CN218865126U - Fusion system based on OTDR - Google Patents
Fusion system based on OTDR Download PDFInfo
- Publication number
- CN218865126U CN218865126U CN202320025149.XU CN202320025149U CN218865126U CN 218865126 U CN218865126 U CN 218865126U CN 202320025149 U CN202320025149 U CN 202320025149U CN 218865126 U CN218865126 U CN 218865126U
- Authority
- CN
- China
- Prior art keywords
- light
- coupled
- coupler
- coherent receiver
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Optical Communication System (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及光传感技术领域,特别是涉及一种基于OTDR的融合系统。The utility model relates to the technical field of light sensing, in particular to an OTDR-based fusion system.
背景技术Background technique
在光纤传感器的发展过程中,分布式传感器代表了一类特殊的光纤传感器,它可以监测沿光纤任意点的不同物理参数(应变、温度、振动和压力等)。当需要监测的点数量较大时,分布式传感器比传统的点传感器具有明显的优势。光时域反射仪(Optical Time-domain Reflectometer,OTDR)实现光纤监测的主要原理是光脉冲注入光纤中作为探测信号。在光脉冲沿着光纤传播时,光纤将会产生向各个方向的瑞利散射,各方向瑞利散射中背向散射部分将随着脉冲光前向传输而不断从光纤不同位置背向返回光脉冲初始入射处,当前向传输的探测光遇到光纤机械固接头、光纤断裂处时,就会产生菲涅尔反射。背向瑞利散射信号和菲涅尔反射信号通过环形器后输入电光模块,根据接收到背向瑞利散射和菲浬尔反射信号的时间和功率大小,就能测量出光纤的损耗特性、长度及光纤断裂处或机械固接头处位置等信息。In the development of fiber optic sensors, distributed sensors represent a special class of fiber optic sensors that can monitor different physical parameters (strain, temperature, vibration, and pressure, etc.) at any point along the fiber. When the number of points to be monitored is large, distributed sensors have obvious advantages over traditional point sensors. The main principle of Optical Time-domain Reflectometer (OTDR) to realize optical fiber monitoring is to inject optical pulses into optical fibers as detection signals. When the optical pulse propagates along the optical fiber, the optical fiber will produce Rayleigh scattering in all directions, and the backscattering part of the Rayleigh scattering in each direction will continuously return the optical pulse from different positions of the optical fiber back to back as the pulsed light travels forward. At the initial incident, when the forwardly transmitted probe light encounters the mechanically fixed joint of the optical fiber or the break of the optical fiber, Fresnel reflection will occur. The back Rayleigh scattering signal and the Fresnel reflection signal pass through the circulator and then enter the electro-optical module. According to the time and power of the received back Rayleigh scattering and Fresnel reflection signal, the loss characteristics and length of the optical fiber can be measured. And information such as the location of the fiber break or the mechanically fixed joint.
相位敏感光时域反射(Phase-sensitive optical time-domain reflectometry,φ-OTDR)技术、布里渊光时域反射(Brillouin optical time domain reflectometry,BOTDR)和相干光时域反射(Coherent optical time domain reflectometry,COTDR)是三种应用广泛的分布式光纤传感技术;φ-OTDR技术是分布式光纤传感中灵敏度最高的技术手段之一,其采用高相干性的窄线宽激光器作为光源,传感光纤受外界扰动后的信号被探测器持续采集和处理,并利用光程的变化量对相位变化实现解调,重构沿光纤外界的扰动信息,进而重建和识别外界扰动信息,在多个领域均有相关应用。BOTDR利用自发布里渊散射光与入射光的频率差对温度和应变的变化敏感的特性,实现温度和应变的分布式传感。COTDR利用相干探测技术,具有很高的接收机灵敏度,大幅提高OTDR动态范围,可以监测超长距离的光纤。COTDR结合EDFA(Erbium Doped Fiber Amplifier,掺铒光纤放大器)在线放大可以应用到多跨段长跨距波分复用系统中,实现对多跨段传输光缆的监测。Phase-sensitive optical time-domain reflectometry (φ-OTDR) technology, Brillouin optical time domain reflectometry (BOTDR) and coherent optical time domain reflectometry (Coherent optical time domain reflectometry) , COTDR) are three widely used distributed optical fiber sensing technologies; φ-OTDR technology is one of the most sensitive technical means in distributed optical fiber sensing. The signal after the optical fiber is disturbed by the outside is continuously collected and processed by the detector, and the change of the optical path is used to demodulate the phase change, and the disturbance information along the fiber is reconstructed, and then the external disturbance information is reconstructed and identified. In many fields have related applications. BOTDR utilizes the characteristic that the frequency difference between spontaneous Burrillouin scattered light and incident light is sensitive to changes in temperature and strain to realize distributed sensing of temperature and strain. COTDR uses coherent detection technology, has high receiver sensitivity, greatly improves the dynamic range of OTDR, and can monitor ultra-long-distance optical fibers. COTDR combined with EDFA (Erbium Doped Fiber Amplifier, Erbium Doped Fiber Amplifier) online amplification can be applied to multi-span long-span wavelength division multiplexing systems to realize the monitoring of multi-span transmission optical cables.
然而现有分布式光纤传感系统大都是独立系统独立工作,重复利用率较低,进行多参量测量时,操作较复杂。However, most of the existing distributed optical fiber sensing systems are independent systems that work independently, the reuse rate is low, and the operation is more complicated when performing multi-parameter measurement.
实用新型内容Utility model content
针对现有技术的以上缺陷或改进需求,本实用新型提供一种基于OTDR的融合系统,目的在于解决现有分布式光纤传感系统大都是独立系统独立工作,重复利用率较低,进行多参量测量时,操作较复杂的问题。In view of the above defects or improvement needs of the prior art, the utility model provides an OTDR-based fusion system, the purpose of which is to solve the problem that most of the existing distributed optical fiber sensing systems are independent systems that work independently, the reuse rate is low, and multi-parameter When measuring, the operation is more complicated.
为实现上述目的,按照本实用新型的一个方面,提供一种基于OTDR的融合系统,所述融合系统包括:光源模块、探测光处理模块、信号处理模块、分光模块、环形器和传感光纤,其中:In order to achieve the above object, according to one aspect of the utility model, a fusion system based on OTDR is provided, the fusion system includes: a light source module, a detection light processing module, a signal processing module, a light splitting module, a circulator and a sensing fiber, in:
所述光源模块的探测光输出端和所述探测光处理模块的输入端耦合,适用于向所述探测光处理模块发送探测光;The detection light output end of the light source module is coupled to the input end of the detection light processing module, and is suitable for sending detection light to the detection light processing module;
所述光源模块的至少两个本振光输出端和所述信号处理模块的输入端耦合,适用于向所述信号处理模块发送至少两种不同波长的本振光;At least two local oscillator light output ends of the light source module are coupled to the input end of the signal processing module, and are suitable for sending local oscillator light of at least two different wavelengths to the signal processing module;
所述环形器和所述探测光处理模块的输出端耦合,所述环形器和所述传感光纤耦合,适用于从所述探测光处理模块获取探测光,将探测光发送到所述传感光纤,并从所述传感光纤处获取总散射光;The circulator is coupled to the output end of the detection light processing module, the circulator is coupled to the sensing fiber, and is adapted to obtain detection light from the detection light processing module and send the detection light to the sensor an optical fiber, and obtain the total scattered light from the sensing optical fiber;
所述环形器还和所述分光模块的输入端耦合,适用于将总散射光发送给所述分光模块;The circulator is also coupled to the input end of the optical splitting module, and is suitable for sending the total scattered light to the optical splitting module;
所述分光模块的至少两个输出端和所述信号处理模块耦合,适用于将总散射光分解成至少两路散射光,并将全部散射光发送到所述信号处理模块;At least two output terminals of the light splitting module are coupled to the signal processing module, and are adapted to decompose the total scattered light into at least two scattered lights, and send all the scattered light to the signal processing module;
其中,本振光和相应的散射光在所述信号处理模块中配对处理,实现多个目标参量的测量。Wherein, the local oscillator light and the corresponding scattered light are paired and processed in the signal processing module to realize the measurement of multiple target parameters.
进一步地,所述信号处理模块包括:数据采集卡、第一相干接收机和第二相干接收机,其中:Further, the signal processing module includes: a data acquisition card, a first coherent receiver and a second coherent receiver, wherein:
所述第一相干接收机的第一输入端与所述分光模块耦合,第二输入端与所述光源模块耦合;The first input end of the first coherent receiver is coupled to the optical splitting module, and the second input end is coupled to the light source module;
所述第二相干接收机的第一输入端与所述分光模块耦合,第二输入端与所述光源模块耦合;The first input end of the second coherent receiver is coupled to the optical splitting module, and the second input end is coupled to the light source module;
所述第一相干接收机和所述第二相干接收机的输出端分别与所述数据采集卡耦合,适用于对本振光和散射光进行拍频,所述数据采集卡用于对拍频后的信号进行采集和处理,进而获取多个目标参量。The output ends of the first coherent receiver and the second coherent receiver are respectively coupled with the data acquisition card, and are suitable for beating the local oscillator light and scattered light, and the data acquisition card is used for beating the frequency The signal is collected and processed to obtain multiple target parameters.
进一步地,所述光源模块包括:第一光源、第一耦合器、第二光源、第二耦合器和合波器:Further, the light source module includes: a first light source, a first coupler, a second light source, a second coupler and a multiplexer:
所述第一耦合器的输入端和所述第一光源的输出端耦合,所述第一耦合器的第一输出端和所述第一相干接收机的第二输入端耦合;The input end of the first coupler is coupled to the output end of the first light source, and the first output end of the first coupler is coupled to the second input end of the first coherent receiver;
所述第二耦合器的输入端和所述第二光源的输出端耦合,所述第二耦合器的第一输出端和所述第二相干接收机的第二输入端耦合;The input end of the second coupler is coupled to the output end of the second light source, and the first output end of the second coupler is coupled to the second input end of the second coherent receiver;
所述合波器的第一输入端和所述第一耦合器的第二输出端耦合,所述合波器的第二输入端和所述第二耦合器的第二输出端耦合,所述合波器的输出端和所述探测光处理模块的输入端耦合,适用于将两路探测光耦合进所述探测光处理模块。The first input end of the multiplexer is coupled to the second output end of the first coupler, the second input end of the multiplexer is coupled to the second output end of the second coupler, and the The output end of the multiplexer is coupled to the input end of the detection light processing module, and is suitable for coupling two paths of detection light into the detection light processing module.
进一步地,所述分光模块包括分波器,其中:Further, the optical splitting module includes a wave splitter, wherein:
所述分波器的输入端和所述环形器耦合,所述分波器的第一输出端和所述第一相干接收机的第一输入端耦合,所述分波器的第二输出端和所述第二相干接收机的第一输入端耦合,适用于将总散射光分解为第一散射光和第三散射光,将第一散射光发送到所述第一相干接收机,将第三散射光发送到所述第二相干接收机;The input end of the wave splitter is coupled to the circulator, the first output end of the wave splitter is coupled to the first input end of the first coherent receiver, and the second output end of the wave splitter Coupled with the first input end of the second coherent receiver, adapted to decompose the total scattered light into the first scattered light and the third scattered light, send the first scattered light to the first coherent receiver, and send the second scattered light three scattered light is sent to the second coherent receiver;
所述第一相干接收机用于对来自所述第一耦合器的第一本振光和来自所述分波器的第一散射光进行拍频,所述第二相干接收机用于对来自所述第二耦合器的第三本振光和来自所述分波器的第三散射光进行拍频;The first coherent receiver is used to beat the first local oscillator light from the first coupler and the first scattered light from the wave splitter, and the second coherent receiver is used to beat the first local oscillator light from the wave splitter. Beating the third local oscillator light of the second coupler and the third scattered light from the wave splitter;
所述第一本振光为φ-OTDR的本振光,所述第一散射光为φ-OTDR的散射光,所述第三本振光为COTDR的本振光,所述第三散射光为COTDR的散射光,所述融合系统为φ-OTDR和COTDR融合系统。The first local oscillator light is the local oscillator light of φ-OTDR, the first scattered light is the scattered light of φ-OTDR, the third local oscillator light is the local oscillator light of COTDR, and the third scattered light is the scattered light of COTDR, and the fusion system is a fusion system of φ-OTDR and COTDR.
进一步地,所述光源模块还包括电光调制器,所述分光模块包括分波器和窄带滤波器,其中:Further, the light source module also includes an electro-optic modulator, and the light splitting module includes a wave splitter and a narrowband filter, wherein:
所述分波器的输入端和所述环形器耦合,所述分波器的第一输出端和所述窄带滤波器的输入端耦合,所述分波器的第二输出端和所述第二相干接收机的第一输入端耦合,所述窄带滤波器的第二输出端和所述第一相干接收机的第一输入端耦合;The input end of the wave splitter is coupled to the circulator, the first output end of the wave splitter is coupled to the input end of the narrowband filter, the second output end of the wave splitter is coupled to the first The first input ends of the two coherent receivers are coupled, and the second output end of the narrowband filter is coupled to the first input end of the first coherent receiver;
所述电光调制器的输入端和所述第一耦合器的第一输出端耦合,所述电光调制器的输出端和所述第一相干接收机的第二输入端耦合;The input end of the electro-optic modulator is coupled to the first output end of the first coupler, and the output end of the electro-optic modulator is coupled to the second input end of the first coherent receiver;
所述第一相干接收机用于对来自所述电光调制器的第二本振光和来自所述窄带滤波器的第二散射光进行拍频,所述第二相干接收机用于对来自所述第二耦合器的第三本振光和来自所述分波器的第三散射光进行拍频;The first coherent receiver is used to beat the second local oscillator light from the electro-optic modulator and the second scattered light from the narrowband filter, and the second coherent receiver is used to beat the second local oscillator light from the narrowband filter. Beating the third local oscillator light of the second coupler and the third scattered light from the wave splitter;
所述第二本振光为BOTDR的本振光,所述第二散射光为BOTDR的散射光,所述第三本振光为COTDR的本振光,所述第三散射光为COTDR的散射光,所述融合系统为BOTDR和COTDR融合系统。The second local oscillator light is local oscillator light of BOTDR, the second scattered light is scattered light of BOTDR, the third local oscillator light is local oscillator light of COTDR, and the third scattered light is scattered light of COTDR In addition, the fusion system is a fusion system of BOTDR and COTDR.
进一步地,所述信号处理模块还包括第三相干接收机,所述光源模块还包括第三耦合器,其中:Further, the signal processing module further includes a third coherent receiver, and the light source module further includes a third coupler, wherein:
所述第三耦合器的输入端和所述第一耦合器的第一输出端耦合,所述第三耦合器的第一输出端和所述第三相干接收机的第二输入端耦合,所述第三耦合器的第二输出端和所述电光调制器的输入端耦合,所述第三相干接收机的第一输入端和所述窄带滤波器的第一输出端耦合;The input terminal of the third coupler is coupled to the first output terminal of the first coupler, and the first output terminal of the third coupler is coupled to the second input terminal of the third coherent receiver, so The second output end of the third coupler is coupled to the input end of the electro-optic modulator, and the first input end of the third coherent receiver is coupled to the first output end of the narrowband filter;
所述第三相干接收机用于对来自所述第三耦合器的第一本振光和来自所述窄带滤波器的第一散射光进行拍频;The third coherent receiver is configured to beat the first local oscillator light from the third coupler and the first scattered light from the narrowband filter;
所述第一本振光为φ-OTDR的本振光,所述第一散射光为φ-OTDR的散射光,所述融合系统为φ-OTDR、BOTDR和COTDR融合系统。The first local oscillator light is the local oscillator light of φ-OTDR, the first scattered light is the scattered light of φ-OTDR, and the fusion system is the fusion system of φ-OTDR, BOTDR and COTDR.
进一步地,分波器的第二输出端输出的是第一预设波长的瑞利散射光,窄带滤波器的第一输出端输出的是第二预设波长的瑞利散射光,窄带滤波器的第二输出端输出的是布里渊散射光。进一步地,所述光源模块包括第一光源、第一耦合器、第三耦合器和电光调制器,所述分光模块包含窄带滤波器,其中:Further, the output of the second output port of the wave splitter is the Rayleigh scattered light of the first preset wavelength, the output of the first output port of the narrowband filter is the Rayleigh scattered light of the second preset wavelength, and the narrowband filter The output of the second output terminal is Brillouin scattered light. Further, the light source module includes a first light source, a first coupler, a third coupler, and an electro-optical modulator, and the light splitting module includes a narrowband filter, wherein:
所述第一耦合器的输入端和所述第一光源的输出端耦合,所述第一耦合器的第一输出端和所述第三耦合器的输入端耦合,所述第一耦合器的第二输出端和所述探测光处理模块的输入端耦合;The input end of the first coupler is coupled to the output end of the first light source, the first output end of the first coupler is coupled to the input end of the third coupler, and the first coupler's The second output end is coupled to the input end of the detection light processing module;
所述第三耦合器的第一输出端和所述第一相干接收机的第二输入端耦合,所述第三耦合器的第二输出端和所述电光调制器的输入端耦合,所述电光调制器的输入端和所述第二相干接收机的第二输入端耦合;The first output end of the third coupler is coupled to the second input end of the first coherent receiver, the second output end of the third coupler is coupled to the input end of the electro-optical modulator, and the an input terminal of the electro-optic modulator is coupled to a second input terminal of the second coherent receiver;
所述窄带滤波器的输入端和所述环形器耦合,所述窄带滤波器的第一输出端和所述第一相干接收机的第一输入端耦合,所述窄带滤波器的第二输出端和所述第一相干接收机的第二输入端耦合;The input end of the narrowband filter is coupled to the circulator, the first output end of the narrowband filter is coupled to the first input end of the first coherent receiver, and the second output end of the narrowband filter coupled to a second input of said first coherent receiver;
所述第一相干接收机用于对来自所述第三耦合器的第一本振光和来自所述窄带滤波器的第一散射光进行拍频,所述第二相干接收机用于对来自所述电光调制器的第二本振光和所述窄带滤波器的第二散射光进行拍频;The first coherent receiver is used to beat the first local oscillator light from the third coupler and the first scattered light from the narrowband filter, and the second coherent receiver is used to beat the first local oscillator light from the narrowband filter. Beating the second local oscillator light of the electro-optic modulator and the second scattered light of the narrowband filter;
所述第一本振光为φ-OTDR的本振光,所述第一散射光为φ-OTDR的散射光,所述第二本振光为BOTDR的本振光,所述第二散射光为BOTDR的散射光,所述融合系统为φ-OTDR和BOTDR融合系统。The first local oscillator light is the local oscillator light of φ-OTDR, the first scattered light is the scattered light of φ-OTDR, the second local oscillator light is the local oscillator light of BOTDR, and the second scattered light is the scattered light of BOTDR, and the fusion system is φ-OTDR and BOTDR fusion system.
进一步地,所述探测光处理模块包括声光调制器和放大器,其中:Further, the detection light processing module includes an acousto-optic modulator and an amplifier, wherein:
所述声光调制器的输入端和所述光源模块的探测光输出端耦合,所述声光调制器的输出端和所述放大器的输入端耦合,所述放大器的输出端和所述环形器耦合,适用于将处理后的探测光发送给所述环形器。The input end of the acousto-optic modulator is coupled to the detection light output end of the light source module, the output end of the acousto-optic modulator is coupled to the input end of the amplifier, and the output end of the amplifier is coupled to the circulator coupling adapted to send the processed probe light to the circulator.
进一步地,第一相干接收机和第二相干接收机都包含偏振分级混频器和PD探测器。Further, both the first coherent receiver and the second coherent receiver include a polarization graded mixer and a PD detector.
在本实用新型中,所述光源模块的探测光输出端和所述探测光处理模块的输入端耦合,所述光源模块的至少两个本振光输出端和所述信号处理模块的输入端耦合,所述环形器和所述探测光处理模块的输出端耦合,所述环形器和所述传感光纤耦合,所述环形器还和所述分光模块的输入端耦合,所述分光模块的至少两个输出端和所述信号处理模块耦合,利用模块化组合设计构成了所述融合系统,本振光和对应的散射光在所述信号处理模块中配对处理,实现多个目标参量的测量。将多个OTDR的功能集成在所述融合系统中,解决了相同器件重复利用问题,可实现外界扰动、温变、应变或长距离衰耗等多目标参量的分布式测量。In the utility model, the detection light output end of the light source module is coupled to the input end of the detection light processing module, and at least two local oscillator light output ends of the light source module are coupled to the input end of the signal processing module , the circulator is coupled to the output end of the detection light processing module, the circulator is coupled to the sensing fiber, the circulator is also coupled to the input end of the optical splitting module, and at least the optical splitting module The two output terminals are coupled to the signal processing module, and the fusion system is formed by modular combination design. The local oscillator light and the corresponding scattered light are paired and processed in the signal processing module to realize the measurement of multiple target parameters. Integrating the functions of multiple OTDRs into the fusion system solves the problem of repeated use of the same device, and can realize distributed measurement of multi-objective parameters such as external disturbance, temperature change, strain or long-distance attenuation.
附图说明Description of drawings
为了更清楚地说明本实用新型实施例的技术方案,下面将对本实用新型实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solution of the embodiment of the utility model more clearly, the accompanying drawings used in the embodiment of the utility model will be briefly introduced below. Apparently, the drawings described below are only some embodiments of the present utility model, and those skilled in the art can obtain other drawings according to these drawings without creative work.
图1是本实用新型实施例提供的一种基于OTDR的融合系统的结构示意图;Fig. 1 is the structural representation of a kind of fusion system based on OTDR that the utility model embodiment provides;
图2是本实用新型实施例提供的一种基于OTDR的融合系统的φ-OTDR和COTDR融合系统示意图;Fig. 2 is a schematic diagram of a φ-OTDR and COTDR fusion system based on an OTDR fusion system provided by the embodiment of the present invention;
图3是本实用新型实施例提供的一种基于OTDR的融合系统的BOTDR和COTDR融合系统示意图;Fig. 3 is a kind of BOTDR and COTDR fusion system schematic diagram of the fusion system based on OTDR that the utility model embodiment provides;
图4是本实用新型实施例提供的一种基于OTDR的融合系统的φ-OTDR、BOTDR和COTDR融合系统示意图;Fig. 4 is a schematic diagram of a φ-OTDR, BOTDR and COTDR fusion system based on an OTDR fusion system provided by the embodiment of the present invention;
图5是本实用新型实施例提供的一种基于OTDR的融合系统的φ-OTDR和BOTDR融合系统示意图。Fig. 5 is a schematic diagram of a φ-OTDR and BOTDR fusion system of an OTDR-based fusion system provided by an embodiment of the present invention.
具体实施方式Detailed ways
为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。此外,下面所描述的本实用新型各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the purpose, technical solution and advantages of the utility model clearer, the utility model will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the utility model, and are not intended to limit the utility model. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute conflicts with each other.
在本实用新型的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型而不是要求本实用新型必须以特定的方位构造和操作,因此不应当理解为对本实用新型的限制。In the description of the present utility model, the orientation or positional relationship indicated by the terms "inner", "outer", "longitudinal", "transverse", "upper", "lower", "top", "bottom" etc. are based on the attached The orientation or positional relationship shown in the figure is only for the convenience of describing the utility model and does not require the utility model to be constructed and operated in a specific orientation, so it should not be construed as a limitation of the utility model.
在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise clearly specified and limited, a first feature being "on" or "below" a second feature may include direct contact between the first and second features, and may also include the first and second features being in direct contact with each other. The features are not in direct contact but through another feature between them. Moreover, "above", "above" and "above" the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature. "Below", "beneath" and "under" the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
实施例1:Example 1:
本实施例1提供一种基于OTDR的融合系统,结合图1,所述融合系统包括:光源模块、探测光处理模块、信号处理模块、分光模块、环形器和传感光纤。Embodiment 1 provides an OTDR-based fusion system. Referring to FIG. 1 , the fusion system includes: a light source module, a detection light processing module, a signal processing module, a light splitting module, a circulator and a sensing fiber.
所述光源模块的探测光输出端和所述探测光处理模块的输入端耦合,适用于向所述探测光处理模块发送探测光。The detection light output end of the light source module is coupled to the input end of the detection light processing module, and is suitable for sending detection light to the detection light processing module.
所述光源模块的至少两个本振光输出端和所述信号处理模块的输入端耦合,适用于向所述信号处理模块发送至少两种不同波长的本振光。At least two local oscillator light output ends of the light source module are coupled to the input end of the signal processing module, and are suitable for sending local oscillator light of at least two different wavelengths to the signal processing module.
所述环形器和所述探测光处理模块的输出端耦合,所述环形器和所述传感光纤耦合,适用于从所述探测光处理模块获取探测光,将探测光发送到所述传感光纤,并从所述传感光纤处获取总散射光。The circulator is coupled to the output end of the detection light processing module, the circulator is coupled to the sensing fiber, and is adapted to obtain detection light from the detection light processing module and send the detection light to the sensor optical fiber, and obtain the total scattered light from the sensing optical fiber.
所述环形器还和所述分光模块的输入端耦合,适用于将总散射光发送给所述分光模块。The circulator is also coupled to the input end of the light splitting module, and is suitable for sending the total scattered light to the light splitting module.
所述分光模块的至少两个输出端和所述信号处理模块耦合,适用于将总散射光分解成至少两路散射光,并将全部散射光发送到所述信号处理模块。At least two output ends of the light splitting module are coupled to the signal processing module, and are suitable for decomposing the total scattered light into at least two paths of scattered light, and sending all the scattered light to the signal processing module.
其中,本振光和相应的散射光在所述信号处理模块中配对处理,实现多个目标参量的测量,所述传感光纤采用G.652单模光纤。Wherein, the local oscillator light and the corresponding scattered light are paired and processed in the signal processing module to realize the measurement of multiple target parameters, and the sensing fiber adopts G.652 single-mode fiber.
所述探测光的本质是光脉冲,当光脉冲沿着光纤传播时,光纤将会产生向各个方向的瑞利散射,各方向瑞利散射中背向散射部分将随着光脉冲前向传输而不断从光纤不同位置背向返回光脉冲初始入射处,当前向传输的探测光遇到光纤机械固接头、光纤断裂处时,就会产生菲涅尔反射。所述总散射光就是背向瑞利散射信号和菲涅尔反射信号,背向瑞利散射信号和菲涅尔反射信号通过所述环形器后进入分光模块,分光模块对所述总散射光进行分光,得到特定波长的瑞利散射光和布里渊散射光,就能测量出光纤的损耗特性、长度及光纤断裂处或机械固接头处位置等信息。The essence of the probe light is a light pulse. When the light pulse propagates along the optical fiber, the fiber will produce Rayleigh scattering in all directions, and the backscattering part of the Rayleigh scattering in each direction will dissipate along with the forward transmission of the light pulse. Continuously returning back to the initial incidence of the light pulse from different positions of the fiber, when the forwardly transmitted detection light encounters the mechanically fixed joint of the fiber or the break of the fiber, Fresnel reflection will occur. The total scattered light is the Rayleigh backscattering signal and the Fresnel reflection signal, the Rayleigh backscattering signal and the Fresnel reflection signal enter the light splitting module after passing through the circulator, and the light splitting module performs a process on the total scattered light By splitting the light, the Rayleigh scattered light and Brillouin scattered light of a specific wavelength can be obtained, and the loss characteristics, length, and position of the fiber break or mechanically fixed joint can be measured.
在本实用新型中,所述光源模块的探测光输出端和所述探测光处理模块的输入端耦合,所述光源模块的至少两个本振光输出端和所述信号处理模块的输入端耦合,所述环形器和所述探测光处理模块的输出端耦合,所述环形器和所述传感光纤耦合,所述环形器还和所述分光模块的输入端耦合,所述分光模块的至少两个输出端和所述信号处理模块耦合,利用模块化组合设计构成了所述融合系统,本振光和对应的散射光在所述信号处理模块中配对处理,实现多个目标参量的测量。将多个OTDR的功能集成在所述融合系统中,解决了相同器件重复利用问题,可实现外界扰动,温变、应变和长距离衰耗等多目标参量的分布式测量。In the utility model, the detection light output end of the light source module is coupled to the input end of the detection light processing module, and at least two local oscillator light output ends of the light source module are coupled to the input end of the signal processing module , the circulator is coupled to the output end of the detection light processing module, the circulator is coupled to the sensing fiber, the circulator is also coupled to the input end of the optical splitting module, and at least the optical splitting module The two output terminals are coupled to the signal processing module, and the fusion system is formed by modular combination design. The local oscillator light and the corresponding scattered light are paired and processed in the signal processing module to realize the measurement of multiple target parameters. Integrating the functions of multiple OTDRs into the fusion system solves the problem of repeated use of the same device, and can realize distributed measurement of multi-objective parameters such as external disturbance, temperature change, strain and long-distance attenuation.
为了对多个本振光和散射光进行拍频,进行多个参量测量,所述信号处理模块包括:数据采集卡、第一相干接收机和第二相干接收机,其中:In order to perform beat frequency on multiple local oscillator lights and scattered light, and perform multiple parameter measurements, the signal processing module includes: a data acquisition card, a first coherent receiver and a second coherent receiver, wherein:
所述第一相干接收机的第一输入端与所述分光模块耦合,第二输入端与所述光源模块耦合;所述第二相干接收机的第一输入端与所述分光模块耦合,第二输入端与所述光源模块耦合;所述第一相干接收机和所述第二相干接收机的输出端分别与所述数据采集卡耦合,适用于对本振光和散射光进行拍频,所述数据采集卡用于对拍频后的信号进行采集和处理,进而获取多个目标参量。The first input end of the first coherent receiver is coupled to the optical splitting module, and the second input end is coupled to the light source module; the first input end of the second coherent receiver is coupled to the optical splitting module, and the second input end is coupled to the optical splitting module. The two input terminals are coupled with the light source module; the output terminals of the first coherent receiver and the second coherent receiver are respectively coupled with the data acquisition card, and are suitable for beating local oscillator light and scattered light, so The above data acquisition card is used to collect and process the beat frequency signal, and then obtain multiple target parameters.
本实施例中,为了发生探测光和多个本振光,所述光源模块包括:第一光源、第一耦合器、第二光源、第二耦合器和合波器。In this embodiment, in order to generate probe light and multiple local oscillator lights, the light source module includes: a first light source, a first coupler, a second light source, a second coupler and a multiplexer.
所述第一耦合器的输入端和所述第一光源的输出端耦合,所述第一耦合器的第一输出端和所述第一相干接收机的第二输入端耦合。An input end of the first coupler is coupled to an output end of the first light source, and a first output end of the first coupler is coupled to a second input end of the first coherent receiver.
所述第二耦合器的输入端和所述第二光源的输出端耦合,所述第二耦合器的第一输出端和所述第二相干接收机的第二输入端耦合。An input end of the second coupler is coupled to an output end of the second light source, and a first output end of the second coupler is coupled to a second input end of the second coherent receiver.
所述合波器的第一输入端和所述第一耦合器的第二输出端耦合,所述合波器的第二输入端和所述第二耦合器的第二输出端耦合,所述合波器的输出端和所述探测光处理模块的输入端耦合,适用于将两路探测光耦合进所述探测光处理模块。The first input end of the multiplexer is coupled to the second output end of the first coupler, the second input end of the multiplexer is coupled to the second output end of the second coupler, and the The output end of the multiplexer is coupled to the input end of the detection light processing module, and is suitable for coupling two paths of detection light into the detection light processing module.
为了构成φ-OTDR和COTDR融合系统,结合图2,所述分光模块包括分波器,所述分波器的输入端和所述环形器耦合,所述分波器的第一输出端和所述第一相干接收机的第一输入端耦合,所述分波器的第二输出端和所述第二相干接收机的第一输入端耦合,适用于将总散射光分解为第一散射光和第三散射光,将第一散射光发送到所述第一相干接收机,将第三散射光发送到所述第二相干接收机。In order to form the fusion system of φ-OTDR and COTDR, with reference to FIG. 2, the optical splitter module includes a wave splitter, the input end of the wave splitter is coupled with the circulator, and the first output end of the wave splitter is connected to the first output end of the wave splitter. The first input end of the first coherent receiver is coupled, the second output end of the wave splitter is coupled to the first input end of the second coherent receiver, and is suitable for decomposing the total scattered light into the first scattered light and third scattered light, sending the first scattered light to the first coherent receiver, and sending the third scattered light to the second coherent receiver.
所述第一相干接收机用于对来自所述第一耦合器的第一本振光和来自所述分波器的第一散射光进行拍频,所述第二相干接收机用于对来自所述第二耦合器的第三本振光和来自所述分波器的第三散射光进行拍频。The first coherent receiver is used to beat the first local oscillator light from the first coupler and the first scattered light from the wave splitter, and the second coherent receiver is used to beat the first local oscillator light from the wave splitter. The third local oscillator light of the second coupler and the third scattered light from the wave splitter perform frequency beat.
所述第一本振光为φ-OTDR的本振光,所述第一散射光为φ-OTDR的散射光,所述第三本振光为COTDR的本振光,所述第三散射光为COTDR的散射光,所述融合系统为φ-OTDR和COTDR融合系统。The first local oscillator light is the local oscillator light of φ-OTDR, the first scattered light is the scattered light of φ-OTDR, the third local oscillator light is the local oscillator light of COTDR, and the third scattered light is the scattered light of COTDR, and the fusion system is a fusion system of φ-OTDR and COTDR.
其中,所述第一本振光从所述第一耦合器的第一输出端到达所述第一相干接收机的第二输入端,所述第一散射光从所述分波器的第一输出端到达所述第一相干接收机的第一输入端。Wherein, the first local oscillator light reaches the second input end of the first coherent receiver from the first output end of the first coupler, and the first scattered light reaches the second input end of the first coherent receiver from the first output end of the wave splitter. The output goes to a first input of said first coherent receiver.
所述第三本振光从所述第二耦合器的第一输出端到达所述第二相干接收机的第二输入端,所述第三散射光从所述分波器的第二输出端到达所述第二相干接收机的第一输入端。The third local oscillator light reaches the second input end of the second coherent receiver from the first output end of the second coupler, and the third scattered light passes from the second output end of the wave splitter to the first input of the second coherent receiver.
为了构成BOTDR和COTDR融合系统,结合图3,所述光源模块还包括电光调制器,所述分光模块包括分波器和窄带滤波器。In order to form a fusion system of BOTDR and COTDR, referring to FIG. 3 , the light source module further includes an electro-optic modulator, and the light splitting module includes a wave splitter and a narrowband filter.
所述分波器的输入端和所述环形器耦合,所述分波器的第一输出端和所述窄带滤波器的输入端耦合,所述分波器的第二输出端和所述第二相干接收机的第一输入端耦合,所述窄带滤波器的第二输出端和所述第一相干接收机的第一输入端耦合。The input end of the wave splitter is coupled to the circulator, the first output end of the wave splitter is coupled to the input end of the narrowband filter, the second output end of the wave splitter is coupled to the first The first input ends of the two coherent receivers are coupled, and the second output end of the narrowband filter is coupled to the first input end of the first coherent receiver.
所述电光调制器的输入端和所述第一耦合器的第一输出端耦合,所述电光调制器的输出端和所述第一相干接收机的第二输入端耦合。The input end of the electro-optic modulator is coupled to the first output end of the first coupler, and the output end of the electro-optic modulator is coupled to the second input end of the first coherent receiver.
所述第一相干接收机用于对来自所述电光调制器的第二本振光和来自所述窄带滤波器的第二散射光进行拍频,所述第二相干接收机用于对来自所述第二耦合器的第三本振光和来自所述分波器的第三散射光进行拍频。The first coherent receiver is used to beat the second local oscillator light from the electro-optic modulator and the second scattered light from the narrowband filter, and the second coherent receiver is used to beat the second local oscillator light from the narrowband filter. beat the third local oscillator light from the second coupler and the third scattered light from the wave splitter.
所述第二本振光为BOTDR的本振光,所述第二散射光为BOTDR的散射光,所述第三本振光为COTDR的本振光,所述第三散射光为COTDR的散射光,所述融合系统为BOTDR和COTDR融合系统。The second local oscillator light is local oscillator light of BOTDR, the second scattered light is scattered light of BOTDR, the third local oscillator light is local oscillator light of COTDR, and the third scattered light is scattered light of COTDR In addition, the fusion system is a fusion system of BOTDR and COTDR.
其中,所述第一本振光从所述第一耦合器的第一输出端到达所述电光调制器,所述电光调制器将第一本振光转换为第二本振光,所述第二本振光从电光调制器到达所述第一相干接收机的第二输入端。所述第一散射光从所述分波器的第一输出端到达所述窄带滤波器,所述窄带滤波器从第一散射光中分离出第二散射光,所述第二散射光通过所述窄带滤波器的第二输出端到达所述第一相干接收器的第一输入端。Wherein, the first local oscillator light reaches the electro-optic modulator from the first output end of the first coupler, and the electro-optic modulator converts the first local oscillator light into a second local oscillator light, and the first local oscillator light Two local oscillator lights arrive at the second input of the first coherent receiver from the electro-optic modulator. The first scattered light reaches the narrowband filter from the first output end of the wave splitter, and the narrowband filter separates the second scattered light from the first scattered light, and the second scattered light passes through the The second output terminal of the narrowband filter reaches the first input terminal of the first coherent receiver.
所述第三本振光从所述第二耦合器的第一输出端到达所述第二相干接收机的第二输入端,所述第三散射光从所述分波器的第二输出端到达所述第二相干接收机的第一输入端。The third local oscillator light reaches the second input end of the second coherent receiver from the first output end of the second coupler, and the third scattered light passes from the second output end of the wave splitter to the first input of the second coherent receiver.
为了构成φ-OTDR、BOTDR和COTDR融合系统,结合图4,所述信号处理模块还包括第三相干接收机,所述光源模块还包括第三耦合器。In order to form a fusion system of φ-OTDR, BOTDR and COTDR, referring to FIG. 4 , the signal processing module further includes a third coherent receiver, and the light source module further includes a third coupler.
所述第三耦合器的输入端和所述第一耦合器的第一输出端耦合,所述第三耦合器的第一输出端和所述第三相干接收机的第二输入端耦合,所述第三耦合器的第二输出端和所述电光调制器的输入端耦合,所述第三相干接收机的第一输入端和所述窄带滤波器的第一输出端耦合。The input terminal of the third coupler is coupled to the first output terminal of the first coupler, and the first output terminal of the third coupler is coupled to the second input terminal of the third coherent receiver, so The second output end of the third coupler is coupled to the input end of the electro-optic modulator, and the first input end of the third coherent receiver is coupled to the first output end of the narrowband filter.
所述第三相干接收机用于对来自所述第三耦合器的第一本振光和来自所述窄带滤波器的第一散射光进行拍频。The third coherent receiver is used to beat the first local oscillator light from the third coupler and the first scattered light from the narrowband filter.
所述第一本振光为φ-OTDR的本振光,所述第一散射光为φ-OTDR的散射光,所述融合系统为φ-OTDR、BOTDR和COTDR融合系统。The first local oscillator light is the local oscillator light of φ-OTDR, the first scattered light is the scattered light of φ-OTDR, and the fusion system is the fusion system of φ-OTDR, BOTDR and COTDR.
其中,所述第一本振光从所述第一耦合器的第一输出端到达所述第三耦合器,所述第三耦合器对第一本振光进行分光,分光后的一部分第一本振光经过所述第三耦合器的第一输出端到达所述第三相干接收机的第二输入端;所述第一散射光从所述分波器的第一输出端到达所述窄带滤波器,经过所述窄带滤波器的第一输出端到达所述第三相干接收机的第一输入端。Wherein, the first local oscillator light reaches the third coupler from the first output end of the first coupler, and the third coupler splits the first local oscillator light, and a part of the split first The local oscillator light reaches the second input end of the third coherent receiver through the first output end of the third coupler; the first scattered light reaches the narrowband from the first output end of the wave splitter A filter, which reaches the first input end of the third coherent receiver through the first output end of the narrowband filter.
在所述第三耦合器分光后的另一部分第一本振光经过所述第三耦合器的第二输出端到达所述电光调制器,所述电光调制器将第一本振光转换为第二本振光,所述第二本振光从电光调制器到达所述第一相干接收机的第二输入端;所述第一散射光从所述分波器的第一输出端到达所述窄带滤波器,所述窄带滤波器从第一散射光中分离出第二散射光,所述第二散射光通过所述窄带滤波器的第二输出端到达所述第一相干接收器的第一输入端。Another part of the first local oscillator light after splitting by the third coupler reaches the electro-optic modulator through the second output end of the third coupler, and the electro-optic modulator converts the first local oscillator light into the first local oscillator light Two local oscillator lights, the second local oscillator light reaches the second input end of the first coherent receiver from the electro-optical modulator; the first scattered light reaches the first output end of the wave splitter a narrowband filter that separates second scattered light from the first scattered light, the second scattered light passing through the second output of the narrowband filter to the first coherent receiver of the first input.
所述第三本振光从所述第二耦合器的第一输出端到达所述第二相干接收机的第二输入端,所述第三散射光从所述分波器的第二输出端到达所述第二相干接收机的第一输入端。The third local oscillator light reaches the second input end of the second coherent receiver from the first output end of the second coupler, and the third scattered light passes from the second output end of the wave splitter to the first input of the second coherent receiver.
为了构成φ-OTDR和BOTDR融合系统,结合图5,所述光源模块包括第一光源、第一耦合器、第三耦合器和电光调制器,所述分光模块包含窄带滤波器。In order to form a fusion system of φ-OTDR and BOTDR, referring to FIG. 5 , the light source module includes a first light source, a first coupler, a third coupler and an electro-optic modulator, and the light splitting module includes a narrowband filter.
所述第一耦合器的输入端和所述第一光源的输出端耦合,所述第一耦合器的第一输出端和所述第三耦合器的输入端耦合,所述第一耦合器的第二输出端和所述探测光处理模块的输入端耦合。The input end of the first coupler is coupled to the output end of the first light source, the first output end of the first coupler is coupled to the input end of the third coupler, and the first coupler's The second output end is coupled to the input end of the detection light processing module.
所述第三耦合器的第一输出端和所述第一相干接收机的第二输入端耦合,所述第三耦合器的第二输出端和所述电光调制器的输入端耦合,所述电光调制器的输入端和所述第二相干接收机的第二输入端耦合。The first output end of the third coupler is coupled to the second input end of the first coherent receiver, the second output end of the third coupler is coupled to the input end of the electro-optical modulator, and the The input terminal of the electro-optical modulator is coupled to the second input terminal of the second coherent receiver.
所述窄带滤波器的输入端和所述环形器耦合,所述窄带滤波器的第一输出端和所述第一相干接收机的第一输入端耦合,所述窄带滤波器的第二输出端和所述第一相干接收机的第二输入端耦合。The input end of the narrowband filter is coupled to the circulator, the first output end of the narrowband filter is coupled to the first input end of the first coherent receiver, and the second output end of the narrowband filter coupled to the second input of the first coherent receiver.
所述第一相干接收机用于对来自所述第三耦合器的第一本振光和来自所述窄带滤波器的第一散射光进行拍频,所述第二相干接收机用于对来自所述电光调制器的第二本振光和所述窄带滤波器的第二散射光进行拍频。The first coherent receiver is used to beat the first local oscillator light from the third coupler and the first scattered light from the narrowband filter, and the second coherent receiver is used to beat the first local oscillator light from the narrowband filter. The second local oscillator light of the electro-optic modulator and the second scattered light of the narrow-band filter perform frequency beating.
所述第一本振光为φ-OTDR的本振光,所述第一散射光为φ-OTDR的散射光,所述第二本振光为BOTDR的本振光,所述第二散射光为BOTDR的散射光,所述融合系统为φ-OTDR和BOTDR融合系统。The first local oscillator light is the local oscillator light of φ-OTDR, the first scattered light is the scattered light of φ-OTDR, the second local oscillator light is the local oscillator light of BOTDR, and the second scattered light is the scattered light of BOTDR, and the fusion system is φ-OTDR and BOTDR fusion system.
其中,所述第一本振光从所述第一耦合器的第一输出端到达所述第三耦合器,所述第三耦合器对第一本振光进行分光,分光后的一部分第一本振光经过所述第三耦合器的第一输出端到达所述第一相干接收机的第二输入端;所述第一散射光经过所述窄带滤波器的第一输出端到达所述第一相干接收机的第一输入端。Wherein, the first local oscillator light reaches the third coupler from the first output end of the first coupler, and the third coupler splits the first local oscillator light, and a part of the split first The local oscillator light reaches the second input end of the first coherent receiver through the first output end of the third coupler; the first scattered light reaches the second input end through the first output end of the narrowband filter. A first input terminal of a coherent receiver.
在所述第三耦合器分光后的另一部分第一本振光经过所述第三耦合器的第二输出端到达所述电光调制器,所述电光调制器将第一本振光转换为第二本振光,所述第二本振光从电光调制器到达所述第二相干接收机的第二输入端;所述第二散射光通过所述窄带滤波器的第二输出端到达所述第二相干接收器的第一输入端。Another part of the first local oscillator light after splitting by the third coupler reaches the electro-optic modulator through the second output end of the third coupler, and the electro-optic modulator converts the first local oscillator light into the first local oscillator light Two local oscillator lights, the second local oscillator light reaches the second input end of the second coherent receiver from the electro-optic modulator; the second scattered light reaches the second output end of the narrowband filter to the The first input of the second coherent receiver.
在本实施例中,所述探测光处理模块包括声光调制器和放大器,所述声光调制器的输入端和所述光源模块的探测光输出端耦合,所述声光调制器的输出端和所述放大器的输入端耦合,所述放大器的输出端和所述环形器耦合,适用于将处理后的探测光发送给所述环形器。所述放大器适用于对探测光进行放大,以便于能返回总散射光。In this embodiment, the detection light processing module includes an acousto-optic modulator and an amplifier, the input end of the acousto-optic modulator is coupled to the detection light output end of the light source module, and the output end of the acousto-optic modulator coupled to the input end of the amplifier, and the output end of the amplifier is coupled to the circulator, and is adapted to send the processed detection light to the circulator. The amplifier is adapted to amplify the probe light in order to return the total scattered light.
为了实现不同参量的测量,分波器的第二输出端输出的是第一预设波长的瑞利散射光,窄带滤波器的第一输出端输出的是第二预设波长的瑞利散射光,窄带滤波器的第二输出端输出的是布里渊散射光。In order to realize the measurement of different parameters, the output of the second output port of the wave splitter is the Rayleigh scattered light of the first preset wavelength, and the output of the first output port of the narrowband filter is the Rayleigh scattered light of the second preset wavelength , the output of the second output terminal of the narrowband filter is Brillouin scattered light.
具体的,分波器的第一输出端中分出光包括中心波长为1550.12nm的瑞利散射光,为第一散射光;分波器的第二输出端中分出的是中心波长为1555nm的瑞利散射光,为第三散射光;窄带滤波器的第一输出端中透射出的是中心波长为1550.12nm的瑞利散射光,为第一散射光;窄带滤波器的第二输出端中反射出的是中心波长为1550.2nm的布里渊散射光,为第二散射光。Specifically, the light split from the first output end of the wave splitter includes Rayleigh scattered light with a center wavelength of 1550.12 nm, which is the first scattered light; The Rayleigh scattered light is the third scattered light; the Rayleigh scattered light with a center wavelength of 1550.12nm is transmitted through the first output port of the narrowband filter, which is the first scattered light; the second output port of the narrowband filter What is reflected is Brillouin scattered light with a center wavelength of 1550.2 nm, which is the second scattered light.
探测光包括中心波长为1550.12nm的探测光和中心波长为1555nm的探测光,在中心波长为1550.12nm的探测光进入光纤后,返回来的总散射光就包含中心波长为1550.12nm的瑞利散射光和中心波长为1550.2nm的布里渊光,只不过布里渊光很微弱,所以在BOTDR系统中,需要窄带滤波器对布里渊光进行反射。The probe light includes the probe light with a center wavelength of 1550.12nm and the probe light with a center wavelength of 1555nm. After the probe light with a center wavelength of 1550.12nm enters the optical fiber, the returned total scattered light includes Rayleigh scattering with a center wavelength of 1550.12nm Light and Brillouin light with a central wavelength of 1550.2nm, but the Brillouin light is very weak, so in the BOTDR system, a narrow-band filter is required to reflect the Brillouin light.
在本实施例中,第一相干接收机和第二相干接收机都包含偏振分级混频器和PD探测器,相干接收机在体积较小的同时,实用性强。In this embodiment, both the first coherent receiver and the second coherent receiver include a polarization graded mixer and a PD detector, and the coherent receiver is small in size and highly practical.
在本实施例中,所述第一光源采用输出光功率为12dBm的窄线宽激光器做光源,中心波长为1550.12nm,线宽小于3KHz;所述第二光源采用输出光功率为15dBm的激光器做光源,中心波长为1555nm,线宽为100KHz量级。In this embodiment, the first light source uses a narrow linewidth laser with an output optical power of 12dBm as the light source, the center wavelength is 1550.12nm, and the linewidth is less than 3KHz; the second light source uses a laser with an output optical power of 15dBm. The light source has a center wavelength of 1555nm and a line width of the order of 100KHz.
所述第一耦合器的分光比为90:10,所述第一耦合器的第一输出端分光比为90%,第二输出端分光比为10%,所述第一耦合器的第一输出端输出第一本振光,第一本振光为φ-OTDR系统使用的本振光,中心波长为1550.12nm。The light splitting ratio of the first coupler is 90:10, the first output end light splitting ratio of the first coupler is 90%, the second output end light splitting ratio is 10%, and the first output end light splitting ratio of the first coupler is 10%. The output end outputs the first local oscillator light, the first local oscillator light is the local oscillator light used in the φ-OTDR system, and the center wavelength is 1550.12nm.
所述第二耦合器分光比为50:50,所述第二耦合器的第一输出端和第二输出端分光比均为50%,所述第二耦合器的第一输出端输出第三本振光,第三本振光为COTDR系统使用的本振光,中心波长为1555nm。The light splitting ratio of the second coupler is 50:50, the light splitting ratios of the first output end of the second coupler and the second output end are both 50%, and the first output end of the second coupler outputs the third The local oscillator light, the third local oscillator light is the local oscillator light used in the COTDR system, and the center wavelength is 1555nm.
所述第三耦合器的分光比30:70,所述第三耦合器的第一输出端分光比为30%,第二输出端分光比为70%,所述第三耦合器的输入端和所述第一耦合器的第一输出端耦合,对第一本振光进行分光。The light splitting ratio of the third coupler is 30:70, the first output end light splitting ratio of the third coupler is 30%, the second output end light splitting ratio is 70%, the input end of the third coupler and The first output end of the first coupler is coupled to split the first local oscillator light.
所述电光调制器的工作频率为9~12GHz,所述电光调制器用于将第一本振光转换为第二本振光,第二本振光为BOTDR系统使用的本振光,中心波长为1550.2nm,具体的,电光调制器包括一个射频源和偏置点控制器,会在中心波长为1550.12nm的光周围产生两个边带,靠近右边带的光中心波长为1550.2nm,即为第二本振光。The operating frequency of the electro-optic modulator is 9-12 GHz, and the electro-optic modulator is used to convert the first local oscillator light into a second local oscillator light. The second local oscillator light is the local oscillator light used by the BOTDR system, and the center wavelength is 1550.2nm, specifically, the electro-optic modulator includes a radio frequency source and a bias point controller, which will generate two sidebands around the light with a central wavelength of 1550.12nm, and the central wavelength of light near the right band is 1550.2nm, which is the first Two vibrations.
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。The above descriptions are only preferred embodiments of the present utility model, and are not intended to limit the present utility model. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present utility model shall be included in this utility model. within the scope of protection of utility models.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202320025149.XU CN218865126U (en) | 2023-01-03 | 2023-01-03 | Fusion system based on OTDR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202320025149.XU CN218865126U (en) | 2023-01-03 | 2023-01-03 | Fusion system based on OTDR |
Publications (1)
Publication Number | Publication Date |
---|---|
CN218865126U true CN218865126U (en) | 2023-04-14 |
Family
ID=87367159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202320025149.XU Active CN218865126U (en) | 2023-01-03 | 2023-01-03 | Fusion system based on OTDR |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN218865126U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116576920A (en) * | 2023-06-21 | 2023-08-11 | 国网山西省电力公司太原供电公司 | Cable vibration and strain monitoring device and method |
-
2023
- 2023-01-03 CN CN202320025149.XU patent/CN218865126U/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116576920A (en) * | 2023-06-21 | 2023-08-11 | 国网山西省电力公司太原供电公司 | Cable vibration and strain monitoring device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102538985B (en) | Sensing signal detection device and method based on fiber optic Brillouin ring laser | |
CN102147236B (en) | Fully distributed optical fiber strain and vibration sensing method and sensor | |
CN102168953B (en) | Full-distributed optical fiber strain and vibration sensor based on coherent heterodyne detection | |
US9599460B2 (en) | Hybrid Raman and Brillouin scattering in few-mode fibers | |
CN105783762B (en) | The brillouin distributed optical fiber sensing device and method of chaos correlation method positioning | |
CN107607135A (en) | A kind of chaos Brillouin light time domain/coherent field convergence analysis device and method | |
CN107036734B (en) | Sensing method and sensor for temperature or strain of fully-distributed optical fiber | |
WO2016103201A1 (en) | Reflectometric vibration measurement system and relative method for monitoring multiphase flows | |
CN105784195A (en) | Single-end chaotic Brillouin optical time-domain analysis distributed fiber sensing device and method | |
CN110501062B (en) | Distributed optical fiber sound sensing and positioning system | |
CN106404154B (en) | Optical fiber sound wave detection system | |
CN115371716B (en) | Distributed optical fiber sensor multi-signal detection method | |
CN218865126U (en) | Fusion system based on OTDR | |
US7228024B2 (en) | Optical return loss detecting device | |
AU2020103313A4 (en) | A distributed optical fiber Fizeau interferometer based on the principle of optical time domain reflection (OTDR) | |
CN102928740A (en) | Intelligent collection type fault diagnosis and on-line temperature measuring system | |
KR102685195B1 (en) | Distributed Acoustic and Temperature Sensor System | |
CN111122005A (en) | An optical fiber monitoring device integrating fiber grating sensor | |
CN104729750A (en) | Distributed optical fiber temperature sensor based on Brillouin scattering | |
CN211740563U (en) | Optical time domain reflectometer | |
CN207007371U (en) | A kind of fully distributed fiber temperature or the sensor of strain | |
CN110375960B (en) | Device and method based on super-continuum spectrum light source OTDR | |
JP2575794B2 (en) | Optical fiber characteristics evaluation device | |
KR102783430B1 (en) | Balanced Photo Detector Implemented with fiber??optic interferometer and Distributed Acoustic Sensor System Using the same | |
CN111162835A (en) | Optical time domain reflectometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Nie Mingchao Inventor after: Li Ming Inventor after: Zhang Shiyu Inventor after: Xu Jian Inventor after: Liu Jiasheng Inventor after: Yu Jiekui Inventor after: Tan Man Inventor after: Long Dajun Inventor after: Pan Guangli Inventor before: Nie Mingchao Inventor before: Li Ming Inventor before: Zhang Shiyu Inventor before: Xu Jian Inventor before: Liu Jiasheng Inventor before: Yu Jiekui Inventor before: Tan Man |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241222 Address after: 100000 block B, No. 1, Yuyuantan South Road, Haidian District, Beijing Patentee after: CHINA YANGTZE POWER Co.,Ltd. Country or region after: China Patentee after: ACCELINK TECHNOLOGIES Co.,Ltd. Address before: No. 1, Liusu South Road, Donghu New Technology Development Zone, Wuhan, Hubei 430074 Patentee before: ACCELINK TECHNOLOGIES Co.,Ltd. Country or region before: China |