[go: up one dir, main page]

CN86105608A - 电反馈丢失检测器 - Google Patents

电反馈丢失检测器 Download PDF

Info

Publication number
CN86105608A
CN86105608A CN86105608.6A CN86105608A CN86105608A CN 86105608 A CN86105608 A CN 86105608A CN 86105608 A CN86105608 A CN 86105608A CN 86105608 A CN86105608 A CN 86105608A
Authority
CN
China
Prior art keywords
value
feedback signal
feedback
signal
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN86105608.6A
Other languages
English (en)
Other versions
CN1006249B (zh
Inventor
阿吉特·库坦奈尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN86105608A publication Critical patent/CN86105608A/zh
Publication of CN1006249B publication Critical patent/CN1006249B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/12Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and DC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/16Controlling the angular speed of one shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

在电气动力系统中,从各种各样的系统参量,例如电压和电流等可分别导出大量的反馈信号并将其用作调整可控电源的输出的控制器的输入信号。为了检测任何反馈信号的不正常的丢失,所以安置了控制器来估算可导出第一反馈信号的那个系统参量的预期值,将这一估算的预期值与同一参量(如由第一反馈信号所代表的)的真实值相比较,如果比较的结果表明第一反馈信号有故障时就发出运行不正常的信号。

Description

本发明一般地涉及一种动力系统,在这种系统中,响应于给定的命令信号和代表各种系统参量的许多反馈信号的调整装置控制一个可控电源,给电负载电路提供可变数量的电功率;本发明尤其涉及经过改进的装置,这些装置用来检测反馈信号的任何不正常的丢失,这些反馈信号代表某些十分重要的系统参量。
本发明是从控制器的角度来叙述的,这种控制器用于诸如机车那样的大型自推进牵引车辆,用一台热原动机(一般为16缸涡轮增压柴油发动机)来驱动包括一发电装置的电气传动装置,此发电装置给许多直流牵引电动机提供电源,这些直流电动机的转子通过减速齿轮偶合到车辆上各自的轴-轮组,并驱动它们。发电装置一般包括一台三相牵引主交流发电机,它的转子机械地连接到发动机的输出轴。当有激磁电流供给转动着的转子绕组时,在交流发电机的三相定子的绕组中就产生交流电压。这些电压经整流后即加予那些牵引电动机的电枢绕组上。
在“电动回转”或“推进”工作期间,不管机车的速度如何,机车的柴油发动机根据油门的安装和环境条件等具体情况倾向于发出恒定的功率。
历史上曾经设计了机车控制系统,以使驾驶员能在从零到最大值之间分级选择预期的牵引功率,并使发动机能发出牵引和辅助负载所要求的各种大小的功率。
发动机的马力与曲轴旋转角速度和反抗此运动的转矩的乘积成正比。为了改变和调整可资利用的功率量,常用的做法是在机车发动机上设置调速器,以调节喷射到每一发动机汽缸中经加压的柴油机燃料(即燃油)量,以使曲轴的真实速度(每分钟转数)与所预期的速度相当。所需速度是通过油门的手动操纵杆或手柄在可允许的限度内确定的。手柄可以在低功率位置(N1)和最大功率位置(N8)之间的八档或“凹槽”处有选择地移动。此油门手柄是位于机车驾驶室内控制台上的一个部件,其位置决定着调速器对发动机速度的设定。
对于油门所定的不同速度的八档中的每一档,发动机都能发出相应的恒定数的马力(假定在最大输出转矩下)。当选择油门凹槽8时,达到最大速度(例如1,050转/分)和最大额定马力(例如4,000)。在正常条件下,在每一凹槽处的发动机功率,等于由发动机驱动的主交流发电机供电的电气推进系统所要求的功率与某些电气和机械驱动的辅助装置所消耗的功率之和。
主交流发电机输出的功率(千伏安(KVA))与其所发出的电压和负载电流的方均根数值的乘积成正比。电压大小随发动机的转速而变,也是分别流过交流发电机电枢和磁场绕组中电流量的函数。为了精确地控制和调整供给电负载电路的功率,通常的做法是调节牵引交流发电机的场强去补偿负载的变化,并把真实伏安数和所需伏安数之间的误差减至最小。预期电功率则视发动机具体速度确定情况的不同而不同。这样的激励控制将可造成一个平衡的稳态条件,从而使每一油门手柄位置处有基本上是恒定的和最佳的电功率输出。
借助于一辅助的控制器来完成交流发电机输出的调整功能,此辅助控制器响应于油门位置及许多分别代表电气推进系统的某些参量或量值(例如交流发电机输出电压和电流的幅度)的反馈信号。如果由于输出电压或电流传感器或其类似物的故障引起一个十分重要的反馈信号的丢失,调整器将会出现故障。在这种异常的情况下,调整器会使发电机向那些牵引电动机供给大于预期的千伏安值。从而出现一种“轮子打滑”的状况。如果驾驶员没有及时地对轮子附着力的丧失作出反应而将油门手柄移到较低的凹槽处,则推进装置就可能会损坏。
本发明的一般目的是要提供一经过改进的能自动地检测电反馈信号丢失的装置。
更为具体的目的是要为电气动力系统提供响应于反馈信号引出装置中的故障,以快速而可靠地发出信号告知反馈信号丢失的装置。这种电气动力系统包括用来调整从一可控电源向电负载电路供给的功率量的装置以及用来导出代表选定的电源与负载参量的大量反馈信号的装置。
在实施本发明的一种方式中,受调整装置控制的一个适当的电源向负载电路供给一个可变的电功率,功率的大小视给定的命令信号而定,也视分别从电源的输出电压和电流及电源和负载的其它各种特性参量中引出的大量反馈信号而定。为了检测第一个反馈信号的丢失,要定期对由第一个信号代表的预期的特殊参量进行估计。本发明有时用两个其它的反馈信号和一个电源或负载的已知特性被用来计算上述参量的估算的预期值。从此估计的预期值减去由第一反馈信号指示的上述参量的真实值,来求出它们之间的差值。以此差值加上或减去一预定的偏置值以得出一偏置误差值。反馈丢失检测包括提供代表此偏置误差值的时间积分后得出的值的装置。此得出的值的极性要定期进行测试;如果是负的,则偏置值与真实值相加,但如果不是负的,则从差值中减去偏置值。对于所得出的值的大小也要定期地检测:如果超过某一预定的阈值,则发出第一个反馈信号丢失的信号。当在前述参量的估算的预期值与由第一反馈信号指示的真实值之间存在着不正常的偏差时,就会发生这种超过预定阈值的情况。
从下面结合附图的描述中将会更好地了解本发明,而本发明的各项目的和优点也将会更充分地得以体现。
图1是牵引车辆的电气推进系统的示意图,它包括一台热原动机(例如柴油机),一台牵引发电机和许多牵引电动机;
图2是控制器的方块图,控制器控制图1所示的交流发电机的磁场调整器;
图3是控制器当前的较佳实施方案的扩展方块图,此控制器产生输出信号以减小交流发电机的磁场激励和发动机的转速;
图4是一等效电路图,它用来说明通过图2和图3所示的控制器所完成的反馈丢失检测功能;
图5是典型系统参量和其它时间相关变量的时间图,它解说了图4中反馈丢失检测功能器的工作情况;
图6和7是流程图,它们阐明根据本发明检测电压反馈信号丢失或电动回转电流反馈信号丢失的优选方式;
图8和9是流程图,它们阐明图6中所示子程序的优选实施方案的工作情况,这些子程序是作为分别估算电压和电动回转电流预期值的单个步骤。
图1所示的推进系统包括一台可变速度原动机11,它机械地连接到由一台三相交流同步发电机(也称主牵引发电机)组成的机械驱动发电机12的转子上。在此主发电机的不旋转的电枢绕组中产生出三相电压,此三相电压加到至少一个三相、双路、不可控功率整流桥13的交流输入端上。经整流桥13整流过的输出电功率通过直流母线14加到一个电负载电路,电负载电路包括许多可变速直流牵引电动机(TM)的并联连接的电枢绕组,在图1中只示出了这些电动机中的两台(15,16)。所述功率部件(11-16)都是装在一台自推进牵引车辆例如机车上的。实际上每一台牵引电动机都挂在该机车不同的轴上,而它的转轴则通过减速齿轮(未示出)与伴随的轴相偶合。通常每一转向架上有三个轴,而每台机车有两个转向架。
牵引电动机有着不转动的磁场绕组15F和16F,它们在电动回转或推进方式下工作期间,各自与可转动的电枢绕组串联连接。然而,为了使机车制动或减速,这些牵引电动机的电枢绕组要与功率整流器13脱离,并且连接到普通动态制动电阻栅上(未示出),而各电动机的磁场绕组则相互串联由主发电机12的整流输出来激励。(另一种方案也可用交流牵引电动机,在这种情况下要分别在电动机和直流母线14之间接上合适的控制电功率的变换器)。
为了激励主发电机12的转子的磁场绕组12F,把此绕组连接到合适的调整激磁电流的电源17的输出端。电源17最好是由一个三相可控整流桥组成,其输入端18从一台由原动机驱动的辅助交流发电机接收交流电压(辅助交流发电机实质上可以由象主发电机12那样的、绕在同一骨架上的、辅助的三相电枢绕组构成)。此电源包括通常用以改变直流电流大小的装置,可按需要向交流发电机的磁场提供直流电流,来把任何在输入线19上的可变控制信号与代表功率整流器13的输出电压平均数值的反馈信号V之间的幅度差别减至最小。后者的电压幅度分别是磁场绕组12F内激磁电流大小和在主发电机12的电枢绕组内输出电流大小的函数,它还随原动机11的速度而变。它是以跨接在功率整流器直流输出端的一般的电压传感器来感测得的。
在求和点20处,从线19上的激磁控制信号(Vc)中减去电压反馈信号V,磁场调整器17即对来自此求和点20的差值或误差信号做出响应。如图1中所示的那样,从控制信号中还要减去恒定大小的K值,结果当不需要有电压输出时,控制信号有着有限但相当低的值。在调整器17中,不论整流后的交流发电机输出电压的大小和预期值之间的差别如何,都有着能阻止交流发电机磁场电流超过某一预定的最大安全极限的适当的装置。此交流发电机磁场调整器通过复式线路串行数据传输器或母线21与主控制器(图2和3)进行联系。
在直流母线14和牵引电动机15,16之间分别连接有通常的电流传感器,以提供电流反馈信号I1,I2等,它们分别代表在电动回转期间在各电动机电枢绕组中电流的大小。这些信号作为输入信号进入处理器22。信号处理器22有两个输出值IMAX和IAV,其构造和安排情况是:IMAX的值由输入信号的最高幅度来决定,而IAV则有着一个相应于所有各自感测电流平均大小的值。
在乘法功能器(图1中以标有“X”的方块表示出)中,以最大电流反馈信号IMAX的值乘以电压反馈信号V的值,即得出一个以KVA来标识的、可以衡量由负载最重的牵引电动机所用的电功率千瓦数的数字。牵引电动机各自有着适当的速度传感器(SS),用来测量每一台电动机转轴的角速度或速率(每分钟的转数),而速度传感器的输出则通过平均功能器23来导出所有电动机的平均速度ω。
驱动交流发电机的磁场12F的原动机11是一台热或内燃发动机或其他类似机器。在柴油-电气机车中,动力一般是由一台大马力、涡轮增压的四冲程16缸柴油发动机来提供的。这样一种发动机有着很多辅助系统,其中有些在图1中以有标记的方块来代表。柴油发动机的燃油系统24通常包括一个燃油箱,燃油泵和喷油咀,以便把燃油注入各自的动力汽缸。动力汽缸在发动机相对的两侧排成两行或两组;有挺杆与在一对凸轮轴上的燃油凸轮相配合,在曲轴旋转每周期间的适当时刻启动有关注入器;另有一对燃油泵齿杆每次在有关注入器启动时控制流入汽缸的燃油量。每根燃油泵齿杆的位置以及由此而造成的供给发动机的燃油量受发动机调速系统25的输出活塞的控制(两根齿杆都与此活塞相连)。调速器通过在一个方向上自动地使齿杆产生一定量的位移来在预定的限度内调整发动机的转速;位移的方向和量值能使发动机曲轴的真实速度与预期速度之间的差别减至最小。预期速度由一个可变速度控制信号来确定,在此我们将这一信号称为速度命令信号或速度呼叫信号。发动机速度信号RPM表示发动机曲轴真实的转速,并从而表示出交流发电机磁场的转速。
发动机调速器的速度命令信号以及交流发电机磁场调整器的激磁控制信号是由示于图2和3中的辅助控制器26来提供的。在正常的电动回转或推进的工作方式下,这些信号值通过命令信号值来决定,而命令信号值则是利用与控制器相连的手动操作油门27传送给控制器的。机车油门通常有八档功率位置或凹槽(N),加上空转和停车两挡。N1相应于最小预期发动机速度(功率),而N8相应于最大速度和全功率。当希望对一辆运动中的机车实行动制动时,驾驶员把油门手柄移到它的空转位置并操纵常用制动控制器29的操纵杆,便那时有一个可变制动命令信号供给主控制器26,此信号将决定主交流发电机的激磁控制信号值。在两台或更多台机车的场合,通常只要照管领头的那一台,而后面每一台机车上装的主控制器将通过列车间的导线接收编码信号,这些信号指出领头一台中的驾驶员选择的油门位置或制动命令。
对于发动机的每一个功率值,都有一个相应的预期负载。控制器26经过适当的安排可把来自油门27的凹槽信息翻译成在交流发电机磁场调整器17的输入线19上的、有着合适大小的控制信号,从而,在电动回转中,只要交流发电机的输出电压和负载电流两者均在预定的极限内,就可将牵引功率调整到和要求的功率相匹配的数值上。为此目的,以及为了万一出现某些不正常的情况时降低额定功率(即将发动机去载)的目的,就必须给控制器26提供有关推进系统的各种运行状态和量值(即特性或参量)的信息。
更具体地说,控制器26一般都是接收上面提到的发动机速度信号RPM和电压反馈信号V,并且对发动机平均速度ω、分别由IMAX和IAV标出的最大和平均电流值以及由KVA标出的真实功率值作出响应。虽然在图2和3中IMAX、IAV和ω是以单独送到控制器的输入信号来示出的,实际上,最好还是将信号处理器22和23以及乘法功能器X(参阅图1)合并到这种经过适当安排的控制器里,以便从外部提供的电流(I1、I2等)、电压(V)以及电动机速度反馈信号中分别导出这些值来。
如果发动机不能发出所要求的功率,而且不能继续维持所要求的速度,则控制器26还将接收一个来自调速系统25的负载控制信号。(当此负载控制信号发出时,它起的作用是减小在线19上控制信号的大小,以削弱交流发电机的场强,直至到达新的平衡点。)如同在图2中所示的那样,还给控制器提供了一些附加的数据,包括:“RACK(齿杆)”数据(它引自发动机调速器或燃油系统,以指示燃油泵齿杆位移),“AUX    HP(辅助马力)”数据(它引自与机车一起的辅助负载装置的控制(未示出),以指示真正使用机车辅助负载时每轴的功率数),“WHEEL    SLIP(车轮打滑)”数据(以指示需要稍许或适度地降低牵引功率,以纠正车轮打滑状况并从而恢复车轮-铁轨的附着力),“VOLTMAX(最高电压)”和“CURMAX(最大电流)”数据,它们分别确定交流发电机输出电压和电流的绝对最大极限值;以及从如图2中由标有“OTHER”(其它)”的方块所代表的其它选定的电源来的有关数据。
在本发明目前的优选实施方案中,控制器26含有一台微计算机。熟悉本专业的技术人员将会明白,微计算机事实上是商品部件和有关的电气电路以及能编程来完成各种所希功能的元件的联合系统。在图3示出的典型的微计算机中,由一个中央处理机(CPU)执行存储在电可擦可再编程只读存储器(EPROM)内的运行程序,此存储器还存有供程序利用的表格和数据。CPU内包含有常用的一些计数器、寄存器、累加器、触发器(标记)等等,还有一个提供高频时钟信号的精密振荡器。此微计算机还包括一个随机存储器(RAM),可以把数据暂存于此RAM中,并根据存储在EPROM内的程序所定出的各种地址单元可从该RAM中读出数据。这些部件由适当的地址数据控制总线互连。在本发明实际的一种实施方案中,采用了英特尔(Intel)8086微处理器。
图3中所示的其它一些方块代表通常的外围和接口部件,它们把微计算机同外部电路互连。更详细地说,以“I/O”标出的方块是给微计算机提供数据和数字信号的输入/输出电路,这些数据代表选定的油门位置或制动命令,数字信号代表各种电压、电流、电动机速度以及与机车推进系统有关的其它反馈感测组件的读数。这些数字信号是从一个模/数转换器31引出的,模/数转换器31通过一常用的多路转换器32同许多信号调节器相连。传感器的输出加到各自的信号调节器。信号调节器起着通常的对模拟传感器的输出信号进行缓冲和编置的双重作用。如图3所示,输入/输出电路还通过多路总线21使交流发电机磁场调速器、发动机调速器、发动机速度传感器、输出端连接在线19上的数/模信号转换器33与微计算机互连。
控制器26按程序工作,在线19上产生一个控制信号,其幅度视机车驾驶员选定的油门位置(在正常的电动回转方式下)或驾驶员选定的制动命令(在动态制动方式下)而定。在电动回转期间完成上述情况的目前优选的方式在美国专利申请S.N.747,628号中有所描述,此专利申请是在1985年6月24日由E.T.巴尔奇(Balch),R.E.别尔斯基(Bilski),和A.K.库玛(Kumar)联名递交的,并转让给通用电气公司(General    Electric    Company),在此处引作参考。
如在作为参考资料的申请中阐明的那样,交流发电机的激磁控制程序(图4中的参考数号41)包括用以提供三个单独的、取决于油门位置的极限值的一些例行程序,这些极限值分别决定着交流发电机输出电压、电流和功率的预期值(以每一轮轴为基础)。这些预期值分别和相应的真实系统量值(即以V、IMAX、KVA标出的值)进行比较,以得出代表这样比较以后的每对值之间的差别(如果存在的话)的三个误差值。然后,按照补偿程序处理这三个误差值,以导出电压、电流、功率的控制值,这些控制值分别代表电压、电流、功率的误差值。补偿程序引入一些成比例的正的整数传递函数(参阅图4中的参考数号42)。这些传递函数各自的增益由视其油门位置以及机车及其控制情况的参量的不同而不同。因此,每一控制值是作为伴随着其误差值的时间积分的函数来变化的。三个控制值均加到门43上,此门选出最小值,再通过限制功能器44,从限制功能器44引出输出信号Vc,因而Vc相应于最小的控制值。
Vc的值决定着模拟控制信号的大小,该模拟控制信号则是控制器26通过线19供给交流发电机磁场调整器17(图1)的。磁场调整器对控制信号做出响应,办法是对牵引发电机的场强进行必要的变动,从而使电压反馈信号V的值和输出信号Vc的值之间的任何差别减至最小。只要V和IMAX两者一直在随着油门位置而变的极限值内,且不超过由VOLTMAX和CURMAX分别确定其最大极限值,那末Vc的值便由功率控制值来决定,而目前的功率控制值既小于电压控制值、也小于电流控制值。结果,交流发电机的输出电压便维持在凡是能使真实和预期牵引功率之间的误差基本为零的电平上了。但是,如果V(或IMAX)趋于超过它的极限参考值,则电压(或电流)的控制值被推移到低于功率控制值的水平,而且Vc值也会因此而减小,从而使交流发电机的电压调整到导致电压(或电流)误差为零的不论什么样的电平上。
在电压或电流传感器中、或在把这种传感器连接到主控制器26的电路中,有时会发生不正常的工作情况或故障,从而把电压或电流反馈信号丢失。在此不正常的状况下,存在着一种可能性,即测得的牵引功率值(KVA)将显著地低于负载最重的牵引电动机所实际要求的功率值。为了避免损坏,所以最好能通过降低牵引负载(降低额定值)或切断推进系统,来对电压或电流反馈信号的丢失作出响应,并要对控制器26进行适当编程来达到这一目的。
根据本发明,反馈信号的丢失可自动测知:首先估算反馈信号所代表的系统参量的预期值,然后将此预期值与反馈信号标出的同一参量的真实值进行比较。在图4中,这两步或两种功能各自以标有“参考估算器”的方块46和标有“反馈丢失检测器”的方块47来表示。在介绍更多有关这些估算和比较功能器46和47的详情之前,将借助于图5先对后一种功能器的工作情况作一阐述。
在图5中,水平线D描绘出定期地由功能器46估算或预计出的预定可变参量的稳态预期值。此可变参量由第一反馈信号来代表。波动的线条FDBK描绘出同一参量(第一反馈信号)的真实值,此值是从刚加上牵引负载的那一瞬间算起的。通过从D中减去FDBK,可以求出这两个值之间的差值(E),并且按一种即将阐述的方式把E与正或负值的偏压进行代数混合。最好两个偏压值均有着同样预定的恒定幅度(BIAS)。合成的偏置误差值由线条48示出于图5中。偏置误差值(E±BIAS)被积分,以得到一个以某一变化率偏离预定初始值(例如0)的数值(线条49),偏离的方向则分别取决于偏置误差值的大小和极性。换句话说,所得出的值(线条49)代表着偏置误差值的时间积分。最好在积分处理前把偏置误差值以估算的预期值(D)来除,以进行归一化,而用来积分的正是这两值的比率。定期测试积分49的相对极性。如果其相对于初始值的极性为负,则将BIAS与前述的差值(E)相加;如果对初始值的极性为正,则从E中减去BIAS。
在图5假定的条件下,在被调整器校正前,预定的系统参量的真实值(FDBK)从时间为0时的零值上升到时间为t1时的D-BIAS,并随后继续上升到超过D的电平。偏置误差值48起初和积分值49同样为正。在时间t1时,偏置误差值下降到零,而积分值49则达到峰值50。随后,偏置误差值为负,而积分值49的幅度衰减,直至其极性从正变到负为止。一旦测出时间t2时的这种极性变化,就会导致偏置值与E相加,而不是与E相减。现在,积分值49的幅度呈负向增加,但速率下降,直至时间t3处到达一较小的峰值,在时间t3处正好偏置误差值从负极性变到正极性。随后,积分值49从负到正变换极性,结果,导致在时间t4处从E中再一次减去偏置值。
当推进系统趋于稳定状态时,预定参量的波动幅度减小,而且此参量的真实值十分接近其预期值。在图5中,为了更为逼真地说明比较功能器47的稳定工作情况,在时间t6以后的时间尺度被扩大了。如果FDBK达到一个正好等于D的恒定值,则偏置误差48的幅度将仍然等于BIAS,其极性在每次测出积分值49的极性时变换一次,结果,积分的幅度将平均为零。偏置的大小要选择得与反馈感测组件在额定输出下最大可容许不精确或偏差量相匹配,这种不精确或偏差是由不可避免的信号偏移和增益的公差所造成的。只要FDBK的稳态值偏离预定的系统参量的真实值不大于最大可允许的量,则积分值49将总是具有一个正比于不超过BIAS与D之比的两倍的平均值。
在由于反馈感测组件的故障而造成的反馈丢失的不正常情况下,偏置误差值48将不是象图5中所示那样来变化,而是表现为连续呈正极性,因而使得积分值49的幅度逐步增大。比较功能器47包括电平控制装置。如果积分值49的绝对值超过了一个预定的阈值(这一阈值比本系统在根据油门位置变化通常作出的瞬时响应时可望达到的最高峰值幅度50要高),比较功能器47内的电平检测装置即可发出第一反馈信号丢失的信号。
虽然反馈丢失检测功能器可以以各种各样的方式来实现,以获得图5中所示的结果,但是现时的优选方法是把微计算机26编程去执行图6中所示的程序。此程序每隔60毫秒启动一次,以自动确定是否存在电压反馈信号V或平均电流反馈信号IAV丢失的情况。图6的程序只有当推进系统不以动态制动方式工作时才执行。它从讯问点61开始,此点决定交流发电机的磁场调整器17(图1)是否处于磁场电流限制模式下。如果回答是否定的(这说明调整器发挥着正常的作用,基本上按激磁控制信号的幅度的线性函数来改变交流发电机的输出电压),则图6程序中的下一步便是通过读出的Vc值和解出下列的方程来估算输出电压的预期值(D):
D=K1Vc-K2
在此方程中,Vc值相当于在线19上的激磁控制信号的值,K1为预定的比例因子(即比例常数),K2为相应于在求和点20处(图1)从控制信号中减去的K值的某一预定常数。因此,D随着控制器26产生的激磁控制信号值的变化而变化。图6的程序从62步前进到执行子程序1的63步。图7示出了执行电压反馈信号V的比较功能器47(图4)的子程序,我们即将在后面加以描述。
另一方面,如果对起始讯问61的回答是肯定的(这说明最大激磁电流正在交流发电机磁场绕组12F中流过,而V将不跟踪Vc)则图6程序中的下一步将是通过执行在图8中说明的、即将描述的子程序来求出D。在图8的子程序中,第一步81是读出平均电流反馈信号值IAV,并将其乘以消耗功率的轮轴数,从而使所得的乘积(IALT)等于牵引交流发电机12(图1)的输出电流的值(安培)。在此子程序的下一步82中,利用典型交流发电机的、已知的E/RPM对IALT的特性83来求出大致与IALT相应的E/RPM的大小。在参考特性83中,E为整流后的交流电压值(伏特),RPM是交流发电机转速(每分钟转数)。参考特性83是在最大的交流发电机场强下(即当磁场电流的大小等于上述预定的最大极限时)定出的,并且以查表形式存储在微计算机的存储器内。在完成82步后,子程序前进到84步,在此读出发动机转速反馈信号RPM的大小,乘以E/RPM并经换算而算出一个正比于转速和牵引发电机的E/RPM大小的值(ESTREF)。
图8的子程序从84步前进到测试电压反馈信号的积分偏置误差是否为负的85步。如果极性为负,则在86步中把预定的常数K3加到ESTREF值上,并将所得之和作为D存储起来;如果极性为正,则在87步中从ESTREF中减去K3。87步后为询问点88,用以决定所得差值是否为负。如果不为负数,则D等于ESTREF减去K3;否则在89步中取D为零。不同的牵引交流发电机的真实的E/RPM对IALT的特性与存储在微计算机存储器中的典型特性83相比,其偏差是不同的,常数K3要选择得与最大的预期偏差相匹配。只要ESTREF的稳态值与交流发电机输出电压的真实值的偏差一直不大于此最大值,并且在电压反馈感测组件中没有不正常的工作情况,则对于电压反馈信号的积分偏置误差将有一比上述预定的阈值电平低得多的恒定的平均值。
在执行完64步或62步,估算出交流发电机输出电压的预期值后,图6的程序前进到执行即将描述的子程序1(图7)。这个子程序的第一步71是要通过读出电压反馈信号V来求出交流发电机输出电压的真实值(FDBK),再把FDBK从估算得的预期值(D)中减去,并把此差值作为真实误差值(E)存储起来。通常,E应该与和交流发电机磁场调整器17(图1)有关的求和点20来的误差信号一致,但后者没有被利用于控制器26。跟随着71步的是72步,在72步中,测试积分后的偏置误差(即在和一次通过此子程序期间在75步处存储起来的E±BIAS与D的比的积分值)的极性。如果极性为负,则前述的恒定偏置值(图5中的BIAS)与E相加,如果极性不为负,则从E中减去此恒定的偏置值。显然,72步所提供的正是上面提到的偏置误差值(E±BIAS)。
最好,如图7中所示,子程序1包括一个73程序步。在73步中,如果D不是具有其它较高的值,则使D等于一个预定的较低极限值。当D接近于零时,此较低的极限值可避免在下一步74中出现不希望发生的误差。在74步中,偏置误差值通过把估算出的预期值D去除E±BIAS并计算出这两个量的比率(%),来把偏置误差值归一化。此程序步还导出了计算出的比率的最大和最小极限值。子程序从74步前进到75步,75步对限定的比率进行积分,并把积分值即所得的值存储起来。最好如图5中线条49所示,在时间t6以后,以分段的方式来计算积分,简单地把以前所存储的值增加(如果此比率为正)或减少(如果此比率为负)一个等于60毫秒乘以现时比值的乘积的量。在图7子程序的最后一步76中,将比值积分后的水平或幅度的绝对值与上面提到的预定阈值相比较:如果不低于阈值,则把故障标记设置成“真(true)”,从而发出“电压反馈信号V丢失”的信号。
从子程序1返回后,在询问点66重新继续图6的程序,在这点决定推进系统是否正工作于电动回转方式。如果不是,程序在此终止。但如果系统是处于电动回转方式,则程序从点66进到67步,在那里估算出预期平均电动机电流值(D)。下面即将描述的67步的优选实施方案示于图9。图9的子程序从读出电压反馈信号V的91步开始,接着转入测试电流反馈信号积分偏置误差的极性是否为负的92步。如果极性为负,子程序进入93步,通过加上一个预定的常数K4来调整V;否则,在94步中通过减去K4来调整V。在94步后的是决定调整后的V是否为负的询问点95。如果不是,则V等于原来的V减K4;否则,则在96步中使V为零。接着是97步,其作用是将调整后的V值乘以一个适当的比例因子来导出下一个调整后的V值。
图9子程序的下一步98是要读出以反馈信号ω表示的平均电动机速度(每分钟转数)。98步后是99步,目的在于确定此速度是否低于预定的低限或高于预定的高限。如果回答是肯定的,则通过第100步使图9的子程序中止,在该步中使D等于由电流反馈信号IAV表示的真实的平均电动机电流值。另一方面,如果对询问点99的回答是否定的,则子程序前进到101步,以ω除以变化后的V值来求出商数。
在下一步102中,利用一种典型的牵引电动机(它的特性以查表形式存储在微计算机的存储器内)的已知的V/ω对IARM(电枢安培值)的特性103,以求出大致和101步所提供的商数相对应的IARM的大小。以这种方式求出的IARM的大小就是估算平均电动机电流的预期值D。
在执行了估算平均电动机电流预期值的67步后,图6的程序转而执行子程序2。子程序2除了恒定的偏置值以及各种极限的幅度或电平外,和子程序1相同。在子程序2中,FDBK是由反馈信号IAV表示的真实的平均电动机电流值,D是执行67步(即图9中所示的子程序)求得的估算预期值,而故障标记如果为“真”,则发出“电流反馈信号丢失”的信号。
本发明也能用来检测当推进系统正工作于动态制动方式下的电动机磁场电流反馈信号的丢失。为此目的,在制动过程中,主控制器每60毫秒按程序去执行一个包括类似于图6的62和63步的子程序。在制动过程中,线19上的激磁控制信号的大小将作为从制动控制器29(图2)来的命令信号的函数而变化。同时,一个代表从牵引交流发电机12的输出提供给电动机磁场绕组的电流幅度的反馈信号将从求和点20处(图1)的控制信号中减去,以确定差值或误差信号,并由磁场调整器17对这一误差信号做出响应。因此,估算出的牵引电动机磁场电流的预期值(D)也因激磁控制信号(Vc)的不同而不同。在一个类似于63步的子程序中(图7),是从D中减去电动机磁场电流的真实值(FDBK)来求出真实的误差值E的,其中FDBK是由与电动机磁场绕组15F、16F等串联的电流传感器来的反馈信号来表示的。
在以例示的方式给出和描述的本发明的一种优选实施方案的同时,对于所属技术领域内的技术人员来说,无疑可以有许多种变型。举例来说,本发明的原理能适用于检测表示电压和电流以外的其他常见系统参量的反馈信号的丢失。所以最后的权利要求企图包括本发明的真正精神范围内的所有这样的一些变型。

Claims (17)

1、一种检测反馈信号丢失的改进装置,它是在一种系统的控制器内的,这种系统包括:供给电负载电路以可控数量电功率的装置;可导出至少第一、第二、第三分别代表诸如电源装置的输出电压和电流那样的某些系统参量的反馈信号的装置;与电源装置有关的、作为可变控制信号值的函数去改变供给该负载电路功率的装置-该控制器可有选择地对反馈信号和给定的命令信号做出反应,产生出可变控制信号;所述检测反馈信号丢失的改进装置,其特征在于包括:
a、定期工作的第一装置可用来估算由第一反馈信号代表的一个预定系统参量的预期值;
b、与所述第一装置有关并响应于所述第一反馈信号的第二装置,可用来求出所述预定参量的估算预期值及其以所述第一反馈信号表示的真实值之间的差值;
c、提供偏置误差值的第三装置,所述偏置误差值等于所述差值加上或减去预定的偏置值;
d、与所述第三装置有关的积分装置,用来得出代表对所述偏置误差值进行时间积分后的最终值;
e、与所述第三装置和所述积分装置均有关的、定期工作的极性检测装置。如果所述最终值的极性为负,则所述极性检测装置导致所述偏置值与所述差值相加;如果所述最终值的极性为正,则所述极性检测装置导致从所述差值中减去所述偏置值;
f、响应于所述最终值的电平检测装置,如果所述最终值的幅度超过一个预定的阈值,则所述最终值电平检测装置发出所述第一反馈信号丢失的信号。
2、根据权利要求1所述的反馈丢失检测装置,其中第四装置与所述第一和第三装置相联合,以计算偏置误差值与所述估算的预期值的比率,并使所述积分装置针对所述比率做出响应,从而使所述最终值随着所述比率的时间积分值的变化而变化。
3、根据权利要求2所述的反馈丢失检测装置,其中所述第四装置包括以较高的所述估算预期值或预定的低限值去除所述偏置误差值的装置。
4、权利要求1中用于这样一种系统中的反馈丢失检测装置:在这种系统中,控制信号的值决定着电源装置的一个预定输出参量的预期值,而且其中的功率改变装置可以有效地调整所述输出参量,从而使其真实值和预期值之间的任何差值减至最小限度。
5、权利要求4中用于下面这种系统的反馈丢失检测装置,在这系统中,第一反馈信号代表所述预定输出参量,其中所述第一装置响应于所述控制信号并周期地工作以提供一个随控制信号而变的预期值。
6、根据权利要求5所述的反馈丢失检测装置,其中所述估算的预期值等于一个第一值减去一个预定常数,所述第一值正比于控制信号值。
7、根据权利要求5所述的反馈丢失检测装置,其中所述预定输出参量为电压。
8、权利要求1中用于这样一种系统的反馈丢失检测装置:在这种系统中,第一反馈信号代表电源装置的第一预定输出参量,其中所述第一装置响应于第二和第三反馈信号并周期性地工作,以计算所述第一预定输出参量的预期值。
9、权利要求8中用于这样一种系统的反馈丢失检测装置:在这种系统中,控制信号的值决定着所述第一预定输出参量的预期值,而且其中的功率变动装置可有效地调整所述第一参量,从而使真实值与预期值之间的任何差别减至最小的限度。
10、权利要求8中用于这样一种系统的反馈丢失检测装置:在这种系统中,第二反馈信号代表电源装置的第二预定输出参量,控制信号的值决定着所述第二参量的预期值,而且功率变动装置可有效地调整所述第二参量,从而使真实值与预期值之间的任何差值减至最小的限度。
11、权利要求8中用于这样一种系统的反馈丢失检测装置:在这种系统中,电源装置包括一台发电机,该发电机有着可改变驱动速度的转子。所述第一预定输出参量为电压,第二反馈信号代表所述发电机输出电源的数值,第三反馈信号代表所述发电机的速度。
12、权利要求11中可用于这样一种系统的反馈丢失检测装置:在这种系统中,所述发电机是一台交流发电机,该交流发电机有着一个由电源变动装置激励的旋转磁场,一个连接到负载电路的不转动的电枢以及当发电机的磁场激励电流有一预定值时已知的E/RPM对IALT特性,此处E是发电机输出电压值(伏特),RPM是发电机的旋转速度(每分钟转速),IALT是发电机输出电流的数值(安培)。其中所述第一装置包括装置(a1)、(a2)和(a3)。装置(a1)利用所述已知特性和第二反馈信号,周期求出相应于输出电流真实幅度的E/RPM值,装置(a2)响应于第三反馈信号去计算正比于发电机转速和所述E/RPM值的乘积的第一值,装置(a3)响应于所述第一值,以导出估算的电压预期值。
13、根据权利要求12所述的反馈丢失检测装置,其中如果所述最终值的极性为负,则所述估算预期值等于所述第一值加上一个预定的常数;如果所述最终值的极性为正,则该预期值等于所述第一值减去所述预定常数。
14、权利要求8中用于这样一种系统的反馈丢失检测装置:在这种系统中,负载电路至少包括一个有着以可变速度旋转的转轴的电动机,所述第一预定输出参量是电流,第二反馈信号代表电源输出电压数值,第三反馈信号代表电动机的速度。
15、权利要求14中用于这样一种系统的反馈丢失检测装置:在这种系统中,所述电动机是一台直流电动机,它有着一可转动的电枢和已知的V/ω对IARM特性,此处V是加于所述电枢上的电压值(伏特),ω是电动机的转速(每分钟转数),IARM是电动机电枢电流的数值(安培)。其中所述第一装置包括装置(a1)和(a2)。装置(a1)用来计算由第二反馈信号推导出来的第一值与相应于电动机转速的另一值相除后得出的商数,装置(a2)利用所述已知特性和所述商数周期求出估算的电流预期值。
16、根据权利要求15所述的反馈丢失检测装置,其中如果所述最终值的极性为负,则所述第一值同输出电压值与某预定常数之和成正比,如果所述最终值的极性为正,则所述第一值同输出电压值与所述预定常数之差成正比。
17、权利要求1用于这样一种牵引车辆推进系统的反馈丢失检测装置,在所述推进系统中,电源包括由一台热原动机机械地驱动的交流发电装置,而电负载电路包括许多牵引电动机。
CN86105608.6A 1985-07-29 1986-07-29 电反馈丢失检测器 Expired CN1006249B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US760,204 1985-07-29
US06/760,204 US4695941A (en) 1985-07-29 1985-07-29 Loss of electrical feedback detector

Publications (2)

Publication Number Publication Date
CN86105608A true CN86105608A (zh) 1987-01-28
CN1006249B CN1006249B (zh) 1989-12-27

Family

ID=25058420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN86105608.6A Expired CN1006249B (zh) 1985-07-29 1986-07-29 电反馈丢失检测器

Country Status (4)

Country Link
US (1) US4695941A (zh)
CN (1) CN1006249B (zh)
AU (1) AU579073B2 (zh)
GB (1) GB2178612B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790826B (zh) * 2007-08-30 2013-07-17 Abb股份有限公司 运用信号技术处理电压的装置和系统
CN104010867A (zh) * 2011-12-19 2014-08-27 铁路发展服务公司 用于机车的牵引电机驱动系统
CN104679606A (zh) * 2015-03-18 2015-06-03 北京全路通信信号研究设计院有限公司 一种看门狗电路检测方法和装置
CN113514713A (zh) * 2020-04-10 2021-10-19 中车唐山机车车辆有限公司 动车组牵引变流器性能检测方法、装置及终端设备

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388248A (ja) * 1986-10-01 1988-04-19 Toyota Motor Corp 排気ガス浄化装置の故障診断装置
US4807153A (en) * 1986-11-20 1989-02-21 Unimation Inc. Multiaxis digital robot control having a backup velocity monitor and protection system
FR2616931B1 (fr) * 1987-06-22 1989-10-06 Renault Dispositif de gestion d'une commande electro-hydraulique de pression
JPH01172668A (ja) * 1987-12-28 1989-07-07 Aisin Aw Co Ltd 通信先のインタフェース回路の故障検出装置
JPH02146602A (ja) * 1988-08-11 1990-06-05 Fanuc Ltd サーボモータにより駆動される被駆動体の衝突検出・停出方法
US5293322A (en) * 1989-10-24 1994-03-08 Mitsubishi Denki Kabushiki Kaisha Industrial robot apparatus
US5289093A (en) * 1989-11-08 1994-02-22 Gec Alsthom Sa Antispin and antilock methods for an electric traction vehicle
US4987351A (en) * 1990-01-11 1991-01-22 General Motors Corporation Load-based control of an AC motor
US5170105A (en) * 1991-03-08 1992-12-08 General Electric Company Method for determining operability of an electrical dynamic braking system
US5530323A (en) * 1994-09-14 1996-06-25 Reliance Electric Industrial Company Drive synchronization system for plural motor systems
US5500799A (en) * 1994-11-16 1996-03-19 Westinghouse Air Brake Company Method of operating a locomotive mounted throttle controller between two modes of operation including a transition between such two modes
JPH08286831A (ja) * 1995-04-14 1996-11-01 Canon Inc ペン入力型電子装置及びその制御方法
EP0852030B1 (en) * 1995-09-22 2002-07-03 Rosemount Inc. Adaptive bias controller
US6532405B1 (en) * 2000-08-09 2003-03-11 General Electric Company Method for detecting a locked axle on a locomotive AC traction motor
US6456908B1 (en) * 2000-10-26 2002-09-24 General Electric Company Traction motor speed sensor failure detection for an AC locomotive
US6989641B2 (en) * 2003-06-02 2006-01-24 General Motors Corporation Methods and apparatus for fault-tolerant control of electric machines
CN100566067C (zh) * 2004-02-12 2009-12-02 大动力公司 管理电源系统内的故障的系统和方法
JP2005289532A (ja) * 2004-03-31 2005-10-20 Mitsubishi Electric Corp エレベータ制御装置
DE102008002623B4 (de) * 2007-12-20 2019-06-27 Robert Bosch Gmbh Verfahren und Steuergerät zur Überwachung und Begrenzung des Drehmoments in einem Antriebsstrang eines Straßenkraftfahrzeugs
US8004226B2 (en) * 2008-08-06 2011-08-23 Caterpillar Inc. Method and system for detecting a failed current sensor in a three-phase machine
CN104407516B (zh) * 2014-12-12 2017-02-22 北京四方继保自动化股份有限公司 一种发电机励磁装置对实测转速及计算转速的同步跟踪方法
CN107472264B (zh) * 2017-06-30 2019-02-01 中车大连机车车辆有限公司 具有加载保护功能的内燃机车司机控制器
US10387808B1 (en) * 2017-09-08 2019-08-20 Aviation Aero Tix, Llc System and method for the collection, display, and reporting of uplift data
JP7194069B2 (ja) * 2019-04-18 2022-12-21 株式会社日立産機システム 監視装置、および監視方法
US11283387B2 (en) * 2020-04-15 2022-03-22 Texas Instruments Incorporated Current sense circuit with alternating measurement paths

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979682A (en) * 1974-12-11 1976-09-07 United Technologies Corporation Hysteresis compensator for control systems
US4276502A (en) * 1976-09-27 1981-06-30 Varco, Inc. Solid state controller
DE2837842A1 (de) * 1978-08-30 1980-03-13 Anschuetz & Co Gmbh Anordnung zum ueberwachen einer rudersteueranlage
JPS55128641A (en) * 1979-03-23 1980-10-04 Nissan Motor Co Ltd Controlling system for vehicle
JPS6032217B2 (ja) * 1979-04-02 1985-07-26 日産自動車株式会社 制御用コンピュ−タのフェィルセ−フ装置
JPS5762405A (en) * 1980-09-04 1982-04-15 Honda Motor Co Ltd Compensating circuit abnormal power voltage of electronic circuit for vehicle
JPH0340401B2 (zh) * 1980-09-30 1991-06-18
US4509110A (en) * 1982-06-07 1985-04-02 United Technologies Corporation Method and apparatus for detecting failures in a control system
US4510565A (en) * 1982-09-20 1985-04-09 Allen-Bradley Company Programmable controller with intelligent positioning I/O modules
JPS5963344A (ja) * 1982-10-01 1984-04-11 Fuji Heavy Ind Ltd 内燃機関の自己診断方式
AU559691B2 (en) * 1983-02-17 1987-03-19 Mitsubishi Denki Kabushiki Kaisha Controlling switching elements of electric cars
US4578747A (en) * 1983-10-14 1986-03-25 Ford Motor Company Selective parametric self-calibrating control system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790826B (zh) * 2007-08-30 2013-07-17 Abb股份有限公司 运用信号技术处理电压的装置和系统
CN104010867A (zh) * 2011-12-19 2014-08-27 铁路发展服务公司 用于机车的牵引电机驱动系统
CN104010867B (zh) * 2011-12-19 2016-12-07 铁路发展服务公司 用于机车的牵引电机驱动系统
CN104679606A (zh) * 2015-03-18 2015-06-03 北京全路通信信号研究设计院有限公司 一种看门狗电路检测方法和装置
CN113514713A (zh) * 2020-04-10 2021-10-19 中车唐山机车车辆有限公司 动车组牵引变流器性能检测方法、装置及终端设备
CN113514713B (zh) * 2020-04-10 2022-12-20 中车唐山机车车辆有限公司 动车组牵引变流器性能检测方法、装置及终端设备

Also Published As

Publication number Publication date
US4695941A (en) 1987-09-22
CN1006249B (zh) 1989-12-27
GB2178612A (en) 1987-02-11
GB2178612B (en) 1989-02-01
AU579073B2 (en) 1988-11-10
GB8617392D0 (en) 1986-08-20
AU6060686A (en) 1987-02-05

Similar Documents

Publication Publication Date Title
CN86105608A (zh) 电反馈丢失检测器
AU700435B2 (en) Speed control system for an AC locomotive
CN86104323A (zh) 用于机车的加载率限制装置
CN101689827B (zh) 开关磁阻发电机的导通角控制
US8280569B2 (en) Methods and systems for improved throttle control and coupling control for locomotive and associated train
DE3878083T2 (de) Turbokontrolleinrichtung mit drehender elektrischer maschine.
US4896090A (en) Locomotive wheelslip control system
US6573675B2 (en) Method and apparatus for adaptive energy control of hybrid electric vehicle propulsion
CN1077953C (zh) 混合动力汽车的驱动系统和这种系统的控制方法
US7378808B2 (en) Electric drive system having DC bus voltage control
US5661378A (en) Tractive effort control method and system for recovery from a wheel slip condition in a diesel-electric traction vehicle
DE69009376T2 (de) Steuersystem für Turbolader mit elektrischer Drehmaschine.
CN101682290B (zh) 旋转电机控制系统以及具备该旋转电机控制系统的车辆驱动系统
US7122979B2 (en) Method and apparatus for selective operation of a hybrid electric vehicle in various driving modes
CN1074870A (zh) 一种汽车传动系统
CN101873947A (zh) 旋转电机控制系统和车辆驱动系统
CN86101126A (zh) 用于自推进牵引车辆的自动隧道探测器
CN103490675A (zh) 一种交流内燃机车柴油机变频起动控制方法
US20020062184A1 (en) Vehicle drive system and controlling method thereof
CN103889802A (zh) 混合动力车辆的发电机控制装置
US5041772A (en) Locomotive dynamic brake control
CN104080676B (zh) 车辆控制装置
CN102317196A (zh) 叉车
CN101479143B (zh) 发动机伺服加载装置及其动态寻优运行控制方法
CN205745238U (zh) 一种自动变速器选换挡执行机构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee