CN87107592A - 具有一连续渐变带隙半导体区域的半导体器件 - Google Patents
具有一连续渐变带隙半导体区域的半导体器件 Download PDFInfo
- Publication number
- CN87107592A CN87107592A CN87107592.XA CN87107592A CN87107592A CN 87107592 A CN87107592 A CN 87107592A CN 87107592 A CN87107592 A CN 87107592A CN 87107592 A CN87107592 A CN 87107592A
- Authority
- CN
- China
- Prior art keywords
- atoms
- semiconductor device
- bandgap
- diode
- band gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/40—Crystalline structures
- H10D62/402—Amorphous materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/222—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PN heterojunction
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/24—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only two potential barriers, e.g. bipolar phototransistors
- H10F30/245—Bipolar phototransistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/10—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
- H10F71/103—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/10—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
- H10F71/103—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
- H10F71/1035—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials having multiple Group IV elements, e.g. SiGe or SiC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/49105—Connecting at different heights
- H01L2224/49107—Connecting at different heights on the semiconductor or solid-state body
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
一种改进的半导体器件,诸如改进的渐变带隙晶体管和改进的渐变带隙二极管,其特征在于该器件由含有硅原子、调节带隙的原子和降低定域能级的原子的非单晶材料构成,并且该器件至少在非结位置的一个方位上还具有一个带隙连续渐变的区域,而且只有导带和价带之一是连续渐变的。即显著地改善了频率特性,又改善了光敏效应。
Description
本发明与含有非单晶材料的半导体器件有关。尤其是与包括晶体管和二极管的半导体器件有关,该器件有一区域,其中的带隙至少在一非结位置处是连续渐变的,並且只有导带和价带之一是连续渐变的。
按照本发明所说的晶体管和二极管,在下面分别称为“渐变带隙晶体管”和“渐变带隙二极管”。
迄今为止,已提出各种各样具有半导体区域的晶体管和二极管,在该区域中禁带(即带隙)是以斜坡状渐变的,这有助于加速频率响应,当把它们用作光敏三极管或光敏二极管时,也能提高光敏响应。
但是,对这些晶体管和二极管的研究重点放在应用晶体半导体方面,尤其是应用GaAs(Al)半导体。在应用所说的GaAs(Al)半导体情况下,是按照分子束外延法来制造晶体管或二极管的。〔参见F·Capasso,Surface Science,142,pp.513-528(1984)〕
在分子束外延法中,形成薄膜的操作需要在超高真空中进行,並且应用此方法,在基片上生成半导体膜的沉积速率低。此外,不仅难以大规模生产此种膜,而且也难以将此形成的膜加工到大面积。而且,由于Ga和As对人体有害,用它们作为原料会产生麻烦。
与上述不同,也曾试验用易于得到的Si和Ge作为原料来制造这种半导体器件。但是大家公认,由于Si和Ge的级配常数彼此不同,用这样的原料难以制成没有不希望结构缺陷的单晶体膜。
在这方面,曾重点研究非单晶SiGe膜,该SiGe膜有利于制造太阳能电池和光电检测器。在非单晶膜情况下,不需考虑有关组成材料之间的上述差异问题,结构上的自由度大,能够用氢原子或卤素原子如氟容易地补偿悬挂键。正由于此,能有效地生成实体的非单晶SiGe膜。
此外,适当改变含于膜中的Si和Ge的数量比,就能使非单晶SiGe膜的带隙连续地变化。
同样,也曾对非单晶SiC、SiN和SiO膜进行了各种研究,这些膜适用于制造上面所述的半导体器件。
对于那样的非单晶膜,改变其组成元素间的数量比,就能使它们的带隙连续的渐变。
但是,由于它们的迁移率低,用这些非单晶膜,还未能得到所希望的高效晶体管和二极管等。
顺便提一下,在美国专利4254429中提出了建议,用这样的非单晶膜制造具有异质结的晶体管或光敏二极管。
所说出版物的公开内容的目的在于防止在组成部分层间的交界面处形成缺陷或/和失配。由此,即使在所说的出版物中,也未能在实际上制成满意的高效率晶体管和二极管,与此同时,又避免关于非单晶膜迁移率小所引起的上述问题。
参照所说出版物中公开的半导体器件,在有一半导体膜作为主要组成部分的情况下,该膜中的导带和价带二者相对费米能级而言都是倾斜的,並且该膜有一向另一方向扩展的带隙,也就是说,在形成漏斗状带隙的同时,由于空穴或电子二者之一的载流子易于积累,器件的特性就可以提高。
举例说,把所说器件用作晶体管,在此情况下,晶体管的特性低。同样,把所说器件用作二极管,这种情况下,就成为一种特性低的二极管。
此外,把所说器件作为太阳电池应用,不可能满意地增加短路电流(Isc),开路电压(Voc)以及占空因数(FF)其中任何一个。
本发明的目的在于改善已知半导体器件的频率特性,诸如含有一非单晶半导体膜的晶体管和二极管这类半导体器件。
本发明的另一个目的,旨在得到一种改善的半导体器件,它包括能在商业上大量生产的改进的晶体管和改进的二极管。
本发明的进一步目的是要提供一种改进的半导体器件,它包括改进的晶体管和改进的二极管,尤其在光敏响应方面更为优越。
图1是解释一代表性实施例的示意图,这是本发明所说的渐变带隙晶体管结构的示意图;
图2(a)至图2(c)是按本发明例子制造的渐变带隙晶体管各能带的解释性示意图;
图3是测量器件样品内部光发射和V-I(电压-电流)特性曲线的解释性示意图;
图4是一代表性实施例的示意图,它说明按照本发明所制造的渐变带隙二极管的结构;
图5(a)至图5(c)以及图6是按本发明的例子制造的渐变带隙二极管各能带的解释性简图;
图7是生产装置示意图,该设备作为制造本发明的渐变带隙晶体管或二极管所用设备的一个例子;
图8是一种生产装置的示意图,作为用以制造本发明的渐变带隙晶体管或二极管设备的另一个例子。
本发明人为了达到前面所述的目的进行了广泛的研究,结果、完成了基于下面所述研究成果的发明。
即首先发现了这样的事实,一种含有诸如非晶材料或多晶材料的非单晶材料的半导体,不需要考虑它的组分之间的晶格常数匹配问题;另一方面,它的迁移率低,能有效地用来达到本发明的目的。
另一发现是,此种半导体与晶体管结合,为该晶体管提供一基极区域具有斜坡状渐变的带隙结构(即渐变带隙晶体管),就能获得对光谱能快速响应的改进的光敏晶体管。
进一步发现,此种半导体与二极管结合,该二极管具有斜坡状渐变带隙结构(即渐变带隙二极管),从而获得对光谱能快速响应的光敏二极管。
更进一步发现,对于非单晶材料,能够制成诸如A-SiC、A-SiN等的半导体材料,其带隙比单晶Si或单晶GaAs的带隙宽,利用这样的半导体材料,能制成改进的渐变带隙晶体管或渐变带隙二极管,它们有很高的抗温度变化和抗高能粒子的能力。
从而,本发明提供了一种改进的半导体器件,诸如改进的渐变带隙晶体管和改进的渐变带隙二极管,其特征在于包括一种具有硅原子的非单晶材料,一种调节带隙的原子以及一种降低集中在局部能级的原子,並具有一区域其中至少在一非结位置其带隙是连续渐变的,並且只有导带和价带之一是连续渐变的。
这样,按照本发明,能使已知非单晶晶体管和非单晶二极管的频率特性以及光敏响应得到显著的改进。
而且,按本发明改进的任何渐变带隙晶体管和渐变带隙二极管能有效地大量生产,与应用什么来制造已知的GaAs(Al)系列半导体无关。
此外,按照本发明,能根据应用的目的制造一种所希望的渐变带隙晶体管或渐变带隙二极管,因为在带隙宽度和所用材料方面具有自由度。
现将参照附图详细地说明本发明所说的改进的半导体器件。
图1表示本发明的一种典型的渐变带隙晶体管,图中表示了基片101,集电极102,基极103以及发射极104,这些集电极102、基极103以及发射极104就以这样的次序配置在基片101上。並有重掺杂层105和另一重掺杂层106分别配置在集电极102和发射极104上,以便制成一欧姆结。电引线107、108和109分别与掺杂层105、基极103以及掺杂层106相连接。
图2(a)至2(c)表示本发明的渐变带隙晶体管在热平衡状态下的能带结构。
在图2(a)至2(c)中,数字203、204和205分别代表发射极、基极和集电极。数字201表示导带,数字202代表价带,数字206代表费米能级。
基极204的带隙在发射极203一边较宽,在集电极一边较窄,这是所希望的。
不仅在基极204和发射极203的交界面处,而且在基极204和集电极205的交界面处出现一个不连续的凹陷或尖峰时,在此情况下,就要在基极204和发射极203之间,並且在基极204和集电极205之间连续地分布一种组成元素。
为了使本发明的渐变带隙晶体管能有效地呈现其功能,希望基极204中的最小带隙与最大带隙之差大于0.1ev,更可取的是大于0.2ev。
此外,基极的厚度对于决定本发明渐变带隙晶体管的特性是个重要因素,虽说应当根据所用材料的种类来适当决定其厚度,但可取的范围是2μm或者更薄,比较可取的范围是1μm或者更薄,最可取的范围是0.7μm或者更薄。
在本发明的半导体器件中,正如图2(a)至2(c)中作为渐变带隙晶体管的一个例子,示出了它在热平衡状态下的能带结构,该半导体区域一部分(即图中基极区域)的能带结构呈现出斜坡状的带隙渐变状态,只有价带和导带之一的带能级是单调连续增加或减少,其余的带能级保持平坦状态。
一般说来,为了使带隙连续渐变,要选择合适的膜形成条件,並连续地改变在一实体半导体区域中各组分元素之间的化学成分的比例。
但是,如先有技术所说,只要简单地连续改变前述的化学比例,就可以使一半导体区域中的带隙连续渐变。不过,在此情况下,价带和导带的带能级是同时渐变的,正由于此,不可能只使该两带能级之一单调地连续上升或下降,並使其余带能级保持平坦状态。
举例说,如要求一实体半导体器件的一部分半导体膜用非单晶SiGe为材料,以等离子化学汽相淀积法来制造,一般说来,考虑到要在淀积室中保持等离子体处于稳定状态,半导体膜的制造是在不改变膜生成参数的数值情况下进行的。特别是关于稀释原料气体等的浓度,在此情况下是不改变的。
正由于此,为欲增加含在膜中Ge的量,则随着其量的增加,所生成膜的缺陷也增多,其生成膜很可能变成n型,与此同时,价带和导带二者的带能级也将相应地改变。
另一方面,在本发明中、举例说如果用非单晶SiGe来制成一实体半导体器件的半导体膜,则膜的制造是利用了实际存在的现象、即适当选择形成膜的条件,锗原子用以改变价带和导带的带能级,使之趋向在非单晶Si半导体的本征能带结构中的费米级,而氢原子的作用只改变价带的带能级,几乎不能改变导带的能级。
为了能有效地达到本发明的目的,举例说,在用等离子化学汽相淀积法生成非单晶SiGe膜的情况下,在增加作为稀释气体的氢气(H2)流速並且增加导入锗的原料气体流量的同时,要适当地减少放电功率,这样,就能从某一位置开始,朝着处于平衡状态的费米级的另一方向、连续地提高导带的带能级,同时保持价带的带能级处于平坦状态。
也即,在本发明中,适当地选择形成膜的条件,能够制造满意的半导体膜,该膜部分地含有一区域,其中的空穴激活能维持恒定,而电子激活能在能带结构中从一边向着另一边不断增大。
在本发明的例子中,将详述上面提到的内容。
应用下面通用的带隙测量方法就能证实,构成本发明半导体器件的半导体膜的部分区域中,其能带结构是否处于所希望的状态,从而达到本发明的目的。
(1)测量内部光发射
配备了一个样品和有关的测量装置,使能如图3那样构成一个电路。
在图3中,数字301代表一样品。
对于该样品301,有一层1微米厚要测量其能带结构的半导体膜304配置在一半透明铬电极303上,该铬电极淀积在玻璃板302上。在半导体膜304的另外一面、淀积了另一个半透明铬电极305。
电极303和305电连接到直流电源306及电流表307,以便观察半导体膜中的电流。
应用上述电路,在样品301上加几伏电压就能观察到光电流(Ip)与波长的相关性。
待测的光电流(Ip)能以下列方程式(A)表示:
Ip=enNo(1-R)〔1-e(1-2d)〕μEτ…(A)
e:单位电荷
n:量子效率
d:半导体膜厚度
μ:迁移率
τ:持续时间
No:发射光的光子数/每秒
R:在反射面上的反射因子
α:吸收系数
E:电场
在均匀吸收情况下,该方程式(A)变为:
Ip=enNo(1-R)(2d)τ…(B)
在此情况下,吸收系数(α)可由下式(C)表示:
α~ (Ip)/(No) ……(C)
利用该吸收系数,在横座标上标出hv,在纵座标上标出 ,从而得到该半导体膜304的一带隙值。
在本情况下,半导体膜304的较宽一边和较窄一边的有关带隙值都可以独立地测量出来,其方法是有选择地以玻璃板302或电极305作为光入射面。
(2)测量V-I(电压-电流特性曲线)
根据用图3所示电路测得的结果,可以探测到在价带一边还是在导带一边存在电势垒。
把光入射到样品301上,同时在样品上施加电压就能测得V-I特性曲线。
通过施加电压,並使带隙的较宽一边为正(+),由此测得的V-I曲线,能够证实如果所说电压的施加方向是正偏置,在此情况下就在导带一边渐变;在所加电压是负偏置情况下,就在价带一边渐变。
根据上述(1)和(2)两种测量结果,就能判断样品的能带结构是否相当于本发明所确定的能带结构。
图4中示出有关本发明的一种典型的渐变带隙二极管,其中有基片401,第一欧姆接触层402,第一非单晶层区域403,第二非单晶层区域404,以及第二欧姆接触层405。
这些第一欧姆接触层402,第1和第2非单晶层区域403和404以及第二欧姆接触层405就依这样的次序配置在基片401上。
有关的欧姆接触层402和405包含大量掺杂质,其极性与邻近层区域403和404相同,从而分别保持一相关欧姆接触。电引线406和407分别与欧姆接触层402和405电连接。
图5(a)至图5(c)概略地表示了与本发明相应的处于平衡状态的渐变带隙二极管的能带结构。
在图5(a)至图5(c)中,数字504代表第一非单晶区域,数字505代表第二非单晶区域。而数字501(a)至501(c),数字502(a)至502(c)以及数字503(a)至503(c)分别代表价带、导带和费米能级。
正如图5(a)至5(c)所示,要求第一和第二非单晶层区域中至少有一层区域的带隙是连续渐变的,在价带和导带中,只有其中之一是连续渐变的,而其余一个带保持平的状态,並且在邻近电极一边的隙宽不断变宽。
在利用本发明的渐变带隙二极管作为光敏二极管的情况下,希望尽可能地减薄欧姆接触层的厚度,使光入射一面的带隙尽可能宽。
此外,在第一非单晶层区域的交界面上连续地布置组成元素,就可以阻止在这些交界面上出现凹陷或尖峰值。
为使本发明的渐变带隙二极管有效地显示其功能,最小带隙和最大带隙之差较可取的是大于0.1ev,最好大于0.2ev。
带隙渐变区域的层的厚度是决定本发明所属渐变二极管特性的重要因素。
虽然,所说厚度应当根据所用材料的种类适当地的决定,但要求厚一点以便增加对所加电压的抗击穿能力,可取的具体厚度在50到200微米之间。另一方面,为了提高频率响应,希望薄一点,在此情况下,一种可取的厚度是从0.5到50微米。
至于在本发明中用以生成前述非单晶膜的含硅原子的适用气体原料,可列举一种链硅烷化合物,诸如甲硅烷(SiH4),全氟甲硅烷(SiF4),乙硅烷(Si2H6),全氟乙硅烷(Si2F6),丙硅烷(Si3H6),一氟代甲硅烷(SiH3F),Si2H2F等,以及一种环状硅烷化合物,诸如环丁硅烷(Si4H8),环戊硅烷(Si5H10),环己硅烷(Si6H12)等。
至于加入一种原子用以调节能带隙,即以加宽或缩减带隙,或用以降低集中在局部能级气体原料,可以列举出各种各样化合物。
具体说,加入一种原子用以加宽带隙的可用的气体原料,有碳化合物中的,诸如甲烷(CH4),乙炔(C2H2),乙烯(C2H4),乙烷(C2H6),四甲基甲硅烷〔Si(CH3)4〕以及三甲基甲硅烷〔SiH(CH3)3〕;有氮化合物中的,诸如氮(N2),铵(NH3),叠氮化氢(HN3),肼(H2NNH2),叠氮化铵(NH4N3),三氟化氮(F3N)以及四氟化氮(F4N);以及一种氧化合物,诸如氧(O2),臭氧(O3),二氧化碳(CO2),一氧化氮(No),二氧化氮(No2),三氧化氮(No3),氧化氮(N2O),三氧化二氮(N2O3)以及四氧化二氮(N2O4)。
作为适用的气体原料,用以加入一种原子,以缩减带隙,有含锗化合物,如四氢锗(GeH4),四氟锗(GeF4)等等;以及含锡化合物,例如四氢锡(SnH4)。
作为适用的气体原料,用以加入一种原子以降低集中在局部能级的有,例如,氢气(H2)以及卤素气体,例如,氟(F2),氯(Cl2)等等。
为了有效地达到本发明的目的,使用这种降低集中在局部能级的原子是一个重要因素。
欲逐步改变一区域中的带隙、包含在该区域中的这种降低集中在局部能级的原子量的可取范围是1%到60%原子数,比较可取的范围是5%到40%原子数,最可取的范围是10%到35%原子数。
此外,在本发明中,用周期表中第三族或/和第四族元素作为掺杂质,加入到需要逐步改变带隙的区域,用以控制电导率。
以第三族元素作为掺杂质,可列举出硼和铝、镓、铟、铊等。在这些元素中,尤以硼和镓更可取。
以第四族元素作为掺杂质,可以列出磷,砷,锑,铋等,在这些元素中,尤以磷和锑更可取。
在本发明中,可把这种掺杂质均匀地或不均匀地分布在所说区域中。包含在所说区域中的该掺杂质的量,其可取范围是5%原子数或更少比较可取的范围是3%原子数或更少,最可取的范围是1%原子数或更少。
现在要说明,根据本发明制造一半导体器件的工序,以及实施该工序所用的生产设备。
图7表示一种代表性的生产装置,适于实施生产半导体器件用的工序,诸如生产本发明的一种改进的渐变带隙晶体管和一种改进的渐变带隙二极管。
图7所示的生产装置是电容耦合型,该装置包括一个能严密封闭的淀积室701,该淀积室有一反应室702,一个阳极703,一个电加热器704用以加热基片708,一个加热器704用的控制装置705,一个阴极706,一个高频电源707,一个排气系统709,一个真空计770,一个输气管710,气体储存器711至714,压力计721至724以及781至784,主阀731至734,二次阀741至744,主流量控制器761至764以及阀751至754。
应用该生产装置例如,可以用如下方法生产本发明的渐变带隙三极管。
也即,首先把基片708牢固地固定在阳极703上,抽空淀积室701中的空气使反应室702中的气压降到约1×10-6乇。然后开启控制装置705把基片708加热到50℃至600℃。当基片708保持在预定温度之后,把生成集电极的气体原料以预定流量从气体储存器通过质量流控制器引入反应空间702。接着,当用真空计770测得反应空间702的内压力达到预定真空度0.1~10乇时,就开启高频功率源,把0.1W/Cm2~10W/Cm2的高频功率输入反应空间702。在造成预定时期的辉光放电之后,就有0.05μm~10μm厚的集电区层沉积在基片708上。此后,沉积室701中的空气达到足够的真空度,将已形成集电区层的基片708冷却到室温。然后,破坏沉积室701的真空,並从中取出基片708,再进行腐蚀处理,按一定尺寸在基片708上制造集电区使之达到预定的形状。
把这样处理过的基片708重新放入沉积室701中,並重复上述形成薄膜的步骤,使在以前形成的集电区上沉积厚度约为2μm的基区层。在此情况下,为了在沉积基区层的同时能连续改变其带隙,就要这样执行形成薄膜的工序,连续地减少或增加气体原材料的流量,以便加入调节带隙的原子。与此同时,根据需要,适当改变放电功率,稀释气体的浓度以及基片的温度。
此后,把在以前形成的集电区上沉积了基区层的基片708,从沉积室701取出,进行图形处理,使之成为预计的图形。
接着,把这样处理过的基片708放入沉积室701,重复上述形成薄膜的步骤,使在以前形成的基区上沉积一层发射区。此后,用处理集电区一样的方法,对发射区进行腐蚀处理,这样就制成实际所需要的渐变带隙晶体管。
本发明所属的渐变带隙二极管也可以用图7所示的生产装置进行制造。
把基片708牢固地附着在阳极703上,抽去沉积室中的空气,使反应空间702内的气压降到约1×10-6乇。然后,开启控制装置705,把基片708加热到50℃~600℃。当基片708保持在预定温度后,以预定流量把形成欧姆接触层的气体原材料从气体储存器经质量流控制器导入反应空间702。之后,用真空计770观察反应空间702内的气压,当达到预定的0.01~10乇真空度时,开启高频功率源,向反应空间702内输入0.01W/Cm2~10W/Cm2的高频功率。在进行预定时期的辉光放电后,在基片708上沉积一层厚0.01~1μm的欧姆接触层。此后,沉积室701内的空气已达到足够真空度,将已具有欧姆接触层的基片708冷却到室温。然后,破坏沉积室701的真空状态,从该沉积室取出基片708,再进行腐蚀处理,按一定尺寸把基片708上的欧姆接触层腐蚀成预定的形状。把这样处理过的基片708重新放入沉积室701,重复上述形成薄膜的程序,在先前形成的欧姆接触层上先后沉积了厚度各小于100μm的第一层区域和第二层区域。在此情况下,为了在沉积每一层区域时,同时连续改变其带隙,应这样执行形成薄膜的步骤,即连续地减少或增加气体原材料的流量,以便加入调节带隙的原子,与此同时,根据需要,适当改变放电功率,稀释气体的浓度以及基片的温度。
並按前述的相同方法,从沉积室701中取出在原先形成的欧姆接触层上沉积了第一和第二层区域的基片708,然后进行图形处理,使其具有预定的图案。最后,重复上述形成薄膜的工序,在先前形成的第二层区域上沉积另一层所需的欧姆接触层。这样就制成一个实际所需的渐变带隙二极管。
在图8中示出了另一种代表性的生产装置。
图8中的生产装置是图7所示生产装置的局部改进,对图7所示的装置加上氢基气体供应系统。图8的装置包括一个氢气储存器815、压力计825和885、一支主阀835、一支次级阀845、一支质量流控制器865、阀855、一支输氢气管891、一个激活室892以及一台微波功率源893。
应用图8所示生产装置也能有效地制造半导体器件,诸如本发明所述的改进的渐变带隙晶体管以及改进的渐变带隙二极管。
〔本发明的优选实施例〕
现将参照下面的例子更详细地叙述本发明的优点,这些例子仅仅用来达到解释性目的,对本发明的范围没有限制作用。
例1
应用图7所示的装置,制作了一个如图1所示型式的渐变带隙晶体管,其能带结构示于图2(a)。
应用Corning玻璃板7059(Corning玻璃器皿公司的产品)作基片101,每一组成层是按表1所列之条件形成的。
应用RHEED(反射高能电子衍射※)对形成的晶体管的每一组成层的化学成分进行测量,其结果表明,每一组成层是由含硅的非晶材料组成的。
此外,应用SIMS(二次离子质谱仪※)测定基区中锗原子含量的结果表明,包含在基区中的锗原子的密度从0原子%连续变化到30原子%。
並且,不包含锗原子的非晶层区域的带隙为1.7eV,包含30%锗原子的非晶层区域的带隙为1.45eV。
更进一步发现,所制成的晶体管的频率特性与下面将要介绍的对比例1中制造的晶体管的频率特性相比,改善了的1.7倍。
例2
应用图7所示的装置,制造了如图1所示型式的渐变带隙晶体管,其能带结构示于图2(b)。
用Corning玻璃板7059(Corning玻璃器皿公司产品)作基片101,按表2所列之条件形成每一组成层。
应用RHEED测量所制造的晶体管的每一组成层的化学成分,其结果表明,每一组成层是由含硅的非晶材料组成的。
此外,应用SIMS测量基区中碳原子含量的结果表明,碳原子的密度从20原子%连续变化到0原子%。
並且,在包括20%碳原子的非晶层区域的带隙为2.0eV
更进一步发现,与下面叙述的对比例1中制成的晶体管相比,本例所制成的晶体管的频率特性改善了约1.5倍。
例3
应用图7所示的装置,制成了如图1所示型式的渐变带隙晶体管,其能带结构如图2(c)所示。
用Corning玻璃板7059(Corning玻璃器皿公司的产品)作为基片101,按表3所列之条件形成每一组成层。
应用RHEED对所制成的晶体管的每一组成层测量其化学成分,发现每一组成层是由含硅的非晶材料组成的。
此外,用SIMS在基区中测量碳原子含量的结果表明,所含碳原子的密度从30原子%连续变化到0原子%。
进一步发现,含碳原子的非晶层带隙的最宽部分是2.2eV。
更进一步发现,与下面将要叙述的对比例1中形成的晶体管相比,例3所制成的晶体管对可见光响应的信噪比(S/N)改善了约2倍。
对比例1
应用图7所示的装置,按表4所列之条件,制造了图1所示型式的晶体管,其中的基片101是用Corning玻璃板7059(corning玻璃器皿公司产品)。
例4
应用图7所示装置,制造了图4所示型式的渐变带隙二极管,其能带结构示于图5(a)。
用Corning玻璃板7059(Corning玻璃器皿公司的产品)作基片101,並按表5所列之条件形成每一组成层。
应用RHEED测量制成的二极管的每一组成层的化学成分,发现每一组成层是由含硅的非晶材料组成的。
此外,应用SIMS测量第二层区域中锗原子含量的结果表明,所含锗原子的密度从0原子%连续变化到30原子%。
进一步发现,不含锗原子的非晶层区域的带隙为1.7eV,而含30%锗原子的非晶层区域的带隙为1.45eV。
更进一步发现,与将要在下面叙述的对比例2中制成的两种二极管相比,例4中所制成的二极管的开关周期改善了约1.6倍。
对比例2
除了在形成第二层区域时,把GeF4流率保持在0.10SCCM之外,重复例4中的步骤,以得到两种二极管。
例5
应用图7所示的装置,制成图4所示型式的渐变带隙二极管,其能带结构示于5(b)中。
用Corning玻璃板7059(Corning玻璃器皿公司产品)作基片101,並按表6所列之条件形成每一组成层。
应用RHEED测量所制造的二极管的每一组成层的化学成分,发现每一组成层是由含硅的非晶材料组成的。
此外,应用SIMS测量第一层区域中碳原子含量的结果表明,所含碳原子的密度从20原子%连续变化到0原子%。
进一步发现,含20%碳原子的非晶层区域的带隙为2.0eV。
更进一步发现,与下面将要叙述的对比例3所制成的二极管相比,例5所制成的二极管的信噪比改善了约1.5倍。
对比例3
除了放电功率保持在0.50W/Cm2以外,重复例5中的步骤,以得到两种二极管。
例6
应用图7所示的装置,制造图4所示型式的渐变带隙二极管,其能带结构示于图5(c)。
用Corning玻璃板7059(Corning玻璃器皿公司产品)作为基片101,並按表7所列之条件形成每一组成层。
应用RHEED测量所制成的二极管的每一组成层的化学成分,其结果表明每一组成层是由含硅的非晶材料组成的
此外,应用SIMS测量第二层区域中氮原子含量的结果表明,所含氮原子的密度从30原子%连续变化到0原子%。
进一步发现,第二层区域带隙最宽部分为2.2eV。
更进一步发现,与对比例2中所制的二极管相比,例6中所制的二极管的信噪比改善了约2.1倍。
例7
应用图7所示的装置,按表8所列之条件制造了一种改进的雪崩二极管,其能带结构示于图6(a)和图6(b)。在图6(a)和图6(b)中表示了导带601(a)和601(b),价带602(a)和602(b)和费米能级603(b)。图6(a)表示在不施加电压情况下的能带结构,图6(b)表示在施加电压情况下的能带结构。
应用Corning玻璃板7059(corning玻璃器皿公司产品)作为基片。
应用RHEED测量所得雪崩二极管每一组成层的化学成分表明,每一组成层是由含硅的非晶材料组成的。
並发现,与在形成i-型层时不用GeF4所制成的光敏二极管相比,例7中所得的雪崩二极管对可见光响应的信噪比改善了约2倍。
例8
应用图8所示的装置,按表9所列之条件,制造图4所示型式的渐变带隙二极管,其能带结构如图5(a)所示。其中,用Corning玻璃板7059(Corning玻璃器皿公司产品)作为基片101。
並且,在形成第二层区域(渐变带隙层)时,从氢气(H2)储存器815把氢气(H2)导入激活室892,与此同时由微波功率源893向激活室输入100W/Cm2的微波功率,以产生氢基,並以20SCCM的流量把氢基连续引入反应空间702。
应用RHEED测量所得二极管每一组成层的化学成分,其结果表明,每一组成层是由含硅的非晶材料组成的。
此外,应用SIMS测量第二层区域中的锗原子含量,其结果表明,所含锗原子的密度从0原子%连续变化到30原子%。
进一步发现,不含锗原子的非晶层区域的带隙为1.7eV,而含30%锗原子的非晶层区域的带隙为1.45eV。
除以上所述之外,还制造了一个包含一个玻璃板、一层半透明铬电极、一层非晶半导体薄膜(0.5μm厚)和另一层半透明铬电极的器件。至于该非晶半导体薄膜,是重复形成上述第二层区域的步骤形成的。应用AM1光源在所得的器件上测量光电动势,所得结果表明为2.5V。
由上述带隙以及光电动势测量结果能判断出,在上述第二层区域中,只有导带是相对于费米能级渐变的。
与下面对比例4中所制造的二极管相比,例8中所得的二极管的开关周期改善了约1.6倍
对比例4
除了在形成第二层区域过程中不使用任何氢基,並保持放电功率为0.5W/Cm2恒值以外,重复例8中的步骤,以获得对比样品二极管。
至于所得样品二极管在第二层区域的带隙,在不含锗原子的非晶层区域中为1.7eV,在含有锗原子非晶层区域中为1.45eV。
重复例8中的步骤,制造一个用来测量光电动势的样品器件,该样品器件具有上述对比样品的第二层区域作为半导体薄膜。
在所制成的样品器件上测量光电动势的结果为0.1V。
从上述测量结果能判断出在对比样品的第二层区域中,导带和价带两者都是渐变的
例9
应用图8所示的装置,按表10所列之条件,制造了图4所示型式的渐变带隙二极管,其能带结构示于图5(b),其中用Corning玻璃板7059(Corning玻璃器皿公司产品)作基片101。
並且,在形成第二层区域(渐变带隙层)时,从氢气储存器815把氢气(H2)导入激活室892。与此同时,由微波功率源893向该激活室输入100W/Cm2微波功率,以产生氢基,並以50SCCM流量把氢基连续引入反应空间702。
应用RHEED测量所得二极管每一组成层的化学成分,其结果表明,每一组成层是由含硅的非晶材料组成的。
此外,用SIMS测量第二层区域中碳原子含量的结果表明,所含碳原子密度从20原子%连续变化到0原子%。
进一步发现,含碳原子非晶层区域的带隙为2.0eV
除以上所述之外,还制造了包括一块玻璃板、一层半透明铬电极、一层非晶半导体薄膜(厚度为0.5μm)和另一层半透明铬电极的器件。关于非晶半导体薄膜,是重复形成上述第二层区域的步骤形成的,应用AM1光源在所得器件上测量光电动势,其结果为0.3V。
从上述带隙和光电动势测量的结果能判断出,在上述第二层区域中只有导带是相对于费米能级渐变的。
与下面对比例5中所制造的二极管相比,例9中所得的二极管的信噪比提高了约1.5倍。
对比例5
除了不用氢基並在形成第二层区域过程中保持放电功率为0.5W/Cm2恒值外,重复例9中的步骤,以得到对比样品二极管。
关于所得样品二极管的第二层区域的带隙,在不含碳原子的非晶层区域为1.7eV,在含有碳原子的非晶层区域为1.45eV。
重复例9中的步骤,制成一个用于测量光电动势的样品器件,该样品器件以上述对比样品第二层区域作为半导体薄膜。
在所得样品器件上测量光电动势,其结果为0.12V
从上述测量结果能判断出,在该对比样品的第二层区域中,导带和价带两者是渐变的。
例10
应用图8所示的装置,按表11所列之条件制造了一个图4所示型式的渐变带隙二极管,其能带结构示于图5(c),其中用corning玻璃板7059(Corning玻璃器皿公司产品)作为基片101。
並且,在制造第二层区域(渐变带隙层)时,从氢气储存器815把氢气(H2)导入激活室892,与此同时,由微波功率源893向激活室输入微波功率100W/Cm2,以产生氢基,並以50SCCM流量把氢基连续引入反应空间702。
应用RHEED测量所得二极管每一组成层的化学成分,其结果表明,每一组成层是由含硅的非晶材料组成的
此外,应用SIMS测量第二层区域中氮原子含量的结果表明,所含氮原子的密度从30原子%连续变化到0原子%。
进一步发现,第二层区域带隙的最宽部分是2.2eV
除上面所述之外,还制造了一个包括一块玻璃板、一层半透明铬电极、一层非晶半导体薄膜(厚度为0.5μm)和另一层半透明铬电极的器件。至于非晶半导体薄膜,是重复形成上述第二层区域的步骤形成的。用AM1光源测量在所制造的器件上的光电动势,其所得结果为0.32V。
从上面带隙和光电动势测量结果能够判断出,在上述第二层区域中只有导带相对于费米能级渐变。
与对比例4中所得的二极管相比,本例所制造的二极管的信噪比改善了约2.1倍。
例11
应用图8所示的装置,制造了一个雪崩二极管,其能带结构如图6(a)所示,其中用Corning玻璃板7059(Corning玻璃器皿公司产品)作为基片。
並且,在形成第二层区域(渐变带隙层)时,从氢气储存器815把氢气(H2)导入激活室892。与此同时,由微波功率源893向该激活室加入100W/Cm2的微波功率,以产生氢基,並以50SCCM流量把氢基引入反应空间702。
应用RHEED测量所得雪崩二极管每一组成层的化学成分,其结果表明,每一组成层是由含硅的非晶材料组成的。
进一步发现,与在形成i-型层时不用GeF4所制成的二极管相比,例11中所得的二极管对可见光响应的信噪比改善了约2倍。
Claims (9)
1、一种半导体器件,该器件由含有硅原子、一种调节带隙的原子和一种降低定域能级的原子的非单晶材料构成,该器件至少在非结位置的一个方位上还具有一个带隙连续渐变的区域,並且只有导带和价带之一是连续渐变的。
2、根据权利要求1所说的半导体器件,其中所说的调节带隙的原子是一种扩展带隙的原子。
3、根据权利要求2所说的半导体器件,其中所说的扩展带隙的原子至少是一种从碳原子、氮原子和氧原子中选出来的原子。
4、根据权利要求1所说的半导体器件,其中所说的调节带隙的原子是一种减小带隙的原子。
5、根据权利要求4所说的半导体器件,其中所说的减小带隙的原子至少是一种从锗原子和锡原子中选出来的原子。
6、根据权利要求1所说的半导体器件,其中所说的降低定域能级的原子至少是一种从氢原子和氟原子中选出来的原子。
7、根据权利要求1所说的半导体器件,其中存在多个所说的区域。
8、一种由如权利要求1所说的半导体器件构成的晶体管。
9、一种由如权利要求1所说的半导体器件构成的二极管。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61229249A JPS6384083A (ja) | 1986-09-26 | 1986-09-26 | 半導体素子 |
JP229249/86 | 1986-09-26 | ||
JP61229246A JPS6384082A (ja) | 1986-09-26 | 1986-09-26 | 半導体素子 |
JP229246/86 | 1986-09-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN87107592A true CN87107592A (zh) | 1988-10-12 |
CN1009688B CN1009688B (zh) | 1990-09-19 |
Family
ID=26528708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN87107592A Expired CN1009688B (zh) | 1986-09-26 | 1987-09-25 | 具有一连续渐变带隙半导体区域的半导体器件 |
Country Status (3)
Country | Link |
---|---|
US (2) | US4887134A (zh) |
CN (1) | CN1009688B (zh) |
DE (1) | DE3732418A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103545398A (zh) * | 2013-10-16 | 2014-01-29 | 北京工业大学 | 基区渐变的单向载流子传输的双异质结光敏晶体管探测器 |
CN113899458A (zh) * | 2021-09-22 | 2022-01-07 | Oppo广东移动通信有限公司 | 光学传感器及电子设备 |
Families Citing this family (243)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2212658B (en) * | 1987-11-13 | 1992-02-12 | Plessey Co Plc | Solid state light source |
IT1227877B (it) * | 1988-11-25 | 1991-05-14 | Eniricerche S P A Agip S P A | Procedimento per la deposizione via plasma di strati multipli dimate riale amorfo a composizione variabile |
US6127692A (en) * | 1989-08-04 | 2000-10-03 | Canon Kabushiki Kaisha | Photoelectric conversion apparatus |
US5260560A (en) * | 1990-03-02 | 1993-11-09 | Canon Kabushiki Kaisha | Photoelectric transfer device |
US5396103A (en) * | 1991-05-15 | 1995-03-07 | Minnesota Mining And Manufacturing Company | Graded composition ohmic contact for P-type II-VI semiconductors |
US5401952A (en) * | 1991-10-25 | 1995-03-28 | Canon Kabushiki Kaisha | Signal processor having avalanche photodiodes |
US5352912A (en) * | 1991-11-13 | 1994-10-04 | International Business Machines Corporation | Graded bandgap single-crystal emitter heterojunction bipolar transistor |
US7633162B2 (en) * | 2004-06-21 | 2009-12-15 | Sang-Yun Lee | Electronic circuit with embedded memory |
US7470598B2 (en) * | 2004-06-21 | 2008-12-30 | Sang-Yun Lee | Semiconductor layer structure and method of making the same |
US20050280155A1 (en) * | 2004-06-21 | 2005-12-22 | Sang-Yun Lee | Semiconductor bonding and layer transfer method |
US8018058B2 (en) * | 2004-06-21 | 2011-09-13 | Besang Inc. | Semiconductor memory device |
US7800199B2 (en) * | 2003-06-24 | 2010-09-21 | Oh Choonsik | Semiconductor circuit |
US8058142B2 (en) | 1996-11-04 | 2011-11-15 | Besang Inc. | Bonded semiconductor structure and method of making the same |
US6426265B1 (en) | 2001-01-30 | 2002-07-30 | International Business Machines Corporation | Incorporation of carbon in silicon/silicon germanium epitaxial layer to enhance yield for Si-Ge bipolar technology |
ES2616248T3 (es) * | 2002-02-01 | 2017-06-12 | Picometrix, Llc | Fotodiodo PIN de alta velocidad con respuesta incrementada |
US7799675B2 (en) * | 2003-06-24 | 2010-09-21 | Sang-Yun Lee | Bonded semiconductor structure and method of fabricating the same |
US20100133695A1 (en) * | 2003-01-12 | 2010-06-03 | Sang-Yun Lee | Electronic circuit with embedded memory |
US8071438B2 (en) * | 2003-06-24 | 2011-12-06 | Besang Inc. | Semiconductor circuit |
US7867822B2 (en) | 2003-06-24 | 2011-01-11 | Sang-Yun Lee | Semiconductor memory device |
US20100190334A1 (en) * | 2003-06-24 | 2010-07-29 | Sang-Yun Lee | Three-dimensional semiconductor structure and method of manufacturing the same |
US8471263B2 (en) * | 2003-06-24 | 2013-06-25 | Sang-Yun Lee | Information storage system which includes a bonded semiconductor structure |
US7632738B2 (en) * | 2003-06-24 | 2009-12-15 | Sang-Yun Lee | Wafer bonding method |
US7863748B2 (en) * | 2003-06-24 | 2011-01-04 | Oh Choonsik | Semiconductor circuit and method of fabricating the same |
US20110143506A1 (en) * | 2009-12-10 | 2011-06-16 | Sang-Yun Lee | Method for fabricating a semiconductor memory device |
US8455978B2 (en) | 2010-05-27 | 2013-06-04 | Sang-Yun Lee | Semiconductor circuit structure and method of making the same |
US8367524B2 (en) * | 2005-03-29 | 2013-02-05 | Sang-Yun Lee | Three-dimensional integrated circuit structure |
US8362800B2 (en) | 2010-10-13 | 2013-01-29 | Monolithic 3D Inc. | 3D semiconductor device including field repairable logics |
US9711407B2 (en) * | 2009-04-14 | 2017-07-18 | Monolithic 3D Inc. | Method of manufacturing a three dimensional integrated circuit by transfer of a mono-crystalline layer |
US8384426B2 (en) * | 2009-04-14 | 2013-02-26 | Monolithic 3D Inc. | Semiconductor device and structure |
US8754533B2 (en) * | 2009-04-14 | 2014-06-17 | Monolithic 3D Inc. | Monolithic three-dimensional semiconductor device and structure |
US9509313B2 (en) | 2009-04-14 | 2016-11-29 | Monolithic 3D Inc. | 3D semiconductor device |
US8427200B2 (en) | 2009-04-14 | 2013-04-23 | Monolithic 3D Inc. | 3D semiconductor device |
US8395191B2 (en) | 2009-10-12 | 2013-03-12 | Monolithic 3D Inc. | Semiconductor device and structure |
US9577642B2 (en) | 2009-04-14 | 2017-02-21 | Monolithic 3D Inc. | Method to form a 3D semiconductor device |
US7986042B2 (en) | 2009-04-14 | 2011-07-26 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8373439B2 (en) | 2009-04-14 | 2013-02-12 | Monolithic 3D Inc. | 3D semiconductor device |
US8405420B2 (en) * | 2009-04-14 | 2013-03-26 | Monolithic 3D Inc. | System comprising a semiconductor device and structure |
US8362482B2 (en) | 2009-04-14 | 2013-01-29 | Monolithic 3D Inc. | Semiconductor device and structure |
US8058137B1 (en) | 2009-04-14 | 2011-11-15 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8669778B1 (en) | 2009-04-14 | 2014-03-11 | Monolithic 3D Inc. | Method for design and manufacturing of a 3D semiconductor device |
US8378715B2 (en) | 2009-04-14 | 2013-02-19 | Monolithic 3D Inc. | Method to construct systems |
US10366970B2 (en) | 2009-10-12 | 2019-07-30 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10157909B2 (en) | 2009-10-12 | 2018-12-18 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10043781B2 (en) | 2009-10-12 | 2018-08-07 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10910364B2 (en) | 2009-10-12 | 2021-02-02 | Monolitaic 3D Inc. | 3D semiconductor device |
US8476145B2 (en) | 2010-10-13 | 2013-07-02 | Monolithic 3D Inc. | Method of fabricating a semiconductor device and structure |
US8742476B1 (en) | 2012-11-27 | 2014-06-03 | Monolithic 3D Inc. | Semiconductor device and structure |
US9099424B1 (en) | 2012-08-10 | 2015-08-04 | Monolithic 3D Inc. | Semiconductor system, device and structure with heat removal |
US11374118B2 (en) | 2009-10-12 | 2022-06-28 | Monolithic 3D Inc. | Method to form a 3D integrated circuit |
US8450804B2 (en) | 2011-03-06 | 2013-05-28 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
US10388863B2 (en) | 2009-10-12 | 2019-08-20 | Monolithic 3D Inc. | 3D memory device and structure |
US11018133B2 (en) | 2009-10-12 | 2021-05-25 | Monolithic 3D Inc. | 3D integrated circuit |
US8581349B1 (en) | 2011-05-02 | 2013-11-12 | Monolithic 3D Inc. | 3D memory semiconductor device and structure |
US12027518B1 (en) | 2009-10-12 | 2024-07-02 | Monolithic 3D Inc. | 3D semiconductor devices and structures with metal layers |
US10354995B2 (en) | 2009-10-12 | 2019-07-16 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US8536023B2 (en) | 2010-11-22 | 2013-09-17 | Monolithic 3D Inc. | Method of manufacturing a semiconductor device and structure |
US8148728B2 (en) | 2009-10-12 | 2012-04-03 | Monolithic 3D, Inc. | Method for fabrication of a semiconductor device and structure |
US11984445B2 (en) | 2009-10-12 | 2024-05-14 | Monolithic 3D Inc. | 3D semiconductor devices and structures with metal layers |
US8373230B1 (en) | 2010-10-13 | 2013-02-12 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8461035B1 (en) | 2010-09-30 | 2013-06-11 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US9099526B2 (en) | 2010-02-16 | 2015-08-04 | Monolithic 3D Inc. | Integrated circuit device and structure |
US8026521B1 (en) | 2010-10-11 | 2011-09-27 | Monolithic 3D Inc. | Semiconductor device and structure |
US8492886B2 (en) | 2010-02-16 | 2013-07-23 | Monolithic 3D Inc | 3D integrated circuit with logic |
US8541819B1 (en) | 2010-12-09 | 2013-09-24 | Monolithic 3D Inc. | Semiconductor device and structure |
US8723335B2 (en) | 2010-05-20 | 2014-05-13 | Sang-Yun Lee | Semiconductor circuit structure and method of forming the same using a capping layer |
US8901613B2 (en) | 2011-03-06 | 2014-12-02 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
US8642416B2 (en) | 2010-07-30 | 2014-02-04 | Monolithic 3D Inc. | Method of forming three dimensional integrated circuit devices using layer transfer technique |
US9219005B2 (en) | 2011-06-28 | 2015-12-22 | Monolithic 3D Inc. | Semiconductor system and device |
US10217667B2 (en) | 2011-06-28 | 2019-02-26 | Monolithic 3D Inc. | 3D semiconductor device, fabrication method and system |
US9953925B2 (en) | 2011-06-28 | 2018-04-24 | Monolithic 3D Inc. | Semiconductor system and device |
US10497713B2 (en) | 2010-11-18 | 2019-12-03 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US8273610B2 (en) | 2010-11-18 | 2012-09-25 | Monolithic 3D Inc. | Method of constructing a semiconductor device and structure |
US8163581B1 (en) | 2010-10-13 | 2012-04-24 | Monolith IC 3D | Semiconductor and optoelectronic devices |
US11482440B2 (en) | 2010-12-16 | 2022-10-25 | Monolithic 3D Inc. | 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits |
US11158674B2 (en) | 2010-10-11 | 2021-10-26 | Monolithic 3D Inc. | Method to produce a 3D semiconductor device and structure |
US11315980B1 (en) | 2010-10-11 | 2022-04-26 | Monolithic 3D Inc. | 3D semiconductor device and structure with transistors |
US11227897B2 (en) | 2010-10-11 | 2022-01-18 | Monolithic 3D Inc. | Method for producing a 3D semiconductor memory device and structure |
US8114757B1 (en) | 2010-10-11 | 2012-02-14 | Monolithic 3D Inc. | Semiconductor device and structure |
US10290682B2 (en) | 2010-10-11 | 2019-05-14 | Monolithic 3D Inc. | 3D IC semiconductor device and structure with stacked memory |
US11024673B1 (en) | 2010-10-11 | 2021-06-01 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10896931B1 (en) | 2010-10-11 | 2021-01-19 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11018191B1 (en) | 2010-10-11 | 2021-05-25 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11600667B1 (en) | 2010-10-11 | 2023-03-07 | Monolithic 3D Inc. | Method to produce 3D semiconductor devices and structures with memory |
US11469271B2 (en) | 2010-10-11 | 2022-10-11 | Monolithic 3D Inc. | Method to produce 3D semiconductor devices and structures with memory |
US11257867B1 (en) | 2010-10-11 | 2022-02-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with oxide bonds |
US11855100B2 (en) | 2010-10-13 | 2023-12-26 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US10998374B1 (en) | 2010-10-13 | 2021-05-04 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US11133344B2 (en) | 2010-10-13 | 2021-09-28 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US11855114B2 (en) | 2010-10-13 | 2023-12-26 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US12094892B2 (en) | 2010-10-13 | 2024-09-17 | Monolithic 3D Inc. | 3D micro display device and structure |
US10679977B2 (en) | 2010-10-13 | 2020-06-09 | Monolithic 3D Inc. | 3D microdisplay device and structure |
US11164898B2 (en) | 2010-10-13 | 2021-11-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US11327227B2 (en) | 2010-10-13 | 2022-05-10 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with electromagnetic modulators |
US12080743B2 (en) | 2010-10-13 | 2024-09-03 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11404466B2 (en) | 2010-10-13 | 2022-08-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US10833108B2 (en) | 2010-10-13 | 2020-11-10 | Monolithic 3D Inc. | 3D microdisplay device and structure |
US11063071B1 (en) | 2010-10-13 | 2021-07-13 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with waveguides |
US9197804B1 (en) | 2011-10-14 | 2015-11-24 | Monolithic 3D Inc. | Semiconductor and optoelectronic devices |
US11694922B2 (en) | 2010-10-13 | 2023-07-04 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11437368B2 (en) | 2010-10-13 | 2022-09-06 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11869915B2 (en) | 2010-10-13 | 2024-01-09 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11929372B2 (en) | 2010-10-13 | 2024-03-12 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11163112B2 (en) | 2010-10-13 | 2021-11-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with electromagnetic modulators |
US11984438B2 (en) | 2010-10-13 | 2024-05-14 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US10978501B1 (en) | 2010-10-13 | 2021-04-13 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with waveguides |
US10943934B2 (en) | 2010-10-13 | 2021-03-09 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US11043523B1 (en) | 2010-10-13 | 2021-06-22 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US8379458B1 (en) | 2010-10-13 | 2013-02-19 | Monolithic 3D Inc. | Semiconductor device and structure |
US11605663B2 (en) | 2010-10-13 | 2023-03-14 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11508605B2 (en) | 2010-11-18 | 2022-11-22 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US12033884B2 (en) | 2010-11-18 | 2024-07-09 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US12100611B2 (en) | 2010-11-18 | 2024-09-24 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11482439B2 (en) | 2010-11-18 | 2022-10-25 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device comprising charge trap junction-less transistors |
US11107721B2 (en) | 2010-11-18 | 2021-08-31 | Monolithic 3D Inc. | 3D semiconductor device and structure with NAND logic |
US11018042B1 (en) | 2010-11-18 | 2021-05-25 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11854857B1 (en) | 2010-11-18 | 2023-12-26 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11004719B1 (en) | 2010-11-18 | 2021-05-11 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US11735462B2 (en) | 2010-11-18 | 2023-08-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with single-crystal layers |
US12136562B2 (en) | 2010-11-18 | 2024-11-05 | Monolithic 3D Inc. | 3D semiconductor device and structure with single-crystal layers |
US11784082B2 (en) | 2010-11-18 | 2023-10-10 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11569117B2 (en) | 2010-11-18 | 2023-01-31 | Monolithic 3D Inc. | 3D semiconductor device and structure with single-crystal layers |
US12154817B1 (en) | 2010-11-18 | 2024-11-26 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US12243765B2 (en) | 2010-11-18 | 2025-03-04 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US12144190B2 (en) | 2010-11-18 | 2024-11-12 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding and memory cells preliminary class |
US11355380B2 (en) | 2010-11-18 | 2022-06-07 | Monolithic 3D Inc. | Methods for producing 3D semiconductor memory device and structure utilizing alignment marks |
US11862503B2 (en) | 2010-11-18 | 2024-01-02 | Monolithic 3D Inc. | Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11804396B2 (en) | 2010-11-18 | 2023-10-31 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11211279B2 (en) | 2010-11-18 | 2021-12-28 | Monolithic 3D Inc. | Method for processing a 3D integrated circuit and structure |
US11121021B2 (en) | 2010-11-18 | 2021-09-14 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12068187B2 (en) | 2010-11-18 | 2024-08-20 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding and DRAM memory cells |
US11901210B2 (en) | 2010-11-18 | 2024-02-13 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US11495484B2 (en) | 2010-11-18 | 2022-11-08 | Monolithic 3D Inc. | 3D semiconductor devices and structures with at least two single-crystal layers |
US11094576B1 (en) | 2010-11-18 | 2021-08-17 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US12125737B1 (en) | 2010-11-18 | 2024-10-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US11355381B2 (en) | 2010-11-18 | 2022-06-07 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11610802B2 (en) | 2010-11-18 | 2023-03-21 | Monolithic 3D Inc. | Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes |
US11923230B1 (en) | 2010-11-18 | 2024-03-05 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11164770B1 (en) | 2010-11-18 | 2021-11-02 | Monolithic 3D Inc. | Method for producing a 3D semiconductor memory device and structure |
US11443971B2 (en) | 2010-11-18 | 2022-09-13 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US11031275B2 (en) | 2010-11-18 | 2021-06-08 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US11482438B2 (en) | 2010-11-18 | 2022-10-25 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US11521888B2 (en) | 2010-11-18 | 2022-12-06 | Monolithic 3D Inc. | 3D semiconductor device and structure with high-k metal gate transistors |
US11615977B2 (en) | 2010-11-18 | 2023-03-28 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US8975670B2 (en) | 2011-03-06 | 2015-03-10 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
CN102832269B (zh) * | 2011-06-17 | 2016-06-22 | 中国科学院微电子研究所 | 光电探测叠层、半导体紫外探测器及其制造方法 |
US10388568B2 (en) | 2011-06-28 | 2019-08-20 | Monolithic 3D Inc. | 3D semiconductor device and system |
US8687399B2 (en) | 2011-10-02 | 2014-04-01 | Monolithic 3D Inc. | Semiconductor device and structure |
US9029173B2 (en) | 2011-10-18 | 2015-05-12 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US9000557B2 (en) | 2012-03-17 | 2015-04-07 | Zvi Or-Bach | Semiconductor device and structure |
US11088050B2 (en) | 2012-04-09 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device with isolation layers |
US11410912B2 (en) | 2012-04-09 | 2022-08-09 | Monolithic 3D Inc. | 3D semiconductor device with vias and isolation layers |
US11476181B1 (en) | 2012-04-09 | 2022-10-18 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US8557632B1 (en) | 2012-04-09 | 2013-10-15 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US11594473B2 (en) | 2012-04-09 | 2023-02-28 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11694944B1 (en) | 2012-04-09 | 2023-07-04 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11881443B2 (en) | 2012-04-09 | 2024-01-23 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11735501B1 (en) | 2012-04-09 | 2023-08-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11616004B1 (en) | 2012-04-09 | 2023-03-28 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11164811B2 (en) | 2012-04-09 | 2021-11-02 | Monolithic 3D Inc. | 3D semiconductor device with isolation layers and oxide-to-oxide bonding |
US10600888B2 (en) | 2012-04-09 | 2020-03-24 | Monolithic 3D Inc. | 3D semiconductor device |
US8574929B1 (en) | 2012-11-16 | 2013-11-05 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US8686428B1 (en) | 2012-11-16 | 2014-04-01 | Monolithic 3D Inc. | Semiconductor device and structure |
US11063024B1 (en) | 2012-12-22 | 2021-07-13 | Monlithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US11784169B2 (en) | 2012-12-22 | 2023-10-10 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11916045B2 (en) | 2012-12-22 | 2024-02-27 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US8674470B1 (en) | 2012-12-22 | 2014-03-18 | Monolithic 3D Inc. | Semiconductor device and structure |
US12051674B2 (en) | 2012-12-22 | 2024-07-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11018116B2 (en) | 2012-12-22 | 2021-05-25 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US11967583B2 (en) | 2012-12-22 | 2024-04-23 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11309292B2 (en) | 2012-12-22 | 2022-04-19 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11217565B2 (en) | 2012-12-22 | 2022-01-04 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US11961827B1 (en) | 2012-12-22 | 2024-04-16 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US9385058B1 (en) | 2012-12-29 | 2016-07-05 | Monolithic 3D Inc. | Semiconductor device and structure |
US11087995B1 (en) | 2012-12-29 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10651054B2 (en) | 2012-12-29 | 2020-05-12 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US9871034B1 (en) | 2012-12-29 | 2018-01-16 | Monolithic 3D Inc. | Semiconductor device and structure |
US11430667B2 (en) | 2012-12-29 | 2022-08-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US10600657B2 (en) | 2012-12-29 | 2020-03-24 | Monolithic 3D Inc | 3D semiconductor device and structure |
US10115663B2 (en) | 2012-12-29 | 2018-10-30 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11177140B2 (en) | 2012-12-29 | 2021-11-16 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11004694B1 (en) | 2012-12-29 | 2021-05-11 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11430668B2 (en) | 2012-12-29 | 2022-08-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US10903089B1 (en) | 2012-12-29 | 2021-01-26 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10892169B2 (en) | 2012-12-29 | 2021-01-12 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12249538B2 (en) | 2012-12-29 | 2025-03-11 | Monolithic 3D Inc. | 3D semiconductor device and structure including power distribution grids |
US12094965B2 (en) | 2013-03-11 | 2024-09-17 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US11869965B2 (en) | 2013-03-11 | 2024-01-09 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US11935949B1 (en) | 2013-03-11 | 2024-03-19 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US8902663B1 (en) | 2013-03-11 | 2014-12-02 | Monolithic 3D Inc. | Method of maintaining a memory state |
US10325651B2 (en) | 2013-03-11 | 2019-06-18 | Monolithic 3D Inc. | 3D semiconductor device with stacked memory |
US12100646B2 (en) | 2013-03-12 | 2024-09-24 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US10840239B2 (en) | 2014-08-26 | 2020-11-17 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US8994404B1 (en) | 2013-03-12 | 2015-03-31 | Monolithic 3D Inc. | Semiconductor device and structure |
US11398569B2 (en) | 2013-03-12 | 2022-07-26 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11923374B2 (en) | 2013-03-12 | 2024-03-05 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11088130B2 (en) | 2014-01-28 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10224279B2 (en) | 2013-03-15 | 2019-03-05 | Monolithic 3D Inc. | Semiconductor device and structure |
US9117749B1 (en) | 2013-03-15 | 2015-08-25 | Monolithic 3D Inc. | Semiconductor device and structure |
US11270055B1 (en) | 2013-04-15 | 2022-03-08 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11030371B2 (en) | 2013-04-15 | 2021-06-08 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11487928B2 (en) | 2013-04-15 | 2022-11-01 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11574109B1 (en) | 2013-04-15 | 2023-02-07 | Monolithic 3D Inc | Automation methods for 3D integrated circuits and devices |
US11720736B2 (en) | 2013-04-15 | 2023-08-08 | Monolithic 3D Inc. | Automation methods for 3D integrated circuits and devices |
US11341309B1 (en) | 2013-04-15 | 2022-05-24 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US9021414B1 (en) | 2013-04-15 | 2015-04-28 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US12094829B2 (en) | 2014-01-28 | 2024-09-17 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11031394B1 (en) | 2014-01-28 | 2021-06-08 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11107808B1 (en) | 2014-01-28 | 2021-08-31 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10297586B2 (en) | 2015-03-09 | 2019-05-21 | Monolithic 3D Inc. | Methods for processing a 3D semiconductor device |
US10825779B2 (en) | 2015-04-19 | 2020-11-03 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10381328B2 (en) | 2015-04-19 | 2019-08-13 | Monolithic 3D Inc. | Semiconductor device and structure |
US11056468B1 (en) | 2015-04-19 | 2021-07-06 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11011507B1 (en) | 2015-04-19 | 2021-05-18 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11956952B2 (en) | 2015-08-23 | 2024-04-09 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US11978731B2 (en) | 2015-09-21 | 2024-05-07 | Monolithic 3D Inc. | Method to produce a multi-level semiconductor memory device and structure |
US11937422B2 (en) | 2015-11-07 | 2024-03-19 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US11114427B2 (en) | 2015-11-07 | 2021-09-07 | Monolithic 3D Inc. | 3D semiconductor processor and memory device and structure |
US12178055B2 (en) | 2015-09-21 | 2024-12-24 | Monolithic 3D Inc. | 3D semiconductor memory devices and structures |
US12250830B2 (en) | 2015-09-21 | 2025-03-11 | Monolithic 3D Inc. | 3D semiconductor memory devices and structures |
CN108401468A (zh) | 2015-09-21 | 2018-08-14 | 莫诺利特斯3D有限公司 | 3d半导体器件和结构 |
US12100658B2 (en) | 2015-09-21 | 2024-09-24 | Monolithic 3D Inc. | Method to produce a 3D multilayer semiconductor device and structure |
US10522225B1 (en) | 2015-10-02 | 2019-12-31 | Monolithic 3D Inc. | Semiconductor device with non-volatile memory |
US10847540B2 (en) | 2015-10-24 | 2020-11-24 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US12035531B2 (en) | 2015-10-24 | 2024-07-09 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US11296115B1 (en) | 2015-10-24 | 2022-04-05 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11114464B2 (en) | 2015-10-24 | 2021-09-07 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12120880B1 (en) | 2015-10-24 | 2024-10-15 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US10418369B2 (en) | 2015-10-24 | 2019-09-17 | Monolithic 3D Inc. | Multi-level semiconductor memory device and structure |
US12016181B2 (en) | 2015-10-24 | 2024-06-18 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US11991884B1 (en) | 2015-10-24 | 2024-05-21 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US12219769B2 (en) | 2015-10-24 | 2025-02-04 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US11812620B2 (en) | 2016-10-10 | 2023-11-07 | Monolithic 3D Inc. | 3D DRAM memory devices and structures with control circuits |
US11711928B2 (en) | 2016-10-10 | 2023-07-25 | Monolithic 3D Inc. | 3D memory devices and structures with control circuits |
US12225704B2 (en) | 2016-10-10 | 2025-02-11 | Monolithic 3D Inc. | 3D memory devices and structures with memory arrays and metal layers |
US11329059B1 (en) | 2016-10-10 | 2022-05-10 | Monolithic 3D Inc. | 3D memory devices and structures with thinned single crystal substrates |
US11930648B1 (en) | 2016-10-10 | 2024-03-12 | Monolithic 3D Inc. | 3D memory devices and structures with metal layers |
US11251149B2 (en) | 2016-10-10 | 2022-02-15 | Monolithic 3D Inc. | 3D memory device and structure |
US11869591B2 (en) | 2016-10-10 | 2024-01-09 | Monolithic 3D Inc. | 3D memory devices and structures with control circuits |
US11296106B2 (en) | 2019-04-08 | 2022-04-05 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11763864B2 (en) | 2019-04-08 | 2023-09-19 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures with bit-line pillars |
US11158652B1 (en) | 2019-04-08 | 2021-10-26 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11018156B2 (en) | 2019-04-08 | 2021-05-25 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US10892016B1 (en) | 2019-04-08 | 2021-01-12 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4710786A (en) * | 1978-03-16 | 1987-12-01 | Ovshinsky Stanford R | Wide band gap semiconductor alloy material |
US4254429A (en) * | 1978-07-08 | 1981-03-03 | Shunpei Yamazaki | Hetero junction semiconductor device |
US4353081A (en) * | 1980-01-29 | 1982-10-05 | Bell Telephone Laboratories, Incorporated | Graded bandgap rectifying semiconductor devices |
ES505269A0 (es) * | 1980-09-09 | 1982-12-16 | Energy Conversion Devices Inc | Metodo para preparar una aleacion amorfa fotosensible mejo- rada |
US4460669A (en) * | 1981-11-26 | 1984-07-17 | Canon Kabushiki Kaisha | Photoconductive member with α-Si and C, U or D and dopant |
US4579797A (en) * | 1983-10-25 | 1986-04-01 | Canon Kabushiki Kaisha | Photoconductive member with amorphous germanium and silicon regions, nitrogen and dopant |
NL8501769A (nl) * | 1984-10-02 | 1986-05-01 | Imec Interuniversitair Micro E | Bipolaire heterojunctie-transistor en werkwijze voor de vervaardiging daarvan. |
-
1987
- 1987-09-21 US US07/098,791 patent/US4887134A/en not_active Expired - Lifetime
- 1987-09-25 CN CN87107592A patent/CN1009688B/zh not_active Expired
- 1987-09-25 DE DE19873732418 patent/DE3732418A1/de not_active Ceased
-
1989
- 1989-09-28 US US07/413,776 patent/US5093704A/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103545398A (zh) * | 2013-10-16 | 2014-01-29 | 北京工业大学 | 基区渐变的单向载流子传输的双异质结光敏晶体管探测器 |
CN113899458A (zh) * | 2021-09-22 | 2022-01-07 | Oppo广东移动通信有限公司 | 光学传感器及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
DE3732418A1 (de) | 1988-04-14 |
CN1009688B (zh) | 1990-09-19 |
US4887134A (en) | 1989-12-12 |
US5093704A (en) | 1992-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN87107592A (zh) | 具有一连续渐变带隙半导体区域的半导体器件 | |
CN1163972C (zh) | 半导体元件及其制造方法 | |
CN1156021C (zh) | 有特定掺杂层的光电元件 | |
CN1140933C (zh) | 光电元件及其制备方法 | |
CN1225029C (zh) | 光能转换装置 | |
CN1160483C (zh) | 薄膜制备方法和淀积设备 | |
CN1135635C (zh) | 增强光电器件和电子器件的光和电特性的等离子淀积工艺 | |
CN1194385C (zh) | 第三族氮化物半导体器件和其半导体层的生产方法 | |
CN1638153A (zh) | 光电转换装置 | |
CN1201408C (zh) | 薄膜多晶太阳能电池及其形成方法 | |
CN1181220C (zh) | 涂层工件的制造方法、方法的应用及其装置 | |
CN1020525C (zh) | 具有抗反射层的叠层光生伏打器件 | |
CN1031088C (zh) | 形成功能沉积膜的方法 | |
CN1024929C (zh) | 制造光电器件和其他半导体器件用的氢化非晶硅合金的沉积方法 | |
CN1501513A (zh) | 叠层型光电元件 | |
CN1237796A (zh) | 形成微晶硅系列薄膜的工艺和适于实施所述工艺的装置 | |
CN1269189C (zh) | 光生伏打元件及其制造法和制造设备 | |
CN1601759A (zh) | 光生伏打元件及其制造方法 | |
CN1049426A (zh) | 光致电压器件及其制造方法 | |
CN1384552A (zh) | 半导体器件和硅基膜的形成方法 | |
CN1110723A (zh) | 形成淀积膜的方法和设备 | |
CN1244163C (zh) | 光电导薄膜和使用此薄膜的光生伏打器件 | |
CN1706050A (zh) | 层积型光电变换装置 | |
CN1060558A (zh) | 金属薄膜形成方法 | |
CN1229874C (zh) | 光电元件、其制造方法、及使用其的建筑材料和发电装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C13 | Decision | ||
GR02 | Examined patent application | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C15 | Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993) | ||
OR01 | Other related matters | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |