethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18- Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14- Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen stati­ stische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbe­ sondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Mono­ glykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt wer­ den, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkyl­ ester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fett­ säuremethyleste.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-di­ methylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide kön­ nen geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel I,
in der R1CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel II,
in der R3 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlen­ stoffatomen, R4 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R5 für einen linearen, verzweigten oder cyclischen Alkylrest oder ei­ nen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder Propxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, bei­ spielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann durch Umsetzung mit Fettsäuremethyle­ stern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Im Rahmen der vorliegenden Erfindung sind Additive bevorzugt, die anionische(s) und nichtioni­ sche(s) Tensid(e) enthalten, wobei anwendungstechnische Vorteile aus bestimmten Mengenver­ hältnissen, in denen die einzelnen Tensidklassen eingesetzt werden, resultieren können.
In maschinellen Geschirrspülmitteln werden üblicherweise lediglich schwachschäumende nichtioni­ sche Tenside eingesetzt. Vertreter aus den Gruppen der anionischen, kationischen oder amphoteren Tenside haben dagegen eine geringere Bedeutung. Mit besonderem Vorzug enthalten erfindungsge­ mäße Mittel für das maschinellen Geschirrspülen nichtionische Tenside, insbesondere nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole. Als nichtionische Tenside werden vorzugswei­ se alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkohol­ resten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alko­ holen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15- Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mi­ schungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Bei­ spiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Insbesondere bei erfindungsgemäßen Mitteln für das maschinelle Geschirrspülen ist es bevorzugt, daß die Mittel ein nichtionisches Tensid enthalten, das einen Schmelzpunkt oberhalb Raumtemperatur aufweist. Demzufolge enthält mindestens eine der verformbaren Massen im erfindungsgemä­ ßen Verfahren bevorzugt ein nichtionisches Tensid mit einem Schmelzpunkt oberhalb von 20°C. Bevorzugt einzusetzende nichtionische Tenside weisen Schmelzpunkte oberhalb von 25°C auf, besonders bevorzugt einzusetzende nichtionische Tenside haben Schmelzpunkte zwischen 25 und 60°C, insbesondere zwischen 26,6 und 43,3°C.
Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Tempera­ turbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden bei Raumtemperaturhochviskose Niotenside eingesetzt, so ist bevorzugt, daß diese eine Viskosität oberhalb von 20 Pas, vorzugs­ weise oberhalb von 35 Pas und insbesondere oberhalb 40 Pas aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.
Bevorzugt als bei Raumtemperatur feste einzusetzende Niotenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxy­ ethylen/Polyoxypropylen (PO/EO/PO)-Tenside. Solche (PO/EO/PO)-Niotenside zeichnen sich dar­ überhinaus durch gute Schaumkontrolle aus.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tensid mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C-Atomen mit vorzugsweise minde­ stens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylen­ oxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist.
Ein besonders bevorzugtes bei Raumtemperatur festes, einzusetzendes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16-20-Alkohol), vorzugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere minde­ stens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten "narrow range ethoxylates" (siehe oben) besonders bevorzugt.
Das bei Raumperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten auf­ weisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus.
Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raum­ temperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen- Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block- Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthal­ tend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan.
Nichtionische Tenside, die mit besonderem Vorzu eingesetzt werden können, sind beispielsweise unter dem Namen Poly Tergent® SLF-18 von der Firma Olin Chemicals erhältlich.
Ein weiteres bevorzugtes Tensid läßt sich durch die Formel III
R6O[CH2CH(CH3)O]x(CH2CH2O)y[CH2CH(OH)R7] (III)
beschreiben, in der R6 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R7 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 und y für einen Wert von mindestens 15 steht.
Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel IV
R8O[CH2CH(R10)O]x[CH2]kCH(OH)[CH2]jOR9 (IV)
in der R8 und R9 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aroma­ tische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R10 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwi­ schen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≧ 2 ist, kann jedes R10 in der obenstehenden Formel unterschiedlich sein. R8 und R9 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aro­ matische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C- Atomen besonders bevorzugt sind. Für den Rest R10 sind H, -CH3 oder -CH2CH3 besonders be­ vorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
Wie vorstehend beschrieben, kann jedes R10 in der obenstehenden Formel unterschiedlich sein, falls x ≧ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R10 ausgewählt werden, um Ethylenoxid-(R3 = H) oder Propylenoxid-(R3 = CH3)Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein kön­ nen, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)-Gruppen einschließt, oder umgekehrt.
Insbesondere bevorzugte endgruppenverschlossenen Poly(oxyalkylierte) Alkohole der oben­ stehenden Formel weisen Werte von k = 1 und j = 1 auf, so daß sich die vorstehende Formel zu
R8O[CH2CH(R10)O]xCH2CH(OH)CH2OR9
vereinfacht. In der letztgenannten Formel sind R8, R9 und R17 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesonder von 6 bis 18. Besonders bevor­ zugt sind Tenside, bei denen die Reste R8 und R9 9 bis 14 C-Atome aufweisen, R10 für H steht und x Werte von 6 bis 15 annimmt.
In Mitteln für das maschinelle Geschirrspülen beschränkt sich der Einsatz von Tensiden vorzugs­ weise auf den Einsatz nichtionischer Tenside in geringen Mengen. Im Rahmen der vorliegenden Erfindung bevorzugt als Geschirrspülmittel einzusetzende Mittel sind dadurch gekennzeichnet, daß sie Gesamttensidgehalte unterhalb von 5 Gew.-%, vorzugsweise unterhalb von 4 Gew.-%, beson­ ders bevorzugt unterhalb von 3 Gew.-% und insbesondere unterhalb von 2 Gew.-%, jeweils bezo­ gen auf ihr Gesamtgewicht, aufweisen.
Ist das erfindungsgemäße Mittel ein Textilwaschmittel, enthält das Additive vorzugsweise textil­ weichmachende Substanzen, insbesondere kationische Tenside.
Beispiele kationische Tenside sind insbesondere quartäre Ammoniumverbindungen, kationische Polymere und Emulgatoren.
Geeignete Beispiele sind quartäre Ammoniumverbindungen der Formeln (VII) und (VIII),
wobei in (I) Ra und Rb für einen acyclischen Alkylrest mit 12 bis 24 Kohlenstoffatomen, Rc für einen gesättigten C1-C4 Alkyl- oder Hydroxyalkylrest steht, Rd entweder gleich Ra, Rb oder Rc ist oder für einen aromatischen Rest steht. X- steht entweder für ein Halogenid-, Metho-sulfat-, Methophos­ phat- oder Phosphation sowie Mischungen aus diesen. Beispiele für kationische Verbindungen der Formel (VII) sind Didecyldimethylammoniumchlorid, Ditalgdimethylammoniumchlorid oder Dihexa­ decylammoniumchlorid.
Verbindungen der Formel (VIII) sind sogenannte Esterquats. Esterquats zeichnen sich durch eine hervorragende biologische Abbaubarkeit aus. Hierbei steht Re für einen aliphatischen Acylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1, 2 oder 3 Doppelbindungen; Rf steht für H, OH oder O(CO)Rh, Rg steht unabhängig von Rf für H, OH oder O(CO)Ri, wobei Rh und Ri unabhängig voneinander jeweils für einen aliphatischen Acylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1, 2 oder 3 Doppel­ bindungen steht. m, n und p können jeweils unabhängig voneinander den Wert 1, 2 oder 3 haben. X- kann entweder ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mi­ schungen aus diesen sein. Bevorzugt sind Verbindungen, die für Rf die Gruppe O(CO)Rh und für Rc und Rh Alkylreste mit 16 bis 18 Kohlenstoffatomen enthalten. Besonders bevorzugt sind Verbin­ dungen, bei denen Rg zudem für OH steht. Beispiele für Verbindungen der Formel (VIII) sind Me­ thyl-N-(2-hydroxyethyl)-N,N-di(talgacyl-oxyethyl)ammonium-methosulfat, Bis-(palmitoyl)-ethyl­ hydroxyethyl-methyl-ammonium-methosulfat oder Methyl-N,N-bis(acyloxyethyl)-N-(2-hydroxy­ ethyl)ammonium-methosulfat. Werden quarternierte Verbindungen der Formel (VIII) eingesetzt, die ungesättigte Alkylketten aufweisen, sind die Acylgruppen bevorzugt, deren korrespondierenden Fettsäuren eine Jodzahl zwischen 5 und 80, vorzugsweise zwischen 10 und 60 und insbesondere zwischen 15 und 45 aufweisen und die ein cis/trans-Isomerenverhältnis (in Gew.-%) von größer als 30 : 70, vorzugsweise größer als 50 : 50 und insbesondere größer als 70 : 30 haben. Handelsübli­ che Beispiele sind die von Stepan unter dem Warenzeichen Stepantex® vertriebenen Methylhy­ droxyalkyldialkoyloxyalkylammoniummethosulfate oder die unter Dehyquart® bekannten Produkte von Cognis bzw. die unter Rewoquat® bekannten Produkte von Goldschmidt-Witco. Weitere bevor­ zugte Verbindungen sind die Diesterquats der Formel (IX), die unter dem Namen Rewoquat® W 222 LM bzw. CR 3099 erhältlich sind und neben der Weichheit auch für Stabilität und Farbschutz sorgen.
Rk und Rl stehen dabei unabhängig voneinander jeweils für einen aliphatischen Acylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1, 2 oder 3 Doppelbindungen.
Neben den oben beschriebenen quartären Verbindungen können auch andere bekannte Verbin­ dungen eingesetzt werden, wie beispielsweise quartäre Imidazoliniumverbindungen der Formel (X),
wobei Rm für H oder einen gesättigten Alkylrest mit 1 bis 4 Kohlenstoffatomen, Rn und Ro unab­ hängig voneinander jeweils für einen aliphatischen, gesättigten oder ungesättigten Alkylrest mit 12 bis 18 Kohlenstoffatomen, Rn alternativ auch für O(CO)Rp stehen kann, wobei Rp einen aliphati­ schen, gesättigten oder ungesättigten Alkylrest mit 12 bis 18 Kohlenstoffatomen bedeutet, und Z eine NH-Gruppe oder Sauerstoff bedeutet und X- ein Anion ist. q kann ganzzahlige Werte zwi­ schen 1 und 4 annehmen.
Weitere geeignete quartäre Verbindungen sind durch Formel (XI) beschrieben,
wobei Rq, Rr und Rs unabhängig voneinander für eine C1-4-Alkyl-, Alkenyl- oder Hydroxyal­ kylgruppe steht, Rt und Ru jeweils unabhängig ausgewählt eine C8-28-Alkylgruppe darstellt und r eine Zahl zwischen 0 und 5 ist.
Neben den Verbindungen der Formeln VII bis XI können auch kurzkettige, wasserlösliche, quartäre Ammoniumverbindungen eingesetzt werden, wie Trihydroxyethylmethylammonium-methosulfat oder die Alkyltrimethylammoniumchloride, Dialkyldimethylammoniumchloride und Trialkyl­ methylammoniumchloride, z. B. Cetyltrimethylammoniumchlorid, Stearyltrimethylammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethylammoniumchlorid, Lauryldimethylbenzyl­ ammoniumchlorid und Tricetylmethylammoniumchlorid.
Auch protonierte Alkylaminverbindungen, die weichmachende Wirkung aufweisen, sowie die nicht quaternierten, protonierten Vorstufen der kationischen Emulgatoren sind geeignet.
Weitere erfindungsgemäß verwendbare kationische Verbindungen stellen die quaternisierten Pro­ teinhydrolysate dar.
Zu den geeigneten kationischen Polymeren zählen die Polyquaternium-Polymere, wie sie im CTFA Cosmetic Ingredient Dictionary (The Cosmetic, Toiletry und Fragrance, Inc., 1997), insbesondere die auch als Merquats bezeichneten Polyquaternium-6-, Polyquaternium-7-, Polyquaternium-10- Polymere (Ucare Polymer IR 400; Amerchol), Polyquaternium-4-Copolymere, wie Pfropfcopolyme­ re mit einen Cellulosegerüst und quartären Ammoniumgruppen, die über Allyldimethylammonium­ chlorid gebunden sind, kationische Cellulosederivate, wie kationisches Guar, wie Guar­ hydroxypropyltriammoniumchlorid, und ähnliche quaternierte Guar-Derivate (z. B. Cosmedia Guar, Hersteller: Cognis GmbH), kationische quartäre Zuckerderivate (kationische Alkylpolyglucoside), z. B. das Handelsprodukt Glucquat®100, gemäß CTFA-Nomenklatur ein "Lauryl Methyl Gluceth-10 Hydroxypropyl Dimonium Chloride", Copolymere von PVP und Dimethylaminomethacrylat, Copo­ lymere von Vinylimidazol und Vinylpyrrolidon, Aminosilicon-polymere und Copolymere,
Ebenfalls einsetzbar sind polyquaternierte Polymere (z. B. Luviquat Care von BASF) und auch kationische Biopolymere auf Chitinbasis und deren Derivate, beispielsweise das unter der Han­ delsbezeichnung Chitosan® (Hersteller: Cognis) erhältliche Polymer.
Erfindungsgemäß ebenfalls geeignet sind kationische Silikonöle wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethyl­ silylamodimethicon), Dow Corning 929 Emulsion (enthaltend ein hydroxyl-amino-modifiziertes Sili­ con, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM- 55067 (Hersteller: Wacker) Abil®-Quat 3270 und 3272 (Hersteller: Goldschmidt-Rewo; diquartäre Polydimethylsiloxane, Quaternium-80), sowie Siliconquat Rewoquat® SQ 1 (Tegopren® 6922, Her­ steller: Goldschmidt-Rewo).
Ebenfalls einsetzbar sind Verbindungen der Formel (XII),
die Alkylamidoamine in ihrer nicht quaternierten oder, wie dargestellt, ihrer quaternierten Form, sein können. Rv kann ein aliphatischer Acylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1, 2 oder 3 Doppelbindungen sein. s kann Werte zwischen 0 und 5 annehmen. Rw und Rx stehen unabhängig voneinander jeweils für H, C1-4-Alkyl oder Hydroxyalkyl. Bevorzugte Verbindungen sind Fettsäure­ amidoamine wie das unter der Bezeichnung Tego Amid®S 18 erhältliche Stearylamidopropyldime­ thylamin oder das unter der Bezeichnung Stepantex®X 9124 erhältliche 3-Talgamidopropyl­ trimethylammonium-methosulfat, die sich neben einer guten konditionierenden Wirkung auch durch farbübertragungsinhibierende Wirkung sowie speziell durch ihre gute biologische Abbaubarkeit auszeichnen.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen hat das Na­ triumpercarbonat besondere Bedeutung. Dabei ist "Natriumpercarbonat" eine in unspezifischer Weise verwendete Bezeichnung für Natriumcarbonat-Peroxohydrate, welche streng genommen keine "Percarbonate" (also Salze der Perkohlensäure) sondern Wasserstoffperoxid-Addukte an Natriumcarbonat sind. Die Handelsware hat die durchschnittliche Zusammensetzung 2Na2CO3.3 H2O2 und ist damit kein Peroxycarbonat. Natriumpercarbonat bildet ein weißes, wasserlösliches Pulver der Dichte 2,14 gcm-3 das leicht in Natriumcarbonat und bleichend bzw. oxidierend wirken­ den Sauerstoff zerfällt.
Natriumcarbonatperoxohydrat wurde erstmals 1899 durch Fällung mit Ethanol aus einer Lösung von Natriumcarbonat in Wasserstoffperoxid erhalten, aber irrtümlich als Peroxycarbonat angese­ hen. Erst 1909 wurde die Verbindung als Wasserstoffperoxid-Anlagerungsverbindung erkannt, dennoch hat die historische Bezeichnung "Natriumpercarbonat" sich in der Praxis durchgesetzt.
Die industrielle Herstellung von Natriumpercarbonat wird überwiegend durch Fällung aus wäßriger Lösung (sogenanntes Naßverfahren) hergestellt. Hierbei werden wäßrige Lösungen von Natrium­ carbonat und Wasserstoffperoxid vereinigt und das Natriumpercarbonat durch Aussalzmittel (überwiegend Natriumchlorid), Kristallisierhilfsmittel (beispielsweise Polyphosphate, Polyacrylate) und Stabilisatoren (beispielsweise Mg2+-Ionen) gefällt. Das ausgefällte Salz, das noch 5 bis 12 Gew.-% Mutterlauge enthält, wird anschließend abzentrifuigiert und in Fließbett-Trocknern bei 90°C getrocknet. Das Schüttgewicht des Fertigprodukts kann je nach Herstellungsprozeß zwischen 800 und 1200 g/l schwanken. In der Regel wird das Percarbonat durch ein zusätzliches Coating stabilisiert. Coatingverfahren und Stoffe, die zur Beschichtung eingesetzt werden, sind in der Pa­ tentliteratur breit beschrieben. Grundsätzlich können erfindungsgemäß alle handelsüblichen Per­ carbonattypen eingesetzt werden, wie sie beispielsweise von den Firmen Solvay Interox, Degussa, Kemira oder Akzo angeboten werden.
Weitere brauchbare Bleichmittel sind beispielsweise Natriumperborattetrahydrat und Natri­ umperboratmonohydrat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phtha­ loiminopersäure oder Diperdodecandisäure. Auch beim Einsatz der Bleichmittel ist es möglich, auf den Einsatz von Tensiden und/oder Gerüststoffen zu verzichten, so daß reine Bleichmitteltabletten herstellbar sind. Sollen solche Bleichmitteltabletten zur Textilwäsche eingesetzt werden, ist eine Kombination von Natriumpercarbonat mit Natriumsesquicarbonat bevorzugt, unabhängig davon, welche weiteren Inhaltsstoffe in den Mitteln enthalten sind. Werden Reinigungs- oder Bleichmittelt­ abletten für das maschinelle Geschirrspülen hergestellt, so können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z. B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Per­ oxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren ge­ nannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium­ monoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxy­ laurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipinsäure und N-nonenyl­ amidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12- Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapron­ säue) können eingesetzt werden.
Als Bleichmittel in Mitteln für das maschinelle Geschirrspülen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.
Um beim Waschen oder Reinigen bei Temperaturen von 60°C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren eingearbeitet werden. Bleichaktivatoren, die die Wirkung der Bleichmittel unterstützen, sind beispielsweise Verbindungen, die eine oder mehre­ re N- bzw. O-Acylgruppen enthalten, wie Substanzen aus der Klasse der Anhydride, der Ester, der Imide und der acylierten Imidazole oder Oxime. Beispiele sind Tetraacetylethylendiamin (TAED), Tetraacetylmethylendiamin (TAMD) und Tetraacetylhexylendiamin (TAHD), aber auch Pentaace­ tylglucose (PAG), 1,5-Diacetyl-2,2-dioxo-hexahydro-1,3,5-triazin (DADHT) und Isatosäureanhydrid (ISA).
Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Per­ oxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substan­ zen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substi­ tuierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4- dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, ins­ besondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäurean­ hydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triace­ tin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran, n-Methyl-Morpholinium-Acetonitril- Methylsulfat (MMA), Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pen­ taacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N- alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N- Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevor­ zugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärken­ de Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru- oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu- Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Bevorzugt werden Bleichaktivatoren aus der Gruppe der mehrfach acylierte Alkylendiamine, insbe­ sondere Tetraacetylethylendiamin (TAED), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), vorzugsweise in Men­ gen bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.-% und be­ sonders bevorzugt 2 bis 6 Gew.-% bezogen auf das gesamte Mittel, eingesetzt.
Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan und/oder Cobaltsal­ ze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)- Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangan­ sulfatswerden in üblichen Mengen, vorzugsweise in einer Menge bis zu 5 Gew.-%, insbesondere von 0,0025 Gew.-% bis 1 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,25 Gew.-%, jeweils bezogen auf das gesamte Mittel, eingesetzt. Aber in speziellen Fällen kann auch mehr Bleichaktivator eingesetzt werden.
Die genannten Korrosionsinhibitoren können zum Schutze des Spülgutes oder der Maschine ebenfalls in die zu verarbeitenden Massen eingearbeitet werden, wobei im Bereich des ma­ schinellen Geschirrspülens Silberschutzmittel eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Sil­ berschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe einge­ setzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüberhinaus häufig aktivchlorhaltige Mittel, die das Korro­ dieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden beson­ ders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwer­ tige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Be­ vorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Man­ gans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
Werden Korrosiosschutzmittel Mitteln eingesetzt, die mehrphasige Formkörper sind, so ist es be­ vorzugt, diese von den Bleichmitteln zu trennen. Wasch- oder Reinigungsmittelformkörper, bei denen einer der Teile Bleichmittel enthält, während ein anderer Korrosionsschutzmittel enthält, sind demnach bevorzugt.
Auch die Trennung der Bleichmittel von anderen Inhaltsstoffen kann vorteilhaft sein. Erfin­ dungsgemäße Mittel, die in Form von mehrphasigen Formkörperen vorliegen und bei denen eine Phase Bleichmittel enthält, während eine andere Enzyme enthält, sind ebenfalls bevorzugt.
Als Enzyme kommen dabei insbesondere solche aus der Klassen der Hydrolasen wie der Protea­ sen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen wie protein-, fett- oder stärkehaltigen Verflec­ kungen und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können darüber hinaus durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weich­ heit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxi­ doreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humi­ cola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease und/oder Lipa­ se-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem In­ teresse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigne­ ten Amylasen zählen insbesondere alpha-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrofasen, Endoglucanasen und -Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich verschiedene Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch ge­ zielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.
In Mitteln für das maschinelle Geschirrspülen werden naturgemäß andere Enzyme eingesetzt, um den unterschiedlichen behandelten Substraten und Verschmutzunmgen Rechnung zu tragen. Hier kommen insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Li­ pasen bzw. lipolytisch wirkende Enzyme, Amylasen, Glykosylhydrolasen und Gemische der ge­ nannten Enzyme in Frage. Alle diese Hydrolasen tragen zur Entfernung von Anschmutzungen wie protein-, fett- oder stärkehaltigen Verfleckungen bei. Zur Bleiche können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vor­ zugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen ha­ ben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesonde­ re alpha-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen.
Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder En­ zymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis etwa 4,5 Gew.-%, jeweils bezogen auf den nicht verpreßten Teil, betragen.
Weitere Inhaltsstoffe, die enthalten sein können, sind beispielsweise Farbstoffe, optische Aufheller, Duftstoffe, soil-release-Verbindungen, soil-repellents, Antioxidantien, Fluoreszenzmittel, Schaumin­ hibitoren, Silikon- und/oder Paraffinöle, Farbübertragungsinhibitoren, Vergrauungshibitoren, Waschkraftverstärker usw.. Diese Stoffe werden nachfolgend beschrieben.
Um den ästhetischen Eindruck der erfindungsgemäßen Mittel zu verbessern, können sie ganz oder teilweise mit geeigneten Farbstoffen eingefärbt werden. Besondere optische Effekte lassen sich dabei bei Formkörpern erreichen, insbesondere wenn im Falle der Herstellung von Formkörpern aus mehreren Massen die zu verarbeitenden Massen unterschiedlich eingefärbt sind. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber den behandelten Substraten wie bei­ spielsweise Textilfasern oder Geschirrteilen, um diese nicht anzufärben.
Bevorzugt für den Einsatz in erfindungsgemäßen Mitteln sind alle Färbemittel, die im Waschprozeß oxidativ zerstört werden können sowie Mischungen derselben mit geeigneten blauen Farbstoffen, sog. Blautönern. Es hat sich als vorteilhaft erwiesen Färbemittel einzusetzen, die in Wasser oder bei Raumtemperatur in flüssigen organischen Substanzen löslich sind. Geeignet sind beispielswei­ se anionische Färbemittel, z. B. anionische Nitrosofarbstoffe. Ein mögliches Färbemittel ist bei­ spielsweise Naphtholgrün (Colour Index (CI) Teil 1: Acid Green 1; Teil 2: 10020), das als Handels­ produkt beispielsweise als Basacid® Grün 970 von der Fa. BASF, Ludwigshafen, erhältlich ist, so­ wie Mischungen dieser mit geeigneten blauen Farbstoffen. Als weitere Färbemittel kommen Pig­ mosol® Blau 6900 (CI 74160), Pigmosol® Grün 8730 (CI 74260), Basonyl® Rot 545 FL (CI 45170), Sandolan® Rhodamin EB400 (CI 45100), Basacid® Gelb 094 (CI 47005), Sicovit® Patentblau 85 E 131 (CI 42051), Acid Blue 183 (CAS 12217-22-0, CI Acidblue 183), Pigment Blue 15 (CI 74160), Supranol® Blau GLW (CAS 12219-32-8, CI Acidblue 221)), Nylosan® Gelb N-7GL SGR (CAS 61814-57-1, CI Acidyellow 218) und/oder Sandolan® Blau (CI Acid Blue 182, CAS 12219-26-0) zum Einsatz.
Bei der Wahl des Färbemittels muß beachtet werden, daß die Färbemittel keine zu starke Affinität gegenüber den textilen Oberflächen und hier insbesondere gegenüber Kunstfasern aufweisen. Gleichzeitig ist auch bei der Wahl geeigneter Färbemittel zu berücksichtigen, daß Färbemittel un­ terschiedliche Stabilitäten gegenüber der Oxidation aufweisen. Im allgemeinen gilt, daß wasserunlösliche Färbemittel gegen Oxidation stabiler sind als wasserlösliche Färbemittel. Abhängig von der Löslichkeit und damit auch von der Oxidationsempfindlichkeit variiert die Konzentration des Fär­ bemittels in den Wasch- oder Reinigungsmitteln. Bei gut wasserlöslichen Färbemitteln, z. B. dem oben genannten Basacid® Grün oder dem gleichfalls oben genannten Sandolan® Blau, werden typischerweise Färbemittel-Konzentrationen im Bereich von einigen 10-2 bis 10-3 Gew.-% gewählt. Bei den auf Grund ihrer Brillanz insbesondere bevorzugten, allerdings weniger gut wasserlöslichen Pigmentfarbstoffen, z. B. den oben genannten Pigmosol®-Farbstoffen, liegt die geeignete Konzen­ tration des Färbemittels in Wasch- oder Reinigungsmitteln dagegen typischerweise bei einigen 10-3 bis 10-4 Gew.-%.
Die erfindungsgemäßen Mittel können einen oder mehrere optische(n) Aufheller enthalten. Diese Stoffe, die auch "Weißtöner" genannt werden, werden in modernen Waschmittel eingesetzt, da sogar frisch gewaschene und gebleichte weiße Wäsche einen leichten Gelbstich aufweist. Optische Aufheller sind organische Farbstoffe, die einen Teil der unsichtbaren UV-Strahlung des Sonnen­ lichts in längerwelliges blaues Licht umwandeln. Die Emission dieses blauen Lichts ergänzt die "Lücke" im vom Textil reflektierten Licht, so daß ein mit optischem Aufheller behandeltes Textil dem Auge weißer und heller erscheint. Da der Wirkungsmechanismus von Aufhellern deren Aufziehen auf die Fasern voraussetzt, unterscheidet man je nach "anzufärbenden" Fasern beispielsweise Aufheller für Baumwolle, Polyamid- oder Polyesterfasern. Die handelsüblichen für die Inkorporation in Waschmittel geeigneten Aufheller gehören dabei im wesentlichen fünf Strukturgruppen an Der Stilben-, der Diphenylstilben-, der Cumarin-Chinolin-, der Diphenylpyrazolingruppe und der Gruppe der Kombination von Benzoxazol oder Benzimidazol mit konjugierten Systemen. Ein Überblick über gängige Aufheller ist beispielsweise in G. Jakobi, A. Löhr "Detergents and Textile Washing", VCH-Verlag, Weinheim, 1987, Seiten 94 bis 100, zu finden. Geeignet sind z. B. Salze der 4,4'- Bis[(4-anilino-6-morpholino-s-triazin-2-yl)amino]-stilben-2,2'-disulfonsäure oder gleichartig aufge­ baute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methyl­ aminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z. B. die Alkalisalze des 4,4'- Bis(2-sulfostyryl)-diphenyls, 4,4-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2- sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
Duftstoffe werden den erfindungsgemäßen Mitteln zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Leistung des Produkts ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riech­ stoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.- Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinytacetat, Phenylethylacetat, Linalylben­ zoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenalde­ hyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, ∝-Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phe­ nylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Üblicherweise liegt der Gehalt der erfindungsgemäßen Mittel an Duftstoffen bis zu 2 Gew.-% der gesamten Formulierung. Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbei­ tet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haf­ tung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für lan­ ganhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Zusätzlich können die Mittel auch Komponenten enthalten, welche die Öl- und Fettauswaschbar­ keit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsge­ mäßen Waschmittel, das diese Öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten Öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtio­ nisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Als Schauminhibitoren, die in den erfindungsgemäß hergestellten Mitteln eingesetzt werden kön­ nen, kommen beispielsweise Seifen, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können.
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Sal­ ze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch was­ serlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin las­ sen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z. B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyal­ kylcellulose und Mischether wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Me­ thylcarboxy-methylcellulose und deren Gemische in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt
Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mischungen, zum Knittern eigen können, weil die Einzelfasern gegen Durchbiegen, Knicken. Pressen und Quet­ schen quer zur Faserrichtung empfindlich sind, können die erfindungsgemäß hergestellten Mittel synthetische Knitterschutzmittel enthalten. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern. Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester.
Zur Bekämpfung von Mikroorganismen können die erfindungsgemäß hergestellten Mittel antimi­ krobielle Wirkstoffe enthalten. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungiostatika und Fungiziden usw. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarlylsul­ fonate, Halogenphenole und Phenolmercuriacetat, wobei auch gänzlich auf diese Verbindungen verzichtet werden kann.
Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Verän­ derungen an den Mitteln und/oder den behandelten Textilien zu verhindern, können die Mittel Anti­ oxidantien enthalten. Zu dieser Verbindungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechnine und aromatische Amine sowie organische Sulfide, Polysulfide, Dithiocarbamate, Phosphite und Phosphonate.
Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antstatika resultieren, die den erfindungsgemäß hergestellten Mitteln zusätzlich beigefügt werden. Antistatika vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülligan­ den und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoni­ umverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Al­ kylsulfate) Antistatika unterteilen. Die hier offenbarten Lauryl-(bzw. Stearyl-)dimethylbenzylam­ moniumchloride eignen sich als Antistatika für Textilien bzw. als Zusatz zu Waschmitteln, wobei zusätzlich ein Avivageeffekt erzielt wird.
Zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behandelten Textilien und zur Erleichterung des Bügelns der behandelten Textilien können in den erfindungs­ gemäß hergestellten Mitteln beispielsweise Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten der Mittel durch ihre schauminhibierenden Eigenschaften. Bevor­ zugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkyl­ gruppen ein bis fünf C-Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Die Viskositäten der bevorzugten Silikone liegen bei 25°C im Bereich zwischen 100 und 100.000 Centistokes, wobei die Silikone in Mengen zwischen 0,2 und 5 Gew.-%, bezogen auf das gesamte Mittel eingesetzt wer­ den können.
Schließlich können die erfindungsgemäß hergestellten Mittel auch UV-Absorber enthalten, die auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern verbessern. Verbindun­ gen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslo­ se Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3-Stellung Phenylsub­ stituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet.
Bei allen vorstehend genannten Inhaltsstoffen können vorteilhafte Eigenschaften daraus re­ sultieren, sie von anderen Inhaltsstoffen zu trennen bzw. sie mit bestimmten anderen Inhaltsstoffen gemeinsam zu konfektionieren. Bei mehrphasigen Formkörpern können die einzelnen Phasen auch einen unterschiedlichen Gehalt an demselben Inhaltsstoff aufweisen, wodurch Vorteile erzielt werden können.
Beispiele für Maschinenpflegemittel sind Wasserenthärter und Entkalker. Als Wasserenthärter sind alle aus dem Stand der Technik bekannten Substanzen geeignet, die dazu in der Lage sind, Ca­ lonen zu komplexieren. Entkalker sind Substanzen, die dazu in der Lage sind, Kalkablagerungen aufzulösen und vorzugweise auch in Lösung zu halten, wie z. B. organische und anorganische Säuren.
Beispiele für geeignete Säuren, die als Entkalker eingesetzt werden können, sind Borsäure sowie Alkalimetallhydrogensulfate, Alkalimetalldihydrogenphosphate und andere anorganische Salze sowie feste Mono-, Oligo- und Polycarbonsäuren und -hydroxycarbonsäuren, wie Citronensäure, Äpfelsäure, Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Ox­ alsäure sowie Polyacrylsäure, organische Sulfonsäuren wie Amidosulfonsäure Kommerziell erhält­ lich und als Säure im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist So­ kalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glut­ arsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).
Liegen die erfindungsgemäßen Mittel als Formkörper vor, so können als weitere Bestandteile Desintegrationsmittel und ein Braussystem enthalten sein.
Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrations­ hilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu ver­ kürzen. Diese Stoffe eignen sich beispielsweise dazu, die Freisetzung einzelner Form­ körperbereiche gegenüber anderen Bereichen zu beschleunigen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstan­ den, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkungs als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), anderer­ seits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbo­ nat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrro­ lidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Ca 13795 00070 552 001000280000000200012000285911368400040 0002010062585 00004 13676sein-Derivate.
Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desin­ tegrationsmittel auf Cellulosebasis eingesetzt.
Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal be­ trachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufge­ baut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hy­ droxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate falten beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulose­ basis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose ein­ gesetzt, die frei von Cellulosederivaten ist.
Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Wasch- und Reini­ gungsmittelformkörper, die Sprengmittel in granularer oder gegebenenfalls cogranulierter Form enthalten, werden in den deutschen Patentanmeldungen DE 197 09 991 (Stefan Herzog) und DE 197 10 254 (Henkel) sowie der internationalen Patentanmeldung WO 98/40463 (Henkel) beschrie­ ben. Diesen Schriften sind auch nähere Angaben zur Herstellung granulierter, kompaktierter oder cogranulierter Cellulosesprengmittel zu entnehmen. Die Teilchengrößen solcher Desintegrations­ mittel liegen zumeist oberhalb 200 µm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 µm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 µm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrations­ hilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristalli­ nen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Pri­ märteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper ent­ halten zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formkörpergewicht.
Die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können darüberhinaus ein ga­ sentwickelndes Brausesystem enthalten, das in eine oder mehrere der zu verarbeitenden Massen inkorporiert wird. Das gasentwickelnde Brausesystem kann aus einer einzigen Substanz bestehen, die bei Kontakt mit Wasser ein Gas freisetzt. Unter diesen Verbindungen ist insbesondere das Magnesiumperoxid zu nennen, das bei Kontakt mit Wasser Sauerstoff freisetzt. Üblicherweise be­ steht das gasfreisetzende Sprudelsystem jedoch seinerseits aus mindestens zwei Bestandteilen, die miteinander unter Gasbildung reagieren. Während hier eine Vielzahl von Systemen denk- und ausführbar ist, die beispielsweise Stickstoff, Sauerstoff oder Wasserstoff freisetzen, wird sich das in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern eingesetzte Sprudelsystem sowohl anhand ökonomischer als auch anhand ökologischer Gesichtspunkte auswählen lassen. Bevorzugte Brausesysteme bestehen aus Alkalimetallcarbonat und/oder -hydrogencarbonat sowie einem Acidifizierungsmittel, das geeignet ist, aus den Alkalimetallsalzen in wäßrige Lösung Koh­ lendioxid freizusetzen.
Bei den Alkalimetallcarbonaten bzw. -hydrogencarbonaten sind die Natrium- und Kaliumsalze aus Kostengründen gegenüber den anderen Salzen deutlich bevorzugt. Selbstverständlich müssen nicht die betreffenden reinen Alkalimetallcarbonate bzw. -hydrogencarbonate eingesetzt werden; vielmehr können Gemische unterschiedlicher Carbonate und Hydrogencarbonate aus waschtech­ nischem Interesse bevorzugt sein.
In bevorzugten Wasch- und Reinigungsmittelformkörpern werden als Brausesystem 2 bis 20 Gew.- %, vorzugsweise 3 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% eines Alkalimetallcarbonats oder -hydrogencarbonats sowie 1 bis 15, vorzugsweise 2 bis 12 und insbesondere 3 bis 10 Gew.- % eines Acidifizierungsmittels, jeweils bezogen auf den gesamten Formkörper, eingesetzt. Der gehalt einzelner Massen an den genannten Substanzen kann dabei durchaus höher liegen.
Als Acidifizierungsmittel, die aus den Alkalisalzen in wäßriger Lösung Kohlendioxid freisetzen, sind beispielsweise Borsäure sowie Alkalimetallhydrogensulfate, Alkalimetalldihydrogenphosphate und andere anorganische Salze einsetzbar. Bevorzugt werden allerdings organische Acidifizierungs­ mittel verwendet, wobei die Citronensäure ein besonders bevorzugtes Acidifizierungsmittel ist. Einsetzbar sind aber auch insbesondere die anderen festen Mono-, Oligo- und Polycarbonsäuren. Aus dieser Gruppe wiederum bevorzugt sind Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäu­ re, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Organische Sulfonsäuren wie Ami­ dosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.- %) und Adipinsäure (max. 33 Gew.-%).
Bevorzugt sind im Rahmen der vorliegenden Erfindung Wasch- und Reinigungsmittelformkörper, bei denen als Acidifizierungsmittel im Brausesystem ein Stoff aus der Gruppe der organischen Di-, Tri- und Oligocarbonsäuren bzw. Gemische aus diesen eingesetzt werden.
Die Herstellung der Kombinationsprodukte kann in an sich bekannter Weise erfolgen.
In einer möglichen Ausführungsform liegen die erfindungsgemäßen Mittel als Formkörper vor. Die Formkörper und die umhüllten Additive können separat hergestellt und anschließend miteinander verbunden, dabei können die Formkörper bereits für die umhüllten Additive vorgefertige Ausspa­ rungen, wie Mulden oder durchgehende Löcher, aufweisen. Das Verbinden kann beispielsweise durch einfaches Einstecken oder Einlegen in ein Loch bzw. eine Aussparung und/oder Verkleben der beiden festen Komponenten erfolgen.
In einer weiteren Ausführungsform werden die umhüllten Additve in einer geeigneten Tablettiervor­ richtung mit dem Vorgemisch für das Geschirrspülmittel bzw. Textilwaschmittel zu Formkörpern verarbeitet.
In den erfindungsgemäßen Mitteln können die umhüllten Additive mit den vorstehend genannten Größen aus der Matrix der anderen teilchenförmigen Inhaltsstoffe herausragen, die anderen Parti­ kel können aber ebenfalls Größen aufweisen, die im genannten Bereich liegen, so dass insgesamt ein Reinigungs- oder Textilwaschmittelmittel formuliert wird, das aus großen Reinigungsmittel- und Additivpartikeln besteht. Insbesondere, wenn die umhüllten Additive farbig sind, beispielsweise also eine rote, blaue, grüne oder gelbe Farbe aufweisen, ist es für das Erscheinungsbild des Pro­ dukts, d. h. des gesamten Mittels von Vorteil, wenn die umhüllten Additive sichtbar größer sind als die Matrix aus den Teilchen der übrigen Inhaltsstoffe des Mittels. Hier sind erfindungsgemäße teil­ chenförmige maschinelle Geschirrspül- bzw. Textilwaschmittel bevorzugt, die (ohne Berücksichti­ gung der umhüllten Additive) Teilchengrößen zwischen 200 und 3000 µm, vorzugsweise zwischen 300 und 2500 µm und insbesondere zwischen 400 und 2000 µm aufweisen.
Werden die erfindungsgemäßen Mittel als Pulvermischung formuliert, so kann - insbesondere bei stark unterschiedlichen Größen von umhüllten Additive und Reinigungsmittel- bzw. Textil­ waschmittel-Matrix - einerseits bei Rüttelbelastung des Pakets eine teilweise Entmischung eintre­ ten, andererseits kann die Dosierung in zwei aufeinanderfolgenden Reinigungsgängen unter­ schiedlich sein, da der Verbraucher nicht immer zwingend gleich viel Reinigungs- bzw. Textil­ waschmittel und Additive dosiert. Sollte gewünscht sein, technisch eine immer gleiche Menge pro Reinigungsgang einzusetzen, kann dies über die dem Fachmann geläufige Verpackung der erfindungsgemäßen Mittel in Beuteln aus wasserlöslicher Folie realisiert werden. Auch teilchenförmige maschinelle Geschirrspülmittel oder Textilwaschmittel, bei denen eine Dosiereinheit in einen Beutel aus wasserlöslicher Folie verpackt vorliegt, sind Gegenstand der vorliegenden Erfindung.
Hierdurch hat der Verbraucher nur noch einen Beutel, der beispielsweise ein Reinigungsmittel- bzw. Geschirrspülmittel-Pulver und mehrere optisch hervortretende Klarspülerpartikel enthält, in das Dosierfach seiner Geschirrspülmaschine bzw. Waschmaschine einzulegen. Diese Ausfüh­ rungsform der vorliegenden Erfindung ist daher eine optisch reizvolle Alternative zu herkömmlichen Mitteln.
Die erfindungsgemäßen Mittel lassen sich in an sich bekannter Weise herstellen. Ein Verfahren zur Herstellung pulverförmiger maschineller Geschirrspülmittel mit Klarspüleffekt, bei dem ein an sich bekanntes pulverförmiges maschinelles Geschirrspülmittel mit erfindungsgemäßen Klarspülerparti­ keln vermischt wird, ist daher ein weiterer Gegenstand der vorliegenden Erfindung.
Die weiter oben beschriebene gewünschte Zurückhaltung der Additive in der Maschine auch bei Wasserwechseln läßt sich außer der oben genannten Vergrößerung der Additivpartikel auch durch eine Verkleinerung der Löcher im Siebeinsatz realisieren. Auf diese Weise kann man maschinelle Geschirrspülmittel bzw. Textilwaschmittel formulieren, die eine einheitliche mittlere Teilchengröße aufweisen, welche kleiner als beispielsweise 4 bis 12 mm ist. Hierzu wird dem erfindungsgemäßen Produkt, bei dem auch die Additive geringere Teilchengrößen aufweisen, ein Siebeinsatz beigege­ ben, der den in der Maschine befindlichen Einsatz ersetzt bzw. abdeckt. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein Kit-of-parts, das ein erfindungsgemäßes pulverförmiges maschinelles Geschirrspülmittel bzw. Textilwaschmittel und einen Siebeinsatz für Haushaltsge­ schirrspülmaschinen bzw. Waschmaschinen umfaßt.
Wie bereits erwähnt, erlaubt die erfindungsgemäße Kombination von Mittel und Siebeinsatz die Formulierung von Mitteln, in denen auch die Additive geringere Teilchengrößen aufweisen. Erfin­ dungsgemäße kits-of-parts, bei denen die Partikelgrößen des erfindungsgemäßen Mittels (unter Berücksichtigung der Additivpartikel) im Bereich von 400 bis 2500 µm, vorzugsweise von 500 bis 1600 µm und insbesondere von 600 bis 1200 µm liegen, sind dabei bevorzugt.
Um Verstopfungen des beigelegten Siebeinsatzes durch Schmutzreste etc. zu verhindern, sollte die Maschenweite bzw. Lochgröße nicht zu klein gewählt werden. Hier sind erfindungsgemäße kits-of-parts bevorzugt, bei denen die Maschenweite bzw. Lochgröße des Siebeinsatzes 1 bis 4 mm beträgt und die Additive größer sind als diese Maschenweite bzw. Lochgröße des Siebeinsat­ zes.
Das erfindungsgemäße Kit-of-parts ist nicht auf die bestimmte Form des Siebeinsatzes beschränkt, bei dem dieser den in der Maschine befindlichen Einsatz ersetzt bzw. abdeckt. Es ist erfindungs­ gemäß auch möglich und bevorzugt, dem Kit-of-parts einen Siebeinsatz beizulegen, der die Form eines Körbchens aufweist, das in bekannter Weise in die Geschirrspülmaschine - beispielsweise an den Besteckkorb - eingehängt werden kann oder in die Trommel der Waschmaschine gegeben werden kann. Auf diese Weise ersetzt ein solchermaßen ausgestalteter Siebeinsatz die Dosier­ kammer, d. h. der Verbraucher dosiert das erfindungsgemäße Mittel direkt in diesen Siebeinsatz, der im Reinigungs- und Klarspülgang in der vorstehend beschriebenen Weise wirkt.

Claims (12)

1. Teilchenförmiges Additiv für Wasch- und Reinigungsmittel, enthaltend übliche Aktivstoffe, dadurch gekennzeichnet, dass das Additiv zumindest teilweise mit einem wasserlösli­ chen, wasserdispergierbaren und/oder schmelzbaren Material umhüllt ist.
2. Additiv nach Anspruch 1, dadurch gekennzeichnet, dass Umhüllungsmaterial ausgewählt ist natürlichen oder synthetischen Polymeren oder Gemischen daraus.
3. Additiv nach Anspruch 2, dadurch gekennzeichnet, dass die Polymere ausgwählt sind aus Gelatine, Polyvinylalkohol, Polyethylenglykol, Celluloseether, Alginsäure und/oder Al­ ginate oder Pektinsäure.
4. Additiv nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Umhüllung einen Rauminhalt von 0,5 bis 300 ml aufweist.
5. Additiv nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Aktivstoffe ausgewählt sind aus Tensiden, Gerüststoffen, Bleichmitteln, Bleichaktivatoren, Farbstoffe, Duftstoffe, optischen Aufheller, Enzyme, Schauminhibitoren, Silikonöle, Antirede­ positionsmittel, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhi­ bitoren, Maschinenpflegemitteln und beliebigen Gemischen der voranstehenden.
6. Verfahren zur Herstellung eines teilchenförmigen Additivs für Wasch- und Reinigungsmit­ tel, enthaltend übliche Aktivstoffe, dadurch gekennzeichnet, dass die Aktivstoffe zumin­ dest teilweise in an sich bekannter Weise mit einer Umhüllung versehen werden.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Umhüllung als Schmelze oder aus Lösungen oder Dispersionen aufgebracht wird.
8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Umhüllung eine Steck­ kapsel verwendet wird, in welche der Aktivstoff gefüllt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als Steckkapsel eine Halb­ kapsel verwendet wird.
10. Teilchenförmiges maschinelles Geschirrspülmittel, enthaltend Gerüststoffe sowie minde­ stens einen weiteren Inhaltsstoff aus den Gruppen der Tenside, Enzyme, Bleichmittel, Bleichaktivatoren, Korrosionsinhibitoren, Polymere, Farb- und Duftstoffe und Maschinenpflegemittel, dadurch gekennzeichnet, dass mindestens ein weiterer Inhaltsstoff mit ei­ nem wasserlöslichen, wasserdispergierbaren und/oder schmelzbaren Material umhüllt ist.
11. Teilchenförmiges maschinelles Geschirrspülmittel nach Anspruch 10, dadurch gekenn­ zeichnet, dass der umhüllte Inhaltsstoff in Mengen von 0,5 bis 30 Gew.-%, vorzugsweise von 1 bis 25 Gew.-% und insbesondere von 2 bis 15 Gew.-%, jeweils bezogen auf das ge­ samte Mittel, enthalten ist.
12. Teilchenförmiges maschinelles Textilwaschmittel, enthaltend Gerüststoffe sowie minde­ stens einen weiteren Inhaltsstoff aus der Gruppe der Tenside, Enzyme, Bleichmittel, Bleichaktivatoren, Korrosionsinhibitoren, Polymere, Farb- und Duftstoffe und Maschinen­ pflegegmittel, dadurch gekennzeichnet, dass einer oder mehrere der weiteren Inhaltsstoffe mit einem mit einem wasserlöslichen, wasserdispergierbaren und/oder schmelzbaren Ma­ terial umhüllt sind.
DE2000162585 2000-12-15 2000-12-15 Teilchenförmiges Additiv für Wasch- und Reinigungsmittel Withdrawn DE10062585A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2000162585 DE10062585A1 (de) 2000-12-15 2000-12-15 Teilchenförmiges Additiv für Wasch- und Reinigungsmittel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2000162585 DE10062585A1 (de) 2000-12-15 2000-12-15 Teilchenförmiges Additiv für Wasch- und Reinigungsmittel

Publications (1)

Publication Number Publication Date
DE10062585A1 true DE10062585A1 (de) 2002-06-27

Family

ID=7667311

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2000162585 Withdrawn DE10062585A1 (de) 2000-12-15 2000-12-15 Teilchenförmiges Additiv für Wasch- und Reinigungsmittel

Country Status (1)

Country Link
DE (1) DE10062585A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123892A1 (en) * 2004-06-10 2005-12-29 The Procter & Gamble Company Benefit agent containing delivery particle
WO2006024415A1 (de) * 2004-09-02 2006-03-09 Henkel Kommanditgesellschaft Auf Aktien In fester form konfektionierte flüssigkeiten für den einsatz in teilchenförmigen wasch- und reinigungsmitteln
WO2011121027A1 (de) * 2010-04-01 2011-10-06 Evonik Degussa Gmbh Härtbare mischung
US8927026B2 (en) 2011-04-07 2015-01-06 The Procter & Gamble Company Shampoo compositions with increased deposition of polyacrylate microcapsules
US8980292B2 (en) 2011-04-07 2015-03-17 The Procter & Gamble Company Conditioner compositions with increased deposition of polyacrylate microcapsules
US9162085B2 (en) 2011-04-07 2015-10-20 The Procter & Gamble Company Personal cleansing compositions with increased deposition of polyacrylate microcapsules
US9186642B2 (en) 2010-04-28 2015-11-17 The Procter & Gamble Company Delivery particle
US9993793B2 (en) 2010-04-28 2018-06-12 The Procter & Gamble Company Delivery particles
US12227720B2 (en) 2020-10-16 2025-02-18 The Procter & Gamble Company Consumer product compositions with at least two encapsulate populations

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123892A1 (en) * 2004-06-10 2005-12-29 The Procter & Gamble Company Benefit agent containing delivery particle
WO2006024415A1 (de) * 2004-09-02 2006-03-09 Henkel Kommanditgesellschaft Auf Aktien In fester form konfektionierte flüssigkeiten für den einsatz in teilchenförmigen wasch- und reinigungsmitteln
WO2011121027A1 (de) * 2010-04-01 2011-10-06 Evonik Degussa Gmbh Härtbare mischung
US9040608B2 (en) 2010-04-01 2015-05-26 Evonik Degussa Gmbh Curable mixture
US9993793B2 (en) 2010-04-28 2018-06-12 The Procter & Gamble Company Delivery particles
US12133906B2 (en) 2010-04-28 2024-11-05 The Procter & Gamble Company Delivery particle
US11096875B2 (en) 2010-04-28 2021-08-24 The Procter & Gamble Company Delivery particle
US9186642B2 (en) 2010-04-28 2015-11-17 The Procter & Gamble Company Delivery particle
US8927026B2 (en) 2011-04-07 2015-01-06 The Procter & Gamble Company Shampoo compositions with increased deposition of polyacrylate microcapsules
US9561169B2 (en) 2011-04-07 2017-02-07 The Procter & Gamble Company Conditioner compositions with increased deposition of polyacrylate microcapsules
US10143632B2 (en) 2011-04-07 2018-12-04 The Procter And Gamble Company Shampoo compositions with increased deposition of polyacrylate microcapsules
US9162085B2 (en) 2011-04-07 2015-10-20 The Procter & Gamble Company Personal cleansing compositions with increased deposition of polyacrylate microcapsules
US8980292B2 (en) 2011-04-07 2015-03-17 The Procter & Gamble Company Conditioner compositions with increased deposition of polyacrylate microcapsules
US12227720B2 (en) 2020-10-16 2025-02-18 The Procter & Gamble Company Consumer product compositions with at least two encapsulate populations

Similar Documents

Publication Publication Date Title
EP2001986B1 (de) Feste, textil-pflegende zusammensetzung mit einem wasserlöslichen polymer
DE10148571B4 (de) Semiautomatische Dosierung
DE10019936A1 (de) Wasch- und Reinigungsmittel
DE102007056525A1 (de) Polyoxyalkylenamine zur verbesserten Duftausbeute
EP1440141A2 (de) Im wesentlichen sedimentfrei dispergierbares wasch- oder reinigungsmittel
DE10003429A1 (de) Wasch- oder Reinigungsmittelportion mit kontrollierter Wirkstofffreisetzung
DE10062585A1 (de) Teilchenförmiges Additiv für Wasch- und Reinigungsmittel
DE102006013104A1 (de) Mehrphasiges Wasch-, Spül- oder Reinigungsmittel mit vertikalen Phasengrenzen
DE102006034899A1 (de) OH-gruppenhaltige Esterquats zur verbesserten Duftstoffausbeute
EP1103599A1 (de) Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel
DE19958472A1 (de) Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs
DE19914363A1 (de) Maschinelle Geschirrspülmittel mit teilchenförmigem Klarspüler
DE19934704A1 (de) Wasch- und Reinigungsmittelformkörper mit Dispersionsmitteln
DE10027672A1 (de) Wasch- und Reinigungsmittelformkörper/Verpackung-Kombination
DE10035849A1 (de) Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs
DE10044495A1 (de) Formkörper
DE20014919U1 (de) Teilchenförmige maschinelle Geschirrspülmittel mit Klarspüleffekt
DE19960096A1 (de) Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel
DE10049657C2 (de) Maschinelles Geschirreinigungsverfahren und maschinelle Geschirrspülmittel mit verbessertem Korrosionsschutz
DE19914364A1 (de) Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel
DE10058646A1 (de) Waschmittel-,Spülmittel-oder Reinigungsmittel-Portion mit kontrollierter Wirkstoff-Freisetzung
DE10111508A1 (de) Modifizierte Cyanacrylatester, daraus hergestellte Nano- oder Mikrokapseln und deren Verwendung in Wasch- oder Reinigungsmitteln
DE19958471A1 (de) Wasch- und Reingigungsmittel
DE102008015110A1 (de) Sprühgetrocknete Wasch- oder Reinigungsmittelprodukte
DE10134309A1 (de) Coextrusion von Wasch- und Reinigungsmitteln

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8139 Disposal/non-payment of the annual fee