DE10305005A1 - Referenzelektrode - Google Patents
Referenzelektrode Download PDFInfo
- Publication number
- DE10305005A1 DE10305005A1 DE2003105005 DE10305005A DE10305005A1 DE 10305005 A1 DE10305005 A1 DE 10305005A1 DE 2003105005 DE2003105005 DE 2003105005 DE 10305005 A DE10305005 A DE 10305005A DE 10305005 A1 DE10305005 A1 DE 10305005A1
- Authority
- DE
- Germany
- Prior art keywords
- electrode
- hollow body
- electrolyte
- ceramic hollow
- porous oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910052574 oxide ceramic Inorganic materials 0.000 title claims abstract description 11
- 239000011224 oxide ceramic Substances 0.000 title claims abstract description 11
- 239000011343 solid material Substances 0.000 title abstract 2
- 238000001311 chemical methods and process Methods 0.000 title 1
- 239000003792 electrolyte Substances 0.000 claims abstract description 33
- 239000000126 substance Substances 0.000 claims abstract description 5
- 239000011148 porous material Substances 0.000 claims abstract description 3
- 150000003839 salts Chemical class 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 239000011265 semifinished product Substances 0.000 claims description 5
- 238000002848 electrochemical method Methods 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 229920003002 synthetic resin Polymers 0.000 claims description 2
- 239000000057 synthetic resin Substances 0.000 claims description 2
- 239000000155 melt Substances 0.000 claims 2
- 230000007613 environmental effect Effects 0.000 claims 1
- 239000010970 precious metal Substances 0.000 claims 1
- 239000000919 ceramic Substances 0.000 abstract description 15
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 11
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 10
- 239000004332 silver Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 229910052709 silver Inorganic materials 0.000 description 7
- 229910021607 Silver chloride Inorganic materials 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000001103 potassium chloride Substances 0.000 description 5
- 235000011164 potassium chloride Nutrition 0.000 description 5
- 150000001450 anions Chemical class 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 229940021013 electrolyte solution Drugs 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 229910021612 Silver iodide Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000013214 routine measurement Methods 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 229940045105 silver iodide Drugs 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- DOBUSJIVSSJEDA-UHFFFAOYSA-L 1,3-dioxa-2$l^{6}-thia-4-mercuracyclobutane 2,2-dioxide Chemical compound [Hg+2].[O-]S([O-])(=O)=O DOBUSJIVSSJEDA-UHFFFAOYSA-L 0.000 description 1
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052946 acanthite Inorganic materials 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- CUZMQPZYCDIHQL-VCTVXEGHSA-L calcium;(2s)-1-[(2s)-3-[(2r)-2-(cyclohexanecarbonylamino)propanoyl]sulfanyl-2-methylpropanoyl]pyrrolidine-2-carboxylate Chemical compound [Ca+2].N([C@H](C)C(=O)SC[C@@H](C)C(=O)N1[C@@H](CCC1)C([O-])=O)C(=O)C1CCCCC1.N([C@H](C)C(=O)SC[C@@H](C)C(=O)N1[C@@H](CCC1)C([O-])=O)C(=O)C1CCCCC1 CUZMQPZYCDIHQL-VCTVXEGHSA-L 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- RCTYPNKXASFOBE-UHFFFAOYSA-M chloromercury Chemical compound [Hg]Cl RCTYPNKXASFOBE-UHFFFAOYSA-M 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- RQQRAHKHDFPBMC-UHFFFAOYSA-L lead(ii) iodide Chemical compound I[Pb]I RQQRAHKHDFPBMC-UHFFFAOYSA-L 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 229910000474 mercury oxide Inorganic materials 0.000 description 1
- 229910000370 mercury sulfate Inorganic materials 0.000 description 1
- UKWHYYKOEPRTIC-UHFFFAOYSA-N mercury(ii) oxide Chemical compound [Hg]=O UKWHYYKOEPRTIC-UHFFFAOYSA-N 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- YPNVIBVEFVRZPJ-UHFFFAOYSA-L silver sulfate Chemical compound [Ag+].[Ag+].[O-]S([O-])(=O)=O YPNVIBVEFVRZPJ-UHFFFAOYSA-L 0.000 description 1
- 229910000367 silver sulfate Inorganic materials 0.000 description 1
- 229940056910 silver sulfide Drugs 0.000 description 1
- XUARKZBEFFVFRG-UHFFFAOYSA-N silver sulfide Chemical compound [S-2].[Ag+].[Ag+] XUARKZBEFFVFRG-UHFFFAOYSA-N 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- GBECUEIQVRDUKB-UHFFFAOYSA-M thallium monochloride Chemical compound [Tl]Cl GBECUEIQVRDUKB-UHFFFAOYSA-M 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- -1 transition metal cation Chemical class 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/301—Reference electrodes
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Die Erfindung betrifft eine Referenzelektrode mit oxidkeramischer Überführung, die ausschließlich aus festen Konstruktionsmaterialien besteht. Sie ist als Einzelelektrode oder als Teil von Einstabmessketten einsetzbar. Sie kann auch so gestaltet sein, dass die Aufgaben einer Referenzelektrode mit zusätzlichem Brückenelektrolyten mit erfindungsgemäßen Mitteln erfüllt sind.
Description
- Anwendungsgebiet der Erfindung
- Die Erfindung betrifft eine Feststoff-Referenzelektrode für elektrochemische Messungen, welche in unterschiedlicher geometrischer Form gestaltet sein und sowohl als einzelne Elektrode als auch als Teil einer kombinierten Elektrode (z. B. in einer pH-Einstabmesskette) vorliegen kann.
- Stand der Technik
- Prinzipiell eignen sich verschiedene Halbzellen als Referenzelektroden für elektrochemische Messungen. So werden häufig Elektroden
2 . Art, also Systeme, bestehend aus einem Metall, das mit einer Deckschicht eines seiner schlecht löslichen Salze überzogen ist und in eine Lösung taucht, die das in der Deckschicht enthaltene Anion aufweist, zur Anwendung gebracht. - Eine allgemeine Schreibweise für solche Elektroden lautet Me/MenXm/Xn–.
- In Abhängigkeit von der Aktivität der Anionen stellt sich eine Metallionenaktivität ein, welche durch das Löslichkeitsprodukt KL von MenXm bestimmt wird. Eine oft angewendete Elektrode dieser Art ist die Silberchloridelektrode, für deren KL-Wert sich dann beispielsweise ergibt: KL = aCl–·aAg+
-
-
- Dieses ändert sich gemäß der Nernstschen Gleichung mit der Chloridionenaktivität, was bedeutet, dass auf die beschriebene Weise Anionen, im hier betrachteten Fall Chloridionen, quantitativ bestimmbar sind. Hält man die das Silber/Silberchlorid-System umgebende Chloridionenkonzentration dauerhaft konstant, so liegt funktionell eine der in der messtechnischen Praxis am häufigsten eingesetzten Referenzelektroden vor.
- Weitere Systeme dieser Art, die in einer Vielzahl von Monographien und Übersichtsartikeln [K. Schwabe: pH-Meßtechnik, Verlag Theodor Steinkopff, Dresden und Leipzig 1963, S. 187 ff.; H. Galster: pH-Messung, Grundlagen, Methoden, Anwendungen, Geräte, VCH Verlagsgesellschaft, Weinheim, 1990, S. 70 ff.; F. Lisdat, W. Moritz, L. Müller: Z. Chem. 30 (1990) 427; H. Kaden, W. Vonau: J. prakt. Chem. 340 (1998) 710] einzeln aber auch in ihrer Gesamtheit im Detail beschrieben und untereinander verglichen und bewertet wurden, sind Silber/Silberbromid, Silber/Silberiodid, Silber/Silbersulfat, Silber/Silbersulfid, Silber/Silberoxid, Quecksilber/Quecksilberchlorid, Quecksilber/Quecksilbersulfat, Quecksilber/Quecksilberoxid, Thallium/Thalliumchlorid, Blei/Blei(II)iodid.
- In seltenen Fällen liegt im Messmedium eine dauerhaft annähernd konstante Aktivität des für die jeweilig zum Einsatz kommende Elektrode
2 . Art relevanten Anions vor. Ist dies aus nahmsweise der Fall, dann genügt es, eine Bezugselektrode ohne Überführung, d. h. ohne Diaphragma, anzuwenden. Unter bestimmten Umständen kann im Meerwasser auf diese Weise gemessen werden. In der Regel ist jedoch ein Diaphragma Bestandteil von konfektionierten Bezugselektroden2 . Art. Das Diaphragma besitzt die Aufgabe, zwischen dem Bezugselektrolyten und dem Messmedium eine leitende Verbindung herzustellen und zugleich ein Vermischen der Lösungen zu verhindern. Es kommen Drahtzöpfe aus Platin, Asbestfäden, poröse Keramikformkörper, Glasschliffe, Holz, aber auch konstruktiv gebildete Ringspalte, Luggin-Kapillaren, gesintertes PTFE u.a. zur Anwendung [F. Oehme: Ionenselektive Elektroden. Hüthig Buch Verlag, Heidelberg, 1991, S. 55 ff.]. - Werden anstelle der flüssigen Referenzelektrolytlösungen gelförmige Elektrolyte verwendet, wofür es vielfältige Möglichkeiten gibt [W. Vonau, J. Gabel, P. Teichmann, R. Lange:
DE 10047825 (2000)], wird z. T. auf das Diaphragma verzichtet. Dann spricht man von sog. Lochdiaphragmen [XEROLYT®-Elektroden, Ingold Messtechnik GmbH, Steinbach]. - Manchmal wird der feste Referenzelektrolyt weder zu einer flüssigen Lösung noch in einer versteiften Lösung (Gel) verarbeitet, sondern in polymere Kunststoffe eingelagert [T. H. Russel, D. Haaf:
EP 0247535 (1987)]. Auch dann entfällt die Notwendigkeit, Diaphragmen zu verwenden. - Diese sind wiederum, sogar in noch größerer Anzahl, notwendig, wenn Referenzelektroden auf der Basis homogener Redoxsysteme, wie z.B. dem System I3 – + 2e– ⇄ 3I– [J.W. Ross:
DE 3146066 (1982)], realisiert werden. - Alternative Lösungen für Referenzelektroden stellen u.a. die sog. Quasireferenzelektroden, die lediglich aus einem edelmetallischen Halbzeug bestehen, dar. Angelehnt an Arbeiten zu ionenselektiven Elektroden auf der Basis von Wolframoxid- und anderen übergangsmetalloxidischen Bronzen [M. Greenblatt, P. Shuk, K. V. Ramanujachary: US-Pat. 6015481 (2000)] wird letztlich vorgeschlagen, gemischtleitende Mischoxide als Grundmaterialien für feste Referenzelektroden zu verwenden [K. D. Kreuer, H. Kohler, K. Stellmacher:
DE 3639518 (1986)]; insbesondere werden auch Mischoxide der allgemeinen Formel AA'BO3±x vorgeschlagen, wobei A und A' mindestens zweiwertige Kationen und B ein multivalentes Übergangsmetallkation darstellen [R. Lukowski, U. Guth, 0. Schäf: Feste Referenzelektrode.DE 19823056 (1998)]. - Über ISFET-kompatible Bezugselektroden berichtet Bergveld [P. Bergveld: ISFET's for Physiological Measurements, in: Wen H. Ko (Hrsg.): Implantable Sensors for Closed-Loop Prostetic Systems. Mount Kisco, NY, USA (1985)].
- Kritik am Stand der Technik
- In keiner Weise erreichen Quasireferenzelektroden im Messeinsatz die Genauigkeit und Zuverlässigkeit von elektrochemischen Elektroden
2 . Art; gleiches gilt für Halbzellen auf der Basis metalloxidischer Bronzen. Insbesondere die Übereinstimmung der Absolutwerte der Potentiale identisch präparierter Elektroden ist dort bisher nicht gegeben, was klare Nachteile für die Routinemessung mit kommerziellen Messgeräten nach sich zieht. Keine verfügbare ISFET-kompatible Referenzelektrode entspricht den Kriterien für eine gute Bezugselektrode. - Für die meisten potentiometrischen elektrochemischen Messungen benötigt man Bezugselektroden mit Überführung. Die offene Überführung eignet sich in der Regel aus dem Grunde nicht für routinemäßige Messungen, weil mit dem in den häufigsten Fällen flüssigen Elektrolyten sehr sparsam umgegangen werden muss. Offene Überführungen im Zusammenhang mit der Anwendung von versteiften Elektrolyten begrenzen den Einsatzbereich entsprechender Bezugselektroden u. a. auf niedrige Drücke und Temperaturen sowie auf Analyte ohne Zusatz der meisten organischen Lösungsmittel, da die polymeren Gelbildner diesen nicht dauerhaft widerstehen. Gleiches gilt für gefüllte polymere Kunststoffe, wobei hier als Nachteil u.a. der hohe innere Elektrodenwiderstand hinzukommt.
- Es dominiert das stoffliche System Ag/AgCl, Cl– und als Diaphragmamaterialien werden oft poröse Keramiken eingesetzt. Häufig werden die Schäfte von Bezugselektroden aus Glas gefertigt. Um die Keramikdiaphragmen in diese Glasschäfte fest einzubringen, müssen sie eingeschmolzen werden. Dies bedingt, dass die linearen thermischen Ausdehnungskoeffizienten von dem verwendeten Schaftglas und dem eingesetzten Keramikkörper sehr gut übereinstimmen.
- Als vorherrschende Ausführungsform o.g. spezialkeramischer Materialien haben sich poröse Zylinder mit Außendurchmessern von ca. 0,5 mm und ca. 1 mm etabliert. Über Anzahl und Art der eingeschmolzenen Diaphragmastifte lassen sich bestimmte Eigenschaften der diese enthaltenden Bezugselektroden, z.B. der Elektrolytausfluss, grob einstellen. Größere Variationen der Elektrodengeometrie sind jedoch kaum möglich.
- Will man bei Anwendung von Elektroden
2 . Art als Referenzelektroden aus meist gegebenem Anlass verhindern, dass Elektrolyt und Messlösung am Diaphragma unmittelbar zusammentreffen, damit keine Verunreinigung der Messlösung durch den Bezugselektrolyten, keine Niederschläge unter Bildung schwerlöslicher Salze oder durch Löslichkeitsverlust bzw. keine Phasengrenzspannungen, z. B. zwischen wässrigen Elektrolytlösungen und organischen Lösungsmitteln entstehen, muss mit Elektrolytbrücken gearbeitet werden. Dies bedingt im Falle des Einsatzes von Glasbehältnissen den zusätzlichen Aufwand des Einschmelzens von Keramikdiaphragmen in mindestens zwei Glasschäfte. Die Realisierung von Elektroden mit homogenen Redoxsystemen erfordert gleiches. - Generelle Nachteile für Elektroden
2 . Art mit Überführung und mit flüssigem Referenzelektrolyten bestehen in der Abhängigkeit von ihrer Lage bei Gebrauch und Lagerung sowie in Einschränkungen der Anwendbarkeit bei sehr hohen Außendrücken und bei extremen Temperaturen. - Der Erfindung liegt die Aufgabe zugrunde, eine Referenzelektrode mit einer Überführung aus poröser oxidischer Keramik zu schaffen, die auf den bewährten Elektroden
2 . Art beruht, vollständig aus Feststoffen besteht und in ihrer Bauform nicht an das Vorhandensein von vorgefertigten zylinderförmigen Diaphragmen in den limitierenden Außendurchmessern gebunden ist. - Desweiteren soll auf der gleichen Grundlage eine Anordnung geschaffen werden, die die Funktion von Elektroden
2 . Art mit Überführung und zusätzlichen Elektrolytbrücken, bestehend aus Elektrolytgefäß mit weiterem Keramikdiaphragma und Brückenelektrolytlösung, übernimmt. - Letztlich soll die erfindungsgemäße Referenzelektrode nicht nur als einzelne Messzelle sondern auch kombiniert mit einer Indikatorelektrode als Teil einer sog. Einstabmesskette vorliegen können.
- Lösung
- Die Aufgabe der Erfindung wird dadurch gelöst, indem ein vollständig aus einer porösen Keramik bestehender Hohlkörper in der Weise mit einem Isolierstoff festhaftend überzogen ist, dass lediglich ein geringflächiger Teil der gesamten Mantelfläche des porösen keramischen Hohlkörpers unbedeckt ist. Sofern keine speziellen Eigenschaften der Bezugselektrode angestrebt sind, bietet es sich an, bei übereinstimmender Porosität der Materialien, den Flächeninhalt des unbedeckten Teiles des Hohlkörpers in der Größenordnung zu wählen, die der Querschnittsfläche bisher üblicher zylinderförmiger poröser Keramiken, die in den meisten Fällen in Glasschäfte eingeschmolzen sind, entspricht. Im Inneren des porösen Hohlkörpers befindet sich die erstarrte Schmelze des Bezugselektrolyten, beispielsweise KCl, die ihrerseits ein Ableitelement des Typs Me/MenXm in Gestalt eines einen AgCl-Sinterkörper tragenden Silberdrahtes enthält. Der feste Bezugselektrolyt füllt nicht den gesamten Hohlkörper aus. Um ihn im Lagerungszustand vor z. B. Feuchtigkeit zu schützen, ist der Raum über dem Bezugselektrolyten mit einem polymeren Material, vorzugsweise einem kalthärtenden Kunstharz, ausgegossen.
- Der zweite Teil der Aufgabe wird dadurch gelöst, indem sich in dem aus einer porösen Keramik gebildeten Hohlkörper, der partiell mit dem fest haftenden Isolierstoff abgedeckt ist, unterhalb der erstarrten Schmelze des Bezugselektrolyten die erstarrte Schmelze des Brückenelektrolyten befindet, und dass in diesem Falle das Ableitelement so angeordnet ist, dass es ausschließlich vom Bezugselektrolyten umgeben ist. Als Brückenelektrolyt kommen nur Salze in Betracht, deren Schmelzpunkte geringfügig oberhalb derer des Bezugselektrolyten, beispielsweise KCl, liegen. Der Volumenanteil des festen Brückenelektrolyten steht zum Volumenanteil des festen Bezugselektrolyten aus funktionstechnischen Gründen in einem Verhältnis von < 1 : 10.
- Der letzte Teil der Aufgabenstellung wird gelöst, indem die erfindungsgemäße Referenzelektrode in ihrem Außendurchmesser weitgehend minimiert vorliegend, beispielsweise zentrisch in eine in ihrem Durchmesser kompatible Bohrung, die in einen sensorisch funktionellen kompakten Körper, z. B. aus Bismut, eingebracht ist, eingeklebt wird. Die Aufgabe ist auch gelöst, wenn auf der Außenhaut der Isolierung, welche die poröse Keramik partiell abdeckt, sensorisch funktionelle Schichten aufgetragen sind.
- Die Erfindung wird nachfolgend an drei Ausführungsbeispielen näher erläutert:
- Vorteilhafte Ausführungsformen der Erfindung sind in den
1 bis3 dargestellt. -
1 zeigt eine erfindungsgemäße einzelne Referenzelektrode. Ein poröser aluminiumoxidkeramischer kuppenförmiger Hohlkörper1 mit einem Porenradius von 2 μm ist in der Weise mit einer chemikalienbeständigen eingebrannten Isolierpaste2 , die ein Hochtemperatur-Overglas aus der Dickschichttechnik ist, ummantelt, dass im Zentrum der Kuppe eine freie Kreisfläche3 mit einem Durchmesser von 1,5 mm besteht. Der Innenraum des Hohlkörpers1 ist zu 2/3 mit einer erstarrten Schmelze aus Kaliumchlorid4 ausgefüllt, in welche als Ablei tungselement ein mit einem Silberchlorid-Sinterkörper6 versehener Silberdraht5 eingebracht ist. Das obere Drittel des Hohlkörpers1 ist mit kalthärtendem Epoxidharz7 vergossen. -
2 zeigt eine erfindungsgemäße Anordnung, die die Funktion einer Silberchloridelektrode mit Überführung und einer zusätzlichen Elektrolytbrücke ausübt. Diese Anordnung unterscheidet sich vom Ausführungsbeispiel 1 lediglich darin, dass der Hohlkörper1 in seinem unteren Teil zu 1/30 mit einer erstarrten Schmelze aus Natriumcarbonat8 und danach zu 19/30 mit einer erstarrten Kaliumchloridschmelze4 verfüllt ist. Das Ableitelement steht nur mit der erstarrten KCl-Schmelze in Kontakt. -
3 stellt eine mögliche Bauform einer Kombination aus erfindungsgemäßer Referenzelektrode und einer Indikatorelektrode dar. Die durch Bild 1 repräsentierte Halbzelle ist erweitert durch eine Indikatorelektrode9 . Dabei handelt es sich hier um einen ca. 20 μm dicken Überzug aus Platin, der mit einem Ableitdraht10 kontaktiert ist. - Darstellung der Vorteile der Erfindung
- Der Vorteil der Erfindung besteht darin, dass eine all-solid-state Referenzelektrode mit oxidkeramischer Überführung, mit allen aus dieser Tatsache resultierenden Vorteilen für den Anwender bez. deren Einsatzcharakteristik geschaffen ist. Die erfindungsgemäße Elektrode kann grundsätzlich sowohl als Einzelelektrode als auch integriert in eine Einstabmesskette vorliegen. Die geometrische Gestaltung der Elektrode ist in weitem Maße möglich, vor allem auch aus dem Grunde, weil die konstruktionseinschränkende Verfügbarkeit von lediglich zylinderförmigen porösen Keramiken in wenigen Variationen der Außendurchmesser nicht mehr relevant ist und dass vor allem der im Fertigungsprozess von auf oxidkeramischen Diaphragmen basierten elektrochemischen Bezugselektroden notwendige Herstellungsschritt des Einschmelzens der Diaphragmen entfällt. Durch Variation der Größe und der Anzahl von durch die Isolationsschicht nicht bedeckten Flächen auf dem Mantel des porösen oxidkeramischen Hohlkörpers lassen sich vielgestaltige Optimierungen hinsichtlich der Art und Weise der Wechselwirkung zwischen Messmedium und Innenelektrolyt einstellen. Vor allem bei der Herstellung von Einstabmessketten unter Nutzung der erfindungsgemäßen Lösung für eine Referenzelektrode bestehen erhebliche Vorteile, insbesondere deren Integration in Kombinationselektroden durch Einkleben oder Außenbeschichtung mit sensorisch funktionellen Schichten betreffend.
-
- 1
- poröser oxidkeramischer Hohlkörper
- 2
- chemikalienbeständige Isolierpaste
- 3
- unbedeckte Kreisfläche auf dem Außenmantel des porösen oxidkeramischen Hohlkörpers
- 4
- erstarrte Schmelze des Bezugselektrolyten
- 5
- edelmetallisches Halbzeug, z. B. Silberdraht
- 6
- schlechtlösliches Salz des das Halbzeug bildenden Metalls
- 7
- Kunstharz
- 8
- erstarrte Schmelze eines hier als Brückenelektrolyt fungierenden Salzes, dessen Schmelz
- temperatur geringer ist als diejenige des darüberliegenden Salzes
- 9
- Indikatorelektrode
- 10
- Ableitdraht
- Bilder
-
1
Ausführungsform der erfindungsgemäßen Referenzelektrode für den Einsatz als Einzelelektrode -
2
Ausführungsform mit realisiertem Brückenelektrolyt -
3
Ausführungsform einer Einstabmesskette mit erfindungsgemäßer Referenzelektrode
Claims (5)
- Referenzelektrode für elektrochemische Messungen mit Überführung auf der Basis einer Elektrode
2 . Art, dadurch gekennzeichnet, dass ein poröser oxidkeramischer Hohlkörper (1 ) in der Weise mit einer chemikalienbeständigen und bis ca. 850 °C auch temperaturbeständigen Isolationsschicht (2 ) festhaftend ummantelt ist, dass mindestens eine Teilfläche (3 ) auf dem Mantel des porösen oxidkeramischen Hohlkörpers (1 ) frei liegt, dass sich im inneren des Hohlkörpers (1 ) mindestens eine erstarrte Schmelze eines elektrolytischen Salzes (4 ) befindet, dass in diesen Hohlkörper (1 ) das für die Ausbildung der Elektrode2 . Art notwendige Ableitelement, welches aus einem edelmetallischen Halbzeug (5 ) gebildet ist, das mit einem schlechtlöslichen Salz des dieses Halbzeug bildenden Metalls (6 ) ummantelt ist, in der Weise hineinragt, dass es sich inmitten der den Bezugselektrolyt repräsentierenden erstarrten Schmelze (4 ) befindet und dass sich über dieser Schmelze (4 ) ein diese vor Umgebungseinflüssen schützender Pfropfen aus Kunstharz (7 ) befindet. - Elektrode nach Anspruch 1, dadurch gekennzeichnet, dass die Porendurchmesser im oxidkeramischen Hohlkörper (
1 ) Werte von 100 μm bis 3 μm aufweisen. - Elektrode nach den vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass unterhalb der den Bezugselektrolyten bildenden erstarrten Schmelze (
4 ) sich mindestens eine weitere, als Brückenelektrolyt fungierende erstarrte Schmelze (8 ) befindet, wobei der Schmelzpunkt der diese Schmelze (8 ) repräsentierenden Substanz oberhalb des Schmelzpunktes der den Bezugselektrolyten bildenden erstarrten Schmelze (4 ) liegt. - Elektrode nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass im Falle des Vorhandenseins einer oder mehrerer erstarrter Salzschmelzen im porösen oxidkeramischen Hohlkörper (
1 ) der von dieser bzw. von diesen eingenommene Anteil vom gesamten inneren Volumen höchstens ca. 2/3 beträgt, wobei der Volumenanteil des festen Brückenelektrolyten zum Volumenanteil des festen Bezugselektrolyten aus funktionstechnischen Gründen in einem Verhältnis von < 1 : 10 steht. - Elektrode nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Referenzelektrode Teil einer Einstabmesskette ist, wobei die Indikatorelektrode (
9 ) sich auf der Isolierpaste (2 ) befindet und über einen zusätzlichen Ableitdraht (10 ) abgeleitet wird.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003105005 DE10305005A1 (de) | 2003-02-07 | 2003-02-07 | Referenzelektrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003105005 DE10305005A1 (de) | 2003-02-07 | 2003-02-07 | Referenzelektrode |
Publications (1)
Publication Number | Publication Date |
---|---|
DE10305005A1 true DE10305005A1 (de) | 2004-08-19 |
Family
ID=32730852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE2003105005 Withdrawn DE10305005A1 (de) | 2003-02-07 | 2003-02-07 | Referenzelektrode |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE10305005A1 (de) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1028264C2 (nl) * | 2005-02-14 | 2006-08-15 | Hydrion | Membraanmodule voor toepassing in een referentie-elektrode, een referentie-elektrode en werkwijze voor het vervaardigen van een membraanmodule. |
WO2010072601A1 (de) * | 2008-12-22 | 2010-07-01 | Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg | Messsonde für elektrochemische messungen |
DE102011117115A1 (de) | 2011-10-27 | 2013-05-02 | Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. Meinsberg | Elektrochemischer Multisensor |
CN107238641A (zh) * | 2016-03-28 | 2017-10-10 | 梅特勒-托利多仪器(上海)有限公司 | 一种参比电极系统 |
DE102016111469A1 (de) * | 2016-06-22 | 2017-12-28 | Endress+Hauser Conducta Gmbh+Co. Kg | Verfahren zum Herstellen eines Formkörpers, Bezugselektrode, Verfahren zur Herstellung einer Bezugselektrode und elektrochemischer Sensor |
US11391688B2 (en) | 2018-04-09 | 2022-07-19 | Endress+Hauser Conducta Gmbh+Co. Kg | Sensor element for a potentiometric sensor |
DE102022119794A1 (de) * | 2022-08-05 | 2024-02-08 | Endress+Hauser Conducta Gmbh+Co. Kg | Referenzhalbzelle und Sensor |
-
2003
- 2003-02-07 DE DE2003105005 patent/DE10305005A1/de not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1028264C2 (nl) * | 2005-02-14 | 2006-08-15 | Hydrion | Membraanmodule voor toepassing in een referentie-elektrode, een referentie-elektrode en werkwijze voor het vervaardigen van een membraanmodule. |
WO2006085761A1 (en) * | 2005-02-14 | 2006-08-17 | Hydrion B.V. | A reference electrode, a membrane module for use therein, and a method for fabricating same |
WO2010072601A1 (de) * | 2008-12-22 | 2010-07-01 | Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg | Messsonde für elektrochemische messungen |
DE102011117115A1 (de) | 2011-10-27 | 2013-05-02 | Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. Meinsberg | Elektrochemischer Multisensor |
CN107238641A (zh) * | 2016-03-28 | 2017-10-10 | 梅特勒-托利多仪器(上海)有限公司 | 一种参比电极系统 |
DE102016111469A1 (de) * | 2016-06-22 | 2017-12-28 | Endress+Hauser Conducta Gmbh+Co. Kg | Verfahren zum Herstellen eines Formkörpers, Bezugselektrode, Verfahren zur Herstellung einer Bezugselektrode und elektrochemischer Sensor |
US11391688B2 (en) | 2018-04-09 | 2022-07-19 | Endress+Hauser Conducta Gmbh+Co. Kg | Sensor element for a potentiometric sensor |
DE102022119794A1 (de) * | 2022-08-05 | 2024-02-08 | Endress+Hauser Conducta Gmbh+Co. Kg | Referenzhalbzelle und Sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69208948T2 (de) | Ph-elektrode | |
CH654112A5 (de) | Bezugselektrode mit innerer diffusionssperre. | |
DE102015121364A1 (de) | Potentiometrischer Sensor | |
EP0122420B1 (de) | Elektrodenanordnung zur elektrochemischen Analyse elektrolytischer Bestandteile einer Flüssigkeit | |
DE3405431C2 (de) | ||
WO2010072509A1 (de) | Referenzelektrode | |
DE3789898T2 (de) | Referenzelektrode. | |
WO2010072510A1 (de) | Ionenselektive elektrode | |
EP1176419A2 (de) | Messsonde für potentiometrische Messungen, Verfahren zur Überwachung des Alterungszustandes der Messsonde und ihre Verwendung | |
DE10018750C2 (de) | Festkontaktierte ionenselektive Glaselektrode und Verfahren zu ihrer Herstellung | |
EP3169993B1 (de) | Referenzelektrodenanordnung für elektrochemischen sensor und elektrochemischer sensor | |
DE69333218T2 (de) | Referenzelektrode | |
DE3203407A1 (de) | Bezugselektrode mit ionenselektiver sperre | |
DE10305005A1 (de) | Referenzelektrode | |
DE19714474A1 (de) | Elektrochemischer Sensor und Verfahren zu seiner Herstellung | |
DE1498658A1 (de) | Elektrochemische Vorrichtung und Verfahren zu ihrer Herstellung | |
DE69628895T2 (de) | Anordnung für Referenzelektrode | |
DE1498827A1 (de) | Bezugselektrode | |
EP0597203B1 (de) | Referenzelektrode | |
DE10354100A1 (de) | Elektrode für elektrochmische Untersuchungen | |
CH691933A5 (de) | Messeinrichtung zur elektrochemischen Potentialmessung. | |
EP1172648B1 (de) | Bezugselektrode zur Verwendung mit einer Messelektrode in einer potentiometrischen Messkette | |
DE19620568A1 (de) | Glaselektrode mit innerem Festkontakt und Verfahren zu ihrer Herstellung | |
DE19631530C2 (de) | Ionenselektiver Sensor | |
DE102014119079A1 (de) | Bezugselektrode und elektrochemischer Sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8110 | Request for examination paragraph 44 | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |