DE10219714A1 - Verfahren zur mikrobielien Herstellung von aromatischen Aminosäuren und anderen Metaboliten des aromatischen Aminosäurebiosyntheseweges - Google Patents
Verfahren zur mikrobielien Herstellung von aromatischen Aminosäuren und anderen Metaboliten des aromatischen AminosäurebiosynthesewegesInfo
- Publication number
- DE10219714A1 DE10219714A1 DE10219714A DE10219714A DE10219714A1 DE 10219714 A1 DE10219714 A1 DE 10219714A1 DE 10219714 A DE10219714 A DE 10219714A DE 10219714 A DE10219714 A DE 10219714A DE 10219714 A1 DE10219714 A1 DE 10219714A1
- Authority
- DE
- Germany
- Prior art keywords
- microorganism
- aromatic amino
- gene sequence
- amino acids
- metabolites
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- -1 aromatic amino acids Chemical class 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 230000006696 biosynthetic metabolic pathway Effects 0.000 title claims abstract description 29
- 239000002207 metabolite Substances 0.000 title claims abstract description 19
- 230000008569 process Effects 0.000 title claims abstract description 15
- 230000000813 microbial effect Effects 0.000 title claims abstract description 9
- 229940024606 amino acid Drugs 0.000 claims abstract description 62
- 101150096049 pyc gene Proteins 0.000 claims abstract description 57
- 244000005700 microbiome Species 0.000 claims abstract description 44
- 239000000126 substance Substances 0.000 claims abstract description 19
- 230000001965 increasing effect Effects 0.000 claims description 27
- 102000004190 Enzymes Human genes 0.000 claims description 26
- 108090000790 Enzymes Proteins 0.000 claims description 26
- 108090000623 proteins and genes Proteins 0.000 claims description 25
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 22
- 241000588724 Escherichia coli Species 0.000 claims description 20
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 17
- 239000008103 glucose Substances 0.000 claims description 17
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 13
- 229960002685 biotin Drugs 0.000 claims description 11
- 235000020958 biotin Nutrition 0.000 claims description 11
- 239000011616 biotin Substances 0.000 claims description 11
- 238000000855 fermentation Methods 0.000 claims description 11
- 230000004151 fermentation Effects 0.000 claims description 11
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 claims description 10
- 235000000346 sugar Nutrition 0.000 claims description 9
- 241000186226 Corynebacterium glutamicum Species 0.000 claims description 8
- 108010043652 Transketolase Proteins 0.000 claims description 8
- 102000014701 Transketolase Human genes 0.000 claims description 7
- 230000014509 gene expression Effects 0.000 claims description 7
- 229960004441 tyrosine Drugs 0.000 claims description 7
- 108091000080 Phosphotransferase Proteins 0.000 claims description 6
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 claims description 6
- 102000020233 phosphotransferase Human genes 0.000 claims description 6
- 108010080376 3-Deoxy-7-Phosphoheptulonate Synthase Proteins 0.000 claims description 5
- 241000193830 Bacillus <bacterium> Species 0.000 claims description 5
- 108010015724 Prephenate Dehydratase Proteins 0.000 claims description 5
- 230000001419 dependent effect Effects 0.000 claims description 5
- 102000004169 proteins and genes Human genes 0.000 claims description 5
- 229960004799 tryptophan Drugs 0.000 claims description 5
- QDGAVODICPCDMU-UHFFFAOYSA-N 2-amino-3-[3-[bis(2-chloroethyl)amino]phenyl]propanoic acid Chemical compound OC(=O)C(N)CC1=CC=CC(N(CCCl)CCCl)=C1 QDGAVODICPCDMU-UHFFFAOYSA-N 0.000 claims description 4
- 108010000898 Chorismate mutase Proteins 0.000 claims description 4
- 241000186216 Corynebacterium Species 0.000 claims description 4
- 108020001482 shikimate kinase Proteins 0.000 claims description 4
- 241000186146 Brevibacterium Species 0.000 claims description 3
- 241000589516 Pseudomonas Species 0.000 claims description 3
- 102100028601 Transaldolase Human genes 0.000 claims description 3
- 108020004530 Transaldolase Proteins 0.000 claims description 3
- 230000002787 reinforcement Effects 0.000 claims description 3
- 241000589876 Campylobacter Species 0.000 claims description 2
- 241000588921 Enterobacteriaceae Species 0.000 claims description 2
- 241000203353 Methanococcus Species 0.000 claims description 2
- 108020005115 Pyruvate Kinase Proteins 0.000 claims description 2
- 102000013009 Pyruvate Kinase Human genes 0.000 claims description 2
- 241000190932 Rhodopseudomonas Species 0.000 claims description 2
- 241000607720 Serratia Species 0.000 claims description 2
- 241000588902 Zymomonas mobilis Species 0.000 claims description 2
- 239000003630 growth substance Substances 0.000 claims description 2
- 102000001253 Protein Kinase Human genes 0.000 claims 1
- 241000235070 Saccharomyces Species 0.000 claims 1
- 230000003831 deregulation Effects 0.000 claims 1
- 230000004190 glucose uptake Effects 0.000 claims 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 abstract description 15
- 125000003118 aryl group Chemical group 0.000 abstract description 14
- 150000001413 amino acids Chemical class 0.000 abstract description 13
- 229960005190 phenylalanine Drugs 0.000 abstract description 8
- 239000012847 fine chemical Substances 0.000 abstract description 2
- 235000001014 amino acid Nutrition 0.000 description 53
- 108010053763 Pyruvate Carboxylase Proteins 0.000 description 42
- 102100039895 Pyruvate carboxylase, mitochondrial Human genes 0.000 description 41
- DTBNBXWJWCWCIK-UHFFFAOYSA-K phosphonatoenolpyruvate Chemical compound [O-]C(=O)C(=C)OP([O-])([O-])=O DTBNBXWJWCWCIK-UHFFFAOYSA-K 0.000 description 29
- 229930029653 phosphoenolpyruvate Natural products 0.000 description 26
- 230000000694 effects Effects 0.000 description 25
- 230000015572 biosynthetic process Effects 0.000 description 24
- 210000004027 cell Anatomy 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 18
- 239000013598 vector Substances 0.000 description 15
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 13
- 229940076788 pyruvate Drugs 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- 101150090235 aroB gene Proteins 0.000 description 12
- 239000000047 product Substances 0.000 description 10
- NGHMDNPXVRFFGS-IUYQGCFVSA-N D-erythrose 4-phosphate Chemical compound O=C[C@H](O)[C@H](O)COP(O)(O)=O NGHMDNPXVRFFGS-IUYQGCFVSA-N 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- KHPXUQMNIQBQEV-UHFFFAOYSA-L oxaloacetate(2-) Chemical compound [O-]C(=O)CC(=O)C([O-])=O KHPXUQMNIQBQEV-UHFFFAOYSA-L 0.000 description 9
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 8
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 8
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 8
- RGJOEKWQDUBAIZ-IBOSZNHHSA-N CoASH Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-IBOSZNHHSA-N 0.000 description 7
- RGJOEKWQDUBAIZ-UHFFFAOYSA-N coenzime A Natural products OC1C(OP(O)(O)=O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-UHFFFAOYSA-N 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 241001646716 Escherichia coli K-12 Species 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 238000003752 polymerase chain reaction Methods 0.000 description 6
- 238000010361 transduction Methods 0.000 description 6
- 230000026683 transduction Effects 0.000 description 6
- 108010030844 2-methylcitrate synthase Proteins 0.000 description 5
- KIUMMUBSPKGMOY-UHFFFAOYSA-N 3,3'-Dithiobis(6-nitrobenzoic acid) Chemical compound C1=C([N+]([O-])=O)C(C(=O)O)=CC(SSC=2C=C(C(=CC=2)[N+]([O-])=O)C(O)=O)=C1 KIUMMUBSPKGMOY-UHFFFAOYSA-N 0.000 description 5
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 5
- 108010071536 Citrate (Si)-synthase Proteins 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 229940009098 aspartate Drugs 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 230000002074 deregulated effect Effects 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- GLDQAMYCGOIJDV-UHFFFAOYSA-N 2,3-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=CC(O)=C1O GLDQAMYCGOIJDV-UHFFFAOYSA-N 0.000 description 4
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 4
- 235000011037 adipic acid Nutrition 0.000 description 4
- 239000001361 adipic acid Substances 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 4
- GNGACRATGGDKBX-UHFFFAOYSA-N dihydroxyacetone phosphate Chemical compound OCC(=O)COP(O)(O)=O GNGACRATGGDKBX-UHFFFAOYSA-N 0.000 description 4
- 229940097275 indigo Drugs 0.000 description 4
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 229930010796 primary metabolite Natural products 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- PJWIPEXIFFQAQZ-PUFIMZNGSA-N 7-phospho-2-dehydro-3-deoxy-D-arabino-heptonic acid Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@H](O)CC(=O)C(O)=O PJWIPEXIFFQAQZ-PUFIMZNGSA-N 0.000 description 3
- 244000063299 Bacillus subtilis Species 0.000 description 3
- 235000014469 Bacillus subtilis Nutrition 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 3
- 102000006732 Citrate synthase Human genes 0.000 description 3
- 108010021582 Glucokinase Proteins 0.000 description 3
- 102000030595 Glucokinase Human genes 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- 241000203407 Methanocaldococcus jannaschii Species 0.000 description 3
- 101100435931 Methanosarcina acetivorans (strain ATCC 35395 / DSM 2834 / JCM 12185 / C2A) aroK gene Proteins 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229940100228 acetyl coenzyme a Drugs 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 101150083869 aroK gene Proteins 0.000 description 3
- 101150007004 aroL gene Proteins 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 3
- 239000005516 coenzyme A Substances 0.000 description 3
- 229940093530 coenzyme a Drugs 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- KDTSHFARGAKYJN-UHFFFAOYSA-N dephosphocoenzyme A Natural products OC1C(O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 KDTSHFARGAKYJN-UHFFFAOYSA-N 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 108010090279 galactose permease Proteins 0.000 description 3
- 230000034659 glycolysis Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012269 metabolic engineering Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 150000002972 pentoses Chemical class 0.000 description 3
- 101150023641 ppc gene Proteins 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- JXOHGGNKMLTUBP-HSUXUTPPSA-N shikimic acid Chemical compound O[C@@H]1CC(C(O)=O)=C[C@@H](O)[C@H]1O JXOHGGNKMLTUBP-HSUXUTPPSA-N 0.000 description 3
- JXOHGGNKMLTUBP-JKUQZMGJSA-N shikimic acid Natural products O[C@@H]1CC(C(O)=O)=C[C@H](O)[C@@H]1O JXOHGGNKMLTUBP-JKUQZMGJSA-N 0.000 description 3
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- 150000008575 L-amino acids Chemical class 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical compound OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 2
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 2
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- 241001148115 Rhizobium etli Species 0.000 description 2
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 2
- 101150024271 TKT gene Proteins 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 229960004050 aminobenzoic acid Drugs 0.000 description 2
- 230000003698 anagen phase Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 230000001851 biosynthetic effect Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- 239000013611 chromosomal DNA Substances 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- BTNMPGBKDVTSJY-UHFFFAOYSA-N keto-phenylpyruvic acid Chemical compound OC(=O)C(=O)CC1=CC=CC=C1 BTNMPGBKDVTSJY-UHFFFAOYSA-N 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 230000004108 pentose phosphate pathway Effects 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 150000004053 quinones Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- IFGCUJZIWBUILZ-UHFFFAOYSA-N sodium 2-[[2-[[hydroxy-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyphosphoryl]amino]-4-methylpentanoyl]amino]-3-(1H-indol-3-yl)propanoic acid Chemical compound [Na+].C=1NC2=CC=CC=C2C=1CC(C(O)=O)NC(=O)C(CC(C)C)NP(O)(=O)OC1OC(C)C(O)C(O)C1O IFGCUJZIWBUILZ-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 2
- WTFXTQVDAKGDEY-UHFFFAOYSA-N (-)-chorismic acid Natural products OC1C=CC(C(O)=O)=CC1OC(=C)C(O)=O WTFXTQVDAKGDEY-UHFFFAOYSA-N 0.000 description 1
- HSINOMROUCMIEA-FGVHQWLLSA-N (2s,4r)-4-[(3r,5s,6r,7r,8s,9s,10s,13r,14s,17r)-6-ethyl-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]-2-methylpentanoic acid Chemical compound C([C@@]12C)C[C@@H](O)C[C@H]1[C@@H](CC)[C@@H](O)[C@@H]1[C@@H]2CC[C@]2(C)[C@@H]([C@H](C)C[C@H](C)C(O)=O)CC[C@H]21 HSINOMROUCMIEA-FGVHQWLLSA-N 0.000 description 1
- LVRIRMAKAGGWQR-PUFIMZNGSA-N (4r,5s,6r)-4,5,6,7-tetrahydroxy-2-oxoheptanoic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)CC(=O)C(O)=O LVRIRMAKAGGWQR-PUFIMZNGSA-N 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-L (R)-2-Hydroxy-3-(phosphonooxy)-propanal Natural products O=C[C@H](O)COP([O-])([O-])=O LXJXRIRHZLFYRP-VKHMYHEASA-L 0.000 description 1
- GLDQAMYCGOIJDV-UHFFFAOYSA-M 2,3-dihydroxybenzoate Chemical group OC1=CC=CC(C([O-])=O)=C1O GLDQAMYCGOIJDV-UHFFFAOYSA-M 0.000 description 1
- 229940082044 2,3-dihydroxybenzoic acid Drugs 0.000 description 1
- HWKRAUXFMLQKLS-UHFFFAOYSA-N 2-oxidanylidenepropanoic acid Chemical compound CC(=O)C(O)=O.CC(=O)C(O)=O HWKRAUXFMLQKLS-UHFFFAOYSA-N 0.000 description 1
- 239000001903 2-oxo-3-phenylpropanoic acid Substances 0.000 description 1
- CTBYOENFSJTSBT-UHFFFAOYSA-N 2-oxobutanedioic acid;2-oxopropanoic acid Chemical compound CC(=O)C(O)=O.OC(=O)CC(=O)C(O)=O CTBYOENFSJTSBT-UHFFFAOYSA-N 0.000 description 1
- LXCUAFVVTHZALS-UHFFFAOYSA-N 3-(3-methoxyphenyl)piperidine Chemical compound COC1=CC=CC(C2CNCCC2)=C1 LXCUAFVVTHZALS-UHFFFAOYSA-N 0.000 description 1
- 108091000044 4-hydroxy-tetrahydrodipicolinate synthase Proteins 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- QUTYKIXIUDQOLK-PRJMDXOYSA-N 5-O-(1-carboxyvinyl)-3-phosphoshikimic acid Chemical compound O[C@H]1[C@H](OC(=C)C(O)=O)CC(C(O)=O)=C[C@H]1OP(O)(O)=O QUTYKIXIUDQOLK-PRJMDXOYSA-N 0.000 description 1
- GANZODCWZFAEGN-UHFFFAOYSA-N 5-mercapto-2-nitro-benzoic acid Chemical compound OC(=O)C1=CC(S)=CC=C1[N+]([O-])=O GANZODCWZFAEGN-UHFFFAOYSA-N 0.000 description 1
- 102000004567 6-phosphogluconate dehydrogenase Human genes 0.000 description 1
- 108020001657 6-phosphogluconate dehydrogenase Proteins 0.000 description 1
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QTXZASLUYMRUAN-QLQASOTGSA-N Acetyl coenzyme A (Acetyl-CoA) Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1.O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 QTXZASLUYMRUAN-QLQASOTGSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 108010055400 Aspartate kinase Proteins 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 241000589875 Campylobacter jejuni Species 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- WTFXTQVDAKGDEY-HTQZYQBOSA-N Chorismic acid Natural products O[C@@H]1C=CC(C(O)=O)=C[C@H]1OC(=C)C(O)=O WTFXTQVDAKGDEY-HTQZYQBOSA-N 0.000 description 1
- 206010061764 Chromosomal deletion Diseases 0.000 description 1
- 241001485655 Corynebacterium glutamicum ATCC 13032 Species 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-N D-glyceraldehyde 3-phosphate Chemical compound O=C[C@H](O)COP(O)(O)=O LXJXRIRHZLFYRP-VKHMYHEASA-N 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 101100465553 Dictyostelium discoideum psmB6 gene Proteins 0.000 description 1
- 241000305071 Enterobacterales Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 108010081616 FAD-dependent malate dehydrogenase Proteins 0.000 description 1
- 108010050375 Glucose 1-Dehydrogenase Proteins 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 101000591312 Homo sapiens Putative MORF4 family-associated protein 1-like protein UPP Proteins 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- SQVRNKJHWKZAKO-PFQGKNLYSA-N N-acetyl-beta-neuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-PFQGKNLYSA-N 0.000 description 1
- 101100109871 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) aro-8 gene Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 108091000041 Phosphoenolpyruvate Carboxylase Proteins 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102100034096 Putative MORF4 family-associated protein 1-like protein UPP Human genes 0.000 description 1
- 101100169519 Pyrococcus abyssi (strain GE5 / Orsay) dapAL gene Proteins 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical group CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000589180 Rhizobium Species 0.000 description 1
- 241000191043 Rhodobacter sphaeroides Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 102000003929 Transaminases Human genes 0.000 description 1
- 108090000340 Transaminases Proteins 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- NQBRVZNDBBMBLJ-MQTLHLSBSA-N UDP-N-acetyl-alpha-D-muramic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O[C@H](C)C(O)=O)[C@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 NQBRVZNDBBMBLJ-MQTLHLSBSA-N 0.000 description 1
- NQBRVZNDBBMBLJ-UHFFFAOYSA-N UDP-N-acetylmuramic acid alpha-anomer Natural products CC(=O)NC1C(OC(C)C(O)=O)C(O)C(CO)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 NQBRVZNDBBMBLJ-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- DEDGUGJNLNLJSR-UHFFFAOYSA-N alpha-hydroxycinnamic acid Natural products OC(=O)C(O)=CC1=CC=CC=C1 DEDGUGJNLNLJSR-UHFFFAOYSA-N 0.000 description 1
- 230000037354 amino acid metabolism Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000013452 biotechnological production Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- APGFPQCBDNWQSB-UHFFFAOYSA-N cyclohexa-1,3-diene-1-carboxylic acid Chemical compound OC(=O)C1=CC=CCC1 APGFPQCBDNWQSB-UHFFFAOYSA-N 0.000 description 1
- 101150011371 dapA gene Proteins 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002085 enols Chemical class 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012526 feed medium Substances 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 230000004055 genetic distribution Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000003617 indole-3-acetic acid Substances 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 101150035025 lysC gene Proteins 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 238000013048 microbiological method Methods 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- KLAKIAVEMQMVBT-UHFFFAOYSA-N p-hydroxy-phenacyl alcohol Natural products OCC(=O)C1=CC=C(O)C=C1 KLAKIAVEMQMVBT-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 150000002994 phenylalanines Chemical class 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000019525 primary metabolic process Effects 0.000 description 1
- 125000001308 pyruvoyl group Chemical group O=C([*])C(=O)C([H])([H])[H] 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000025078 regulation of biosynthetic process Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229940074404 sodium succinate Drugs 0.000 description 1
- ZDQYSKICYIVCPN-UHFFFAOYSA-L sodium succinate (anhydrous) Chemical compound [Na+].[Na+].[O-]C(=O)CCC([O-])=O ZDQYSKICYIVCPN-UHFFFAOYSA-L 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 238000006491 synthase reaction Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 101150014795 tktA gene Proteins 0.000 description 1
- 238000005891 transamination reaction Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/22—Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y604/00—Ligases forming carbon-carbon bonds (6.4)
- C12Y604/01—Ligases forming carbon-carbon bonds (6.4.1)
- C12Y604/01001—Pyruvate carboxylase (6.4.1.1)
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biotechnology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zur mikrobiellen Herstellung von aromatischen Aminosäuren und anderen Metaboliten des aromatischen Aminosäurebiosyntheseweges. DOLLAR A Mikrobiell hergestellte Substanzen, wie Feinchemikalien, insbesondere aromatische Aminosäuren oder Metaboliten des Aromatenbiosyntheseweges sind von großem wirtschaftlichen Interesse, wobei der Bedarf an z. B. Aminosäuren weiterhin zunimmt. DOLLAR A Die Erfinder fanden heraus, daß nach Einbringen einer pyc-Gensequenz in Mikroorganismen, in verbesserter Weise aromatische Aminosäuren sowie Metabolite des aromatischen Biosyntheseweges produziert werden konnten. Das erfindungsgemäße Verfahren eignet sich insbesondere zur Herstellung von L-Phenylalanin.
Description
- Die Erfindung betrifft ein Verfahren zur mikrobiellen Herstellung von aromatischen Aminosäuren und anderen Metaboliten des aromatischen Aminosäurebiosyntheseweges.
- Mikrobiell hergestellte Substanzen, wie Feinchemikalien, insbesondere aromatische Aminosäuren oder Metabolite des Aromatenbiosyntheseweges sind von großem wirtschaftlichen Interesse, wobei der Bedarf an z. B. Aminosäuren weiterhin zunimmt. So wird beispielsweise L- Phenylalanin zur Herstellung von Medikamenten und insbesondere auch bei der Herstellung des Süßstoffes Aspartam (α-L-Aspartyl-L-phenylalaninmethylester) verwendet. L-Tryptophan wird als Medikament und Zusatz zu Futtermitteln benötigt; für L-Tyrosin besteht ebenfalls Bedarf als Medikament, sowie als Rohstoff in der pharmazeutischen Industrie. Neben der Isolierung aus natürlichen Materialien ist die biotechnologische Herstellung eine sehr wichtige Methode, um Aminosäuren in der gewünschten optisch aktiven Form unter wirtschaftlich vertretbaren Bedingungen zu erhalten. Die biotechnologische Herstellung erfolgt entweder enzymatisch oder mit Hilfe von Mikroorganismen.
- Die letztere, mikrobielle Herstellung hat den Vorteil, daß einfache und preisgünstige Rohstoffe eingesetzt werden können. Da die Biosynthese der Aminosäuren in der Zelle aber in vielfacher Weise kontrolliert wird, sind bereits vielfältige Versuche zur Steigerung der Produktbildung unternommen worden. So wurden z. B. Aminosäure-Analoga eingesetzt, um die Regulation der Biosynthese auszuschalten. Beispielsweise wurden durch Selektion auf Resistenz gegen Phenylalanin-Analoga Mutanten von Escherichia coli erhalten, die eine erhöhte Produktion von L-Phenylalanin ermöglichten (GB-2,053,906). Eine ähnliche Strategie führte auch zu überproduzierenden Stämmen von Corynebacterium (JP-19037/1976 und JP-39517/1978) und Bacillus (EP 0,138,526).
- Desweiteren sind durch rekombinante DNS-Techniken konstruierte Mikroorganismen bekannt, bei denen ebenfalls die Regulation der Biosynthese aufgehoben ist, indem die Gene, die für nicht mehr feedback-inhibierte Schlüsselenzyme kodieren, kloniert und exprimiert werden. Als ein Vorbild beschreibt EP 0,077,196 ein Verfahren zur Produktion von aromatischen Aminosäuren, bei dem eine nicht mehr feedback-inhibierte 3-Desoxy-D- Arabino-Heptulosonat-7-Phosphatsynthase (DAHP-Synthase) in E. coli überexprimiert wird. In EP 0,145,156 ist ein E. coli-Stamm beschrieben, in dem zur Produktion von L-Phenylalanin zusätzlich Chorismatmutase/-Prephenatdehydratase überexprimiert ist.
- Den genannten Strategien ist gemeinsam, daß sich der Eingriff zur Verbesserung der Produktion auf den für die aromatischen Aminosäuren spezifischen Biosyntheseweg beschränkt.
- Eine weitere Erhöhung der Produktion kann jedoch auch durch eine verbesserte Bereitstellung der zur Produktion aromatischer Aminosäuren benötigten Primärmetabolite Phosphoenolpyruvat (PEP) und Erythrose-4-Phosphat (Ery4P) erfolgen. PEP ist ein aktivierter Vorläufer des Glycolyseproduktes Pyruvat (Brenztraubensäure); Ery4P ist ein Intermediat des Pentosephosphatweges.
- Bei der Produktion aromatischer Aminosäuren oder von anderen Metaboliten des Aromatenbiosyntheseweges werden die Primärmetabolite Phosphoenolpyruvat (PEP) und Erythrose-4-Phosphat (Ery4P) für die Kondensation zu 3-Desoxy-D-arabino-heptulosonat-7-phosphat (DAHP) benötigt.
- Die Wirkung einer verbesserten Bereitstellung des zellulären Primärmetaboliten Phosphoenolpyruvat aus der Glykolyse wurde bereits früher untersucht. So ist bekannt, daß die durch rekombinante Techniken erreichte Überexpression der Transketolase eine erhöhte Bereitstellung von Erythrose-4-P und in Folge eine verbesserte Produktbildung von L-Tryptophan, L-Tyrosin oder L- Phenylalanin ermöglicht (EP 0,600,463).
- Flores et al. zeigten (Flores et al. 1996. Nature Biotechnology 14: 620-623), daß eine spontane Glucose positive Revertante einer Zuckerphosphotransferase-System (PTS)-negativen Mutante von Escherichia coli Glucose über das Galactose-Permease (GalP)-System in die Zellen einschleuste und zum Wachstum auf Glucose befähigt war. Durch zusätzliche Expression des Transketolase-Gens (tktA) wurde eine vermehrte Bildung des Intermediaten DAHP beobachtet (Flores et al. Nature Biotechnology 14 (1996) 620-623). Weitere Verbesserungen der Bereitstellung von Vorläufermetaboliten für den aromatischen Aminosäurebiosyntheseweg und Verbesserungen des Flusses im aromatischen Aminosäurebiosyntheseweg sind dem Fachmann beispielsweise aus Bongaerts et al. (Bongaerts et al. Metabolic Engineering 3 (2001) 289-300) bekannt.
- In der Literatur sind weiterhin mehrere Strategien für die Steigerung der Verfügbarkeit von PEP beschrieben, z. B. durch ein PEP unabhängiges Zuckeraufnahmesystem wobei z. B. das Zuckerphosphotransferase System (PTS) völlig inaktiviert und anschließend durch eine Galaktose-Permease oder die Gene glf (Glucosefacilitator Protein) und glk (Glucokinase) aus Zymomonas mobilis ersetzt wird (Frost und Draths Annual Rev. Microbiol. 49 (1995), 557-579; Flores et al. Nature Biotechnology 14 (1996) 620-623; Bongaerts et al. Metabolic Engineering 3 (2001) 289-300)
- Auch wurde in früheren Patentanmeldungen (DE 196 44 566.3; DE 196 44 567.1; DE 198 18 541 A1; US-6,316,232) gezeigt, daß durch die Erhöhung der Enzymaktivitäten von z. B. Transketolase, Transaldolase, Glucosedehydrogenase oder Glucokinase in Escherichia coli oder durch Kombinationen der angegebenen Enzyme und eines PEP unabhängigen Transportsystems, Substanzen des aromatischen Biosyntheseweges in erhöhtem Maße bereitgestellt werden konnten.
- In einer Reihe von Mikroorganismen spielt die Pyruvatcarboxylase eine wichtige Rolle für die Synthese der Aminosäuren, die aus dem Tricarbonsäure-Zyklus (TCA- Zyklus) abgeleitet sind.
- Die physiologische Rolle der Pyruvatcarboxylase liegt in der anaplerotischen Reaktion, die ausgehend von Pyruvat und CO2 (bzw. Hydrogencarbonat) die Bereitstellung von C4-Körpern (Oxalacetat) erreicht (Jitrapakdee und Wallace, Biochemical Journal 340 (1999) 1-16). Oxalacetat kann durch Reaktion mit Acetyl-CoA im Tricarbonsäure-Zyklus weiter verstoffwechselt werden (z. B. auch zu den Aminosäuren Glutamat und Glutamin), oder durch Transaminierung zu Asparaginsäure, Vorläufer der Aspartat-Aminosäurefamilie (Aspartat, Asparagin, Homoserin, Threonin, Methionin, Isoleucin und Lysin) bereitstellen (Peters-Wendisch et al. J. Mol. Microbiol. Biotechnol. 3 (2001) 295-300). So konnten verschiedene Gruppen zeigen, dass die Aktivität einer Pyruvatcarboxylase für die Produktion von Aminosäuren der Aspartatfamilie in Corynebakterien eine Rolle spielt (DE 198 31 609; EP 1,067,192; Peters-Wendisch et al. Journal of. Molecular Microbiology and Biotechnology 3 (2001) 295-300; Sinskey et al. US 6,171,833 bzw. WO 00/39305). Die WO 01/04325 beschreibt beispielsweise ein fermentatives Verfahren zur Produktion von L-Aminosäuren aus der Aspartat-Aminosäurefamilie mit coryneformen Mikroorganismen, die ein Gen aus der Gruppe dapA (Dihydrodipicolinat-Synthase), lysC (Aspartat Kinase), gap (Glycerolaldehyd-3-Phosphat Dehydrogenase), mqo (Malat-Quinon Oxidoreduktase), tkt (Transketolase), gnd (6-Phosphogluconat Dehydrogenase), zwf (Glucose-6-Phosphat Dehydrogenase), lysE (Lysin Export), zwal (unnamed protein product), eno (Enolase), opcA (putative oxidative pentose phosphate cycle protein) sowie auch eine pyc-Gensequenz (Pyruvatcarboxylase) enthalten. Dabei wird die aromatische Aminosäure L- Tryptophan neben den Aminosäuren der Aspartat-Aminosäurefamilie, ebenfalls als Produkt des in WO 01/04325 beschriebenen Verfahrens angegeben. Eine Angabe, welche spezielle Gensequenz bzw. welches spezielle Enzym für eine spezifische Produktion von aromatischen Aminosäuren und Metaboliten des aromatischen Aminosäurebiosyntheseweges geeignet ist, wird jedoch nicht angegeben.
- Gene für eine Pyruvatcarboxylase (pyc-Gene) wurden aus einer Reihe von Mikroorganismen isoliert, charakterisiert und in rekombinanter Form ausgeprägt. So wurden Gene für eine Pyruvatcarboxylase bereits in Bakterien wie Corynebakterien, Rhizobien, Brevibacterien, Bacillus subtilis, Mycobacterien, Pseudomonas, Rhodopseudomonas spheroides, Campylobacter jejuni, Methanococcus jannaschii, in der Hefe Saccharomyces cerevisiae, und in Säugern wie dem Menschen nachgewiesen (Payne & Morris J Gen. Microbiol. 59 (1969) 97-101; Peters-Wendisch et al. Microbiology 144 (1998) 915-927; Gokarn et al. Appl. Microbiol. Biotechnol. 56 (2001) 188-195; Mukhopadhyay et al. Arch. Microbiol. 174 (2000) 406-414; Mukhopadhyay & Purwantini, Biochim. Biophys. Acta 1475 (2000) 191-206; Irani et al. Biotechnol. Bioengin. 66 (1999) 238-246; US 6,171,833; Dunn et al. Arch. Microbiol. 176 (2001) 355-363; Dunn et al. J. Bacteriol. 178 (1996) 5960-5970; Jitrapakdee et al. Biochem. Biophys. Res. Comm. 266 (1999) 512-517; Velayudhan & Kelly Microbiology 148 (2002) 685-694; Mukhopadhyay et al. Arch. Microbiol. 174 (2000) 406-414; EP 1,092,776).
- Aus Escherichia coli und anderen Enterobakterien sind bisher keine Pyruvatcarboxylasen beschrieben worden.
- In rekombinanten Zellen von Escherichia coli oder Salmonella typhimurium, die das pyc-Gen aus Rhizobium etli tragen, wurde kürzlich gezeigt, dass durch die Expression der Pyruvatcarboxylase das Produktspektrum der Zellen deutlich verändert wurde und zwar in Richtung C4-Körper (z. B. Succinat) unter Verringerung von aus dem Pyruvat abgeleiteten Substanzen wie Lactat oder Acetat (Gokarn et al. Biotechnol. Letters 20 (1998) 795-798; Gokarn et al. Applied Environm. Microbiol. 66 (2000) 1844-1850; Gokarn et al. Appl. Microbiol. Biotechnol. 56 (2001) 188-195; Xie et al. Biotechnol. Letters 23 (2001) 111-117). Durch Expression eines pyc- Gens aus Bacillus subtilis in E. coli wurde die Bildung der L-Aminosäuren Threonin, Glutaminsäure, Homoserin, Methionin, Arginin, Prolin und Isoleucin erreicht (EP 1,092,776). In der Literatur (Xie et al. Biotechnol. Letters 23 (2001) 111-117; Gokarn et al. Biotechnol. Letters 20 (1998) 795-798; Gokarn et al. Applied Environm. Microbiol. 66 (2000) 1844-1850; Gokarn et al. Appl. Microbiol. Biotechnol. 56 (2001) 188-195; EP 1,092,776) ist keine erhöhte Bildung von aromatischen Aminosäuren oder von Metaboliten aus dem Aromatenbiosyntheseweg beschrieben.
- Es ist daher Aufgabe der Erfindung, ein Verfahren zur Verfügung zu stellen, mit dem eine Produktion von aromatischen Aminosäuren und anderen Metaboliten des aromatischen Aminosäurebiosynthesewegs erreicht werden kann.
- Ausgehend vom Oberbegriff des Anspruchs 1 wird die Aufgabe erfindungsgemäß gelöst mit den im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmalen.
- Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
- Mit dem erfindungsgemäßen Verfahren ist es nunmehr möglich, aromatische Aminosäuren sowie Metabolite des aromatischen Aminosäurebiosyntheseweges mikrobiell herzustellen.
- Das erfindungsgemäße Verfahren eignet sich insbesondere zur Herstellung von L-Phenylalanin.
- Unter aromatischen Aminosäuren und anderen Metaboliten des aromatischen Aminosäurebiosyntheseweges im Sinne der Erfindung, im folgenden auch als "Substanzen" bezeichnet, sind insbesondere die aromatischen Aminosäuren L-Phenylalanin, L-Tryptophan und L-Tyrosin zu verstehen. Unter Metaboliten aus dem aromatischen Aminosäurebiosyntheseweg seien darunter auch von 3-Desoxy- D-Arabino-Heptulosonat-7-Phosphat (DAHP) abgeleitete Verbindungen wie beispielsweise D-Arabino-Heptulosonat (DAH), Shikimisäure, Chorisminsäure und alle ihre Derivate, Cyclohexadientransdiole, Indigo, Indolessigsäure, Adipinsäure, Melanin, Chinone, Benzoesäure, sowie deren potentielle Derivate und Folgeprodukte zu verstehen. Es sei dabei bemerkt, daß für die Herstellung von Indigo, Adipinsäure und anderen nicht natürlichen Folgeprodukten neben den erfindungsgemäßen Eingriffen weitere genetische Veränderungen an den die Substanzen produzierenden Mikroorganismen notwendig sind. Jedoch sollen damit alle Verbindungen umfaßt sein, deren biochemische Synthese durch die erhöhte Bereitstellung von PEP begünstigt wird.
- Die Erfinder fanden überraschenderweise heraus, daß nach Einbringen einer pyc-Gensequenz in Mikroorganismen, die natürlicherweise keine Pyruvatcarboxylase aufweisen, bzw. nach Verstärkung einer vorhandenen pyc- Gensequenz, in verbesserter Weise aromatische Aminosäuren sowie Metabolite des aromatischen Biosyntheseweges produziert werden konnten.
- Im Rahmen der Erfindung werden im folgenden alle Gensequenzen, die für eine Pyruvatcarboxylase codieren unter der Bezeichnung "pyc-Gensequenz" zusammengefaßt.
- Unter dem Begriff "Einbringen" sollen im Rahmen dieser Erfindung also alle Verfahrensschritte verstanden werden, die dazu führen, daß in Mikroorganismen, die keine pyc-Gensequenz aufweisen, eine pyc-Gensequenz eingefügt wird. Weiterhin kann unter dem Begriff "Einbringen" aber auch eine Verstärkung einer bereits vorhandenen pyc-Gensequenz verstanden werden.
- Eine Reihe verschiedener Nachweismethoden sind für die Enzymaktivität von Pyruvatcarboxylasen beschrieben. Das Testprinzip ist der Nachweis des aus Pyruvat gebildeten Oxalacetats. Das Enzym Pyruvatcarboxylase katalysiert die Carboxylierung von Pyruvat und bildet dabei Oxalacetat. Die Aktivität einer Pyruvatcarboxylase ist abhängig von Biotin als prosthetischer Gruppe am Enzym und außerdem abhängig von ATP und Magnesiumionen. Im ersten Reaktionsschritt wird ATP in ADP und anorganisches Phosphat gespalten. Dabei wird der Enzym- Biotinkomplex durch Hydrogencarbonat carboxyliert. Im zweiten Schritt wird die Carboxylgruppe vom Enzym- Biotinkomplex auf Pyruvat übertragen. Dabei wird Oxalacetat gebildet.
- Die Pyruvatcarboxylase von Brevibacterium lactofermentum läßt sich beispielsweise in durch Ultraschallbehandlung erhaltenen Rohextrakten nachweisen, indem gekoppelte Enzymtests mit Malatdehydrogenase oder Citratsynthase durchgeführt werden, die jeweils als Nachweis für das gebildete Oxalacetat dienen (Tosaka et al. Agric. Biol. Chem. 43 (1979) 1513-1519).
- Die Pyruvatcarboxylase aus Methanococcus jannaschii wurde durch eine Kopplung mit Malatdehydrogenase nachgewiesen (Mukhopadhyay et al. Arch. Microbiol. 174 (2000) 406-414).
- In Zellen von Corynebacterium glutamicum, die durch Hexadecyltrimethylammoniumbromid (CTAB) permeabilisiert worden waren, wurde die Pyruvatcarboxylase-Aktivität in einem diskontinuierlichen Verfahren durch Kopplung an eine Glutamat-Oxalacetat-Transaminase nachgewiesen (Peters-Wendisch et al. Microbiology 143 (1997) 1095-1103).
- Ebenfalls in durch CTAB permeabilisierten Zellen von C. glutamicum verwendeten Uy et al. (Journal of Microbiological Methods 39 (1999) 91-96) ein diskontinuierliches Verfahren mit Bestimmung der restlichen Pyruvatkonzentration durch Lactatdehydrogenase und fluorometrische Bestimmung der Umsetzung von Pyruvat und NADH zu Laktat und NAD.
- In rekombinanten E. coli-Zellen, die die pyc-Gensequenz aus Rhizobium etli exprimierten, wurde die Pyruvatcarboxylase-Aktivität in Rohextrakten durch Kopplung mit dem Enzym Citratsynthase und spektrophotometrischem CoenzymA-Nachweis bei 412 nm durch Bildung von Thionitrobenzoat bestimmt (Gokarn et al. Appl. Microbiol. Biotechnol. 56 (2001)188-195; Payne & Morris J. Gen. Microbiol. 59 (1969) 97-101).
- Die Aktivität der menschlichen Pyruvatcarboxylase und der rekombinanten Hefe-Pyruvatcarboxylase wurde durch die Fixierung radioaktiv markierten 14C-Carbonats nachgewiesen (Jitrapakdee et al. Biochem. Biophys. Res. Commun. 266 (1999) 512-517; Irani et al. Biotechnol. Bioengin. 66 (1999) 238-246).
- Durch die Verstärkung der Pyruvatcarboxylase-Aktivität bzw. die erstmalige Bereitstellung der Pyruvatcarboxylase in Mikroorganismen, wird vermutlich eine erhöhte intrazelluläre Verfügbarkeit von Phosphoenolpyruvat (PEP) bewirkt, so daß dieses nicht mehr für anaplerotische Reaktionen verbraucht wird. Dies kann dann zu einer verbesserten mikrobiellen Synthese von Substanzen führen, die von PEP abgeleitet werden, insbesondere aromatischen Aminosäuren sowie anderen Metaboliten des aromatischen Aminosäurebiosyntheseweges. Wie von den Erfindern gezeigt werden konnte, wurde durch das Einbringen einer pyc-Gensequenz in Mikroorganismen eine verbesserte mikrobielle Synthese von Substanzen bewirkt, die vom PEP abgeleitet werden. Insbesondere DAHP bzw. sein Abbauprodukt, DAH, wurde in verstärktem Maße im Kulturüberstand wiedergefunden, wenn der zweite Schritt des Aromatenbiosyntheseweges durch eine Mutation des aroB-Gens blockiert ist. DAHP, welches durch Kondensation von PEP und Ery4P synthetisiert wird, bildet die Ausgangssubstanz für aromatische Aminosäuren sowie andere Metabolite des aromatischen Aminosäurebiosyntheseweges. DAHP bzw. DAH werden in der Literatur als Anzeichen für eine verstärkte PEP-Verfügbarkeit diskutiert (Frost und Draths Annual Rev. Microbiol. 49 (1995), 557-579; Flores et al. Nature Biotechnology 14 (1996) 620-623; Bongaerts et al. Metabolic Engineering 3 (2001) 289-300)
- Der Begriff "Verstärkung" der pyc-Gensequenz beschreibt im Zusammenhang der vorliegenden Erfindung die Erhöhung der Aktivität der Pyruvatcarboxylase. Zu diesem Zweck können beispielhaft folgende Maßnahmen genannt werden:
- - Einführung der pyc-Gensequenz z. B. mittels Vektoren oder temperenter Phagen;
- - Erhöhung der für die Pyruvatcarboxylase (pyc- Gensequenz) codierenden Genkopienzahl z. B. mittels Plasmiden mit dem Ziel die pyc-Gensequenz in erhöhter Kopienzahl, von leicht (z. B. 2- bis 5-fach) bis zu stark erhöhter Kopienzahl (z. B. 15- bis 50- fach), in den Mikroorganismus einzubringen;
- - Erhöhung der Genexpression der pyc-Gensequenz z. B. durch Steigerung der Transkriptionsrate z. B. durch Verwendung von Promotorelementen wie z. B. Ptac, Ptet oder anderen regulatorischen Nucleotidsequenzen und/oder durch Steigerung der Translationsrate z. B. durch Verwendung einer Konsensusribosomenbindungsstelle;
- - Zusatz von Biotin zum Fermentationsmedium, um die Zellen besser mit der für die Pyruvatcarboxylase essentiellen prosthetischen Gruppe Biotin zu versorgen oder Verstärkung vorhandener Enzyme, die zur Biotin-Biosynthese befähigt sind bzw. Einführung dieser Enzyme in den Mikroorganismus.
- Durch die Verwendung von induzierbaren Promotorelementen, z. B. laclq/Ptac, besteht die Möglichkeit der Zuschaltung neuer Funktionen (Induktion der Enzymsynthese), z. B. durch Zugabe von chemischen Induktoren wie Isopropylthiogalactosid (IPTG).
- Alternativ kann weiterhin eine Überexpression der pyc- Gensequenz durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden. Auch die Zugabe essentieller Wuchsstoffe zum Fermentationsmedium kann eine verbesserte Produktion der Substanzen in Sinne der Erfindung bewirken.
- Durch Maßnahmen zur Verlängerung der Lebensdauer der m-RNA wird ebenso die Expression verbessert. Weiterhin wird auch durch Verhinderung des Abbaus des Enzymproteins die Enzymaktivität verstärkt. Erhöhung der endogenen Aktivität einer vorhandenen Pyruvatcarboxylase (z. B. in Bacillus subtilis oder Corynebakterien) z. B. durch Mutationen, die nach klassischen Methoden ungerichtet erzeugt werden, wie beispielsweise durch UV-Bestrahlung oder mutationsauslösende Chemikalien, oder durch Mutationen, die gezielt mittels gentechnologischer Methoden wie Deletion(en), Insertion(en) und/oder Nucleotidaustausch(e) erzeugt werden. Auch Kombinationen der genannten und weiteren, analogen Methoden können zur Erhöhung der Pyruvatcarboxylaseaktivität eingesetzt werden.
- Bevorzugt erfolgt das Einbringen der pyc-Gensequenz dadurch, daß eine Integration der pyc-Gensequenz in eine Genstruktur oder in mehrere Genstrukturen erfolgt, wobei die pyc-Gensequenz als einzelne Kopie oder in erhöhter Kopienzahl in die Genstruktur eingebracht wird.
- Als "Genstruktur" ist jedes Gen oder jede Nucleotidsequenz zu verstehen, welche eine pyc-Gensequenz trägt. Entsprechende Nucleotidsequenzen können beispielsweise Plasmide, Vektoren, Chromosomen, Phagen oder andere, nicht zirkulär geschlossene, Nucleotidsequenzen sein. Beispielsweise kann die pyc-Gensequenz auf einem Vektor in die Zelle eingebracht werden oder in ein Chromosom inseriert werden oder durch einen Phagen in die Zelle eingebracht werden. Andere Kombinationen von Genverteilungen sollen durch diese Beispiele nicht von der Erfindung ausgeschlossen werden. Für den Fall, daß bereits eine pyc-Gensequenz vorhanden ist, sollte die Anzahl der in der Genstrukur enthaltenen pyc-Gensequenzen die natürliche Anzahl übersteigen.
- Die für das erfindungsgemäße Verfahren verwendete pyc- Gensequenz kann z. B. aus Rhizobium (Gokarn et al. Appl. Microbiol. Biotechnol. 56 (2001) 188-195), Brevibacterium, Bacillus, Mycobacterium (Mukhopadhyay und Purwantini Biochimica et Biophysica Acta 1475 (2000) 191-206), Methanococcus (Mukhopadhyay et al. Arch. Microbiol. 174 (2000) 406-414), Saccharomyces cerevisiae (Irani et al. Biotechnology and Bioengineering 66 (1999) 238-246) Pseudomonas, Rhodopseudomonas, Campylobacter oder Methanococcus jannaschii (Mukhopadhyay et al. Arch. Microbiol. 174 (2000) 406-414) stammen. Vorteilhaft hat sich eine pyc-Gensequenz aus Corynebacterium-Stämmen, insbesondere aus Corynebacterium glutamicum (Peters-Wendisch et al. Microbiology 144 (1998) 915-927; Peters-Wendisch et al. J. Mol. Microbiol. Biotechnol. 3 (2001) 295-300), erwiesen. Ebenso geeignet sind Gene für Pyruvatcarboxylasen aus anderen Organismen.
- Der Fachmann weiß, daß weitere pyc-Gensequenzen aus allgemein zugänglichen Datenbanken identifizierbar sind (wie z. B. EMBL, NCBI, ERGO) und durch Techniken der Genklonierung, z. B. unter Einsatz der Polymerasekettenreaktion PCR aus solchen anderen Organismen klonierbar sind.
- Für das erfindungsgemäße Verfahren werden Mikroorganismen eingesetzt, in die in replizierbarer Form eine pyc- Gensequenz eingebracht wurde.
- Als Mikroorganismen für die Transformation mit einer pyc-Gensequenz eignen sich Organismen aus der Familie der Enterobacteriaceae wie z. B. Escherichia-Arten, sowie aber auch Mikroorganismen der Gattungen Serratia, Bacillus, Corynebacterium oder Brevibacterium und weitere aus klassischen Aminosäureverfahren bekannte Stämme. Besonders geeignet ist Escherichia coli.
- Bei der DSMZ wurde gemäß den Bedingungen des Budapester Vertrages am 22.03.2002 der folgende Stamm hinterlegt: Escherichia coli K-12 LJ110 aroB/pF36 unter der Nummer DSM 14881.
- Die Transformation der Mikroorganismen bzw. Wirtszellen kann durch chemische Methoden (Hanahan D, J. Mol. Biol. 166 (1983) 557-580), sowie auch durch Elektroporation, Konjugation, Transduktion oder durch Subklonierung aus in der Literatur bekannten Plasmidstrukturen erfolgen. Im Falle z. B. der Klonierung der Pyruvatcarboxylase aus Corynebacterium glutamicum eignet sich beispielsweise die Methode der Polymerase-Kettenreaktion (PCR) zur gerichteten Amplifikation der pyc-Gensequenz mit chromosomaler DNS aus Corynebacterium glutamicum Stämmen.
- Es ist vorteilhaft für die Transformation Mikroorganismen einzusetzen, in denen ein oder mehrere Enzyme, die zusätzlich an der Synthese der aromatischen Aminosäuren und anderen Metaboliten des aromatischen Aminosäurebiosyntheseweges beteiligt sind, dereguliert und/oder in ihrer Aktivität erhöht sind. Insbesondere werden transformierte Zellen verwendet, die in der Lage sind, eine aromatische Aminosäure zu produzieren, wobei die aromatische Aminosäure vorzugsweise L-Phenylalanin ist.
- In einer weiteren vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens können in Mikroorganismen mit einer pyc-Gensequenz die Gene, die für Enzyme codieren, die mit der Pyruvatcarboxylase um PEP konkurrieren, wie z. B. die PEP-Carboxylase, das PEP abhängige Zuckerphosphotransferasesystem (PTS) oder Pyruvatkinasen, einzeln oder im Verbund in ihrer Expression erniedrigt bzw. inaktiviert oder völlig ausgeschaltet werden und diese Mikroorganismen eingesetzt werden. So kann die Bereitstellung von PEP für die Synthese aromatischer Aminosäuren und anderen Metaboliten des aromatischen Aminosäurebiosyntheseweges weiter verbessert werden und damit die Herstellung dieser Verbindungen verbessert werden.
- Diese vorteilhafte Ausführungsform schließt auch ein, daß die Aktivität eines Transportproteins zur PEP unabhängigen Aufnahme von Glucose in Mikroorganismen mit einem PEP-abhängigen Transportsystem für Glucose, die im erfindungsgemäßen Verfahren eingesetzt werden, erhöht wird. Die zusätzliche Integration eines PEP unabhängigen Transportsystems erlaubt eine erhöhte Bereitstellung von Glucose in dem die Substanzen produzierenden Mikroorganismus. PEP als Energie-Donor wird für diese Umsetzungen nicht benötigt und steht damit, ausgehend von einem konstanten Stofffluß in der Glykolyse und dem Pentosephosphatweg, vermehrt für die Kondensation mit Erythrose-4-Phosphat (Ery-4-P) zum primären Metaboliten des allgemeinen Biosyntheseweges für aromatische Verbindungen wie z. B. Desoxy-D-arabino- heptulosonat-7-phosphat (DAHP) zur Verfügung und in der Folge für die Produktion von beispielsweise aromatischen Aminosäuren, wie z. B. L-Phenylalanin, Tyrosin oder Tryptophan.
- Die vorteilhafte Verwendung eines PEP unabhängigen Zuckertransportsystems, eines Glucosefacilitator-Proteins (Glf) sowie der Gene für Transketolase, Transaldolase und Glucokinase wurde bereits in früheren Patentanmeldungen gezeigt (DE 196 44 566.3, DE 196 44 567.1, DE 198 18 541 A1; US 6,316,232)
- Im erfindungsgemäßen Verfahren zur Produktion von Substanzen können in einer bevorzugten Ausführung Mikroorganismen eingesetzt werden, in denen ein oder mehrere Enzyme, die zusätzlich an der Synthese der Substanzen beteiligt sind, dereguliert und/oder in ihrer Aktivität erhöht sind. Dies sind insbesondere die Enzyme des aromatischen Aminosäurestoffwechsels und vor allem die DAHP-Synthase (z. B. in E. coli AroF oder AroH), die Shikimatkinase und die Chorismatmutase/Prephenatdehydratase (PheA). Auch alle anderen Enzyme, die an der Synthese aromatischer Aminosäuren bzw. Metaboliten des aromatischen Aminosäurebiosynthesewegs und deren Folgeprodukten beteiligt sind können verwendet werden.
- Für die Herstellung von Metaboliten des aromatischen Aminosäurebiosyntheseweges und deren Derivaten wie beispielsweise Adipinsäure, Gallensäure und Chinonverbindungen, sowie deren Derivate hat sich neben der pyc- Gensequenz besonders die deregulierte und überexprimierte DAHP-Synthase als geeignet erwiesen. Zur erhöhten Synthese von beispielsweise L-Tryptophan, L-Tyrosin, Indigo, Derivaten von Hydroxy- und Aminobenzoesäure und Naphtho- und Anthroquinonen, sowie deren Folgeprodukte sollten zusätzlich die Shikimatkinase dereguliert und in ihrer Aktivität erhöht werden. Für eine effiziente Produktion von Phenylalanin, Phenylbrenztraubensäure und deren Derivaten ist zusätzlich eine deregulierte und überexprimierte Chorismatmutase/- Prephenatdehydratase von besonderer Bedeutung. Jedoch sollen damit auch alle anderen Enzyme umfaßt sein, deren Aktivitäten zur mikrobiellen Synthese von anderen Metaboliten als die aus dem aromatischen Aminosäurebiosyntheseweg beitragen, das heißt Verbindungen deren Produktion durch die Bereitstellung von PEP begünstigt wird, z. B. CMP-Ketodesoxyoctulosonsäure, UDP-N-Acetylmuraminsäure, oder N-Acetyl-Neuraminsäure. Die vermehrte Bereitstellung von PEP kann sich dabei nicht nur positiv auf die Synthese von DAHP auswirken, sondern kann auch die Einführung einer Pyruvat-Gruppe bei der Synthese von 3-Enolpyruvoylshikimat-5-phosphat als Vorläufer von Chorismat begünstigen. Für die Herstellung von Indigo, Adipinsäure, Cyclohexadientransdiolen und anderen nicht natürlichen Folgeprodukten sind neben den erfindungsgemäßen Verfahrensmerkmalen weitere genetische Veränderungen an den Substanzen produzierenden Mikroorganismen notwendig.
- Im folgenden sollen die verwendeten Materialien und Methoden angegeben, sowie die Erfindung durch experimentelle Beispiele und Vergleichsbeispiele erläutert werden:
- Fig. 1 zeigt die Verknüpfungen zwischen dem Zentralstoffwechsel und dem aromatischen Aminosäurebiosyntheseweg von Bakterien unter Hervorhebung der Reaktionen des Phosphoenolpyruvats und Pyruvats.
Reaktion 1 bezeichnet die Pyruvatcarboxylase-Reaktion,
Reaktion 2 die Phosphoenolpyruvat-Carboxylase Reaktion
und Reaktion 3 das PEP abhängige Zuckerphosphotransferase-System (PTS).
CHD = Cyclohexadiencarboxylattransdiole
DAHP = 3-Desoxy-Arabino-Heptulosonat-7-Phosphat
DAH = 3-Desoxy-Arabino-Heptulosonat
DHAP = Dihydroxyacetonphosphat
2,3-DHB = 2,3-Dihydroxybenzoat
EPSP = Enol-Pyruvoyl-Shikimat-Phosphat
GA3-P = Glyceraldehyd-3-Phosphat
pABA = para-Aminobenzoat
PEP = Phosphoenolpyruvat - Fig. 2 zeigt beispielhaft experimentelle Daten des Pyruvatcarboxylase-Aktivitätsnachweises. Dabei gibt die Abszisse X die Zeit in Sekunden wieder und die Ordinate Y die Extinktion bei einer Wellenlänge von 412 nm. Die durch schwarz ausgefüllte Rauten dargestellten Meßpunkte sind Ergebnisse, die mit E. coli Zellen, die mit einem pyc-Vektor transformiert wurden, erhalten wurden. Die mit einem nicht ausgefüllten Quadrat dargestellten Meßpunkte, geben die Ergebnisse der E. coli Zellen wieder, die mit einem Leervektor ohne pyc-Gensequenz transformiert wurden. Die grau durchgezogene Linie gibt die Regressionsgerade wieder. Tab. 1 Verwendete Plasmide und Bakterienstämme
- Die erste Klonierung der pyc-Gensequenz aus Corynebacterium glutamicum ATCC13032 ist beschrieben unter Peters-Wendisch et al. Microbiology 144 (1998) 915-927. Die Subklonierung der pyc-Gensequenz in den Expressionsvektor pVWEx1-pyc ist beschrieben in Peters-Wendisch et al. J. Mol. Microbiol. Biotechnol. 3 (2001) 295-300. Aus dem Vektor pVWEx1-pyc wurde durch Restriktion mit den Enzymen SphI und HindIII ein 3,7 kb DNA-Fragment mit der pyc-Gensequenz aus C. glutamicum erhalten. Dieses 3.7 kb Fragment wurde mit dem Vektor pACYCPtac (SphI plus Hind III-restringiert) ligiert. Die Transformation erfolgte in den E. coli-Stamm DH5α. Die Selektion erfolgte auf LB-Platten mit Chloramphenicol (25 mg/l). Plasmide mit dem korrekten Insert wurden als pF36 bezeichnet.
- Die Einführung von Defektmutationen in der Biosynthese aromatischer Aminosäuren erfolgte durch P1-vermittelte Transduktion. Die Defekte für die beiden Shikimatkinasen (aroL und aroK) wurden durch nacheinander erfolgende P1-Transduktion aus dem Stamm DV80 (aroK::kan, aroL::Tn10, Vinella et al. Journal of Bacteriology 178 (1996) 3818-3828) erzeugt. Dazu wurde der Wildtyp-Stamm E. coli K-12 LJ110 zuerst auf Kanamycinresistenz selektioniert (Erhalt des aroK::Kan-Markers). In einer zweiten P1-Transduktion erfolgte dann Selektion auf den Erhalt des Tetrazyklin-Resistenzmarkers (Erhalt des aroL::Tn10-Markers). Zellen, die beide Resistenzen aufwiesen, wurden anschließend auf Auxotrophie für die aromatischen Aminosäuren L-Phenylalanin, L-Tyrosin, L- Tryptophan (je 40 mg/l) und auf Auxotrophie für p- Aminobenzoesäure, p-Hydroxybenzoesäure und 2,3-Dihydroxybenzoesäure (je 20 mg/l) überprüft. Mutanten mit einem Defekt in aroB wurden erhalten, in dem eine P1-Transduktion aus dem Donorstamm AB2847 rpe::Km aroB in den Stamm LJ110 erfolgte. Im ersten Schritt wurde dabei auf Kanamycin-Resistenz selektioniert. Bakterien, die außerdem auxotroph für aromatische Aminosäuren und für Shikimat waren (aroB-negativ) wurden weiter verwendet. In einer zweiten P1-Transduktion (mit einem P1-Lysat aus dem Wildtypstamm LJ110) wurde auf Verwertung von Pentose-Zuckern auf Minimalmedium selektioniert. Der rpe::Km-Defekt führt zu pentose-negativem Phänotyp, Erhalt von rpe führt zu Pentoseverwertung. Zellen, die pentose-positiv wurden, aber aromatenauxotroph blieben (aroB) wurden als LJ110 aroB weiter verwendet (Marco Krämer, Dissertation, Universität Düsseldorf, 1999, S. 34).
- Der Stamm LJ110 Δppc wurde durch die cross-over-PCR- Methode von Link et al. (Link et al. J. Bacteriol. 179 (1997) 6228-6237) hergestellt. Die zur PCR- Amplifikation verwendeten Oligonukleotidprimerpaare waren: Aussenprimer Nin 5'GTTATAAATTTGGAGTGTGAAGGTTATTGCGTGCATATTACCCCAGACACCCC ATCTTATCG 3' (Seq. ID. No. 1) und Innenprimer Nout 5'TTGGGCCCGGGCTCAATTAATCAGGCTCATC 3' (Seq. ID. No. 2) für den 5'Bereich vor dem ppc-Gen. Sowie für den 3'Bereich hinter dem ppc-Gen: Aussenprimer Cout 5'GAGGCCCGGGTATCCAACGTTTTCTCAAACG 3' (Seq. ID. No. 3) und Innenprimer Cin 5'CACGCAATAACCTTCACACTCCAAATTTATAACTAATCTTCCTCTTCTGCAAA CCCTCGTGC 3' (Seq. ID. No 4). Das durch PCR erzeugte DNA-Fragment enthielt eigens eingefügte Schnittstellen für das Restriktionsenzym XmaCI. Durch Klonierung in die XmaCI-Stelle des Vektors pKO3 wurde eine in-frame- Deletion des ppc-Gens erzeugt und dann über die beschriebene Methode (Link et al. J. Bacteriol. 179 (1997) 6228-6237) in den Stamm LJ110 eingeführt. Nach Selektion auf Saccharoseresistenz wurden Stämme erhalten, die auxotroph für die Zugabe von C4-Substraten wie Succinat oder Malat sind. Die korrekte chromosomale Deletion (Δppc) wurde durch PCR mit chromosomaler DNS aus diesen Mutanten bestätigt. Die korrekten Mutanten wurden als LJ110 Δppc bezeichnet.
- Im folgenden ist beispielhaft die Durchführung des enzymatischen Pyruvatcarboxylase-Tests in rekombinanten Escherichia coli-Zellen beschrieben.
- Zellen von Escherichia coli LJ110 Δppc, die entweder mit dem Leervektor (Kontrollvektor ohne pyc-Gensequenz) pACYCtac oder mit dem pyc-enthaltenden Vektor pF36 transformiert worden waren, wurden in einem Minimalmedium (s. Vorkulturmedium Tab. 2) mit 0.5% Glucose und Chloramphenicol (25 mg/l) angezogen. Dem Medium wurde Biotin (200 µg/l) zugesetzt, um das Biotin-Bedürfnis der Pyruvatcarboxylase zu erfüllen. Da die Zellen einen PEP-Carboxylase-Defekt haben, wurde dem Minimalmedium 0.5 g/l Natrium-Succinat zugesetzt. Die Kulturen wurden in Schüttelkolben (500 ml Erlenmeyer-Kolben mit 100 ml Füllvolumen) bei 37°C 6 Stunden auf einem Rundschüttler (200 Umdrehungen pro Minute) inkubiert, bis sie eine optische Dichte bei 600 nm (OD600)von 1 bis 1,5 erreicht hatten (spät-exponentielle Wachstumsphase). Zur Induktion der Pyruvatcarboxylase wurde den Kulturmedien IPTG zu einer Endkonzentration von 100 µM zugesetzt. Nach Erreichen der angegeben optischen Dichte wurden die Kulturen durch Zentrifugation geerntet. Die so erhaltenen Sedimente wurden zweimal mit 100 mM TrisHCl-Puffer (pH 7.4) gewaschen. Anschließend wurden die Zellen im gleichen Puffer resuspendiert und es wurde eine Zellkonzentration eingestellt, die eine OD600 von 5 in 1 ml Puffer aufwies. Derartige Proben wurden mit 10 µl Toluol/ml versetzt und 1 Minute lang auf einem Vortex- Apparat gemischt. Anschließend erfolgte Inkubation bei 4°C (auf Eis) für 10 Minuten. Dadurch wurden die Zellen permeabilisiert. Für den anschließenden Pyruvatcarboxylase-Test wurden die Zellen in 100 µL-Aliquots eingesetzt.
- Das Testprinzip ist der Nachweis des aus Pyruvat und Hydrogencarbonat gebildeten Oxalacetats (OAA) über eine Kopplung mit dem Hilfsenzym Citratsynthase und Acetyl-Coenzym A (Acetyl-CoA) nach folgenden Reaktionen:
Pyruvat + HCO3 - + ATP → OAA + ADP + Pi (1)
OAA + Acetyl-CoA → Citrat + HS-CoA- (2)
HS-CoA + DTNB → CoA-Derivat + TNB2- (3)
OAA = Oxalacetat
DTNB = Dithionitrobenzoesäure
TNB2- = 5-Thio-2-Nitrobenzoat
CoA-Derivat = gemischtes Disulfid aus CoA und Thionitrobenzoesäure - Pyruvat wird durch die Pyruvatcarboxylase Pyc unter ATP-Hydrolyse zum Oxalacetat (OAA) umgesetzt (1). Das gebildete OAA wird mit Acetyl-CoA über die Citratsynthase-Reaktion (2) zu Citrat und CoenzymA (HS-CoA) umgesetzt. Der Pyc-Aktivitätsnachweis beruht auf der Reaktion (3) des freiwerdenden CoenzymA (HS-CoA) mit Dithionitrobenzoesäure zu einem gemischten Disulfid von CoA und Thionitrobenzoesäure sowie einem molaren Äquivalent an gelbgefärbtem 5-Thio-2-Nitrobenzoat (TNB2-). Dieses hat einen molaren Extinktionskoeffizienten von 13,6 mM-1 cm-1 und kann photometrisch bei einer Wellenlänge von 412 nm nachgewiesen werden. Die Bildungsrate von TNB2- korreliert direkt mit der Acetylierung von OAA und somit mit dem Umsatz von Pyruvat zu OAA durch Pyruvatcarboxylase.
- Der Testansatz enthielt in 1 mL:
NaHCO3 (25 mM), MgCl2 (1 mM), Acetyl-CoA (0,2 mM), DTNB (0,2 mM), ATP (4 mM), Citratsynthase (1 U = 1 Einheit), Zellsuspension (0,5 OD600), Testpuffer (100 mM Tris-HCl pH 7,3). Die Ansätze wurden in einem 2 mL Eppendorf- Reaktionsgefäß für 2 Minuten auf 25°C vorgewärmt. Die Reaktion wurde gestartet durch Zugabe von Pyruvat (5 mM). - Zum Stoppen der Reaktion zu den entsprechenden Zeitpunkten wurden die Reaktionsgefäße in flüssigen Stickstoff überführt und während des Auftauprozesses wurde die Biomasse durch Zentrifugation bei 4°C und 15.300 rpm abgetrennt. In den klaren Überständen wurde die Extinktion bei 412 nm photometrisch bestimmt. Als Referenz dienten Ansätze ohne Pyruvat.
- Aus den in Fig. 2 gezeigten Daten ergibt sich eine Extinktionszunahme [E412] von 0,029 pro Minute und somit eine absolute Pyruvatcarboxylaseaktivität von 210 mU/mL.
- Bezogen auf die eingesetzte Zellzahl von OD600 = 0,5 ergibt sich daraus eine spezifische Pyc-Aktivität von 42 mU/OD600. In den Kontrollen wurde keine Pyc- Aktivität festgestellt.
- Als erster Metabolit für den Aromatenbiosyntheseweg kann durch eine aroB-Mutation die Anhäufung von DAH (Abbauprodukt von DAHP) nachgewiesen werden. Es wurden die Stämme E. coli K-12 LJ110 aroB/pF36 (= DSM14881, "PYC") und der Kontrollstamm E. coli K-12 LJ110 aroB/pACYCtac (Leervektor, "LV") verwendet. Die Durchführung erfolgte in 6 parallel geschalteten Sixfors Vario-Laborfermenter (2 Liter) mit einem Füllvolumen von 1,5 L.
- Die Untersuchungen wurden mit folgenden Medienzusammensetzungen und unter folgenden Fermentationsbedingungen durchgeführt: Medien Tab. 2 Vorkulturmedium
Tab. 3 Fermentationsmedium
Feedmedium Glucose: 454 g/L -
- - Fedbatch (6-fach Parallelansatz im gerührten und begasten Bioreaktor "Sixfors-Vario" der Firma Infors, mit Abgasanalytik der Firma Rosemount)
- - Dauer: 30 h
- - Temperatur [°C]: 37 (geregelt)
- - pH: 6,5 (geregelt)
- - pO2: 30% (geregelt)
- - Titrationsmittel: 25% NH3
- - Induktionsmittel: IPTG (100 µmol/L), wird vorgelegt
- - Anfangsvolumen: 1,5 L
- - Startbedingungen:
- - Rührerdrehzahl: 500 rpm, Flussrate 0,5 L/min
- - In der Anwachsphase stufenweises Erhöhen der Rührerdrehzahl und der Flussrate (max. 1,5 L/min), bei Erreichen von 900 bis 1000 rpm Einschalten der pO2- Regelung über die Rührerdrehzahl
- - Probenahme alle 2 Stunden (Bestimmung von: OD620, Glucosekonzentration mittels "Accutrend" der Firma Roche, pH-offline, Biotrockenmasse BTM), Aufbewahrung von Fermentationsüberstand und Pellet, (Kontrolle der Plasmidstabilität über die gesamte Prozesszeit).
- - Startkonzentration Glucose im Fermenter: 13,64 g/L, keine Regelung der Glucosekonzentration im Fermenter, sondern offline-Ermittlung und entsprechender Start des Dosiersystems Fedbatch-Pro der Firma DASGIP, Jülich bei Restmenge von ca. 4 g/L und manuelle Anpassung der Dosierrate, so dass 5 g/L möglichst nicht überschritten wird.
- - Prozessdatenerfassung über LabView (National Instruments)
- - Stämme:
E. coli K-12 LJ110 aroB/pF36 ("PYC")
E. coli K-12 LJ110 aroB/pACYCtac ("LV") - Die folgende Tabelle 4 gibt die Ergebnisse der Fermentationen wieder.
- Ausbeuten (bezogen auf die verbrauchte Glucose;
[mol Produkt/mol Glucose])der Stämme:
LJ110 aroB-/pF36 (Pyc-Stamm) und
LJ110 aroB-/pACYCtac (Kontrolle mit Leervektor)
- Aus den Fermentationsergebnissen wird erkennbar, daß durch das Einbringen der pyc-Gensequenz in E. coli eine deutliche Zunahme der Ausbeute an DAH zu verzeichnen war. Die mit der pyc-Gensequenz transformierten Organismen wiesen eine mindestens 2,5-fache Steigerung der Ausbeute von DAH gegenüber den Kontrollorganismen auf, die mit dem Leervektor (Kontrollvektor ohne pyc- Gensequenz) transformiert wurden bzw. deren Pyruvatcarboxylase nicht durch die Zugabe von IPTG induziert wurde. SEQUENZPROTOKOLL
Claims (21)
1. Verfahren zur mikrobiellen Herstellung von
aromatischen Aminosäuren und anderen Metaboliten des
aromatischen Aminosäurebiosyntheseweges,
gekennzeichnet durch,
Einbringen einer pyc-Gensequenz in einen
Mikroorganismus und Verwendung dieses Mikroorganismus.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die pyc-Gensequenz in einem Mikroorganismus
verstärkt wird.
3. Verfahren nach einem der Ansprüche 1 bis 2,
dadurch gekennzeichnet,
daß die Kopienzahl der pyc-Gensequenz in einem
Mikroorganismus erhöht wird.
4. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß die Genexpression der pyc-Gensequenz in einem
Mikroorganismus erhöht wird.
5. Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
daß eine pyc-Gensequenz verwendet wird, die aus
einem Organismus aus der Gruppe der Corynebakterien,
Rhizobien, Brevibacterien, Bacillus, Mycobakterien,
Pseudomonas, Rhodopseudomonas, Campylobacter,
Methanococcus oder Saccharomyces Stämmen stammt.
6. Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß eine pyc-Gensequenz verwendet wird, die aus
Corynebacterium glutamicum stammt.
7. Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß die Herstellung Substanzen aus der Gruppe der
aromatischen Aminosäuren und anderen Metaboliten
des aromatischen Aminosäurebiosyntheseweges
betrifft.
8. Verfahren nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
daß die Herstellung die Substanzen L-Phenylalanin,
L-Tryptophan sowie L-Tyrosin betrifft.
9. Verfahren nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
daß Mikroorganismen aus der Gruppe der
Enterobacteriaceae, Serratia Stämme, Bacillus Stämme,
Corynebakterium Stämme sowie Brevibacterium Stämme
eingesetzt werden.
10. Verfahren nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet,
daß Escherichia coli eingesetzt wird.
11. Verfahren nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet,
daß das Verfahren eine Fermentation der
Mikroorganismen in einem Medium, enthaltend Komponenten aus
der Gruppe Biotin, IPTG und essentielle
Wuchsstoffe, betrifft.
12. Verfahren nach einem der Ansprüche 1 bis 11,
dadurch gekennzeichnet,
daß die pyc-Gensequenz in Genstrukturen eingebaut
wird, die in Wirtszellen eingebracht sind.
13. Verfahren nach einem der Ansprüche 1 bis 12,
dadurch gekennzeichnet,
daß mindestens ein PEP verbrauchendes Enzym in
einem Mikroorganismus ausgeschaltet oder inaktiviert
wird.
14. Verfahren nach einem der Ansprüche 1 bis 13,
dadurch gekennzeichnet,
daß mindestens ein Enzym aus der Gruppe PEP-
Carboxylasen, PEP abhängige
Zuckerphosphotransferasen (PTS) sowie Pyruvatkinasen in einem
Mikroorganismen ausgeschaltet oder inaktiviert wird.
15. Verfahren nach einem der Ansprüche 1 bis 14,
dadurch gekennzeichnet,
daß ein PEP unabhängiges Transportsystem für die
Glucoseaufnahme in einen Mikroorganismus
eingebracht wird und dieser Mikroorganismus verwendet
wird.
16. Verfahren nach einem der Ansprüche 1 bis 15,
dadurch gekennzeichnet,
daß ein Glucosefacilitator-Protein (Glf) in einen
Mikroorganismus eingebracht wird und dieser
Mikroorganismus verwendet wird.
17. Verfahren nach einem der Ansprüche 1 bis 16,
dadurch gekennzeichnet,
daß ein Glucosefacilitator-Protein aus Zymomonas
mobilis in einen Mikroorganismus eingebracht wird
und dieser Mikroorganismus verwendet wird.
18. Verfahren nach einem der Ansprüche 1 bis 17,
dadurch gekennzeichnet,
daß Zuckertransportgene in einen Mikroorganismus
eingebracht werden und dieser Mikroorganismus
verwendet wird.
19. Verfahren nach einem der Ansprüche 1 bis 18,
dadurch gekennzeichnet,
daß eine Transaldolase und/oder Transketolase in
einen Mikroorganismus eingebracht wird.
20. Verfahren nach einem der Ansprüche 1 bis 19,
dadurch gekennzeichnet,
daß eine Transketolase A und/oder Transketolase B
aus E. coli in einen Mikroorganismus eingebracht
wird.
21. Verfahren nach einem der Ansprüche 1 bis 20,
dadurch gekennzeichnet,
daß eine Deregulierung und/oder Verstärkung der
Enzyme aus der Gruppe DAHP-Synthase, Shikimatkinase,
Chorismatmutase oder Prephenatdehydratase in einem
Mikroorganismus durchgeführt wird.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10219714A DE10219714A1 (de) | 2002-05-02 | 2002-05-02 | Verfahren zur mikrobielien Herstellung von aromatischen Aminosäuren und anderen Metaboliten des aromatischen Aminosäurebiosyntheseweges |
AU2003238347A AU2003238347A1 (en) | 2002-05-02 | 2003-04-29 | Method for the microbial production of aromatic amino acids and other metabolites of the aromatic amino acid biosynthetic pathway |
US10/513,424 US20060234358A1 (en) | 2002-05-02 | 2003-04-29 | Method for the microbial production of aromatic amino acids and other metabolites of the aromatic amino acid biosynthetic pathway |
EP03732215A EP1499737A1 (de) | 2002-05-02 | 2003-04-29 | Verfahren zur mikrobiellen herstellung von aromatischen aminosäuren und anderen metaboliten des aromatischen aminosäurebiosyntheseweges |
PCT/DE2003/001380 WO2003093490A1 (de) | 2002-05-02 | 2003-04-29 | Verfahren zur mikrobiellen herstellung von aromatischen aminosäuren und anderen metaboliten des aromatischen aminosäurebiosyntheseweges |
CA002484379A CA2484379A1 (en) | 2002-05-02 | 2003-04-29 | A process for the microbial production of aromatic amino acids and othermetabolites of the aromatic amino acid biosynthetic pathway |
ZA200408826A ZA200408826B (en) | 2002-05-02 | 2004-11-01 | Method for the microbial production of aromatic amino acids and other metabolites of the aromatic amino acid biosynthetic pathway |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10219714A DE10219714A1 (de) | 2002-05-02 | 2002-05-02 | Verfahren zur mikrobielien Herstellung von aromatischen Aminosäuren und anderen Metaboliten des aromatischen Aminosäurebiosyntheseweges |
Publications (1)
Publication Number | Publication Date |
---|---|
DE10219714A1 true DE10219714A1 (de) | 2003-11-27 |
Family
ID=29285068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE10219714A Ceased DE10219714A1 (de) | 2002-05-02 | 2002-05-02 | Verfahren zur mikrobielien Herstellung von aromatischen Aminosäuren und anderen Metaboliten des aromatischen Aminosäurebiosyntheseweges |
Country Status (7)
Country | Link |
---|---|
US (1) | US20060234358A1 (de) |
EP (1) | EP1499737A1 (de) |
AU (1) | AU2003238347A1 (de) |
CA (1) | CA2484379A1 (de) |
DE (1) | DE10219714A1 (de) |
WO (1) | WO2003093490A1 (de) |
ZA (1) | ZA200408826B (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112251476A (zh) * | 2020-09-25 | 2021-01-22 | 天津科技大学 | 一种l-苯丙氨酸的生产方法 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006042666A1 (de) * | 2004-10-18 | 2006-04-27 | Meda Pharma Gmbh & Co. Kg | R-(+)-α-LIPONSÄURE ZUR PRÄVENTION VON DIABETES |
WO2007013639A1 (en) | 2005-07-25 | 2007-02-01 | Ajinomoto Co., Inc. | A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE ENTEROBACTERIACEAE FAMILY WITH ATTENUATED EXPRESSION OF THE cpxR GENE |
RU2006129690A (ru) | 2006-08-16 | 2008-02-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) | СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТЫ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИЙ СЕМЕЙСТВА Enterobacteriaceae, В КОТОРОЙ ОСЛАБЛЕНА ЭКСПРЕССИЯ ГЕНА ydiN, ГЕНА ydiB ИЛИ ИХ КОМБИНАЦИИ |
KR100850853B1 (ko) * | 2006-12-13 | 2008-08-06 | 씨제이제일제당 (주) | nrfE 유전자가 불활성화된 L-트립토판 생산 미생물 및이를 이용한 L-트립토판 제조방법 |
US8647642B2 (en) | 2008-09-18 | 2014-02-11 | Aviex Technologies, Llc | Live bacterial vaccines resistant to carbon dioxide (CO2), acidic PH and/or osmolarity for viral infection prophylaxis or treatment |
US9637746B2 (en) * | 2008-12-15 | 2017-05-02 | Greenlight Biosciences, Inc. | Methods for control of flux in metabolic pathways |
DK2566953T3 (en) | 2010-05-07 | 2019-04-15 | Greenlight Biosciences Inc | METHODS OF MANAGING THE POWER BY METABOLIC ROADS USING ENZYMOUS LOCATION |
US8916358B2 (en) | 2010-08-31 | 2014-12-23 | Greenlight Biosciences, Inc. | Methods for control of flux in metabolic pathways through protease manipulation |
CN104093848A (zh) | 2011-09-09 | 2014-10-08 | 绿光生物科学公司 | 碳青霉烯(carbapenem)的无细胞制备 |
RU2015129774A (ru) | 2012-12-21 | 2017-02-01 | Гринлайт Байосайенсиз, Инк. | Бесклеточная система для преобразования метана в топливо, пируват или изобутанол |
CN105658807A (zh) | 2013-08-05 | 2016-06-08 | 绿光生物科技股份有限公司 | 具有蛋白酶切割位点的工程化蛋白 |
SG11201707370WA (en) | 2015-03-30 | 2017-10-30 | Greenlight Biosciences Inc | Cell-free production of ribonucleic acid |
CN118667900A (zh) | 2016-04-06 | 2024-09-20 | 绿光生物科技股份有限公司 | 无细胞生成核糖核酸 |
US11129906B1 (en) | 2016-12-07 | 2021-09-28 | David Gordon Bermudes | Chimeric protein toxins for expression by therapeutic bacteria |
US11180535B1 (en) | 2016-12-07 | 2021-11-23 | David Gordon Bermudes | Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria |
CA3049386A1 (en) | 2017-01-06 | 2018-07-12 | Greenlight Biosciences, Inc. | Cell-free production of sugars |
SG11202003192UA (en) | 2017-10-11 | 2020-05-28 | Greenlight Biosciences Inc | Methods and compositions for nucleoside triphosphate and ribonucleic acid production |
CN115806926B (zh) * | 2022-11-11 | 2024-07-26 | 天津科技大学 | 一种生产假尿苷的基因工程菌株及其构建方法与应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19831609A1 (de) * | 1997-10-04 | 1999-04-15 | Forschungszentrum Juelich Gmbh | Verfahren zur Herstellung von Aminosäuren der Aspartat- und/oder Glutamatfamilie und im Verfahren einsetzbare Mittel |
WO2001027258A2 (en) * | 1999-10-13 | 2001-04-19 | The University Of Georgia Research Foundation, Inc. | High yield protein expression system and methods |
DE10047866A1 (de) * | 2000-09-27 | 2002-04-11 | Degussa | Neue für das dep67-Gen kodierende Nukleotidsequenzen |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19644566A1 (de) * | 1996-10-26 | 1998-04-30 | Forschungszentrum Juelich Gmbh | Mikrobielle Herstellung von Substanzen aus dem aromatischen Stoffwechsel / I |
US6171833B1 (en) * | 1998-12-23 | 2001-01-09 | Massachusetts Institute Of Technology | Pyruvate carboxylase from corynebacterium glutamicum |
US6797509B1 (en) * | 1999-07-09 | 2004-09-28 | Degussa-Huls Ag | Nucleotide sequences which code for the tal gene |
DE10063314A1 (de) * | 2000-12-20 | 2002-07-04 | Degussa | Neue für das ilvE-Gen kodierende Nukleotidsequenzen |
-
2002
- 2002-05-02 DE DE10219714A patent/DE10219714A1/de not_active Ceased
-
2003
- 2003-04-29 EP EP03732215A patent/EP1499737A1/de not_active Withdrawn
- 2003-04-29 WO PCT/DE2003/001380 patent/WO2003093490A1/de not_active Application Discontinuation
- 2003-04-29 AU AU2003238347A patent/AU2003238347A1/en not_active Abandoned
- 2003-04-29 CA CA002484379A patent/CA2484379A1/en not_active Abandoned
- 2003-04-29 US US10/513,424 patent/US20060234358A1/en not_active Abandoned
-
2004
- 2004-11-01 ZA ZA200408826A patent/ZA200408826B/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19831609A1 (de) * | 1997-10-04 | 1999-04-15 | Forschungszentrum Juelich Gmbh | Verfahren zur Herstellung von Aminosäuren der Aspartat- und/oder Glutamatfamilie und im Verfahren einsetzbare Mittel |
WO2001027258A2 (en) * | 1999-10-13 | 2001-04-19 | The University Of Georgia Research Foundation, Inc. | High yield protein expression system and methods |
DE10047866A1 (de) * | 2000-09-27 | 2002-04-11 | Degussa | Neue für das dep67-Gen kodierende Nukleotidsequenzen |
Non-Patent Citations (1)
Title |
---|
J.Biol.Chem. 275, S. 35932-35941 (2000) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112251476A (zh) * | 2020-09-25 | 2021-01-22 | 天津科技大学 | 一种l-苯丙氨酸的生产方法 |
CN112251476B (zh) * | 2020-09-25 | 2022-11-15 | 天津科技大学 | 一种l-苯丙氨酸的生产方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2003093490A1 (de) | 2003-11-13 |
US20060234358A1 (en) | 2006-10-19 |
AU2003238347A8 (en) | 2003-11-17 |
ZA200408826B (en) | 2006-04-26 |
CA2484379A1 (en) | 2003-11-13 |
EP1499737A1 (de) | 2005-01-26 |
AU2003238347A1 (en) | 2003-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10219714A1 (de) | Verfahren zur mikrobielien Herstellung von aromatischen Aminosäuren und anderen Metaboliten des aromatischen Aminosäurebiosyntheseweges | |
DE60129995T2 (de) | Aminosäure-herstellende Escherichia Stämme und Verfahren zur Herstellung einer Aminosäure | |
EP1015621B1 (de) | Verfahren zur mikrobiellen herstellung von aminosäuren der aspartat- und/oder glutamatfamilie und im verfahren einsetzbare mittel | |
DE69534848T2 (de) | Mikroorganismen und Verfahren zur Überproduktion von DAHP mittels klonierten PPSGens | |
EP2553113B1 (de) | Verfahren zur herstellung von l-ornithin unter verwendung von lyse überexprimierenden bakterien | |
EP2354235B1 (de) | Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien | |
EP2851421B1 (de) | Nützlicher mikroorganismus und verfahren zur herstellung einer gewünschten substanz | |
US10961554B2 (en) | Promoter and a method for producing L-amino acid using the same | |
DE69735192T2 (de) | Mikrobische herstellung von substanzen aus dem aromatischen metabolismus / i | |
CN110418843A (zh) | 新型l-色氨酸输出蛋白及使用其生产l-色氨酸的方法 | |
HU224895B1 (en) | Process for producing l-amino acids | |
DE10354024A1 (de) | Verfahren zur Herstellung von L-Aminosäuren unter Verwendung von Methylotrophen | |
DE19818541C2 (de) | Mikrobielle Herstellung von Substanzen aus dem aromatischen Stoffwechsel / III | |
JP2002512802A6 (ja) | 芳香族代謝/iii物質の微生物による製造 | |
DE19644567A1 (de) | Mikrobielle Herstellung von Substanzen aus dem aromatischen Stoffwechsel / II | |
KR102685904B1 (ko) | 신규 프로모터 및 이의 용도 | |
CN118302521A (zh) | 特别适合用于发酵制备邻氨基苯甲酸的3-脱氧阿拉伯庚酮糖酸-7-磷酸合酶 | |
DE60029786T2 (de) | GLOBALER REGULATOR, VERWENDET ZUR ERHöHUNG DER SYNTHESE VON AROMATISCHEN SUBSTANZEN | |
WO2018210358A1 (de) | Pyruvatcarboxylase und für die pyruvatcarboxylase kodierende dna, plasmid enthaltend die dna, sowie mikroorganismus zur produktion und verfahren zur herstellung von produkten, deren biosynthese oxalacetat als vorstufe beinhaltet und chromosom | |
WO2004007705A1 (de) | Nukleotidsequenzen codierend für deregulierte phosphoglycerat-dehydrogenasen coryneformer bakterien sowie verfahren zur herstellung von l-serin | |
EP3820999A1 (de) | D-xylose-dehydrogenase aus coryneformen bakterien und verfahren zur herstellung von d-xylonat | |
WO2023106352A1 (ja) | 芳香族化合物の製造方法 | |
JP2023530535A (ja) | 新規なプロモーター及びその用途 | |
WO2009053489A1 (de) | Fermentative herstellung von alpha-ketoglutarsäure | |
MX2011003857A (es) | Cepas de escherichia coli modificadas para producir 3,4-dihidroxi-l-fenilalanina (l-dopa). |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8131 | Rejection |