CN211872097U - A wide-power electrolysis water hydrogen production system - Google Patents
A wide-power electrolysis water hydrogen production system Download PDFInfo
- Publication number
- CN211872097U CN211872097U CN202020484342.6U CN202020484342U CN211872097U CN 211872097 U CN211872097 U CN 211872097U CN 202020484342 U CN202020484342 U CN 202020484342U CN 211872097 U CN211872097 U CN 211872097U
- Authority
- CN
- China
- Prior art keywords
- gas
- oxygen
- hydrogen
- separator
- cooler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 88
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 88
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 72
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 38
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 26
- 239000007788 liquid Substances 0.000 claims abstract description 58
- 239000007789 gas Substances 0.000 claims abstract description 54
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000001301 oxygen Substances 0.000 claims abstract description 51
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 51
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 16
- 239000003792 electrolyte Substances 0.000 claims description 35
- 238000001816 cooling Methods 0.000 claims description 24
- 229920000642 polymer Polymers 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 238000001802 infusion Methods 0.000 claims description 4
- 238000004064 recycling Methods 0.000 claims description 4
- 239000002826 coolant Substances 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000002803 fossil fuel Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
本实用新型公开了一种宽功率电解水制氢系统,包括整流变压器、电解槽,所述整流变压器将将交流电转化为直流电后通入电解槽,还包括气液分离器、气体冷却器、气体捕滴器,所述整流变压器与波动性电源连接,所述气液分离器包括氢气分离器和氧气分离器,所述气体冷却器包括氢气冷却器和氧气冷却器,所述气体捕滴器包括氢气捕滴器和氧气捕滴器,所述电解槽的阴极电解液出液口与所述气液分离器的氢气分离器相互连通,所述电解槽的阳极电解液出液口与气液分离器的氧气分离器相互连通。本实用新型能够有效解决目前的电解水制氢系统功率可调范围有限,宽功率波动期间系统压力调节等响应能力不足的问题。
The utility model discloses a wide-power electrolysis water hydrogen production system, which comprises a rectifier transformer and an electrolytic cell. The rectifier transformer converts alternating current into direct current and then passes it into the electrolytic cell, and further comprises a gas-liquid separator, a gas cooler, a gas A droplet catcher, the rectifier transformer is connected to a fluctuating power supply, the gas-liquid separator includes a hydrogen separator and an oxygen separator, the gas cooler includes a hydrogen cooler and an oxygen cooler, and the gas droplet catcher includes Hydrogen drop catcher and oxygen drop catcher, the catholyte liquid outlet of the electrolytic cell is communicated with the hydrogen separator of the gas-liquid separator, and the anolyte liquid outlet of the electrolytic cell is separated from gas and liquid The oxygen separators of the generator are connected to each other. The utility model can effectively solve the problems of the limited power adjustable range of the current electrolyzed water hydrogen production system and the insufficient response capability of the system pressure adjustment during wide power fluctuations.
Description
技术领域technical field
本实用新型涉及电解水制氢技术领域,具体涉及一种宽功率电解水制氢系统。The utility model relates to the technical field of electrolysis water for hydrogen production, in particular to a wide-power electrolysis water hydrogen production system.
背景技术Background technique
氢能是一种绿色、高效的二次能源,在交通、电力、燃料等领域具有广阔的应用前景。目前,氢气主要来源于煤制氢、天然气重整制氢等化石燃料制氢,然而化石燃料制氢存在污染严重、受限于资源禀赋等问题。随着风电、光伏等可再生能源的大规模发展,利用可再生能源电解水制氢为氢能提供了绿色、低碳、低成本、可持续的生产方式。Hydrogen energy is a green and efficient secondary energy, which has broad application prospects in the fields of transportation, electricity and fuel. At present, hydrogen mainly comes from coal to hydrogen, natural gas reforming to hydrogen and other fossil fuel hydrogen production. However, fossil fuel hydrogen production has serious pollution and is limited by resource endowment and other problems. With the large-scale development of renewable energy such as wind power and photovoltaics, the use of renewable energy to electrolyze water to produce hydrogen provides a green, low-carbon, low-cost and sustainable production method for hydrogen energy.
然而由于风电、光伏等电源的波动性,对电解水制氢系统的耐功率波动范围和系统控制提出了更高的要求。现有电解水制氢系统功率可调范围有限,宽功率波动期间系统压力调节等响应能力不足,并且低功率条件下气体纯度下降。However, due to the volatility of power sources such as wind power and photovoltaics, higher requirements are placed on the power fluctuation range and system control of the electrolytic water hydrogen production system. The power adjustable range of the existing electrolyzed water hydrogen production system is limited, the response capability such as system pressure adjustment during wide power fluctuation is insufficient, and the gas purity decreases under low power conditions.
实用新型内容Utility model content
为了解决上述问题,本实用新型的目的在于提供一种宽功率电解水制氢系统,用于解决波动性电源供电下的稳定电解制氢工作。In order to solve the above problems, the purpose of the present invention is to provide a wide-power electrolysis water hydrogen production system, which is used to solve the stable electrolysis hydrogen production work under the power supply of fluctuating power supply.
本实用新型为实现上述目的,所采用的技术方案为:In order to realize the above-mentioned purpose, the technical scheme adopted by the present utility model is:
一种宽功率电解水制氢系统,包括整流变压器、电解槽、气液分离器、气体冷却器和气体捕滴器;A wide-power electrolysis water hydrogen production system, comprising a rectifier transformer, an electrolytic cell, a gas-liquid separator, a gas cooler and a gas drop catcher;
波动性电源通过整流变压器连接电解槽,用于向电解槽供电;The fluctuating power supply is connected to the electrolytic cell through a rectifier transformer to supply power to the electrolytic cell;
所述气液分离器包括氢气分离器和氧气分离器,所述气体冷却器包括氢气冷却器和氧气冷却器,所述气体捕滴器包括氢气捕滴器和氧气捕滴器,所述电解槽的阴极电解液出液口与所述气液分离器的氢气分离器相互连通,所述电解槽的阳极电解液出液口与气液分离器的氧气分离器相互连通,所述氢气分离器的出气口与所述氢气冷却器的进气口相互连通,所述氧气分离器的出气口与所述氧气冷却器的进气口相互连通,所述氢气冷却器的出气口与所述氢气捕滴器的进气口相互联通,所述氧气冷却器的出气口与所述氧气捕滴器的进气口相互联通。The gas-liquid separator includes a hydrogen separator and an oxygen separator, the gas cooler includes a hydrogen cooler and an oxygen cooler, the gas drop catcher includes a hydrogen drop catcher and an oxygen drop catcher, and the electrolytic cell The catholyte liquid outlet is communicated with the hydrogen separator of the gas-liquid separator, the anolyte liquid outlet of the electrolytic cell is communicated with the oxygen separator of the gas-liquid separator, and the hydrogen separator is in communication with each other. The air outlet is communicated with the air inlet of the hydrogen cooler, the air outlet of the oxygen separator is communicated with the air inlet of the oxygen cooler, and the air outlet of the hydrogen cooler is connected with the hydrogen droplet trapping. The air inlet of the oxygen cooler communicates with each other, and the air outlet of the oxygen cooler communicates with the air inlet of the oxygen droplet catcher.
进一步的,所述波动性电源包括风电或光伏。Further, the fluctuating power source includes wind power or photovoltaic.
进一步的,所述气液分离器的电解液残液出口通过电解液换热器与所述电解槽的输液口连通,用于电解液的循环利用。Further, the electrolyte residual liquid outlet of the gas-liquid separator is communicated with the liquid infusion port of the electrolytic cell through an electrolyte heat exchanger for recycling of the electrolyte.
进一步的,所述气液分离器的纯水补液口上设置补水装置。Further, a water replenishing device is provided on the pure water replenishing port of the gas-liquid separator.
进一步的,还包括循环冷却系统,所述循环冷却系统分别与所述气体冷却器和电解液换热器进行热交换。Further, a circulating cooling system is also included, and the circulating cooling system performs heat exchange with the gas cooler and the electrolyte heat exchanger respectively.
进一步的,所述循环冷却系统为液体循环冷却系统或气体循环冷却系统。Further, the circulating cooling system is a liquid circulating cooling system or a gas circulating cooling system.
进一步的,所述电解槽上设置有电解槽控制器,用于控制所述电解槽的运行电流、压力、温度、气体纯度、电解液流量、液位。Further, an electrolytic cell controller is provided on the electrolytic cell for controlling the operating current, pressure, temperature, gas purity, electrolyte flow rate, and liquid level of the electrolytic cell.
进一步的,所述电解槽为碱性水电解槽或固体聚合物电解槽。Further, the electrolytic cell is an alkaline water electrolytic cell or a solid polymer electrolytic cell.
进一步的,所述电解槽的数量为一个或多个,多个电解槽时采用并联模式。Further, the number of the electrolytic cells is one or more, and a parallel mode is used for multiple electrolytic cells.
本实用新型的有益效果是:The beneficial effects of the present utility model are:
(1)本实用新型通过整流变压器将波动性电源调节为稳定的直流电源后,向电解槽供电,使得电解槽能够有效地利用可再生能源进行电解水制氢,降低了生产成本的同时,提高了工作效率,能够不间断的持续进行电解水制氢,而本实用新型包含的气液分离器、气体冷却器、气体捕滴器,能够对电解水产生的氢气和氧气分别进行冷却、干燥,最终得到高纯度的氢气和氧气。(1) After the utility model adjusts the fluctuating power supply to a stable DC power supply through the rectifier transformer, supplies power to the electrolyzer, so that the electrolyzer can effectively utilize the renewable energy to carry out the electrolysis of water for hydrogen production, while reducing the production cost, improving The work efficiency is improved, and the electrolysis of water can be continuously carried out for hydrogen production, and the gas-liquid separator, gas cooler, and gas drop catcher included in the utility model can respectively cool and dry the hydrogen and oxygen produced by the electrolyzed water. The final result is high-purity hydrogen and oxygen.
(2)为了能够实现电解液的循环使用,进一步降低生产成本,气液分离器的电解液残液出口通过电解液换热器与所电解槽的输液口连通,而电解液换热器又能够将电解液由于电解反应产生的高温,进行热交换,继而使得电解液能够达到二次利用的调节。(2) In order to realize the recycling of the electrolyte and further reduce the production cost, the electrolyte residual liquid outlet of the gas-liquid separator is communicated with the infusion port of the electrolytic cell through the electrolyte heat exchanger, and the electrolyte heat exchanger can The electrolyte solution is heat exchanged due to the high temperature generated by the electrolysis reaction, so that the electrolyte solution can be adjusted for secondary utilization.
(3)由于电解过程中会消耗水,因此,气液分离器的纯水补液口上设置补水装置,利用补水装置向气液分离器中补充纯水,继而保证设备的正常运行。(3) Since water will be consumed in the electrolysis process, a water replenishing device is installed on the pure water replenishment port of the gas-liquid separator, and the pure water is replenished into the gas-liquid separator by using the water replenishing device, thereby ensuring the normal operation of the equipment.
(4)为了使电解液换热器和气体冷却器能够快速降温,避免由于温度过高,影响设备运转,因此,本实用新型分别在气体冷却器和电解液换热器上连接循环冷却系统进行热交换。(4) in order to enable the electrolyte heat exchanger and the gas cooler to drop the temperature rapidly, avoid affecting the operation of the equipment because the temperature is too high, therefore, the utility model connects the circulating cooling system on the gas cooler and the electrolyte heat exchanger respectively to carry out heat exchange.
(5)为了提高工作效率,降低设备维护难度,提高设备的可操作性,循环冷却系统的冷却介质采用液体或气体。(5) In order to improve the work efficiency, reduce the difficulty of equipment maintenance, and improve the operability of the equipment, the cooling medium of the circulating cooling system adopts liquid or gas.
(6)为了实时控制并掌握电解槽的运行电流、压力、温度、气体纯度、电解液流量、液位情况,电解槽上设置有电解槽控制器。(6) In order to control and grasp the operating current, pressure, temperature, gas purity, electrolyte flow and liquid level of the electrolytic cell in real time, the electrolytic cell is provided with an electrolytic cell controller.
(7)为了提高设备的工作效率,降低设备维护难度和运行成本,提高设备的可操作性,电解槽为碱性水电解槽或固体聚合物电解槽。(7) In order to improve the working efficiency of the equipment, reduce the difficulty of equipment maintenance and operating costs, and improve the operability of the equipment, the electrolytic cell is an alkaline water electrolytic cell or a solid polymer electrolytic cell.
(8)本实用新型通过多电解槽并联、单电解槽独立控制的方式,拓宽了电解水制氢系统的功率运行区间,能够利用可再生能源等波动性电源进行电解制氢,并且通过多电解槽共用气液分离器、气体冷却器、气体捕滴器的方式,降低了制氢系统的复杂度和成本。(8) The utility model widens the power operation range of the electrolytic water hydrogen production system by means of multiple electrolytic cells in parallel and single electrolytic cell independent control, and can utilize fluctuating power sources such as renewable energy to carry out electrolysis for hydrogen production, and through multiple electrolysis The tank shares the gas-liquid separator, the gas cooler, and the gas drop catcher, which reduces the complexity and cost of the hydrogen production system.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本实用新型的进一步理解,本实用新型的示意性实施例及其说明用于解释本实用新型,并不构成对本实用新型的不当限定。在附图中:The accompanying drawings forming a part of the present application are used to provide further understanding of the present invention, and the schematic embodiments and descriptions of the present invention are used to explain the present invention and do not constitute an improper limitation of the present invention. In the attached image:
图1为本实用新型的原理图。Fig. 1 is the principle diagram of the utility model.
其中,1-整流变压器、2-电解槽、3-气液分离器、4-气体冷却器、5-气体捕滴器、6-电解液换热器、7-循环冷却系统、8-补水装置、9-电解槽控制器。Among them, 1-rectifier transformer, 2-electrolyzer, 3-gas-liquid separator, 4-gas cooler, 5-gas drip catcher, 6-electrolyte heat exchanger, 7-circulating cooling system, 8-water replenishment device , 9 - Electrolyzer controller.
具体实施方式Detailed ways
下面将参考附图并结合实施例来详细说明本实用新型。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。The present utility model will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments. It should be noted that the embodiments in the present application and the features of the embodiments may be combined with each other in the case of no conflict.
以下详细说明均是示例性的说明,旨在对本实用新型提供进一步的详细说明。除非另有指明,本实用新型所采用的所有技术术语与本申请所属领域的一般技术人员的通常理解的含义相同。本实用新型所使用的术语仅是为了描述具体实施方式,而并非意图限制根据本实用新型的示例性实施方式。The following detailed descriptions are all exemplary descriptions and are intended to provide further detailed descriptions of the present invention. Unless otherwise specified, all technical terms used in the present invention have the same meaning as commonly understood by those of ordinary skill in the art to which this application belongs. The terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the exemplary embodiments according to the present invention.
如图1所示,一种宽功率电解水制氢系统,包括整流变压器1、电解槽2,整流变压器1将将交流电转化为直流电后通入电解槽2,还包括气液分离器3、气体冷却器4、气体捕滴器5,整流变压器1与波动性电源连接,波动性电源包括风电或光伏,气液分离器3包括氢气分离器和氧气分离器,气体冷却器4包括氢气冷却器和氧气冷却器,气体捕滴器5包括氢气捕滴器和氧气捕滴器,电解槽2的阴极电解液出液口与气液分离器3的氢气分离器相互连通,电解槽2的阳极电解液出液口与气液分离器3的氧气分离器相互连通,氢气分离器的出气口与氢气冷却器的进气口相互连通,氧气分离器的出气口与氧气冷却器的进气口相互连通,氢气冷却器的出气口与氢气捕滴器的进气口相互联通,氧气冷却器的出气口与氧气捕滴器的进气口相互联通,氢气捕滴器的出气口排出干燥的氢气,氧气捕滴器的出气口排出干燥的氧气,气液分离器3的电解液残液出口通过电解液换热器6与电解槽2的输液口连通,用于电解液的循环利用,气液分离器3的纯水补液口上设置补水装置8,本实用新型还包括循环冷却系统7,循环冷却系统7分别与气体冷却器4和电解液换热器6进行热交换,循环冷却系统7的冷却介质采用液体或气体,电解槽2上设置有电解槽控制器9,用于控制电解槽2的运行电流、压力、温度、气体纯度、电解液流量、液位,电解槽2为碱性水电解槽或固体聚合物电解槽,电解槽2的数量为一个或多个,多个电解槽时采用并联模式。As shown in Figure 1, a wide-power electrolysis water hydrogen production system includes a
电解槽2为碱性水电解槽或固体聚合物电解槽中的一种;电解槽2的数量为一个或多个,多个电解槽时采用并联模式,每个电解槽可以独立运行;电解槽2采用并联模式时,共用一套气液分离器3、气体冷却器4、气体捕滴器5、电解液换热器6、循环冷却系统7、补水装置8、电解槽控制器9。The
实施例1Example 1
本实用新型在运行时,风电或光伏作为电源经过整流变压器1转换为可用于电解水的直流电,电解槽2采用碱性电解水电解槽,总制氢规模为1000Nm3/h,采用两个电解槽并联的模式,每个电解槽的制氢规模为500Nm3/h,每个电解槽的最低制氢能力为200Nm3/h,电解槽控制器9根据风电或光伏的出力情况确定电解槽的出力情况:当需要产氢量达到1000Nm3/h时,两个电解槽2均满功率运行,两个电解槽2阴极流出的电解液汇入气液分离器3的氢气分离器,氢气在氢气分离器中逸出后进入气体冷却器4的氢气冷却器进行冷却,冷却后的氢气进入气体捕滴器5的氢气捕滴器去除水汽,氢气捕滴器出口的氢气可进行收集、纯化或利用。两个电解槽2阳极流出的电解液汇入气液分离器3的氧气分离器,氧气在氧气分离器中逸出后进入气体冷却器4的氧气冷却器进行冷却,冷却后的氧气进入气体捕滴器5的氧气捕滴器去除水汽,氧气捕滴器出口的氧气可进行收集、纯化或利用。气液分离器3中气体逸出后剩余的电解液循环经过电解液换热器6进行降温,并循环回到电解槽2。循环冷却系统7采用水作为冷却介质,冷却介质通入电解液换热器6和气体冷却器3,分别对电解液和气体进行降温。电解过程中会消耗水,补水装置8向气液分离器3中补充纯水。When the utility model is in operation, wind power or photovoltaic power is converted into direct current that can be used for electrolysis of water through a
实施例2Example 2
如图1所示,风电或光伏作为电源经过整流变压器1转换为可用于电解水的直流电,电解槽2采用碱性电解水电解槽,总制氢规模为1000Nm3/h,采用两个电解槽并联的模式,每个电解槽的制氢规模为500Nm3/h,每个电解槽的最低制氢能力为200Nm3/h,电解槽控制器9根据风电、光伏的出力情况确定电解槽的出力情况:当需要产氢量达到200Nm3/h时,一个电解槽2停止运行,另一个电解槽2制氢出力200Nm3/h,停止运行的电解槽2,电解液不再循环,同时,电解电流调为零,运行的电解槽2中,阴极流出的电解液汇入气液分离器3的氢气分离器,氢气在氢气分离器中逸出后进入气体冷却器4的氢气冷却器进行冷却,冷却后的氢气进入气体捕滴器5的氢气捕滴器去除水汽,氢气捕滴器出口的氢气可进行收集、纯化或利用。运行的电解槽2中,阳极流出的电解液汇入气液分离器3的氧气分离器,氧气在氧气分离器中逸出后进入气体冷却器4的氧气冷却器进行冷却,冷却后的氧气进入气体捕滴器5的氧气捕滴器去除水汽,氧气捕滴器出口的氧气可进行收集、纯化或利用,气液分离器3中气体逸出后剩余的电解液循环经过电解液换热器6进行降温,并循环回到电解槽2,循环冷却系统7采用水作为冷却介质,冷却介质通入电解液换热器6和气体冷却器3,分别对电解液和气体进行降温。电解过程中会消耗水,补水装置8向气液分离器3中补充纯水。As shown in Figure 1, wind power or photovoltaic is used as a power source and is converted into direct current that can be used for electrolysis of water through a
由技术常识可知,本实用新型可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本实用新型范围内或在等同于本实用新型的范围内的改变均被本实用新型包含。It can be known from the technical common sense that the present invention can be realized by other embodiments without departing from its spirit or essential characteristics. Accordingly, the above-disclosed embodiments are, in all respects, illustrative and not exclusive. All changes within the scope of the present invention or within the scope equivalent to the present invention are included in the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020484342.6U CN211872097U (en) | 2020-04-03 | 2020-04-03 | A wide-power electrolysis water hydrogen production system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020484342.6U CN211872097U (en) | 2020-04-03 | 2020-04-03 | A wide-power electrolysis water hydrogen production system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211872097U true CN211872097U (en) | 2020-11-06 |
Family
ID=73251773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202020484342.6U Active CN211872097U (en) | 2020-04-03 | 2020-04-03 | A wide-power electrolysis water hydrogen production system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211872097U (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111364052A (en) * | 2020-04-03 | 2020-07-03 | 中国华能集团清洁能源技术研究院有限公司 | A wide-power electrolysis water hydrogen production system and method |
CN112663081A (en) * | 2020-12-28 | 2021-04-16 | 苏州竞立制氢设备有限公司 | Water electrolysis hydrogen production power supply control system and method |
CN112899706A (en) * | 2021-01-18 | 2021-06-04 | 阳光电源股份有限公司 | Water electrolysis hydrogen production system and control method thereof |
CN112981437A (en) * | 2021-02-07 | 2021-06-18 | 阳光电源股份有限公司 | Water electrolysis hydrogen production system and gas purity control method thereof |
CN114790558A (en) * | 2022-04-29 | 2022-07-26 | 阳光氢能科技有限公司 | New energy hydrogen production system and switching control method thereof |
CN116377464A (en) * | 2023-04-21 | 2023-07-04 | 绍兴西爱西尔数控科技有限公司 | Circulating water-cooled safety explosion-proof electrolytic tank set |
WO2023226425A1 (en) * | 2022-05-23 | 2023-11-30 | 阳光氢能科技有限公司 | Hydrogen production system, and thermal management method and apparatus therefor |
-
2020
- 2020-04-03 CN CN202020484342.6U patent/CN211872097U/en active Active
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111364052A (en) * | 2020-04-03 | 2020-07-03 | 中国华能集团清洁能源技术研究院有限公司 | A wide-power electrolysis water hydrogen production system and method |
CN112663081A (en) * | 2020-12-28 | 2021-04-16 | 苏州竞立制氢设备有限公司 | Water electrolysis hydrogen production power supply control system and method |
CN112663081B (en) * | 2020-12-28 | 2025-02-11 | 约翰考克利尔公司 | Water electrolysis hydrogen production power supply control system and method |
CN112899706A (en) * | 2021-01-18 | 2021-06-04 | 阳光电源股份有限公司 | Water electrolysis hydrogen production system and control method thereof |
CN112899706B (en) * | 2021-01-18 | 2023-11-07 | 阳光氢能科技有限公司 | Water electrolysis hydrogen production system and control method thereof |
CN112981437A (en) * | 2021-02-07 | 2021-06-18 | 阳光电源股份有限公司 | Water electrolysis hydrogen production system and gas purity control method thereof |
CN112981437B (en) * | 2021-02-07 | 2022-12-16 | 阳光氢能科技有限公司 | Water electrolysis hydrogen production system and gas purity control method thereof |
CN114790558A (en) * | 2022-04-29 | 2022-07-26 | 阳光氢能科技有限公司 | New energy hydrogen production system and switching control method thereof |
WO2023226425A1 (en) * | 2022-05-23 | 2023-11-30 | 阳光氢能科技有限公司 | Hydrogen production system, and thermal management method and apparatus therefor |
CN116377464A (en) * | 2023-04-21 | 2023-07-04 | 绍兴西爱西尔数控科技有限公司 | Circulating water-cooled safety explosion-proof electrolytic tank set |
CN116377464B (en) * | 2023-04-21 | 2023-12-29 | 绍兴西爱西尔数控科技有限公司 | Circulating water-cooled safety explosion-proof electrolytic tank set |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021196564A1 (en) | Wide-power hydrogen production system and method by electrolysis of water | |
CN211872097U (en) | A wide-power electrolysis water hydrogen production system | |
CN111826669B (en) | Large-scale water electrolysis hydrogen production system with wide power fluctuation adaptability and control method | |
CN114592207B (en) | Electrolytic hydrogen production system adapting to rapid wide power fluctuation and control method | |
CN105862066B (en) | High-pressure proton membrane water electrolysis device and method | |
CN111748822A (en) | A comprehensive thermal management system for a large-scale alkaline electrolysis water hydrogen production device | |
CN207010249U (en) | A hydrogen fuel composite cell for wind power hydrogen production and energy storage | |
CN113881951B (en) | A lye segmented circulation electrolysis system and its working method | |
CN213013112U (en) | Comprehensive heat management system of large alkaline electrolyzed water hydrogen production device | |
CN113137783A (en) | System and method for recycling hydrogen production waste heat of electrolyzed water by using heat pump | |
CN114807959B (en) | High-efficiency hydrogen production system suitable for wide power fluctuation | |
CN216107238U (en) | Alkali liquor segmented circulation electrolysis system | |
EP4280325A1 (en) | Proton-conducting soec and oxygen ion-conducting sofc joint apparatus | |
CN213680909U (en) | Electrolytic water hydrogen heat combined supply device | |
CN115595599A (en) | Water electrolysis device and method | |
CN218232600U (en) | Processing and separating system for electrolytic hydrogen production and electrolytic hydrogen production system | |
CN117888145A (en) | Discrete circulating water electrolysis process and device suitable for wide power fluctuation | |
CN216786269U (en) | Water electrolysis hydrogen production system | |
CN216473504U (en) | High-pressure proton exchange membrane electrolytic water system | |
CN215209640U (en) | Proton exchange membrane electrolytic hydrogen production device based on photovoltaic cell | |
CN215062987U (en) | System for recycling waste heat of hydrogen production by water electrolysis by utilizing heat pump | |
CN113373468A (en) | Proton exchange membrane electrolytic hydrogen production device based on photovoltaic cell | |
CN117117975B (en) | Hydrogen-water power cogeneration system and method based on low-temperature waste heat utilization | |
CN221663034U (en) | A lye temperature control device in an alkaline water electrolysis hydrogen production system | |
CN118281267B (en) | A coupled system for hydrogen production and fuel cell power generation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |