[go: up one dir, main page]

CN210897294U - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
CN210897294U
CN210897294U CN201921837898.2U CN201921837898U CN210897294U CN 210897294 U CN210897294 U CN 210897294U CN 201921837898 U CN201921837898 U CN 201921837898U CN 210897294 U CN210897294 U CN 210897294U
Authority
CN
China
Prior art keywords
layer
solar cell
semiconductor substrate
thickness
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921837898.2U
Other languages
Chinese (zh)
Inventor
陈海燕
邓伟伟
李硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou Ates Solar Cell Co ltd
Canadian Solar Inc
CSI Cells Co Ltd
Original Assignee
CSI Cells Co Ltd
CSI Solar Power Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSI Cells Co Ltd, CSI Solar Power Group Co Ltd filed Critical CSI Cells Co Ltd
Priority to CN201921837898.2U priority Critical patent/CN210897294U/en
Application granted granted Critical
Publication of CN210897294U publication Critical patent/CN210897294U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本申请提供一种太阳能电池,包括半导体基片、金属电极及依次层叠设置在所述半导体基片一侧表面的隧穿层与掺杂多晶硅层,所述掺杂多晶硅层具有第一部分与第二部分,所述金属电极与所述第一部分相接触,所述第一部分的厚度大于所述第二部分的厚度,且所述第一部分的掺杂浓度大于第二部分的掺杂浓度。所述第一部分厚度设置较大且掺杂浓度较高,能够有效降低金属电极区域的复合损失;所述第二部分厚度较小且掺杂浓度较低,对半导体基片的非电极区域进行钝化的同时,减少对光线的吸收。

Figure 201921837898

The present application provides a solar cell, comprising a semiconductor substrate, a metal electrode, a tunneling layer and a doped polysilicon layer sequentially stacked on one surface of the semiconductor substrate, the doped polysilicon layer having a first part and a second part part, the metal electrode is in contact with the first part, the thickness of the first part is larger than the thickness of the second part, and the doping concentration of the first part is larger than that of the second part. The thickness of the first part is set to be large and the doping concentration is high, which can effectively reduce the recombination loss of the metal electrode region; the thickness of the second part is small and the doping concentration is low, which can passivate the non-electrode region of the semiconductor substrate. At the same time, reduce the absorption of light.

Figure 201921837898

Description

太阳能电池Solar battery

技术领域technical field

本申请涉及太阳能发电技术领域,特别涉及一种太阳能电池。The present application relates to the technical field of solar power generation, and in particular, to a solar cell.

背景技术Background technique

随着光伏技术的快速发展,市场对于高效电池与组件的需求也不断增长。就晶硅电池而言,为减小电池表面复合损失,降低金属电极的接触电阻,业内公开了一种采用隧穿氧化层、多晶硅膜层相结合的钝化结构。With the rapid development of photovoltaic technology, the market demand for high-efficiency cells and modules is also growing. As far as crystalline silicon cells are concerned, in order to reduce the recombination loss on the cell surface and reduce the contact resistance of metal electrodes, a passivation structure combining a tunnel oxide layer and a polysilicon film layer is disclosed in the industry.

但上述钝化结构中的多晶硅膜层具有较强的光吸收系数,因此会降低电池的短路电流,从而限制电池效率的提升。目前,主要通过尽量降低多晶硅膜层的厚度,以减少电流损失;抑或仅在电池的金属电极区域设置上述隧穿氧化层、多晶硅膜层,难以兼顾电池的光线吸收与钝化效果。业内还公开了在金属电极区域与非电极区域设置厚度不同的多晶硅膜层的方案,通过减小非电极区域的多晶硅膜层厚度,降低非电极区域的光线损失。但为保证膜层结构的均匀稳定性,非电极区域的多晶硅膜层厚度并不能无限减小,在现有工艺基础下,如何进一步优化电池结构、提高电池转换效率成为业内亟需解决的技术问题。However, the polysilicon film layer in the above-mentioned passivation structure has a strong light absorption coefficient, which reduces the short-circuit current of the battery, thereby limiting the improvement of the battery efficiency. At present, the current loss is mainly reduced by reducing the thickness of the polysilicon film layer as much as possible; or the above-mentioned tunnel oxide layer and polysilicon film layer are only provided in the metal electrode area of the battery, which is difficult to take into account the light absorption and passivation effects of the battery. The industry also discloses a scheme of disposing polysilicon layers with different thicknesses in the metal electrode area and the non-electrode area, and reducing the light loss in the non-electrode area by reducing the thickness of the polysilicon layer in the non-electrode area. However, in order to ensure the uniformity and stability of the film structure, the thickness of the polysilicon film in the non-electrode area cannot be reduced infinitely. Under the existing process, how to further optimize the cell structure and improve the cell conversion efficiency has become an urgent technical problem to be solved in the industry. .

实用新型内容Utility model content

本申请目的在于提供一种太阳能电池,能改善半导体基片的表面钝化性能,保证光线吸收,提高转换效率。The purpose of the present application is to provide a solar cell, which can improve the surface passivation performance of a semiconductor substrate, ensure light absorption, and improve conversion efficiency.

为实现上述目的,本申请实施例提供一种太阳能电池,包括半导体基片、金属电极及依次层叠设置在所述半导体基片一侧表面的隧穿层与掺杂多晶硅层,所述掺杂多晶硅层具有第一部分与第二部分,所述金属电极与所述第一部分相接触,所述第一部分的厚度大于所述第二部分的厚度,且所述第一部分的掺杂浓度大于第二部分的掺杂浓度。In order to achieve the above purpose, an embodiment of the present application provides a solar cell, comprising a semiconductor substrate, a metal electrode, a tunneling layer and a doped polysilicon layer sequentially stacked on one surface of the semiconductor substrate, the doped polysilicon The layer has a first portion and a second portion, the metal electrode is in contact with the first portion, the thickness of the first portion is greater than the thickness of the second portion, and the doping concentration of the first portion is greater than that of the second portion. doping concentration.

作为本申请实施例的进一步改进,所述第一部分的掺杂浓度为1E20~8E20cm-3;所述第二部分的掺杂浓度为2E19~8E19cm-3As a further improvement of the embodiments of the present application, the doping concentration of the first part is 1E20-8E20 cm -3 ; the doping concentration of the second part is 2E19-8E19 cm -3 .

作为本申请实施例的进一步改进,第一部分的厚度设置为80~300nm,第二部分的厚度设置为10~80nm。As a further improvement of the embodiments of the present application, the thickness of the first part is set to be 80-300 nm, and the thickness of the second part is set to be 10-80 nm.

作为本申请实施例的进一步改进,所述隧穿层设置为氧化硅膜或氮氧化硅膜或由氧化硅膜与氮氧化硅膜两者相互层叠得到的复合膜,所述隧穿层的厚度设置为0.5~3nm。As a further improvement of the embodiments of the present application, the tunneling layer is set to be a silicon oxide film or a silicon oxynitride film or a composite film obtained by stacking a silicon oxide film and a silicon oxynitride film on each other. The thickness of the tunneling layer is Set to 0.5 to 3 nm.

作为本申请实施例的进一步改进,所述太阳能电池还包括设置在所述掺杂多晶硅层背离半导体基片一侧表面上的减反射层,所述金属电极穿透所述减反射层并与所述第一部分相接触。As a further improvement of the embodiments of the present application, the solar cell further includes an anti-reflection layer disposed on the surface of the doped polysilicon layer on the side facing away from the semiconductor substrate, and the metal electrode penetrates the anti-reflection layer and communicates with the anti-reflection layer. contact with the first part.

作为本申请实施例的进一步改进,所述减反射层包括第一减反射膜层、层叠设置在第一减反射膜层背离所述半导体基片一侧表面上的第二减反射膜层,所述第一减反射膜层的厚度小于第二减反射膜层的厚度,且所述第一减反射膜层的折射率大于第二减反射膜层的折射率。As a further improvement of the embodiments of the present application, the anti-reflection layer includes a first anti-reflection film layer and a second anti-reflection film layer stacked on the surface of the first anti-reflection film layer on the side facing away from the semiconductor substrate. The thickness of the first anti-reflection film layer is smaller than the thickness of the second anti-reflection film layer, and the refractive index of the first anti-reflection film layer is greater than the refractive index of the second anti-reflection film layer.

作为本申请实施例的进一步改进,所述隧穿层、掺杂多晶硅层依次层叠设置在所述半导体基片的正面;所述太阳能电池还包括形成于所述半导体基片背面的背钝化层、穿过所述背钝化层并与该半导体基片相接触的背面电极。As a further improvement of the embodiments of the present application, the tunneling layer and the doped polysilicon layer are sequentially stacked on the front side of the semiconductor substrate; the solar cell further includes a back passivation layer formed on the back side of the semiconductor substrate , a back electrode passing through the back passivation layer and in contact with the semiconductor substrate.

作为本申请实施例的进一步改进,所述半导体基片为P型硅片;所述背钝化层设置为Al2O3膜层,所述Al2O3膜层的厚度设置为3~20nm。As a further improvement of the embodiments of the present application, the semiconductor substrate is a P-type silicon wafer; the back passivation layer is set to be an Al 2 O 3 film layer, and the thickness of the Al 2 O 3 film layer is set to 3-20 nm .

作为本申请实施例的进一步改进,所述太阳能电池设置为双面电池,所述太阳能电池的背面依次层叠设置有背面隧穿层、背面掺杂多晶硅层与背面减反射层。As a further improvement of the embodiments of the present application, the solar cell is configured as a double-sided cell, and the backside of the solar cell is sequentially provided with a backside tunneling layer, a backside doped polysilicon layer and a backside anti-reflection layer.

作为本申请实施例的进一步改进,所述背面掺杂多晶硅层具有第三部分与第四部分,所述第三部分的厚度大于所述第四部分的厚度,且所述第三部分的掺杂浓度大于第四部分的掺杂浓度;所述太阳能电池还包括穿透所述背面减反射层并与所述第三部分相接触的背面电极。As a further improvement of the embodiment of the present application, the backside doped polysilicon layer has a third part and a fourth part, the thickness of the third part is greater than the thickness of the fourth part, and the doping of the third part The concentration is greater than the doping concentration of the fourth part; the solar cell further includes a back surface electrode penetrating the back surface anti-reflection layer and in contact with the third part.

本申请的有益效果是:采用本申请太阳能电池,通过对所述掺杂多晶硅层的结构进行优化设计,所述第一部分厚度设置较大且掺杂浓度较高,能够有效降低金属电极区域的复合损失与接触电阻;所述第二部分厚度较小且掺杂浓度较低,在对半导体基片的非电极区域进行钝化的同时,减少对光线的吸收,利于该太阳能电池转换效率的提升。The beneficial effects of the present application are: using the solar cell of the present application, by optimizing the structure of the doped polysilicon layer, the thickness of the first part is set larger and the doping concentration is higher, which can effectively reduce the recombination of the metal electrode region. loss and contact resistance; the second part has a small thickness and a low doping concentration, which reduces the absorption of light while passivating the non-electrode region of the semiconductor substrate, which is beneficial to the improvement of the conversion efficiency of the solar cell.

附图说明Description of drawings

图1是本申请太阳能电池第一实施例的结构示意图;1 is a schematic structural diagram of a first embodiment of a solar cell of the present application;

图2是本申请太阳能电池第二实施例的结构示意图;2 is a schematic structural diagram of a second embodiment of the solar cell of the present application;

图3是本申请太阳能电池第三实施例的结构示意图;3 is a schematic structural diagram of a third embodiment of the solar cell of the present application;

图4是本申请太阳能电池第四实施例的结构示意图。FIG. 4 is a schematic structural diagram of a fourth embodiment of the solar cell of the present application.

10-半导体基片;11-扩散层;20-隧穿层;30-掺杂多晶硅层;31-第一部分;32-第二部分;20'-背面隧穿层;30'-背面掺杂多晶硅层;33-第三部分;34-第四部分;40-减反射层;50-金属电极;60-背钝化层;70-背面电极,80-背面减反射层。10-semiconductor substrate; 11-diffusion layer; 20-tunneling layer; 30-doped polysilicon layer; 31-first part; 32-second part; 20'-backside tunneling layer; 30'-backside doped polysilicon layer; 33-third part; 34-fourth part; 40-anti-reflection layer; 50-metal electrode; 60-back passivation layer; 70-back electrode, 80-back anti-reflection layer.

具体实施方式Detailed ways

以下将结合附图所示的实施方式对本申请进行详细描述。但该实施方式并不限制本申请,本领域的普通技术人员根据该实施方式所做出的结构、方法、或功能上的变换均包含在本申请的保护范围内。The present application will be described in detail below with reference to the embodiments shown in the accompanying drawings. However, this embodiment does not limit the present application, and the structural, method, or functional transformations made by those of ordinary skill in the art according to this embodiment are all included in the protection scope of the present application.

参图1所示,本申请提供的太阳能电池100包括半导体基片10、依次层叠设置在所述半导体基片10一侧表面的隧穿层20、掺杂多晶硅层30、减反射层40以及穿透所述减反射层40并与掺杂多晶硅层30相接触的金属电极50。1 , the solar cell 100 provided by the present application includes a semiconductor substrate 10, a tunneling layer 20, a doped polysilicon layer 30, an anti-reflection layer 40, and a tunneling layer 20 sequentially stacked on one side of the semiconductor substrate 10. The metal electrode 50 which penetrates the anti-reflection layer 40 and is in contact with the doped polysilicon layer 30 .

所述隧穿层20能够隔绝金属电极50与半导体基片10接触,且不影响电流传递,其与掺杂多晶硅层30相结合,改善半导体基片10的表面钝化效果,降低反向饱和电流J0。此处,所述隧穿层20设置为氧化硅膜或氮氧化硅膜或由氧化硅膜与氮氧化硅膜两者相互层叠得到的复合膜。所述隧穿层20的厚度设置为0.5~3nm,更优选地,所述隧穿层20的厚度设置为1~2nm。The tunneling layer 20 can isolate the metal electrode 50 from contacting the semiconductor substrate 10 without affecting the current transfer. It is combined with the doped polysilicon layer 30 to improve the surface passivation effect of the semiconductor substrate 10 and reduce the reverse saturation current. J0. Here, the tunneling layer 20 is configured as a silicon oxide film, a silicon oxynitride film, or a composite film obtained by stacking both of the silicon oxide film and the silicon oxynitride film. The thickness of the tunneling layer 20 is set to be 0.5˜3 nm, and more preferably, the thickness of the tunneling layer 20 is set to be 1˜2 nm.

所述掺杂多晶硅层30具有第一部分31及位于第一部分31旁侧的第二部分32,所述金属电极50设置在所述第一部分31上。所述第一部分31的厚度大于第二部分32的厚度,且所述第一部分31的掺杂浓度大于第二部分32的掺杂浓度,以使得所述第二部分32对入射光线的吸收小于第一部分31对入射光线的吸收。换言之,所述第一部分31设置在所述半导体基片10的电极区域,其位于所述金属电极50与隧穿层20之间;所述第二部分32则设置在该半导体基片10的非电极区域。针对电极区域与非电极区域,所述掺杂多晶硅层30通过厚度与掺杂浓度的区分设计,既能降低所述金属电极50位置的复合损失与接触电阻,又能减小非电极区域的吸光影响。The doped polysilicon layer 30 has a first portion 31 and a second portion 32 beside the first portion 31 , and the metal electrode 50 is disposed on the first portion 31 . The thickness of the first portion 31 is greater than that of the second portion 32, and the doping concentration of the first portion 31 is greater than that of the second portion 32, so that the absorption of incident light by the second portion 32 is smaller than that of the second portion 32. Absorption of incident light by a portion 31. In other words, the first portion 31 is disposed in the electrode region of the semiconductor substrate 10 , which is located between the metal electrode 50 and the tunneling layer 20 ; the second portion 32 is disposed in the non-electrode region of the semiconductor substrate 10 . electrode area. For the electrode area and the non-electrode area, the doped polysilicon layer 30 can be designed by distinguishing thickness and doping concentration, which can not only reduce the recombination loss and contact resistance at the position of the metal electrode 50, but also reduce the light absorption of the non-electrode area. influences.

所述第一部分31的厚度可设置为80~300nm;所述第二部分32通常采用局部刻蚀得到,在现有工艺条件下若需保证膜层的均匀稳定性,所述第二部分32的厚度优选为10~80nm。并且,所述第一部分31的掺杂浓度为1E20~8E20cm-3;所述第二部分32的掺杂浓度为2E19~8E19cm-3。实际制备过程中,我们可将所述第一部分31的厚度设置为80nm、120nm、170nm或200nm;将所述第二部分32的厚度设置为10nm、20nm或30nm。需要说明的是,所述第一部分31、第二部分32的设置厚度并非严格意义的精确取值点,而是根据现场工艺控制相应的膜层厚度处于相应的设定厚度的合理波动范围内。The thickness of the first part 31 can be set to 80-300 nm; the second part 32 is usually obtained by partial etching. If the uniform stability of the film layer needs to be ensured under the existing process conditions, the second part 32 The thickness is preferably 10 to 80 nm. Moreover, the doping concentration of the first portion 31 is 1E20˜8E20 cm −3 ; the doping concentration of the second portion 32 is 2E19˜8E19 cm −3 . In the actual preparation process, we can set the thickness of the first part 31 to 80 nm, 120 nm, 170 nm or 200 nm; and set the thickness of the second part 32 to 10 nm, 20 nm or 30 nm. It should be noted that the set thicknesses of the first part 31 and the second part 32 are not exact value points in the strict sense, but the corresponding film thicknesses are controlled to be within a reasonable fluctuation range of the corresponding set thicknesses according to the on-site process.

为提高所述减反射层40的膜层性能与减反射效果,同时兼顾该减反射层40的“可烧穿”性能,通过气体流量、反应时间、温度等工艺参数调节,所述减反射层40可设置呈层叠或渐变的膜层结构。此处,所述减反射层40具有第一减反射膜层、层叠设置在第一减反射膜层背离所述半导体基片10一侧表面上的第二减反射膜层,所述第一减反射膜层的厚度小于第二减反射膜层的厚度,且所述第一减反射膜层的折射率大于第二减反射膜层的折射率。所述减反射层40由若干折射率、厚度各不相同的氮化硅膜层构成,厚度优选为70~85nm。当然,所述减反射层40中亦可设置折射率相对较小的氧化硅、氮氧化硅膜层,此时,所述减反射层40的厚度需适当增加,优选为80~100nm。In order to improve the film performance and anti-reflection effect of the anti-reflection layer 40, and at the same time take into account the "burn-through" performance of the anti-reflection layer 40, the anti-reflection layer 40 is adjusted by process parameters such as gas flow rate, reaction time, and temperature. 40 A layered or graded film structure can be provided. Here, the anti-reflection layer 40 has a first anti-reflection film layer, a second anti-reflection film layer stacked on the surface of the first anti-reflection film layer away from the semiconductor substrate 10, the first anti-reflection film layer The thickness of the reflection film layer is smaller than the thickness of the second anti-reflection film layer, and the refractive index of the first anti-reflection film layer is greater than the refractive index of the second anti-reflection film layer. The anti-reflection layer 40 is composed of several silicon nitride film layers with different refractive indices and thicknesses, and the thickness is preferably 70-85 nm. Of course, the anti-reflection layer 40 can also be provided with silicon oxide and silicon oxynitride film layers with relatively small refractive indices. In this case, the thickness of the anti-reflection layer 40 needs to be appropriately increased, preferably 80-100 nm.

本实施例中,所述半导体基片10设置为P型硅片,且其电阻率设置为0.5~6Ω·cm。所述隧穿层20、掺杂多晶硅层30、减反射层40依次设置在所述半导体基片10的正面,所述金属电极50即为该太阳能电池100的正面电极。所述金属电极50优选为银电极。In this embodiment, the semiconductor substrate 10 is set as a P-type silicon wafer, and its resistivity is set at 0.5-6 Ω·cm. The tunneling layer 20 , the doped polysilicon layer 30 , and the anti-reflection layer 40 are sequentially disposed on the front surface of the semiconductor substrate 10 , and the metal electrode 50 is the front electrode of the solar cell 100 . The metal electrode 50 is preferably a silver electrode.

所述太阳能电池100还包括形成于所述半导体基片10背面的背钝化层60、穿过所述背钝化层60并与该半导体基片10相接触的背面电极70。其中,所述背钝化层60可设置为Al2O3膜层,所述Al2O3膜层的厚度设置为3~20nm。此处,所述太阳能电池100设置为双面电池,所述太阳能电池100还包括层叠设置在所述背钝化层60背离所述半导体基片10一侧表面上的背面减反射层80,所述背面减反射层80同样可采用氮化硅膜层,且所述背面减反射层80的厚度设置为60~150nm。The solar cell 100 further includes a back passivation layer 60 formed on the back surface of the semiconductor substrate 10 , and a back electrode 70 passing through the back passivation layer 60 and in contact with the semiconductor substrate 10 . Wherein, the back passivation layer 60 can be set to be an Al 2 O 3 film layer, and the thickness of the Al 2 O 3 film layer is set to be 3-20 nm. Here, the solar cell 100 is configured as a double-sided cell, and the solar cell 100 further includes a backside anti-reflection layer 80 stacked on the surface of the backside passivation layer 60 away from the semiconductor substrate 10, so The backside anti-reflection layer 80 can also use a silicon nitride film, and the thickness of the backside anti-reflection layer 80 is set to 60-150 nm.

参图2所示,在本申请的另一实施方式中,所述半导体基片10在表面处理完成后,先进行正面扩散得到相应的扩散层11,所述扩散层11能够避免掺杂多晶硅层30损伤而影响表面电流的传输,相应的太阳能电池100结构更为稳定可靠。实际制备中,采用HF溶液对扩散完成后的半导体基片10进行清洗、干燥,再于该扩散层11上依次制得所述隧穿层20与掺杂多晶硅层30,所述扩散层11的掺杂类型与所述掺杂多晶硅层30的掺杂类型相一致。Referring to FIG. 2 , in another embodiment of the present application, after the surface treatment of the semiconductor substrate 10 is completed, front-side diffusion is first performed to obtain a corresponding diffusion layer 11 , and the diffusion layer 11 can avoid doping the polysilicon layer. 30 damage will affect the transmission of surface current, and the corresponding structure of the solar cell 100 is more stable and reliable. In actual preparation, HF solution is used to clean and dry the diffused semiconductor substrate 10 , and then the tunneling layer 20 and the doped polysilicon layer 30 are sequentially prepared on the diffusion layer 11 . The doping type is consistent with the doping type of the doped polysilicon layer 30 .

参图3所示,在本申请的另一实施例中,所述太阳能电池100设置为双面电池,所述太阳能电池100的背面还依次层叠设置有背面隧穿层20'、背面掺杂多晶硅层30'、背面减反射层80。所述背面掺杂多晶硅层30'具有第三部分33与第四部分34,所述第三部分33的厚度大于所述第四部分34的厚度,且所述第三部分33的掺杂浓度大于第四部分34的掺杂浓度,所述背面电极70穿透所述背面减反射层80并与所述第三部分33相接触。所述背面掺杂多晶硅层30'与掺杂多晶硅层30的掺杂类型相反,上述设计实现所述半导体基片10背面的钝化的同时,减小对背面吸光的影响。Referring to FIG. 3 , in another embodiment of the present application, the solar cell 100 is configured as a double-sided cell, and the backside of the solar cell 100 is further stacked with a backside tunneling layer 20 ′, a backside doped polysilicon layer 30 ′, backside anti-reflection layer 80 . The backside doped polysilicon layer 30 ′ has a third portion 33 and a fourth portion 34 , the thickness of the third portion 33 is greater than that of the fourth portion 34 , and the doping concentration of the third portion 33 is greater than Doping concentration of the fourth portion 34 , the back electrode 70 penetrates the back anti-reflection layer 80 and is in contact with the third portion 33 . The doping type of the backside doped polysilicon layer 30 ′ is opposite to that of the doped polysilicon layer 30 . The above design achieves passivation of the backside of the semiconductor substrate 10 while reducing the influence on the backside light absorption.

参图4所示,就双面电池而言,也可以仅仅在所述半导体基片10的背表面设置上述背面隧穿层20'、背面掺杂多晶硅层30'。所述背面电极70穿透背面减反射层80并与所述背面掺杂多晶硅层30'相接触;所述半导体基片10的正面则形成有扩散层11,所述金属电极50穿透所述减反射层40并与所述扩散层11形成欧姆接触。当然,所述扩散层11与减反射层40直接也还可以设置正面钝化膜层,此处不再赘述。As shown in FIG. 4 , for a double-sided cell, the above-mentioned back-side tunneling layer 20 ′ and back-side doped polysilicon layer 30 ′ can also be provided only on the back surface of the semiconductor substrate 10 . The backside electrode 70 penetrates the backside anti-reflection layer 80 and is in contact with the backside doped polysilicon layer 30 ′; the front surface of the semiconductor substrate 10 is formed with a diffusion layer 11 , and the metal electrode 50 penetrates the backside doped polysilicon layer 30 ′. The anti-reflection layer 40 forms ohmic contact with the diffusion layer 11 . Of course, the diffusion layer 11 and the anti-reflection layer 40 can also be directly provided with a front passivation film layer, which will not be repeated here.

综上所述,本申请太阳能电池100通过隧穿层20、掺杂多晶硅层30对半导体基片10表面形成有效钝化。所述第一部分31较厚且掺杂浓度较高,能够有效降低金属电极50区域的复合损失与接触电阻;所述第二部分32厚度较小且掺杂浓度较低,在对半导体基片10的非电极区域进行钝化的同时,减少对光线的吸收,利于该太阳能电池100转换效率的提升。To sum up, in the solar cell 100 of the present application, the surface of the semiconductor substrate 10 is effectively passivated through the tunneling layer 20 and the doped polysilicon layer 30 . The first part 31 is thicker and has a higher doping concentration, which can effectively reduce the recombination loss and contact resistance of the metal electrode 50 region; While passivating the non-electrode region of the solar cell, the absorption of light is reduced, which is beneficial to the improvement of the conversion efficiency of the solar cell 100 .

应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。It should be understood that although this specification is described in terms of embodiments, not every embodiment only includes an independent technical solution, and this description in the specification is only for the sake of clarity, and those skilled in the art should take the specification as a whole, and each The technical solutions in the embodiments can also be appropriately combined to form other embodiments that can be understood by those skilled in the art.

上文所列出的一系列的详细说明仅仅是针对本申请的可行性实施方式的具体说明,它们并非用以限制本申请的保护范围,凡未脱离本申请技艺精神所作的等效实施方式或变更均应包含在本申请的保护范围之内。The series of detailed descriptions listed above are only specific descriptions for the feasible embodiments of the present application, and they are not intended to limit the protection scope of the present application. Changes should be included within the scope of protection of this application.

Claims (9)

1. A solar cell, comprising a semiconductor substrate and a metal electrode, characterized in that: the solar cell further comprises a tunneling layer and a doped polycrystalline silicon layer which are sequentially stacked on the surface of one side of the semiconductor substrate, the doped polycrystalline silicon layer is provided with a first part and a second part, the metal electrode is in contact with the first part, the thickness of the first part is larger than that of the second part, and the doping concentration of the first part is larger than that of the second part.
2. The solar cell of claim 1, wherein: the thickness of the first part is set to be 80-300 nm, and the thickness of the second part is set to be 10-80 nm.
3. The solar cell of claim 1, wherein: the tunneling layer is a silicon oxide film or a silicon oxynitride film or a composite film formed by mutually laminating the silicon oxide film and the silicon oxynitride film, and the thickness of the tunneling layer is set to be 0.5-3 nm.
4. The solar cell of claim 1, wherein: the solar cell further comprises an antireflection layer arranged on the surface of the doped polycrystalline silicon layer on the side away from the semiconductor substrate, and the metal electrode penetrates through the antireflection layer and is in contact with the first part.
5. The solar cell of claim 4, wherein: the antireflection layer comprises a first antireflection film layer, a second antireflection film layer stacked on the first antireflection film layer and deviating from the first antireflection film layer on the surface of one side of the semiconductor substrate, the thickness of the first antireflection film layer is smaller than that of the second antireflection film layer, and the refractive index of the first antireflection film layer is larger than that of the second antireflection film layer.
6. The solar cell of claim 1, wherein: the tunneling layer and the doped polycrystalline silicon layer are sequentially stacked on the front surface of the semiconductor substrate; the solar cell further includes a back passivation layer formed on the back surface of the semiconductor substrate, and a back electrode penetrating the back passivation layer and contacting the semiconductor substrate.
7. The solar cell of claim 6, wherein: the semiconductor substrate is a P-type silicon wafer; the back passivation layer is set to be Al2O3Film layer of said Al2O3Of a film layerThe thickness is set to be 3-20 nm.
8. The solar cell of claim 1, wherein: the solar cell is a double-sided cell, and a back tunneling layer, a back doped polycrystalline silicon layer and a back antireflection layer are sequentially stacked on the back of the solar cell.
9. The solar cell of claim 8, wherein: the back side doped polycrystalline silicon layer is provided with a third part and a fourth part, the thickness of the third part is greater than that of the fourth part, and the doping concentration of the third part is greater than that of the fourth part; the solar cell further includes a back electrode penetrating the back anti-reflective layer and contacting the third portion.
CN201921837898.2U 2019-10-29 2019-10-29 Solar cell Active CN210897294U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921837898.2U CN210897294U (en) 2019-10-29 2019-10-29 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921837898.2U CN210897294U (en) 2019-10-29 2019-10-29 Solar cell

Publications (1)

Publication Number Publication Date
CN210897294U true CN210897294U (en) 2020-06-30

Family

ID=71324366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921837898.2U Active CN210897294U (en) 2019-10-29 2019-10-29 Solar cell

Country Status (1)

Country Link
CN (1) CN210897294U (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112349798A (en) * 2020-10-27 2021-02-09 浙江晶科能源有限公司 Solar cell and method for manufacturing same
CN112466961A (en) * 2020-11-19 2021-03-09 晶科绿能(上海)管理有限公司 Solar cell and method for manufacturing same
JP2022058069A (en) * 2020-09-30 2022-04-11 ジョジアン ジンコ ソーラー カンパニー リミテッド Solar cells and solar cell modules
CN114613866A (en) * 2020-11-25 2022-06-10 嘉兴阿特斯技术研究院有限公司 Solar cell and preparation method thereof
CN114613865A (en) * 2020-11-25 2022-06-10 嘉兴阿特斯技术研究院有限公司 Solar cell and preparation method thereof
CN114765224A (en) * 2020-12-30 2022-07-19 苏州阿特斯阳光电力科技有限公司 Back contact battery and preparation method thereof
CN115312608A (en) * 2022-08-26 2022-11-08 三一集团有限公司 Passivation contact structure, solar cell and preparation method
WO2023284771A1 (en) * 2021-07-14 2023-01-19 天合光能股份有限公司 Selective passivated contact cell and preparation method therefor
CN115692534A (en) * 2022-12-14 2023-02-03 浙江晶科能源有限公司 Solar cell and photovoltaic module
CN115985981A (en) * 2023-02-22 2023-04-18 浙江晶科能源有限公司 Solar cell and its preparation method, photovoltaic module
WO2023167385A1 (en) 2022-03-03 2023-09-07 샹라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 Solar cell and manufacturing method therefor
CN117317041A (en) * 2023-11-29 2023-12-29 浙江晶科能源有限公司 Solar cell and photovoltaic module
EP4300599A1 (en) * 2022-06-27 2024-01-03 Zhejiang Jinko Solar Co., Ltd. Solar cell and photovoltaic module
JP7445053B1 (en) 2023-02-08 2024-03-06 ジョジアン ジンコ ソーラー カンパニー リミテッド Solar cells and their manufacturing methods, photovoltaic modules
CN118367039A (en) * 2024-06-19 2024-07-19 天合光能股份有限公司 Solar cell and method for manufacturing solar cell
EP4333080A4 (en) * 2021-04-30 2024-10-09 Jolywood (Taizhou) Solar Technology Co., Ltd. CONTACT STRUCTURE APPLIED TO TUNNEL TYPE SOLAR CELL, SOLAR CELL HAVING CONTACT STRUCTURE AND MANUFACTURING METHOD THEREFOR
JP7597968B1 (en) 2023-12-15 2024-12-10 ジョジアン ジンコ ソーラー カンパニー リミテッド Solar Cells and Photovoltaic Modules
US12176448B2 (en) 2022-09-28 2024-12-24 Zhejiang Jinko Solar Co., Ltd. Photovoltaic cell and photovoltaic module
US12216041B2 (en) 2022-05-31 2025-02-04 Saudi Arabian Oil Company Method to detect diesel in fluid samples using partially dissolvable cuvettes
EP4525055A1 (en) * 2023-09-15 2025-03-19 Jinko Solar Co., Ltd Solar cell and photovoltaic module
US12342657B1 (en) 2023-12-15 2025-06-24 Zhejiang Jinko Solar Co., Ltd. Solar cell, method for preparing the same, and photovoltaic module

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022058069A (en) * 2020-09-30 2022-04-11 ジョジアン ジンコ ソーラー カンパニー リミテッド Solar cells and solar cell modules
US11588065B2 (en) * 2020-09-30 2023-02-21 Zhejiang Jinko Solar Co., Ltd Solar cell and photovoltaic module
US12015095B2 (en) * 2020-09-30 2024-06-18 Zhejiang Jinko Solar Co., Ltd Solar cell and photovoltaic module
US20220302334A1 (en) * 2020-09-30 2022-09-22 Zhejiang Jinko Solar Co., Ltd Solar Cell And Photovoltaic Module
US11387376B2 (en) * 2020-09-30 2022-07-12 Zhejiang Jinko Solar Co., Ltd Solar cell and photovoltaic module
CN112349798A (en) * 2020-10-27 2021-02-09 浙江晶科能源有限公司 Solar cell and method for manufacturing same
CN112349798B (en) * 2020-10-27 2024-03-08 浙江晶科能源有限公司 Solar cells and manufacturing methods
US11450775B2 (en) 2020-11-19 2022-09-20 Jinko Green Energy (shanghai) Management Co., Ltd. Solar cell and method for producing same
EP4099400A1 (en) * 2020-11-19 2022-12-07 Jinko Green Energy (Shanghai) Management Co., Ltd Solar cell and method for producing same
US11990554B2 (en) 2020-11-19 2024-05-21 Jinko Green Energy (shanghai) Management Co., Ltd. Solar cell and method for producing same
CN112466961B (en) * 2020-11-19 2024-05-10 晶科绿能(上海)管理有限公司 Solar cell and method for manufacturing the same
JP2022081367A (en) * 2020-11-19 2022-05-31 晶科▲緑▼能(上海)管理有限公司 Solar cells and their manufacturing methods
CN112466961A (en) * 2020-11-19 2021-03-09 晶科绿能(上海)管理有限公司 Solar cell and method for manufacturing same
AU2022202235B2 (en) * 2020-11-19 2023-05-18 Jinko Solar Co., Ltd. Solar cell and method for producing same
CN114613865A (en) * 2020-11-25 2022-06-10 嘉兴阿特斯技术研究院有限公司 Solar cell and preparation method thereof
CN114613866A (en) * 2020-11-25 2022-06-10 嘉兴阿特斯技术研究院有限公司 Solar cell and preparation method thereof
CN114765224A (en) * 2020-12-30 2022-07-19 苏州阿特斯阳光电力科技有限公司 Back contact battery and preparation method thereof
EP4333080A4 (en) * 2021-04-30 2024-10-09 Jolywood (Taizhou) Solar Technology Co., Ltd. CONTACT STRUCTURE APPLIED TO TUNNEL TYPE SOLAR CELL, SOLAR CELL HAVING CONTACT STRUCTURE AND MANUFACTURING METHOD THEREFOR
JP7674515B2 (en) 2021-07-14 2025-05-09 トリナ・ソーラー・カンパニー・リミテッド Selective passivation contact battery and method for producing same
WO2023284771A1 (en) * 2021-07-14 2023-01-19 天合光能股份有限公司 Selective passivated contact cell and preparation method therefor
EP4318599A4 (en) * 2021-07-14 2025-04-09 Trina Solar Co., Ltd Selective passivated contact cell and preparation method therefor
AU2022310239B2 (en) * 2021-07-14 2025-04-24 Trina Solar Co., Ltd Selective passivated contact cell and preparation method therefor
JP2024517203A (en) * 2021-07-14 2024-04-19 トリナ・ソーラー・カンパニー・リミテッド Selective passivation contact battery and method for producing same
CN115700925A (en) * 2021-07-14 2023-02-07 天合光能股份有限公司 A kind of selective passivation contact battery and preparation method thereof
WO2023167385A1 (en) 2022-03-03 2023-09-07 샹라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 Solar cell and manufacturing method therefor
EP4328980A4 (en) * 2022-03-03 2025-04-09 JingAo Solar Co., Ltd. SOLAR CELL AND ASSOCIATED MANUFACTURING METHOD
JP2024511940A (en) * 2022-03-03 2024-03-18 シャンラオ シンユエン ユエドン テクノロジー デベロップメント シーオー.,エルティーディー Solar cells and their manufacturing method
US12216041B2 (en) 2022-05-31 2025-02-04 Saudi Arabian Oil Company Method to detect diesel in fluid samples using partially dissolvable cuvettes
AU2023200098B2 (en) * 2022-06-27 2024-04-04 Jinko Solar Co., Ltd. Solar cell and photovoltaic module
NL2034431A (en) * 2022-06-27 2024-01-08 Zhejiang Jinko Solar Co Ltd Solar cell and photovoltaic module
EP4300599A1 (en) * 2022-06-27 2024-01-03 Zhejiang Jinko Solar Co., Ltd. Solar cell and photovoltaic module
CN115312608A (en) * 2022-08-26 2022-11-08 三一集团有限公司 Passivation contact structure, solar cell and preparation method
US12176448B2 (en) 2022-09-28 2024-12-24 Zhejiang Jinko Solar Co., Ltd. Photovoltaic cell and photovoltaic module
CN115692534A (en) * 2022-12-14 2023-02-03 浙江晶科能源有限公司 Solar cell and photovoltaic module
JP7445053B1 (en) 2023-02-08 2024-03-06 ジョジアン ジンコ ソーラー カンパニー リミテッド Solar cells and their manufacturing methods, photovoltaic modules
JP2024112747A (en) * 2023-02-08 2024-08-21 ジョジアン ジンコ ソーラー カンパニー リミテッド Solar cell and its manufacturing method, photovoltaic module
US12364053B2 (en) 2023-02-08 2025-07-15 Zhejiang Jinko Solar Co., Ltd. Solar cell and method for manufacturing solar cell, and photovoltaic module
US12183841B2 (en) 2023-02-22 2024-12-31 Zhejiang Jinko Solar Co., Ltd. Solar cell and manufacturing method thereof, and photovoltaic module
CN115985981A (en) * 2023-02-22 2023-04-18 浙江晶科能源有限公司 Solar cell and its preparation method, photovoltaic module
EP4525055A1 (en) * 2023-09-15 2025-03-19 Jinko Solar Co., Ltd Solar cell and photovoltaic module
CN117317041A (en) * 2023-11-29 2023-12-29 浙江晶科能源有限公司 Solar cell and photovoltaic module
JP7597968B1 (en) 2023-12-15 2024-12-10 ジョジアン ジンコ ソーラー カンパニー リミテッド Solar Cells and Photovoltaic Modules
US12278303B1 (en) 2023-12-15 2025-04-15 Zhejiang Jinko Solar Co., Ltd. Solar cell and photovoltaic module
US12342657B1 (en) 2023-12-15 2025-06-24 Zhejiang Jinko Solar Co., Ltd. Solar cell, method for preparing the same, and photovoltaic module
JP2025096094A (en) * 2023-12-15 2025-06-26 ジョジアン ジンコ ソーラー カンパニー リミテッド Solar Cells and Photovoltaic Modules
CN118367039B (en) * 2024-06-19 2025-03-18 天合光能股份有限公司 Solar cell and method for manufacturing solar cell
CN118367039A (en) * 2024-06-19 2024-07-19 天合光能股份有限公司 Solar cell and method for manufacturing solar cell

Similar Documents

Publication Publication Date Title
CN210897294U (en) Solar cell
CN112201701B (en) Solar cell and photovoltaic module
CN110137274B (en) P-type efficient battery with double-sided passivation contact and preparation method thereof
CN210926046U (en) Solar cell
CN109244194B (en) A preparation method of low-cost p-type all-back-electrode crystalline silicon solar cell
CN109585578A (en) A kind of back junction solar battery and preparation method thereof
TW201917904A (en) Solar cell
CN104993019A (en) Preparation method of localized back contact solar cell
CN114613865A (en) Solar cell and preparation method thereof
CN103594529A (en) MWT and passivation combined crystal silicon solar cell and manufacturing method thereof
CN213519984U (en) Solar battery
CN112820793A (en) Solar cell and preparation method thereof
CN209912878U (en) Passivation solar cell of multilayer tunnel junction
CN114613866A (en) Solar cell and preparation method thereof
WO2023284771A1 (en) Selective passivated contact cell and preparation method therefor
CN110061072A (en) TBC solar cell structure and preparation method thereof
CN210866196U (en) Photovoltaic cell local tunneling oxide layer passivation contact structure and photovoltaic module
CN112951927A (en) Preparation method of solar cell
CN103618033A (en) Silk-screen printing production manufacturing method of passivated-back solar cell
CN104269457A (en) n-type IBC silicon solar cell manufacturing method based on ion implantation technology
CN111477720A (en) A kind of N-type back junction solar cell with passivated contact and preparation method thereof
CN219371038U (en) Solar cell back structure and N-TBC back contact solar cell
CN207489888U (en) A kind of P-type crystalline silicon solar cell
CN110021673A (en) A kind of double-sided solar battery and preparation method thereof
CN103594530A (en) Crystalline silicon solar cell combining obverse side thermal oxidation, selective emitter junctions and reverse passivation and manufacturing method thereof

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: No. 199, deer mountain road, Suzhou high tech Zone, Jiangsu Province

Patentee after: CSI Cells Co.,Ltd.

Patentee after: Atlas sunshine Power Group Co.,Ltd.

Address before: No. 199, deer mountain road, Suzhou high tech Zone, Jiangsu Province

Patentee before: CSI Cells Co.,Ltd.

Patentee before: CSI SOLAR POWER GROUP Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230821

Address after: 501-389, 5th Floor, Building D, Zhigu Technology Complex, No. 186 Yangzijiang Middle Road, Yangzhou Economic Development Zone, Jiangsu Province, 225000

Patentee after: Yangzhou Ates Solar Cell Co.,Ltd.

Patentee after: CSI CELLS Co.,Ltd.

Patentee after: Atlas sunshine Power Group Co.,Ltd.

Address before: No. 199, deer mountain road, Suzhou high tech Zone, Jiangsu Province

Patentee before: CSI CELLS Co.,Ltd.

Patentee before: Atlas sunshine Power Group Co.,Ltd.