DE1174240B - High temperature material for fuel assemblies and processes for their manufacture - Google Patents
High temperature material for fuel assemblies and processes for their manufactureInfo
- Publication number
- DE1174240B DE1174240B DEM52031A DEM0052031A DE1174240B DE 1174240 B DE1174240 B DE 1174240B DE M52031 A DEM52031 A DE M52031A DE M0052031 A DEM0052031 A DE M0052031A DE 1174240 B DE1174240 B DE 1174240B
- Authority
- DE
- Germany
- Prior art keywords
- carbide
- uranium
- mixed
- carbon
- material according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/5607—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/5607—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
- C04B35/5622—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/65—Reaction sintering of free metal- or free silicon-containing compositions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/404—Refractory metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
Description
Hochtemperaturwerkstoff für Brennelemente und Verfahren zu dessen Herstellung Für Hochtemperatur- und Brutreaktoren dienen natürliches bzw. angereichertes Uran und Thorium als Brennstoffe. Diese können in kompakter Form oder als Dispersion eingesetzt werden. In den meisten Fällen dienen dabei zur Aufnahme des Brennstoffes und als Moderator Graphit, als Kühlmittel und zur Wärmeübertragung Edelgase, insbesondere Helium. Zur Erzielung eines hohen thermischen Wirkungsgrades werden möglichst hohe Arbeitstemperaturen angestrebt (800 bis l800° C). Bei diesen Temperaturen reagieren Uran und Thorium mit Kohlenstoff unter Bildung von Karbiden, wobei unerwünschte Veränderungen im Brennstoffelement stattfinden.High temperature material for fuel assemblies and processes for their Production For high temperature and breeder reactors serve natural or enriched Uranium and thorium as fuels. These can be in compact form or as a dispersion can be used. In most cases they are used to hold the fuel and as a moderator graphite, as a coolant and for heat transfer noble gases, in particular Helium. To achieve a high thermal efficiency, the highest possible Aim for working temperatures (800 to 1800 ° C). React at these temperatures Uranium and thorium with carbon to form carbides, being undesirable Changes take place in the fuel element.
Die Karbidbildung während des Betriebes kann umgangen werden, wenn man von vornherein Karbide der genannten Metalle als Brennstoff einsetzt.The formation of carbides during operation can be avoided if carbides of the metals mentioned are used as fuel from the outset.
Dieser naheliegende Weg stößt allerdings auf Schwierigkeiten, denn sowohl Urankarbide als auch Thoriumkarbid reagieren -bei hohen Temperaturen ziemlich rasch mit dem umgebenden Graphit zu folgenden Kohlenstoffverbindungen: U2C3, UCZ bzw. ThC". Die Dikarbide vermögen wohl nicht mehr mit dem Graphit zu reagieren, doch sind sie besonders spröde, wandeln sich bei hohen Temperaturen (1.800° C) mit Dimensionsänderungen um und lösen temperaturabhängig Kohlenstoff. Die Thoriumkarbide sind außerdem an Luft instabil und gehen schnell, begünstigt durch Feuchtigkeit, in das Oxyd über.However, this obvious path encounters difficulties because Both uranium carbides and thorium carbide react quite well at high temperatures rapidly with the surrounding graphite to the following carbon compounds: U2C3, UCZ or ThC ". The dicarbides are no longer able to react with the graphite, however, they are particularly brittle and change with them at high temperatures (1,800 ° C) Dimensional changes and, depending on the temperature, dissolve carbon. The thorium carbides are also unstable in air and go quickly, favored by moisture, into the oxide.
Es ist daher von größter technischer Bedeutung, für das Uranmonokarbid Stabilisatoren zu finden, welche diesen Kernbrennstoff für Hochtemperaturreaktoren gegen Kohlenstoff bei den hohen Betriebstemperaturen beständig machen, d. h. die Bildung des Dikarbides unterbinden.It is therefore of the greatest technical importance for the uranium monocarbide To find stabilizers that use this nuclear fuel for high temperature reactors make it resistant to carbon at the high operating temperatures, d. H. the Prevent the formation of the dicarbide.
Grundsätzlich kommen dafür nur Metalle in Frage, welche höchstens Monokarbide bilden und mit dem UC weitgehend lückenlos mischbar sind. Die Metallkomponente darf keinen allzu großen Einfangsquerschnitt für Neutronen haben.Basically, only metals come into question, which at most Form monocarbides and are largely completely miscible with the UC. The metal component must not have an excessively large capture cross-section for neutrons.
Aus früheren Arbeiten war die lückenlose Mischbarkeit des UC mit ZrC, NbC und TaC bekannt, TiC und VC bilden wegen der zu großen Unterschiede in den Gitterkonstanten nur beschränkt Mischkristalle, und bei HfC dürfte trotz der passenden Elementarzellgröße auch bei Temperaturen um 2000° C noch eine Mischungslücke bestehen. Die Karbide des Chroms, Molybdäns und Wolframs bilden mit UC ternäre intermetallische Verbindungen. Von den genannten Karbiden kommen aus kernphysikalischen Gründen hauptsächlich das ZrC bzw. NbC in Frage. In der Literatur über die Systeme U-Zr-C und U-Nb-C wird angegeben, daß pseudobinäre Mischkristalle UC-ZrC und UC-NbC in Gegenwart von Kohlenstoff über 1000° C in Mischungen von UC2+MeC+C (Me=Zr, Nb) übergehen, daß es also keinen Bereich gibt, in dem diese Monokarbidmischkristalle in Gegenwart von Kohlenstoff stabil sind.From earlier work the complete miscibility of the UC with ZrC, NbC and TaC are known, TiC and VC form because of the great differences in the lattice constants only limited mixed crystals, and at HfC it should be despite the appropriate unit cell size There is still a miscibility gap even at temperatures around 2000 ° C. The carbides of chromium, molybdenum and tungsten form ternary intermetallic compounds with UC. For nuclear physics reasons, these are the main types of carbides mentioned ZrC or NbC in question. In the literature on the U-Zr-C and U-Nb-C systems indicated that pseudobinary mixed crystals UC-ZrC and UC-NbC in the presence of carbon above 1000 ° C in mixtures of UC2 + MeC + C (Me = Zr, Nb), so that there is no Area in which these monocarbide solid solutions are in the presence of carbon are stable.
Überraschenderweise zeigte sich aber, daß dies nicht der Fall ist. Sowohl in der Reihe UC-ZrC als auch UC-NbC wurden Bereiche gefunden, wo die Mischkristalle in Gegenwart von Kohlenstoff bis zu höchsten Temperaturen betändig sind und nicht in UC2+MeC+C zerfallen. Die Grenzen können dabei röntgenographisch bestimmt werden. Sie liegen für eine Temperatur von 1400° C bei 30 Molprozent UC (im System UC-ZrC), 25 Molprozent UC (im System UC-NbC) und 30 Molprozent UC (im System UC-ZrC-NbC). Bei höheren Temperaturen verschieben sich die Grenzen nach höheren UC-Gehalten.Surprisingly, however, it turned out that this is not the case. In both the UC-ZrC and UC-NbC series, areas were found where the mixed crystals in the presence of carbon up to the highest temperatures are and not decay into UC2 + MeC + C. The limits can be determined radiographically. For a temperature of 1400 ° C they are 30 mol percent UC (in the UC-ZrC system), 25 mol percent UC (in the UC-NbC system) and 30 mol percent UC (in the UC-ZrC-NbC system). At higher temperatures, the limits shift towards higher UC contents.
Herstellungsgemäß verfährt man bei den erfindungsgemäßen Werkstoffen so, daß man die vorgebildeten Monokarbide im entsprechenden Verhältnis mischt, preßt und auf eine Mischkristallbildungstemperatur von 1800 bis 2000° C erhitzt. Nach Zerkleinerung und Hinzumischen der entsprechenden Menge Graphitpulver wird zu entsprechenden Formteilen mit einem Preßdruck von 2 bis 7 t/cm2 verpreßt. Die Teile werden mit oder ohne Nachbehandlung in die Brennstoffbehälter eingesetzt.The materials according to the invention are used in accordance with the production process so that the pre-formed monocarbides are mixed in the appropriate ratio, pressed and heated to a mixed crystal formation temperature of 1800 to 2000 ° C. To Crushing and mixing in the appropriate amount of graphite powder results in appropriate Molded parts are pressed with a pressure of 2 to 7 t / cm2. the Parts are used in the fuel tanks with or without post-treatment.
Man kann auch so verfahren, daß entsprechende Mengen Uran-, Zirkonium- bzw./und Niobpulver (oder Hydridpulver) mit Kohlenstoffgemisch, das Gemisch heiß gepreßt und der entstandene Preßling zwecks vollständiger Homogenisierung zum Mischkristall bei 1800 bis 2000° C 2 bis 4 Stunden unter Wasserstoff, Argon oder im Vakuum geglüht wird. Dann wird wieder zerkleinert und mit den,',entsprechenden Mengen Graphitpulver vermengt zu Formkörpern verpreßt. Als Ausgangspulver für die Urankarbidkomponente kann natürliches und/oder angereichertes Uran verwendet werden.One can also proceed in such a way that corresponding amounts of uranium, zirconium or / and niobium powder (or hydride powder) with a carbon mixture, the mixture is hot pressed and the resulting compact for the purpose of complete homogenization to the mixed crystal annealed at 1800 to 2000 ° C for 2 to 4 hours under hydrogen, argon or in a vacuum will. Then it is crushed again and with the '' corresponding amounts of graphite powder blended into molded bodies. As a starting powder for the uranium carbide component natural and / or enriched uranium can be used.
Für die Zurückhaltung von Spaltprodukten während des Betriebes hat es sich ferner als vorteilhaft erwiesen, den Kohlenstoff in Form eines Überzuges auf die Pulverteilchen der betreffenden Karbidmischkristalle aufzubringen. Dazu hat sich das bekannte Wirbelbettverfahren bewährt, wobei die Teilchen mittels eines heißen Gasstromes eines Inertgases und eines Kohlenwasserstoffes in einem Gefäß aufgewirbelt und gleichzeitig unter Spaltung des Kohlenwasserstoffes mit einer dichten, sehr fest haftenden Kohleschicht gewünschter Stärke überzogen werden.Has for the retention of fission products during operation it has also proven advantageous to use the carbon in the form of a coating to apply to the powder particles of the carbide mixed crystals in question. In addition the known fluidized bed process has proven itself, with the particles by means of a hot gas stream of an inert gas and a hydrocarbon in a vessel whirled up and at the same time with splitting of the hydrocarbon with a dense, very firmly adhering carbon layer of the desired thickness are coated.
Claims (7)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT1174240X | 1961-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
DE1174240B true DE1174240B (en) | 1964-07-16 |
Family
ID=3686602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DEM52031A Pending DE1174240B (en) | 1961-03-07 | 1962-03-07 | High temperature material for fuel assemblies and processes for their manufacture |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE1174240B (en) |
-
1962
- 1962-03-07 DE DEM52031A patent/DE1174240B/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69110721T3 (en) | Nuclear fuel pellets and process for their manufacture. | |
Frost | The carbides of uranium | |
DE1055704B (en) | Fuel elements for nuclear reactors | |
US3207697A (en) | High-temperature nuclear fuel structures and their production | |
DE1241998B (en) | Zirconium alloy | |
DE2262868C3 (en) | Process for the production of pure monocarbides, mononitrides and carbonitrides | |
DE1174240B (en) | High temperature material for fuel assemblies and processes for their manufacture | |
US3213032A (en) | Process for sintering uranium nitride with a sintering aid depressant | |
DE68927319T2 (en) | Polycrystalline neutron-absorbing sintered bodies which contain rare earth oxides and those sintered bodies which are stabilized against water with a group 4A metal oxide. | |
Russell et al. | Observations on phase equilibria and sintering behaviour in the PuO2-UO2 system | |
DE1238118B (en) | Nuclear reactor fuel | |
Cheadle | The physical metallurgy of zirconium alloys | |
US4261935A (en) | Fabrication of thorium bearing carbide fuels | |
DE2401342A1 (en) | NEUTRON ABSORBING ALLOY | |
DE1222596B (en) | Absorber materials for nuclear reactors | |
Savchenko et al. | Zirconium Matrix Alloys for Uranium-Intensive Dispersion Fuel Compositions. | |
EP0855083B1 (en) | Modified, rim effect-delaying nuclear fuel | |
AT229441B (en) | High temperature material for fuel assemblies and processes for their manufacture | |
CN116024474B (en) | Beryllium-titanium alloy and application thereof in neutron breeder | |
DE1439836A1 (en) | Nuclear fuel | |
Dunning et al. | Boron containing control materials | |
Nightingale | Graphite: Advantages, limitations, and applications | |
Matsuura et al. | Soaking experiments for understanding corrosion behavior of Zircaloy with molten stainless steel− B4C at elevated temperatures | |
DE1100195B (en) | Process for the production of nuclear fuel in carbide form | |
DE1181187B (en) | Process for the production of core fuel carbides |