CN221102058U - A gallium nitride power module - Google Patents
A gallium nitride power module Download PDFInfo
- Publication number
- CN221102058U CN221102058U CN202322654272.0U CN202322654272U CN221102058U CN 221102058 U CN221102058 U CN 221102058U CN 202322654272 U CN202322654272 U CN 202322654272U CN 221102058 U CN221102058 U CN 221102058U
- Authority
- CN
- China
- Prior art keywords
- gallium nitride
- power module
- bottom plate
- module according
- nitride power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 60
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 56
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 230000010354 integration Effects 0.000 claims abstract description 10
- 238000005192 partition Methods 0.000 claims abstract description 9
- 238000003466 welding Methods 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 10
- 230000017525 heat dissipation Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 230000003071 parasitic effect Effects 0.000 abstract description 3
- 238000010606 normalization Methods 0.000 abstract description 2
- 238000011161 development Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
本实用新型涉及一种氮化镓功率模块,其包括功率组件、壳体组件和底板;所述功率组件包括氮化镓芯片及用于安装所述氮化镓芯片的电路基板;所述壳体组件包括隔板以及至少三个集成区,所述集成区沿第一方向排列,相邻所述集成区之间设有所述隔板;所述底板与所述壳体组件拼接,所述底板的第一表面用于密封所述集成区的一侧形成若干容置腔,所述容置腔用于容置一组所述功率组件;本实用新型通过模块归一化设计提高器件集成度,能够满足1200W/800A及更高的功率需求,同时该氮化镓功率模块相较于现有技术中若干个组合的氮化镓模块尺寸和体积更小,占用空间更小,有利于电路板布局和设计,能够降低电损耗和寄生参数影响,同时散热效果更好。
The utility model relates to a gallium nitride power module, which comprises a power component, a shell component and a bottom plate; the power component comprises a gallium nitride chip and a circuit substrate for mounting the gallium nitride chip; the shell component comprises a partition and at least three integrated areas, the integrated areas are arranged along a first direction, and the partition is arranged between adjacent integrated areas; the bottom plate is spliced with the shell component, and the first surface of the bottom plate is used to seal one side of the integrated area to form a plurality of accommodating cavities, and the accommodating cavities are used to accommodate a group of the power components; the utility model improves the device integration through module normalization design, and can meet the power requirements of 1200W/800A and higher. At the same time, compared with several combined gallium nitride modules in the prior art, the gallium nitride power module is smaller in size and volume, occupies less space, is conducive to circuit board layout and design, can reduce electrical loss and parasitic parameter influence, and has better heat dissipation effect.
Description
技术领域Technical Field
本实用新型涉及功率半导体器件技术领域,尤其是指一种氮化镓功率模块。The utility model relates to the technical field of power semiconductor devices, in particular to a gallium nitride power module.
背景技术Background technique
氮化镓作为一种宽禁带半导体材料,具备禁带宽度大、击穿电压高、热导率大、开关频率高以及抗辐射能力强等优势;其较高的开关频率使得应用电路能够采用尺寸更小的无源器件,较高的击穿电压则表示氮化镓材料的电压耐受能力较传统的硅材料更高,不影响导通电阻性能,能够降低导通损耗;因此,氮化镓材料作为极具发展前景的材料被广泛使用,成为电子产品轻量化的关键器件。As a wide bandgap semiconductor material, GaN has the advantages of large bandgap width, high breakdown voltage, high thermal conductivity, high switching frequency and strong radiation resistance. Its higher switching frequency enables the application circuit to use smaller passive devices, and the higher breakdown voltage means that GaN materials have higher voltage tolerance than traditional silicon materials, without affecting the on-resistance performance and can reduce conduction losses. Therefore, GaN materials are widely used as materials with great development prospects and have become a key component for lightweight electronic products.
目前为应对高功率需求,通常将多个氮化镓模块进行组合,导致其体积较大、占用更多空间,使得对应的电路布局需要重新规划,在安装与集成时较为不便,需要额外耗费开发时间与成本。Currently, in order to meet high power requirements, multiple GaN modules are usually combined, resulting in a larger size and taking up more space. The corresponding circuit layout needs to be replanned, which is inconvenient during installation and integration and requires additional development time and cost.
实用新型内容Utility Model Content
为此,本实用新型所要解决的技术问题在于克服现有技术中标准封装器件集成度不高、功率密度受限的技术难点,提供一种氮化镓功率模块,通过模块化设计满足高集成度和高功率的需求。To this end, the technical problem to be solved by the present invention is to overcome the technical difficulties of low integration and limited power density of standard packaged devices in the prior art, and to provide a gallium nitride power module that meets the requirements of high integration and high power through modular design.
为解决上述技术问题,本实用新型提供了一种氮化镓功率模块,其包括,In order to solve the above technical problems, the utility model provides a gallium nitride power module, which includes:
功率组件,其包括氮化镓芯片及用于安装所述氮化镓芯片的电路基板;A power component, comprising a gallium nitride chip and a circuit substrate for mounting the gallium nitride chip;
壳体组件,所述壳体组件包括隔板以及至少三个集成区,所述集成区沿第一方向排列,相邻所述集成区之间设有所述隔板;A shell assembly, the shell assembly comprising a partition and at least three integrated areas, the integrated areas are arranged along a first direction, and the partition is provided between adjacent integrated areas;
底板,所述底板与所述壳体组件拼接,所述底板的第一表面用于密封所述集成区的一侧形成若干容置腔,所述容置腔用于容置一组所述功率组件。A bottom plate is spliced with the shell component, and a first surface of the bottom plate is used to seal one side of the integrated area to form a plurality of accommodating cavities, and the accommodating cavities are used to accommodate a group of the power components.
在本实用新型的一个实施例中,所述若干容置腔包括沿所述第一方向排列设置的第一容置腔、第二容置腔和第三容置腔。In an embodiment of the present invention, the plurality of accommodating chambers include a first accommodating chamber, a second accommodating chamber and a third accommodating chamber arranged along the first direction.
在本实用新型的一个实施例中,所述壳体组件还包括连接端子,所述连接端子分别位于所述容置腔沿第二方向的两端,所述第二方向与所述第一方向垂直。In an embodiment of the present invention, the housing assembly further includes connecting terminals, and the connecting terminals are respectively located at two ends of the accommodating cavity along a second direction, and the second direction is perpendicular to the first direction.
在本实用新型的一个实施例中,还包括冷却装置,所述冷却装置紧贴所述底板的第二表面,所述第二表面在所述底板的厚度方向上与所述第一表面相对设置。In one embodiment of the present invention, a cooling device is further included, wherein the cooling device is closely attached to the second surface of the bottom plate, and the second surface is arranged opposite to the first surface in the thickness direction of the bottom plate.
在本实用新型的一个实施例中,所述底板还包括翅片,所述翅片由所述第二表面凸起且紧贴所述冷却装置,所述翅片设置为金属材质。In an embodiment of the present invention, the bottom plate further includes fins, the fins protrude from the second surface and are in close contact with the cooling device, and the fins are made of metal.
在本实用新型的一个实施例中,所述功率组件还包括第一焊接层和第二焊接层;所述第一焊接层位于所述电路基板的一侧表面并用于固定所述氮化镓芯片,所述第二焊接层位于所述第一表面的至少部分区域并用于固定所述电路基板。In one embodiment of the utility model, the power component further includes a first welding layer and a second welding layer; the first welding layer is located on one side surface of the circuit substrate and is used to fix the gallium nitride chip, and the second welding layer is located on at least a portion of the first surface and is used to fix the circuit substrate.
在本实用新型的一个实施例中,所述电路基板设置为氮化镓材质。In an embodiment of the present invention, the circuit substrate is made of gallium nitride.
在本实用新型的一个实施例中,所述容置腔内的所述氮化镓芯片通过键合丝连接。In an embodiment of the present invention, the gallium nitride chips in the accommodating cavity are connected via bonding wires.
在本实用新型的一个实施例中,所述键合丝设置为铜线。In an embodiment of the present invention, the bonding wire is configured as a copper wire.
在本实用新型的一个实施例中,所述底板与所述壳体组件通过点胶方式粘接。In an embodiment of the present invention, the bottom plate and the shell assembly are bonded together by glue dispensing.
本实用新型的上述技术方案相比现有技术具有以下优点:The above technical solution of the utility model has the following advantages compared with the prior art:
本实用新型所述的一种氮化镓功率模块,通过模块归一化设计提高器件集成度,能够满足1200W/800A及更高的功率需求,同时该氮化镓功率模块相较于现有技术中若干个氮化镓模块组合的总尺寸和体积更小,占用空间更小,有利于电路板布局和设计,能够降低电损耗和寄生参数影响,同时散热效果更好。The gallium nitride power module described in the utility model improves the device integration through the module normalization design, and can meet the power requirements of 1200W/800A and higher. At the same time, compared with the total size and volume of a combination of several gallium nitride modules in the prior art, the gallium nitride power module has a smaller total size and volume, occupies less space, is conducive to circuit board layout and design, can reduce electrical loss and parasitic parameter influence, and has better heat dissipation effect.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了使本实用新型的内容更容易被清楚的理解,下面根据本实用新型的具体实施例并结合附图,对本实用新型作进一步详细的说明,其中:In order to make the content of the utility model easier to understand, the utility model is further described in detail according to the specific embodiments of the utility model in combination with the accompanying drawings, wherein:
图1是本实用新型优选实施例中氮化镓功率模块的爆炸视图;FIG1 is an exploded view of a gallium nitride power module in a preferred embodiment of the present invention;
图2是本实用新型优选实施例中氮化镓功率模块的俯视图;FIG2 is a top view of a gallium nitride power module in a preferred embodiment of the present invention;
图3是本实用新型优选实施例中氮化镓功率模块的侧视图。FIG. 3 is a side view of a gallium nitride power module in a preferred embodiment of the present invention.
说明书附图标记说明:1、功率组件;11、氮化镓芯片;12、电路基板;13、第一焊接层;14、第二焊接层;2、壳体组件;21、集成区;22、隔板;3、底板;31、第一表面;32、第二表面;41、第一容置腔;42、第二容置腔;43、第三容置腔;5、连接端子;6、翅片。Explanation of the reference numerals in the specification: 1. Power component; 11. Gallium nitride chip; 12. Circuit substrate; 13. First welding layer; 14. Second welding layer; 2. Shell assembly; 21. Integration area; 22. Partition; 3. Bottom plate; 31. First surface; 32. Second surface; 41. First accommodating cavity; 42. Second accommodating cavity; 43. Third accommodating cavity; 5. Connection terminal; 6. Fin.
具体实施方式Detailed ways
下面结合附图和具体实施例对本实用新型作进一步说明,以使本领域的技术人员可以更好地理解本实用新型并能予以实施,但所举实施例不作为对本实用新型的限定。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments so that those skilled in the art can better understand the present invention and implement it, but the embodiments are not intended to limit the present invention.
实施例Example
参照图1~图3所示,本实用新型提供了一种氮化镓功率模块,其包括功率组件1、壳体组件2、底板3及冷却装置,本实用新型将氮化镓模块进行归一化设计,提高集成度,实现单模块设计,在有限的占用空间内使氮化镓模块符合高功率需求,节省后续开发和设计成本。1 to 3 , the utility model provides a gallium nitride power module, which includes a power component 1, a housing component 2, a base plate 3 and a cooling device. The utility model normalizes the gallium nitride module design, improves the integration, realizes a single module design, makes the gallium nitride module meet high power requirements within a limited occupied space, and saves subsequent development and design costs.
具体地,经本案发明人研究发现,现有技术中在实现1200W/600A功率需求时需要搭配多个氮化镓模块组合,整体体积较大且在封装时面临电损耗及寄生参数等电学方面的挑战,安装与集成难度较大,据此,参照图1所示,本实用新型优选实施例中,所述壳体组件2包括隔板22以及至少三个集成区21,每一所述集成区21内均设有所述功率组件1,以排列设置的集成区21替代分立的氮化镓模块,提高集成度;所述集成区21沿第一方向排列,相邻所述集成区21之间设有所述隔板22。Specifically, the inventors of this case have discovered through research that in the prior art, in order to achieve the power requirement of 1200W/600A, it is necessary to combine multiple gallium nitride modules. The overall volume is large and faces electrical challenges such as power loss and parasitic parameters during packaging. The installation and integration are difficult. Therefore, referring to Figure 1, in a preferred embodiment of the utility model, the shell assembly 2 includes a partition 22 and at least three integrated areas 21, each of the integrated areas 21 is provided with the power component 1, and the arranged integrated areas 21 replace the discrete gallium nitride modules to improve the integration; the integrated areas 21 are arranged along a first direction, and the partitions 22 are provided between adjacent integrated areas 21.
进一步地,参照图1所示,所述壳体组件2还包括连接端子5,所述连接端子5分别位于所述容置腔沿第二方向的两端,所述第二方向与所述第一方向垂直,所述连接端子5用于将工作电流导入所述氮化镓功率模块。Further, as shown in FIG. 1 , the housing assembly 2 further includes connecting terminals 5 , which are respectively located at two ends of the accommodating cavity along a second direction, wherein the second direction is perpendicular to the first direction, and the connecting terminals 5 are used to introduce the working current into the gallium nitride power module.
具体地,参照图1所示,所述底板3用于与所述壳体拼接,所述底板3厚度方向上的第一表面31与所述壳体组件2正对设置,在本实用新型优选实施例中,所述壳体组件2与所述底板3以点胶方式粘接,所述第一表面31与所述集成区21的开口侧相连接形成密闭的容置腔用于容置所述功率组件1。进一步地,在一些实施例中,参照图2所示,所述若干容置腔包括沿所述第一方向排列设置的第一容置腔41、第二容置腔42和第三容置腔43,通过该单模块设计能够满足1200W/800A功率需求;在一些实施例中,所述容置腔沿所述第一方向排列,且其设置数量不限于此;所述氮化镓功率模块能够满足更高功率需求,且相较于现有的分立设计在所述第一方向上具有更小的尺寸;本实用新型优选实施例中所述氮化镓功率模块在所述第一方向上的尺寸相较于现有技术中多个组合的氮化镓模块在所述第一方向上的尺寸减少约7%,本实用新型能够优化模块的占用空间。Specifically, as shown in FIG. 1 , the bottom plate 3 is used to be spliced with the shell, and the first surface 31 in the thickness direction of the bottom plate 3 is arranged opposite to the shell component 2. In the preferred embodiment of the utility model, the shell component 2 is bonded to the bottom plate 3 by dispensing, and the first surface 31 is connected to the open side of the integrated area 21 to form a closed accommodating cavity for accommodating the power component 1. Further, in some embodiments, as shown in FIG. 2 , the plurality of accommodating cavities include a first accommodating cavity 41, a second accommodating cavity 42 and a third accommodating cavity 43 arranged along the first direction, and the single module design can meet the 1200W/800A power requirement; in some embodiments, the accommodating cavities are arranged along the first direction, and the number of accommodating cavities is not limited thereto; the gallium nitride power module can meet higher power requirements and has a smaller size in the first direction than the existing discrete design; the size of the gallium nitride power module in the first direction in the preferred embodiment of the utility model is reduced by about 7% compared with the size of the multiple combined gallium nitride modules in the first direction in the prior art, and the utility model can optimize the occupied space of the module.
具体地,参照图1所示,所述功率组件1包括氮化镓芯片11及用于安装所述氮化镓芯片11的电路基板12,即DCB板;所述功率组件1还包括第一焊接层13和第二焊接层14;所述第一焊接层13位于所述电路基板12的一侧表面并用于固定所述氮化镓芯片11,所述第二焊接层14位于所述第一表面31的至少部分区域并用于固定所述电路基板12。随着封装技术发展,布线间距越来越小,所述容置腔内的所述氮化镓芯片11通过键合丝连接,在一些实施例中,所述键合丝设置为铜线,铜线相较于同纯度金线具有良好的剪切强度和延伸性,在满足相同焊接强度的情况下,可以使用直径更小的铜线代替金线作为键合丝,使引线键合的间距缩小,同时铜材料成本低、硬度大,强度高,有利于塑封模压时保护引线弧度。Specifically, as shown in FIG. 1 , the power component 1 includes a gallium nitride chip 11 and a circuit substrate 12 for mounting the gallium nitride chip 11, i.e., a DCB board; the power component 1 also includes a first welding layer 13 and a second welding layer 14; the first welding layer 13 is located on one side surface of the circuit substrate 12 and is used to fix the gallium nitride chip 11, and the second welding layer 14 is located on at least a part of the first surface 31 and is used to fix the circuit substrate 12. With the development of packaging technology, the wiring spacing is getting smaller and smaller, and the gallium nitride chip 11 in the accommodating cavity is connected by bonding wires. In some embodiments, the bonding wire is set as a copper wire, which has good shear strength and elongation compared to the gold wire of the same purity. Under the condition of meeting the same welding strength, a copper wire with a smaller diameter can be used instead of a gold wire as a bonding wire to reduce the spacing of the wire bonding. At the same time, the copper material has low cost, high hardness, and high strength, which is conducive to protecting the curvature of the lead during plastic encapsulation molding.
进一步地,在一些实施例中,所述电路基板12设置为氮化镓材质,相较于现有技术中氧化铝材质的DCB板而言硬度高、机械性能和电学性能更优,同时具有更好的散热表现,和较长的使用寿命。Furthermore, in some embodiments, the circuit substrate 12 is configured to be made of gallium nitride material, which has higher hardness, better mechanical and electrical properties, better heat dissipation performance, and longer service life than the DCB board made of aluminum oxide in the prior art.
具体地,所述氮化镓功率模块还包括冷却装置,所述冷却装置紧贴所述底板3的第二表面32,所述第二表面32在所述底板3的厚度方向上与所述第一表面31相对设置。进一步地,参照图3所示,在本实用新型优选实施例中,所述底板3设置为针翅底板,其包括若干翅片6,翅片6与底板本体一体成型,所述翅片6由所述第二表面32凸起且紧贴所述冷却装置,增大热交换面积,提升散热效果;所述翅片6设置为金属材质,导热性好。在本实用新型优选实施例中,所述冷却装置设置为水冷散热。Specifically, the gallium nitride power module further includes a cooling device, which is in close contact with the second surface 32 of the base plate 3, and the second surface 32 is arranged opposite to the first surface 31 in the thickness direction of the base plate 3. Further, as shown in FIG3 , in a preferred embodiment of the utility model, the base plate 3 is configured as a pin-fin base plate, which includes a plurality of fins 6, which are integrally formed with the base plate body, and the fins 6 are raised from the second surface 32 and in close contact with the cooling device, thereby increasing the heat exchange area and improving the heat dissipation effect; the fins 6 are configured as metal material with good thermal conductivity. In a preferred embodiment of the utility model, the cooling device is configured for water cooling.
本实用新型所述的一种氮化镓功率模块的制备方法包括以下步骤,The method for preparing a gallium nitride power module described in the utility model comprises the following steps:
步骤1,在电路基板12的第一表面31规划贴片位置并印刷锡膏;Step 1, planning the patch position on the first surface 31 of the circuit substrate 12 and printing solder paste;
步骤2,将氮化镓芯片11放置于锡膏印刷位置进行贴片处理;Step 2, placing the gallium nitride chip 11 at the solder paste printing position for chip mounting;
步骤3,通过回流焊接形成第一焊接层13,连接所述氮化镓芯片11和所述电路基板12;Step 3, forming a first soldering layer 13 by reflow soldering to connect the gallium nitride chip 11 and the circuit substrate 12;
步骤4,在所述氮化镓芯片11之间进行键合处理使用铜线连接;Step 4, bonding the gallium nitride chips 11 to each other using copper wires;
步骤5,通过回流焊接形成第二焊接层14,连接所述电路基板12和所述底板3;Step 5, forming a second soldering layer 14 by reflow soldering to connect the circuit substrate 12 and the bottom plate 3;
步骤6,将所述底板3与所述壳体组件2通过点胶方式粘接;Step 6, bonding the bottom plate 3 and the shell assembly 2 by glue dispensing;
步骤7,将环氧树脂挤压入模腔包埋氮化镓功率模块,在模腔内交联固化后塑封成型。Step 7: squeeze epoxy resin into the mold cavity to embed the gallium nitride power module, and then cross-link and cure in the mold cavity to form a plastic package.
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本实用新型创造的保护范围之中。Obviously, the above embodiments are merely examples for the purpose of clear explanation and are not intended to limit the implementation methods. For those skilled in the art, other different forms of changes or modifications can be made based on the above description. It is not necessary and impossible to list all the implementation methods here. The obvious changes or modifications derived therefrom are still within the scope of protection of the invention of the utility model.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202322654272.0U CN221102058U (en) | 2023-09-27 | 2023-09-27 | A gallium nitride power module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202322654272.0U CN221102058U (en) | 2023-09-27 | 2023-09-27 | A gallium nitride power module |
Publications (1)
Publication Number | Publication Date |
---|---|
CN221102058U true CN221102058U (en) | 2024-06-07 |
Family
ID=91303368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202322654272.0U Active CN221102058U (en) | 2023-09-27 | 2023-09-27 | A gallium nitride power module |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN221102058U (en) |
-
2023
- 2023-09-27 CN CN202322654272.0U patent/CN221102058U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102585450B1 (en) | Molded package with chip carrier comprising brazed electrically conductive layers | |
WO2018227655A1 (en) | Low parasitic inductance power module and double-sided heat-dissipation low parasitic inductance power module | |
CN107305875B (en) | Bidirectional semiconductor packaging part | |
CN109637983B (en) | Chip packaging | |
CN108022918A (en) | The packaging body of contact structures with the part encapsulating being vertically spaced apart | |
CN214043635U (en) | Intelligent power module and power electronic equipment | |
CN104067388B (en) | Semiconductor module having heat dissipating fin | |
CN217719586U (en) | electronic device | |
CN107146775A (en) | A kind of low stray inductance two-side radiation power model | |
JPH04293259A (en) | Semiconductor device and its manufacturing method | |
TWI871506B (en) | Electronic packages with integral heat spreaders | |
CN216054669U (en) | Gallium nitride power device convenient to heat dissipation | |
CN118522699B (en) | A DBC substrate and power module | |
WO2025006171A1 (en) | Flip chip and pre-molded clip power modules | |
CN221102058U (en) | A gallium nitride power module | |
CN215644461U (en) | Power module and electronic equipment | |
CN212392243U (en) | Transistor power module packaging structure | |
CN116666312A (en) | Ceramic semiconductor device package | |
TW201916279A (en) | Chip package | |
CN211265455U (en) | Intelligent Power Module and Air Conditioner | |
CN112510006B (en) | A semiconductor module, packaging structure and welding method thereof | |
CN114649217A (en) | To-247 low-thermal-resistance high-speed insulation packaging method | |
CN114203659A (en) | Multilayer Interconnect Ribbon | |
CN222867668U (en) | A power module with high heat dissipation performance including independent packaging devices | |
KR20180002419A (en) | Power module and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of utility model: A Gallium Nitride Power Module Granted publication date: 20240607 Pledgee: Zijin Branch of Nanjing Bank Co.,Ltd. Pledgor: Nanjing Xingan Technology Co.,Ltd. Registration number: Y2024980043764 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right |