DE10039144C1 - Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elements - Google Patents
Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elementsInfo
- Publication number
- DE10039144C1 DE10039144C1 DE10039144A DE10039144A DE10039144C1 DE 10039144 C1 DE10039144 C1 DE 10039144C1 DE 10039144 A DE10039144 A DE 10039144A DE 10039144 A DE10039144 A DE 10039144A DE 10039144 C1 DE10039144 C1 DE 10039144C1
- Authority
- DE
- Germany
- Prior art keywords
- powder
- mass
- mixture
- elements
- laser sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0207—Using a mixture of prealloyed powders or a master alloy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/38—Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/366—Scanning parameters, e.g. hatch distance or scanning strategy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/41—Radiation means characterised by the type, e.g. laser or electron beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Powder Metallurgy (AREA)
Abstract
Die Erfindung bezieht sich auf ein Verfahren zur Herstellung präziser Bauteile durch Lasersintern eines Pulvermaterials, das aus einer Mischung von mindestens zwei Pulverelementen besteht und ist dadurch gekennzeichnet, dass die Pulvermischung durch den Hauptbestandteil Eisenpulver und weitere Pulverlegierungselemente gebildet ist, die in elementarer, vorlegierter oder teilweise vorlegierter Form vorliegen, und dass im Verlaufen des Lasersinterprozesses aus diesen Pulverelementen eine Pulverlegierung entsteht. Es werden folgende Pulverlegierungselemente, jedes für sich oder in beliebiger Kombination dem Eisenpulver zugegeben: Kohlenstoff, Silizium, Kupfer, Zinn, Nickel, Molybdän, Mangan, Chrom, Kobalt, Wolfram, Vanadium, Titan, Phosphor, Bor.The invention relates to a method for producing precise components by laser sintering a powder material which consists of a mixture of at least two powder elements and is characterized in that the powder mixture is formed by the main component iron powder and further powder alloy elements, which are elementary, pre-alloyed or partially pre-alloyed form, and that a powder alloy is formed from these powder elements in the course of the laser sintering process. The following powder alloy elements, each individually or in any combination, are added to the iron powder: carbon, silicon, copper, tin, nickel, molybdenum, manganese, chromium, cobalt, tungsten, vanadium, titanium, phosphorus, boron.
Description
Die Erfindung betrifft ein Verfahren zur Herstellung präziser Bauteile gemäß dem Oberbegriff des Hauptanspruchs.The invention relates to a method for producing more precisely Components according to the preamble of the main claim.
Ein derartiges Verfahren ist aus der EP 0 782 487 B1 bekannt. Da nach wird ein Bauteil nach dem Verfahren des Lasersinterns durch Sintern von Metallpulvermischungen mit drei Kompomenten hergestellt. Dabei ist das wichtigste Ziel der Erfindung die Erhöhung der Schmelztemperatur des fertigen Bauteiles.Such a method is known from EP 0 782 487 B1. There after a component is made using the laser sintering process by sintering metal powder mixtures with three components manufactured. The most important aim of the invention is Increase the melting temperature of the finished component.
Bei der Herstellung von metallischen Bauteilen aus konventio nellen Pulvermischungen besteht das Problem, dass die Porosi tät der hergestellten Bauteile relativ hoch ist und dass die Erhöhung der Dichte der fertigen Bauteile mit dem Nachteil ei ner niedrigen Einsatztemperatur dieser Bauteile verbunden ist.In the production of metallic components from konventio nelle powder mixtures there is the problem that the Porosi Activity of the manufactured components is relatively high and that Increasing the density of the finished components with the disadvantage egg ner low operating temperature of these components is connected.
Der Erfindung liegt die Aufgabe zugrunde, metallische Bauteile im Verfahren des Lasersinterns kostengünstig mit sehr guten mechanischen Eigenschaften und in hoher Qualität herzustellen.The invention has for its object metallic components in the process of laser sintering inexpensively with very good ones mechanical properties and to produce in high quality.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Die Unteransprüche stellen vorteilhafte Weiterbildungen dar.This task is accomplished by a process with the characteristics of Claim 1 solved. The subclaims are advantageous Further training.
Danach besteht die Pulvermischung mit der im Verfahren des La sersinterns Bauteile hergestellt werden sollen, aus dem Haupt bestandteil Eisen und weiteren Pulverbestandteilen, die in elementarer, vorlegierter oder in teilweise vorlegierter Form vorliegen können. Aus diesen Pulverlegierungselementen entsteht im Verlaufe des Lasersinterprozesses eine Pulverlegie rung.Then there is the powder mixture with that in the process of La internal components are to be produced from the main component iron and other powder components, which in elementary, pre-alloyed or in partially pre-alloyed form can be present. From these powder alloy elements arises a powder alloy in the course of the laser sintering process tion.
Dem Hauptbestandteil Eisen der Pulvermischung werden je nach Anforderungen an das Fertigbauteil oder das Herstellungsver fahren folgende weitere Pulverelemente einzeln oder in belie biger Kombination zugegeben: Kohlenstoff C, Silizium Si, Kup fer Cu, Zinn Sn, Nickel Ni, Molybdän Mo, Mangan Mn, Chrom Cr, Kobalt Co, Wolfram W, Vanadium V, Titan Ti, Phosphor P, Bor B.The main component iron of the powder mixture are depending on Requirements for the prefabricated component or the manufacturing ver drive the following additional powder elements individually or in belie The following combination is added: carbon C, silicon Si, copper fer Cu, tin Sn, nickel Ni, molybdenum Mo, manganese Mn, chromium Cr, Cobalt Co, Tungsten W, Vanadium V, Titanium Ti, Phosphorus P, Boron B.
Diese Pulverbestandteile können einzeln oder in beliebiger Kombination, je nach Anforderungen an die Eigenschaften des Fertigbauteils oder des Herstellungsverfahrens, in folgenden Mengen zugegeben werden: Kohlenstoff C: 0,01-2 M.-%, Silizium Si: bis zu 1 M.-%, Kupfer Cu: bis zu 10 M.-%, Zinn Sn: bis zu 2 M.-%, Nickel Ni: bis zu 10 M.-%, Molybdän Mo: bis zu 6 M.-%, Mangan Mn: bis zu 2 M.-% oder 10-13 M.-%, Chrom Cr: bis zu 5 M.-% oder 12-18 M.-%, Kobalt Co: bis zu 2 M.-%, Wolfram W bis zu 5 M.-%, Vanadium V: bis zu 1 M.-%, Titan Ti: bis zu 0,5 M.-%, Phosphor P: bis zu 1 M.-%, Bor B: bis zu 1 M.-%.These powder components can be used individually or in any Combination, depending on the requirements for the properties of the Prefabricated component or the manufacturing process, in the following Quantities are added: carbon C: 0.01-2 mass%, silicon Si: up to 1% by mass, copper Cu: up to 10% by mass, tin Sn: up to 2% by mass, Nickel Ni: up to 10% by mass, molybdenum Mo: up to 6% by mass, Manganese Mn: up to 2% by mass or 10-13% by mass, chromium Cr: up to 5% by mass or 12-18 mass%, cobalt Co: up to 2 mass%, tungsten W up to 5% by mass, vanadium V: up to 1% by mass, titanium Ti: up to 0.5% by mass, Phosphorus P: up to 1% by mass, boron B: up to 1% by mass.
Die Erfindung sieht vor, dass die einzelnen Pulverbestandteile in elementarer, legierter oder teilweise legierter Form vor liegen. Dabei kann es sich um Pulverteilchen handeln, die mit dem Hauptbestandteil Eisen legiert sind. In diesem Fall liegen sie als z. B. Ferrobor, Ferrochrom, Ferrophosphor oder Eisensi lizid vor. Es können auch weitere Pulverelemente in legierter oder vorlegierter Form zugegeben werden, wie z. B. Kupferphos phid, die aber im übrigen hier nicht einzeln aufgezählt wer den. Es ist auch vorgesehen, dass die aus den o. g. Pulverbe standteilen gebildete Pulvermischung in einem separaten Ver fahrensschritt vorlegiert wird.The invention provides that the individual powder components in elementary, alloyed or partially alloyed form lie. It can be powder particles with the main component is iron. In this case lie they as z. B. Ferrobor, Ferrochrom, Ferrophosphor or Eisensi licid before. Other powder elements can also be alloyed or added alloy form, such as. B. Kupferphos phid, which, however, are not listed individually here the. It is also envisaged that the from the above. Powder constituent powder mixture formed in a separate Ver step is alloyed.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung besteht die Pulvermischung aus wasser- oder gasverdüsten Pulvern, Karbonylpulvern, gemahlenen Pulvern oder einer Kombination aus diesen.According to an advantageous embodiment of the invention the powder mixture of water or gas atomized powders, Carbonyl powder, ground powder or a combination of this.
Es ist vorgesehen, dass die Pulverpartikel der Pulvermischung eine Größe < 50 µm, bevorzugt zwischen 20-30 µm aufweisen.It is envisaged that the powder particles of the powder mixture have a size of <50 μm, preferably between 20-30 μm.
In einer vorteilhaften Ausgestaltung der Erfindung ist auch vorgesehen, dass die Pulverpartikelgröße zwischen 50 und max. 100 µm liegen kann. Diese Partikelgröße ist dann besonderes vorteilhaft, wenn die Bauteile schnell hergestellt werden sol len, d. h. wenn die Pulverschichten im Lasersinterverfahren eine Schichtdicke von max. 100 µm aufweisen, bei welcher Schicht dicke das Verfahren relativ schnell drchgeführt werden kann.In an advantageous embodiment of the invention is also provided that the powder particle size is between 50 and Max. Can be 100 µm. This particle size is special advantageous if the components are to be manufactured quickly len, d. H. if the powder layers in the laser sintering process Layer thickness of max. 100 µm, which layer thickness the procedure can be carried out relatively quickly.
Es hat sich herausgestellt, dass eine Partikelverteilung von 30% < 20 µm und einer Restmenge aus Partikeln der Größe zwi schen 20 und 60 µm zu besonderes guten Verfahrensergebnissen führt, da dadurch hohe Schüttdichte bei gleichzeitig guter Fließfähigkeit erreicht wird.It has been found that a particle distribution of 30% <20 µm and a residual amount of particles between two 20 and 60 µm to particularly good process results leads, because this way high bulk density at the same time good Flowability is achieved.
Gemäß einer vorteilhaften Ausgestaltung nach Anspruch 9 ist vorgesehen, dass der Hauptbestandteil der Pulvermischung, das Eisenpulver, einen Anteil zwischen 5 und 20% von Partikeln der Größe < 10 µm aufweist und die Restmenge der Pulverpartikel eine Größe zwischen 50 und 60 µm aufweist.According to an advantageous embodiment according to claim 9 provided that the main component of the powder mixture, the Iron powder, a proportion between 5 and 20% of particles the size <10 microns and the remaining amount of powder particles has a size between 50 and 60 microns.
Durch die optimierte Wahl der Belichtungsparameter kann die Dichte der Bauteile nach dem Lasersintern so eingestellt wer den, dass entweder kurze Bauzeiten mit niedrigerer Bauteil dichte oder hohe Eigenschaftsanforderungen (hohe Dichten bei längeren Bauzeiten) berücksichtigt werden.Due to the optimized choice of exposure parameters, the The density of the components after laser sintering is set in this way that either short construction times with lower component dense or high property requirements (high densities at longer construction times) are taken into account.
Die technischen Anwendungsgebiete der Erfindung bestehen in der Herstellung metallischer Prototypen (Rapid Prototyping), von Einzelteilen (Direct Parts) oder Werkzeugen (z. B. Formein sätze für den Kunstoffspritzguss oder Metalldruckguss - Rapid Tooling) mit dem generativen Verfahren Direktes Metall Laser sintern. Aufgrund der sehr guten mechanischen Eigenschaften können solche Teile im Formen- und Werkzeugbau sowie im Ma schinen-, Anlagen- und Fahrzeugbau verwendet werden.The technical fields of application of the invention consist in the production of metallic prototypes (rapid prototyping), of individual parts (direct parts) or tools (e.g. mold kits for plastic injection molding or metal die casting - Rapid Tooling) with the generative method Direct Metal Laser sinter. Because of the very good mechanical properties can such parts in mold and tool construction as well as in Ma machine, plant and vehicle construction can be used.
Das erfindungsgemäße Verfahren wird im Folgenden anhand eini ger Ausführungsbeispie näher beschrieben:The method according to the invention is described below with reference to a Example of execution:
Konventionelle Pulver werden in der gewünschten Legierungszu sammensetzung miteinander gemischt, wobei die Pulvereigen schaften dabei so eingestellt werden, dass sie den Anforderun gen an das Fertigbauteil oder das Verfahren entsprechen. Es ist wesentlich, dass ein gutes Fliessverhalten bei gleichzei tig hoher Schüttdichte erreicht wird. Die Rolle der Zusatz stoffe besteht in der Einstellung bestimmter mechanischer, physikalischer und chemischer Eigenschaften des fertigen Bau teils. Weiterhin kann die Rolle der Zusatzstoffe in der Erhö hung des Absorptionsvermögens des Eisenpulvers von Laserstrah len, der Verringerung des Schmelzpunktes des Pulversystems, dem Einsatz niedrigschmelzender Elemente/Legierungen, der Verringerung der Oberflächenspannung und Viskosität sowie der De soxidation zur Verbesserung der Sinteraktivität zum Erzielen hoher Dichten bestehen. Z. B. bewirkt Kohlenstoff als feiner elementarer Graphit (Pulvergröße 1-2 µm) die Erhöhung des Absorptionsvermögens von Eisen-/Stahlpulver und die Verringe rung des Schmelzpunktes der Pulvermischung durch eutektische Reaktion und Desoxidation. Kupfer- oder Bronzepulver mit einer Pulvergröße von kleiner 45 µm fungiert als ein niedrigschmel zendes Element bzw. eine niedrigschmelzende Verbindung und verbessert die Sinteraktivität. Phosphor und Bor verringern die Oberflächenspannung und die Viskosität der Schmelze, die während des Lasersinterprozesses entsteht, um durch das Ver meiden der Kugelbildung eine gute Oberflächenqualität zu er zielen. Die Rolle der weiteren Pulver-Legierungselemente kann sowohl in der Einstellung gewünschter mechanischer Eigenschaf ten als auch in der Reaktion mit anderen Elementen zur ver stärkten Schmelzebildung (Fe-C-Mo) liegen. Die Pulverelemente Kohlenstoff, Molybdän, Chrom, Mangan, Nickel bewirken die ho hen mechanischen Eigenschaften des fertigen Bauteils. Phos phor, Bor, Kupfer und Zinn bewirken eine hohe Sinteraktivität. Durch die Wahl geeigneter Lasersinterparameter kann die Dichte zwischen 70 und 95% der theoretischen Dichte variiert werden.Conventional powders are added in the desired alloy composition mixed together, the powder being be adjusted so that they meet the requirements to the finished component or the procedure. It it is essential that good flow behavior at the same time high bulk density is reached. The role of addition fabrics consists in the setting of certain mechanical, physical and chemical properties of the finished building part. Furthermore, the role of additives in the increase Absorption of iron powder by laser beam len, the reduction of the melting point of the powder system, the use of low-melting elements / alloys, the reduction the surface tension and viscosity as well as the De Soxidation to improve the sintering activity to achieve high densities exist. For example, carbon makes it finer elemental graphite (powder size 1-2 µm) increasing the Absorbance of iron / steel powder and the rings tion of the melting point of the powder mixture by eutectic Reaction and deoxidation. Copper or bronze powder with one Powder size of less than 45 µm acts as a low melting point element or a low-melting compound and improves sintering activity. Reduce phosphorus and boron the surface tension and the viscosity of the melt, the arises during the laser sintering process in order to be avoid spherical formation to a good surface quality aim. The role of the other powder alloy elements can both in the setting of the desired mechanical properties as well as in the reaction with other elements strong melt formation (Fe-C-Mo). The powder elements Carbon, molybdenum, chromium, manganese, nickel cause the ho hen mechanical properties of the finished component. Phos phor, boron, copper and tin cause a high sintering activity. The density can be selected by choosing suitable laser sintering parameters can be varied between 70 and 95% of the theoretical density.
Beim direkten Lasersintern der beschriebenen Pulvermischung werden Dichten von 70-95% der theoretischen Dichte erzielt. Die maximale Dichte hängt von der Belichtungsstrategie und der chemischen Zusammensetzung, der Legierungsweise sowie den Ei genschaften (Pulverform, Partikelverteilung, Pulvergröße) der verwendeten Pulvermischung ab: z. B. kann mit den Lasersinter parametern 215 W cw CO2-Laser mit der Baugeschwindigkeit von 5,4 cm3/h eine Dichte von 92 ± 1% der theoretischen Dichte für Pulver, bestehend aus (in M.-%): 0,7-1 C, 2-4 Cu, bis zu 1,5 Mo, bis zu 2 Ni, bis zu 0,4 Sn, 0,15 B, erreicht werden.With direct laser sintering of the powder mixture described, densities of 70-95% of the theoretical density are achieved. The maximum density depends on the exposure strategy and the chemical composition, the type of alloy and the properties (powder form, particle distribution, powder size) of the powder mixture used: z. B. with the laser sintering parameters 215 W cw CO 2 laser with the construction speed of 5.4 cm 3 / h a density of 92 ± 1% of the theoretical density for powder, consisting of (in% by mass): 0, 7-1 C, 2-4 Cu, up to 1.5 Mo, up to 2 Ni, up to 0.4 Sn, 0.15 B.
Eine Pulvermischung bestehend aus Eisen, 0,8 M.-% C, 0,3 M.-% B wird mit den Lasersinterparametern 215 W CO2-Laser, 100 mm/s Laserscangeschwindigkeit, 0,3 mm Laserspurbreite bei einer Schichthöhe von 100 µm zu einer Dichte von 80-85% der theo retischen Dichte lasergesintert. Die Bauteilhärte nach dem La sersintern beträgt ca. 200 HV30. A powder mixture consisting of iron, 0.8 mass% C, 0.3 mass% B is made with the laser sintering parameters 215 W CO 2 laser, 100 mm / s laser scanning speed, 0.3 mm laser track width with a layer height of 100 µm laser-sintered to a density of 80-85% of the theoretical density. The component hardness after laser sintering is approx. 200 HV30.
Eine Pulvermischung bestehend aus Eisen, 0,7-1 M.-% C, 2-4 M.-% Cu, 1,5 M.-% Mo, 0,15 M.-% B wird mit den Lasersinterpa rametern 215 W CO2-Laser, 100 mm/s Laserscangeschwindigkeit, 0,3 mm Laserspurbreite bei einer Schichthöhe von 50 µm zu ei ner Dichte von 92 +/- 1% der theoretischen Dichte lasergesin tert. Die Bauteilhärte nach dem Lasersintern beträgt ca. 370 HV30.A powder mixture consisting of iron, 0.7-1% by mass of C, 2-4% by mass of Cu, 1.5% by mass of Mo, 0.15% by mass of B is made with the laser sintering parameters 215 W. CO 2 laser, 100 mm / s laser scanning speed, 0.3 mm laser track width with a layer height of 50 µm to a density of 92 +/- 1% of the theoretical density. The component hardness after laser sintering is approx. 370 HV30.
Eine Pulvermischung bestehend aus Eisen, 1-1,2 M.-% C, 2-4 M.-% Cu, 0,4 M.-% P wird mit den Lasersinterparametern 215 W CO2-Laser, 100 mm/s Laserscangeschwindigkeit, 0,3 mm Laserspur breite bei einer, im Vergleich zum ersten Beispiel, verringer ten Schichthöhe von 50 µm zu einer Dichte von 90 +/- 1% der theoretischen Dichte lasergesintert.A powder mixture consisting of iron, 1-1.2 M .-% C, 2-4 M .-% Cu, 0.4 M .-% P is with the laser sintering parameters 215 W CO 2 laser, 100 mm / s laser scanning speed , 0.3 mm laser track width with a, compared to the first example, reduced layer height of 50 µm to a density of 90 +/- 1% of the theoretical density.
Eine Eisenpulvermischung mit 0,8 M.-% Kohlenstoff ergibt nach dem Lasersintern Rauheitswerte von RZ 150 µm und Ra 29 µm. Wird der Kohlenstoffanteil auf 1,6 M.-% erhöht, verbessern sich die Rauheitswerte auf RZ 60 µm und Ra 19 µm. Pulvermischungen mit sehr guten mechanischen Eigenschaften nach dem Lasersintern weisen Rauheitswerte von RZ 75 µm und Ra 11 µm auf.An iron powder mixture with 0.8% by mass of carbon gives roughness values of R Z 150 µm and R a 29 µm after laser sintering. If the carbon content is increased to 1.6% by mass, the roughness values improve to R Z 60 µm and R a 19 µm. Powder mixtures with very good mechanical properties after laser sintering have roughness values of R Z 75 µm and R a 11 µm.
Claims (10)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10039144A DE10039144C1 (en) | 2000-08-07 | 2000-08-07 | Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elements |
EP01957742A EP1307312A1 (en) | 2000-08-07 | 2001-07-27 | Method for producing exact parts by means of laser sintering |
PCT/DE2001/002887 WO2002011929A1 (en) | 2000-08-07 | 2001-07-27 | Method for producing exact parts by means of laser sintering |
AU2001279573A AU2001279573A1 (en) | 2000-08-07 | 2001-07-27 | Method for producing exact parts by means of laser sintering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10039144A DE10039144C1 (en) | 2000-08-07 | 2000-08-07 | Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elements |
Publications (1)
Publication Number | Publication Date |
---|---|
DE10039144C1 true DE10039144C1 (en) | 2001-11-22 |
Family
ID=7652040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE10039144A Expired - Fee Related DE10039144C1 (en) | 2000-08-07 | 2000-08-07 | Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elements |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1307312A1 (en) |
AU (1) | AU2001279573A1 (en) |
DE (1) | DE10039144C1 (en) |
WO (1) | WO2002011929A1 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10239369A1 (en) * | 2002-08-28 | 2004-03-18 | Schott Glas | Sintered body used in the production of prototypes comprises a powdered borosilicate glass, glass ceramic or glass solder material applied on a working surface in a defined thickness |
DE10340052A1 (en) * | 2003-08-28 | 2005-05-04 | Dieter Ronsdorf | Process to manufacture a flexible three-dimensional work-piece clamping or holding fixture by laser sintering or laser welding and selective hardening |
DE102004008054B4 (en) * | 2003-02-25 | 2006-07-20 | Matsushita Electric Works, Ltd., Kadoma | Metal powder composition for use in selective laser sintering |
EP1992709A1 (en) * | 2007-05-14 | 2008-11-19 | EOS GmbH Electro Optical Systems | Metal powder for use in additive method for the production of three-dimensional objects and method using such metal powder |
DE102007058976A1 (en) * | 2007-12-07 | 2009-06-10 | Bayerische Motoren Werke Aktiengesellschaft | Process to fabricate a metal form component by laser build-up of low carbon metal powder lasers |
DE102007059865A1 (en) * | 2007-12-12 | 2009-06-18 | Bayerische Motoren Werke Aktiengesellschaft | Producing a mold body by structuring powder forming metallic material in layered manner, comprises subjecting layers one upon the other and melting each powder layer before bringing the powder layer with a wave like high energy radiation |
US20110002806A1 (en) * | 2008-10-24 | 2011-01-06 | Ningbo Hopesun New Material Co., Ltd. | High-Alloy Cold Work Die Steel |
DE102010029078A1 (en) * | 2010-05-18 | 2011-11-24 | Matthias Fockele | Producing an article by layer-wise structures made of powdered metallic or ceramic material, comprises individually preparing material powder layers subsequent to each other on a support, and location-selectively solidifying each layer |
DE102010060487A1 (en) * | 2010-11-11 | 2012-05-16 | Taiwan Powder Technologies Co., Ltd. | Steel powder used for forming sintered compact, comprises iron, carbon, silicon, manganese, chromium, titanium, copper and nickel, and solidifying agent |
GB2486046A (en) * | 2010-10-20 | 2012-06-06 | Materials Solutions | Making an article from a superalloy by additive layer manufacturing |
DE102011000202A1 (en) * | 2011-01-18 | 2012-07-19 | Taiwan Powder Technologies Co., Ltd. | Martensitic stainless steel powder composition, comprises carbon, silicon, manganese, chromium, titanium and remainder of iron |
US8986604B2 (en) | 2010-10-20 | 2015-03-24 | Materials Solutions | Heat treatments of ALM formed metal mixes to form super alloys |
DE102013110417A1 (en) * | 2013-09-20 | 2015-03-26 | Thyssenkrupp Steel Europe Ag | Metal powder for powder-based manufacturing processes and method for producing a metallic component from metal powder |
WO2015036802A3 (en) * | 2013-09-16 | 2015-05-07 | The University Of Nottingham | Additive manufacturing |
DE102014214562A1 (en) * | 2014-07-24 | 2016-01-28 | Siemens Aktiengesellschaft | Process for processing and using waste from metal removing or cutting processes |
EP3096909A4 (en) * | 2014-01-24 | 2017-03-08 | United Technologies Corporation | Alloying metal materials together during additive manufacturing of one or more parts |
DE102015013357A1 (en) * | 2015-10-15 | 2017-04-20 | Vdm Metals International Gmbh | Corrosion resistant powder |
DE102016202154A1 (en) * | 2016-02-12 | 2017-08-17 | Robert Bosch Gmbh | Sintered material and process for its preparation |
DE102016221840A1 (en) | 2016-11-08 | 2018-05-09 | Schaeffler Technologies AG & Co. KG | Outer ring for a turbocharger |
WO2018233745A1 (en) * | 2017-06-21 | 2018-12-27 | Schaeffler Technologies AG & Co. KG | Method for producing a bearing ring by means of an additive manufacturing method and rolling element bearing having a bearing ring |
CN109890552A (en) * | 2016-11-01 | 2019-06-14 | 纳米钢公司 | For powder bed melting can 3D printing hard ferrous metal alloy |
WO2020177976A1 (en) | 2019-03-01 | 2020-09-10 | Kolibri Metals Gmbh | Metal material composition for additively manufactured parts |
DE102019111236A1 (en) * | 2019-04-30 | 2020-11-05 | Voestalpine Böhler Edelstahl Gmbh & Co Kg | Steel material and process for its manufacture |
EP3791978A1 (en) * | 2019-09-13 | 2021-03-17 | Rolls-Royce Corporation | Additive manufactured ferrous components |
DE102016202885B4 (en) | 2015-02-27 | 2022-01-05 | Japan Silicolloy Industry Co., Ltd. | Selective laser sintering process |
US12000006B2 (en) | 2016-11-01 | 2024-06-04 | Maclean-Fogg Company | 3D printable hard ferrous metallic alloys for powder bed fusion |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005090448A1 (en) | 2004-03-21 | 2005-09-29 | Toyota Motorsport Gmbh | Powders for rapid prototyping and methods for the production thereof |
US9833788B2 (en) | 2004-03-21 | 2017-12-05 | Eos Gmbh Electro Optical Systems | Powder for layerwise manufacturing of objects |
US20050207931A1 (en) | 2004-03-21 | 2005-09-22 | Toyota Motorsport Gmbh | unknown |
US8007373B2 (en) * | 2009-05-19 | 2011-08-30 | Cobra Golf, Inc. | Method of making golf clubs |
US9330406B2 (en) | 2009-05-19 | 2016-05-03 | Cobra Golf Incorporated | Method and system for sales of golf equipment |
US11998977B2 (en) | 2018-03-15 | 2024-06-04 | Hewlett-Packard Development Company, L.P. | Build material composition with metal powder and freeze-dried heteropolymer |
CA3122303C (en) * | 2019-03-14 | 2024-04-23 | Hoeganaes Corporation | Metallurgical compositions for press-and-sinter and additive manufacturing |
CA3188975A1 (en) * | 2020-08-12 | 2022-02-17 | Montana Technological University | Dry metal alloying compositions and related methods |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE9117128U1 (en) * | 1990-12-07 | 1996-02-08 | Board of Regents, the University of Texas System, Austin, Tex. | Sintered part and powder for sintering |
DE19721595A1 (en) * | 1997-05-23 | 1999-01-28 | Atz Evus Applikations & Tech | Material for the direct production of metallic functional samples |
EP0782487B1 (en) * | 1994-09-21 | 1999-09-01 | Aktiebolaget Electrolux | Method for fabricating dimensionally accurate pieces by laser sintering |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5156697A (en) * | 1989-09-05 | 1992-10-20 | Board Of Regents, The University Of Texas System | Selective laser sintering of parts by compound formation of precursor powders |
US5314003A (en) * | 1991-12-24 | 1994-05-24 | Microelectronics And Computer Technology Corporation | Three-dimensional metal fabrication using a laser |
DE4305201C1 (en) * | 1993-02-19 | 1994-04-07 | Eos Electro Optical Syst | Three dimensional component mfr with laser-cured resin and filler - involves mixing steel or ceramic powder in resin, laser curing given shape, heating in nitrogen@ atmosphere and nitric acid to remove resin and then sintering filler |
CA2182389C (en) * | 1994-02-07 | 2001-01-30 | Rohith Shivanath | High density sintered alloy |
US5745834A (en) * | 1995-09-19 | 1998-04-28 | Rockwell International Corporation | Free form fabrication of metallic components |
-
2000
- 2000-08-07 DE DE10039144A patent/DE10039144C1/en not_active Expired - Fee Related
-
2001
- 2001-07-27 EP EP01957742A patent/EP1307312A1/en not_active Withdrawn
- 2001-07-27 AU AU2001279573A patent/AU2001279573A1/en not_active Abandoned
- 2001-07-27 WO PCT/DE2001/002887 patent/WO2002011929A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE9117128U1 (en) * | 1990-12-07 | 1996-02-08 | Board of Regents, the University of Texas System, Austin, Tex. | Sintered part and powder for sintering |
EP0782487B1 (en) * | 1994-09-21 | 1999-09-01 | Aktiebolaget Electrolux | Method for fabricating dimensionally accurate pieces by laser sintering |
DE19721595A1 (en) * | 1997-05-23 | 1999-01-28 | Atz Evus Applikations & Tech | Material for the direct production of metallic functional samples |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10239369A1 (en) * | 2002-08-28 | 2004-03-18 | Schott Glas | Sintered body used in the production of prototypes comprises a powdered borosilicate glass, glass ceramic or glass solder material applied on a working surface in a defined thickness |
DE10239369B4 (en) * | 2002-08-28 | 2005-11-10 | Schott Ag | Use of a powdery material for selective sintering |
DE102004008054B4 (en) * | 2003-02-25 | 2006-07-20 | Matsushita Electric Works, Ltd., Kadoma | Metal powder composition for use in selective laser sintering |
DE102004008054B8 (en) * | 2003-02-25 | 2007-02-08 | Matsushita Electric Works, Ltd., Kadoma | Metal powder composition for use in selective laser sintering |
US7258720B2 (en) | 2003-02-25 | 2007-08-21 | Matsushita Electric Works, Ltd. | Metal powder composition for use in selective laser sintering |
DE10340052A1 (en) * | 2003-08-28 | 2005-05-04 | Dieter Ronsdorf | Process to manufacture a flexible three-dimensional work-piece clamping or holding fixture by laser sintering or laser welding and selective hardening |
DE10340052B4 (en) * | 2003-08-28 | 2006-02-09 | Dieter Ronsdorf | Method for producing flexible functional clamping elements |
EP1992709A1 (en) * | 2007-05-14 | 2008-11-19 | EOS GmbH Electro Optical Systems | Metal powder for use in additive method for the production of three-dimensional objects and method using such metal powder |
DE102007058976A1 (en) * | 2007-12-07 | 2009-06-10 | Bayerische Motoren Werke Aktiengesellschaft | Process to fabricate a metal form component by laser build-up of low carbon metal powder lasers |
DE102007059865A1 (en) * | 2007-12-12 | 2009-06-18 | Bayerische Motoren Werke Aktiengesellschaft | Producing a mold body by structuring powder forming metallic material in layered manner, comprises subjecting layers one upon the other and melting each powder layer before bringing the powder layer with a wave like high energy radiation |
US20110002806A1 (en) * | 2008-10-24 | 2011-01-06 | Ningbo Hopesun New Material Co., Ltd. | High-Alloy Cold Work Die Steel |
US8632641B2 (en) * | 2008-10-24 | 2014-01-21 | Ningbo Hopesun New Material Co., Ltd. | High-alloy cold work die steel |
DE102010029078A1 (en) * | 2010-05-18 | 2011-11-24 | Matthias Fockele | Producing an article by layer-wise structures made of powdered metallic or ceramic material, comprises individually preparing material powder layers subsequent to each other on a support, and location-selectively solidifying each layer |
GB2486046A (en) * | 2010-10-20 | 2012-06-06 | Materials Solutions | Making an article from a superalloy by additive layer manufacturing |
GB2486046B (en) * | 2010-10-20 | 2012-12-19 | Materials Solutions | Heat treatments of ALM formed metal mixes to form super alloys |
US8986604B2 (en) | 2010-10-20 | 2015-03-24 | Materials Solutions | Heat treatments of ALM formed metal mixes to form super alloys |
US9388479B2 (en) | 2010-10-20 | 2016-07-12 | Materials Solutions | Heat treatments of ALM formed metal mixes to form super alloys |
DE102010060487A1 (en) * | 2010-11-11 | 2012-05-16 | Taiwan Powder Technologies Co., Ltd. | Steel powder used for forming sintered compact, comprises iron, carbon, silicon, manganese, chromium, titanium, copper and nickel, and solidifying agent |
DE102011000202A1 (en) * | 2011-01-18 | 2012-07-19 | Taiwan Powder Technologies Co., Ltd. | Martensitic stainless steel powder composition, comprises carbon, silicon, manganese, chromium, titanium and remainder of iron |
WO2015036802A3 (en) * | 2013-09-16 | 2015-05-07 | The University Of Nottingham | Additive manufacturing |
DE102013110417A1 (en) * | 2013-09-20 | 2015-03-26 | Thyssenkrupp Steel Europe Ag | Metal powder for powder-based manufacturing processes and method for producing a metallic component from metal powder |
EP3096909A4 (en) * | 2014-01-24 | 2017-03-08 | United Technologies Corporation | Alloying metal materials together during additive manufacturing of one or more parts |
US10576543B2 (en) | 2014-01-24 | 2020-03-03 | United Technologies Corporation | Alloying metal materials together during additive manufacturing or one or more parts |
DE102014214562A1 (en) * | 2014-07-24 | 2016-01-28 | Siemens Aktiengesellschaft | Process for processing and using waste from metal removing or cutting processes |
DE102016202885B4 (en) | 2015-02-27 | 2022-01-05 | Japan Silicolloy Industry Co., Ltd. | Selective laser sintering process |
DE102015013357A1 (en) * | 2015-10-15 | 2017-04-20 | Vdm Metals International Gmbh | Corrosion resistant powder |
DE102016202154A1 (en) * | 2016-02-12 | 2017-08-17 | Robert Bosch Gmbh | Sintered material and process for its preparation |
US10920295B2 (en) | 2016-11-01 | 2021-02-16 | The Nanosteel Company, Inc. | 3D printable hard ferrous metallic alloys for powder bed fusion |
US12000006B2 (en) | 2016-11-01 | 2024-06-04 | Maclean-Fogg Company | 3D printable hard ferrous metallic alloys for powder bed fusion |
CN109890552A (en) * | 2016-11-01 | 2019-06-14 | 纳米钢公司 | For powder bed melting can 3D printing hard ferrous metal alloy |
EP3535086A4 (en) * | 2016-11-01 | 2020-06-17 | The Nanosteel Company, Inc. | HARD FERROUS, 3D PRINTED METAL ALLOYS FOR POWDER BED FUSION |
DE102016221840A1 (en) | 2016-11-08 | 2018-05-09 | Schaeffler Technologies AG & Co. KG | Outer ring for a turbocharger |
WO2018233745A1 (en) * | 2017-06-21 | 2018-12-27 | Schaeffler Technologies AG & Co. KG | Method for producing a bearing ring by means of an additive manufacturing method and rolling element bearing having a bearing ring |
WO2020177976A1 (en) | 2019-03-01 | 2020-09-10 | Kolibri Metals Gmbh | Metal material composition for additively manufactured parts |
DE102019111236A1 (en) * | 2019-04-30 | 2020-11-05 | Voestalpine Böhler Edelstahl Gmbh & Co Kg | Steel material and process for its manufacture |
EP3791978A1 (en) * | 2019-09-13 | 2021-03-17 | Rolls-Royce Corporation | Additive manufactured ferrous components |
US11865642B2 (en) | 2019-09-13 | 2024-01-09 | Rolls-Royce Corporation | Additive manufactured ferrous components |
Also Published As
Publication number | Publication date |
---|---|
EP1307312A1 (en) | 2003-05-07 |
WO2002011929A1 (en) | 2002-02-14 |
AU2001279573A1 (en) | 2002-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10039144C1 (en) | Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elements | |
DE10039143C1 (en) | Production of precise components comprises laser sintering a powdered material consisting of iron powder and further powder alloying, and homogenizing, annealing, heat treating, degrading inner faults and/or improving the surface quality | |
DE102004008054B4 (en) | Metal powder composition for use in selective laser sintering | |
DE2753903C2 (en) | ||
DE112007003090B4 (en) | Method for producing a three-dimensionally shaped object | |
EP2061078B1 (en) | Cooling element | |
DE60025931T2 (en) | PREPARATION METHOD FOR IMPROVED METALLURGICAL POWDER COMPOSITION AND USE OF THE SAME | |
DE19715708B4 (en) | Wear resistant sintered alloy at high temperature | |
DE3232001C2 (en) | Wear-resistant sintered alloy, process for their production and their use | |
DE3810218C3 (en) | Process for producing a conductive composite material and electrical contact material obtainable therefrom | |
EP0440620B1 (en) | Semifinished product for electrical contacts, made of a composite material based on silver and tin oxide, and powder metallurgical process for producing it | |
DE19535814C2 (en) | Material for making electrical contacts based on silver | |
DE102018201301A1 (en) | Method for producing a contact component and contact component, vacuum interrupter and switchgear | |
WO2015039986A2 (en) | Metal powder for powder-based production processes and method for production of a metallic component from metal powder | |
EP3411171B1 (en) | Method for producing a three-dimensional hard metal body in layers | |
DE3911904A1 (en) | Powder-metallurgical process for producing a semifinished product for electric contacts from a silver-based composite with iron | |
DE2001341A1 (en) | Alloy or mixed metal based on molybdenum | |
DE68924678T2 (en) | Steel alloy powder for injection molding process, its connections and a process for producing sintered parts therefrom. | |
DE19708197B4 (en) | Sintered sliding element and method for its production | |
EP0988124B1 (en) | Method and powder for producing metal functional models | |
EP0338401B1 (en) | Powder-metallurgical process for the production of a semi-finished product for electrical contacts made from a composite material based on silver and iron | |
DE3421858C2 (en) | ||
DD160344A5 (en) | METHOD FOR SURFACE-CALVING AN IRON BASED ALLOY OF SUBSTRATE | |
DE102022105514A1 (en) | Process for producing high-strength, carbon-containing steel components | |
DE102022131122A1 (en) | Process for the production of functionally graded multi-material materials and components made of functionally graded multi-material materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8100 | Publication of patent without earlier publication of application | ||
D1 | Grant (no unexamined application published) patent law 81 | ||
8381 | Inventor (new situation) |
Free format text: SIMICHI, ADBOLREZA, DR., TEHERAN, IR PETZOLDT, FRANK, DR., 27578 BREMERHAVEN, DE POHL, HAIKO, 28757BREMEN, DE LOEFFLER, HOLGER, 28201 BREMEN, DE |
|
8363 | Opposition against the patent | ||
8365 | Fully valid after opposition proceedings | ||
8327 | Change in the person/name/address of the patent owner |
Owner name: EOS GMBH ELECTRO OPTICAL SYSTEMS, 82152 KRAILL, DE |
|
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |
Effective date: 20150303 |