CN210897294U - Solar cell - Google Patents
Solar cell Download PDFInfo
- Publication number
- CN210897294U CN210897294U CN201921837898.2U CN201921837898U CN210897294U CN 210897294 U CN210897294 U CN 210897294U CN 201921837898 U CN201921837898 U CN 201921837898U CN 210897294 U CN210897294 U CN 210897294U
- Authority
- CN
- China
- Prior art keywords
- layer
- solar cell
- semiconductor substrate
- thickness
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 41
- 239000004065 semiconductor Substances 0.000 claims abstract description 40
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 230000005641 tunneling Effects 0.000 claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- 238000002161 passivation Methods 0.000 claims description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 2
- 229910052593 corundum Inorganic materials 0.000 claims 2
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 2
- 230000003667 anti-reflective effect Effects 0.000 claims 1
- 238000010030 laminating Methods 0.000 claims 1
- 229920005591 polysilicon Polymers 0.000 abstract description 35
- 230000031700 light absorption Effects 0.000 abstract description 8
- 230000006798 recombination Effects 0.000 abstract description 5
- 238000005215 recombination Methods 0.000 abstract description 5
- 210000004027 cell Anatomy 0.000 description 34
- 238000009792 diffusion process Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000013082 photovoltaic technology Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本申请提供一种太阳能电池,包括半导体基片、金属电极及依次层叠设置在所述半导体基片一侧表面的隧穿层与掺杂多晶硅层,所述掺杂多晶硅层具有第一部分与第二部分,所述金属电极与所述第一部分相接触,所述第一部分的厚度大于所述第二部分的厚度,且所述第一部分的掺杂浓度大于第二部分的掺杂浓度。所述第一部分厚度设置较大且掺杂浓度较高,能够有效降低金属电极区域的复合损失;所述第二部分厚度较小且掺杂浓度较低,对半导体基片的非电极区域进行钝化的同时,减少对光线的吸收。
The present application provides a solar cell, comprising a semiconductor substrate, a metal electrode, a tunneling layer and a doped polysilicon layer sequentially stacked on one surface of the semiconductor substrate, the doped polysilicon layer having a first part and a second part part, the metal electrode is in contact with the first part, the thickness of the first part is larger than the thickness of the second part, and the doping concentration of the first part is larger than that of the second part. The thickness of the first part is set to be large and the doping concentration is high, which can effectively reduce the recombination loss of the metal electrode region; the thickness of the second part is small and the doping concentration is low, which can passivate the non-electrode region of the semiconductor substrate. At the same time, reduce the absorption of light.
Description
技术领域technical field
本申请涉及太阳能发电技术领域,特别涉及一种太阳能电池。The present application relates to the technical field of solar power generation, and in particular, to a solar cell.
背景技术Background technique
随着光伏技术的快速发展,市场对于高效电池与组件的需求也不断增长。就晶硅电池而言,为减小电池表面复合损失,降低金属电极的接触电阻,业内公开了一种采用隧穿氧化层、多晶硅膜层相结合的钝化结构。With the rapid development of photovoltaic technology, the market demand for high-efficiency cells and modules is also growing. As far as crystalline silicon cells are concerned, in order to reduce the recombination loss on the cell surface and reduce the contact resistance of metal electrodes, a passivation structure combining a tunnel oxide layer and a polysilicon film layer is disclosed in the industry.
但上述钝化结构中的多晶硅膜层具有较强的光吸收系数,因此会降低电池的短路电流,从而限制电池效率的提升。目前,主要通过尽量降低多晶硅膜层的厚度,以减少电流损失;抑或仅在电池的金属电极区域设置上述隧穿氧化层、多晶硅膜层,难以兼顾电池的光线吸收与钝化效果。业内还公开了在金属电极区域与非电极区域设置厚度不同的多晶硅膜层的方案,通过减小非电极区域的多晶硅膜层厚度,降低非电极区域的光线损失。但为保证膜层结构的均匀稳定性,非电极区域的多晶硅膜层厚度并不能无限减小,在现有工艺基础下,如何进一步优化电池结构、提高电池转换效率成为业内亟需解决的技术问题。However, the polysilicon film layer in the above-mentioned passivation structure has a strong light absorption coefficient, which reduces the short-circuit current of the battery, thereby limiting the improvement of the battery efficiency. At present, the current loss is mainly reduced by reducing the thickness of the polysilicon film layer as much as possible; or the above-mentioned tunnel oxide layer and polysilicon film layer are only provided in the metal electrode area of the battery, which is difficult to take into account the light absorption and passivation effects of the battery. The industry also discloses a scheme of disposing polysilicon layers with different thicknesses in the metal electrode area and the non-electrode area, and reducing the light loss in the non-electrode area by reducing the thickness of the polysilicon layer in the non-electrode area. However, in order to ensure the uniformity and stability of the film structure, the thickness of the polysilicon film in the non-electrode area cannot be reduced infinitely. Under the existing process, how to further optimize the cell structure and improve the cell conversion efficiency has become an urgent technical problem to be solved in the industry. .
实用新型内容Utility model content
本申请目的在于提供一种太阳能电池,能改善半导体基片的表面钝化性能,保证光线吸收,提高转换效率。The purpose of the present application is to provide a solar cell, which can improve the surface passivation performance of a semiconductor substrate, ensure light absorption, and improve conversion efficiency.
为实现上述目的,本申请实施例提供一种太阳能电池,包括半导体基片、金属电极及依次层叠设置在所述半导体基片一侧表面的隧穿层与掺杂多晶硅层,所述掺杂多晶硅层具有第一部分与第二部分,所述金属电极与所述第一部分相接触,所述第一部分的厚度大于所述第二部分的厚度,且所述第一部分的掺杂浓度大于第二部分的掺杂浓度。In order to achieve the above purpose, an embodiment of the present application provides a solar cell, comprising a semiconductor substrate, a metal electrode, a tunneling layer and a doped polysilicon layer sequentially stacked on one surface of the semiconductor substrate, the doped polysilicon The layer has a first portion and a second portion, the metal electrode is in contact with the first portion, the thickness of the first portion is greater than the thickness of the second portion, and the doping concentration of the first portion is greater than that of the second portion. doping concentration.
作为本申请实施例的进一步改进,所述第一部分的掺杂浓度为1E20~8E20cm-3;所述第二部分的掺杂浓度为2E19~8E19cm-3。As a further improvement of the embodiments of the present application, the doping concentration of the first part is 1E20-8E20 cm -3 ; the doping concentration of the second part is 2E19-8E19 cm -3 .
作为本申请实施例的进一步改进,第一部分的厚度设置为80~300nm,第二部分的厚度设置为10~80nm。As a further improvement of the embodiments of the present application, the thickness of the first part is set to be 80-300 nm, and the thickness of the second part is set to be 10-80 nm.
作为本申请实施例的进一步改进,所述隧穿层设置为氧化硅膜或氮氧化硅膜或由氧化硅膜与氮氧化硅膜两者相互层叠得到的复合膜,所述隧穿层的厚度设置为0.5~3nm。As a further improvement of the embodiments of the present application, the tunneling layer is set to be a silicon oxide film or a silicon oxynitride film or a composite film obtained by stacking a silicon oxide film and a silicon oxynitride film on each other. The thickness of the tunneling layer is Set to 0.5 to 3 nm.
作为本申请实施例的进一步改进,所述太阳能电池还包括设置在所述掺杂多晶硅层背离半导体基片一侧表面上的减反射层,所述金属电极穿透所述减反射层并与所述第一部分相接触。As a further improvement of the embodiments of the present application, the solar cell further includes an anti-reflection layer disposed on the surface of the doped polysilicon layer on the side facing away from the semiconductor substrate, and the metal electrode penetrates the anti-reflection layer and communicates with the anti-reflection layer. contact with the first part.
作为本申请实施例的进一步改进,所述减反射层包括第一减反射膜层、层叠设置在第一减反射膜层背离所述半导体基片一侧表面上的第二减反射膜层,所述第一减反射膜层的厚度小于第二减反射膜层的厚度,且所述第一减反射膜层的折射率大于第二减反射膜层的折射率。As a further improvement of the embodiments of the present application, the anti-reflection layer includes a first anti-reflection film layer and a second anti-reflection film layer stacked on the surface of the first anti-reflection film layer on the side facing away from the semiconductor substrate. The thickness of the first anti-reflection film layer is smaller than the thickness of the second anti-reflection film layer, and the refractive index of the first anti-reflection film layer is greater than the refractive index of the second anti-reflection film layer.
作为本申请实施例的进一步改进,所述隧穿层、掺杂多晶硅层依次层叠设置在所述半导体基片的正面;所述太阳能电池还包括形成于所述半导体基片背面的背钝化层、穿过所述背钝化层并与该半导体基片相接触的背面电极。As a further improvement of the embodiments of the present application, the tunneling layer and the doped polysilicon layer are sequentially stacked on the front side of the semiconductor substrate; the solar cell further includes a back passivation layer formed on the back side of the semiconductor substrate , a back electrode passing through the back passivation layer and in contact with the semiconductor substrate.
作为本申请实施例的进一步改进,所述半导体基片为P型硅片;所述背钝化层设置为Al2O3膜层,所述Al2O3膜层的厚度设置为3~20nm。As a further improvement of the embodiments of the present application, the semiconductor substrate is a P-type silicon wafer; the back passivation layer is set to be an Al 2 O 3 film layer, and the thickness of the Al 2 O 3 film layer is set to 3-20 nm .
作为本申请实施例的进一步改进,所述太阳能电池设置为双面电池,所述太阳能电池的背面依次层叠设置有背面隧穿层、背面掺杂多晶硅层与背面减反射层。As a further improvement of the embodiments of the present application, the solar cell is configured as a double-sided cell, and the backside of the solar cell is sequentially provided with a backside tunneling layer, a backside doped polysilicon layer and a backside anti-reflection layer.
作为本申请实施例的进一步改进,所述背面掺杂多晶硅层具有第三部分与第四部分,所述第三部分的厚度大于所述第四部分的厚度,且所述第三部分的掺杂浓度大于第四部分的掺杂浓度;所述太阳能电池还包括穿透所述背面减反射层并与所述第三部分相接触的背面电极。As a further improvement of the embodiment of the present application, the backside doped polysilicon layer has a third part and a fourth part, the thickness of the third part is greater than the thickness of the fourth part, and the doping of the third part The concentration is greater than the doping concentration of the fourth part; the solar cell further includes a back surface electrode penetrating the back surface anti-reflection layer and in contact with the third part.
本申请的有益效果是:采用本申请太阳能电池,通过对所述掺杂多晶硅层的结构进行优化设计,所述第一部分厚度设置较大且掺杂浓度较高,能够有效降低金属电极区域的复合损失与接触电阻;所述第二部分厚度较小且掺杂浓度较低,在对半导体基片的非电极区域进行钝化的同时,减少对光线的吸收,利于该太阳能电池转换效率的提升。The beneficial effects of the present application are: using the solar cell of the present application, by optimizing the structure of the doped polysilicon layer, the thickness of the first part is set larger and the doping concentration is higher, which can effectively reduce the recombination of the metal electrode region. loss and contact resistance; the second part has a small thickness and a low doping concentration, which reduces the absorption of light while passivating the non-electrode region of the semiconductor substrate, which is beneficial to the improvement of the conversion efficiency of the solar cell.
附图说明Description of drawings
图1是本申请太阳能电池第一实施例的结构示意图;1 is a schematic structural diagram of a first embodiment of a solar cell of the present application;
图2是本申请太阳能电池第二实施例的结构示意图;2 is a schematic structural diagram of a second embodiment of the solar cell of the present application;
图3是本申请太阳能电池第三实施例的结构示意图;3 is a schematic structural diagram of a third embodiment of the solar cell of the present application;
图4是本申请太阳能电池第四实施例的结构示意图。FIG. 4 is a schematic structural diagram of a fourth embodiment of the solar cell of the present application.
10-半导体基片;11-扩散层;20-隧穿层;30-掺杂多晶硅层;31-第一部分;32-第二部分;20'-背面隧穿层;30'-背面掺杂多晶硅层;33-第三部分;34-第四部分;40-减反射层;50-金属电极;60-背钝化层;70-背面电极,80-背面减反射层。10-semiconductor substrate; 11-diffusion layer; 20-tunneling layer; 30-doped polysilicon layer; 31-first part; 32-second part; 20'-backside tunneling layer; 30'-backside doped polysilicon layer; 33-third part; 34-fourth part; 40-anti-reflection layer; 50-metal electrode; 60-back passivation layer; 70-back electrode, 80-back anti-reflection layer.
具体实施方式Detailed ways
以下将结合附图所示的实施方式对本申请进行详细描述。但该实施方式并不限制本申请,本领域的普通技术人员根据该实施方式所做出的结构、方法、或功能上的变换均包含在本申请的保护范围内。The present application will be described in detail below with reference to the embodiments shown in the accompanying drawings. However, this embodiment does not limit the present application, and the structural, method, or functional transformations made by those of ordinary skill in the art according to this embodiment are all included in the protection scope of the present application.
参图1所示,本申请提供的太阳能电池100包括半导体基片10、依次层叠设置在所述半导体基片10一侧表面的隧穿层20、掺杂多晶硅层30、减反射层40以及穿透所述减反射层40并与掺杂多晶硅层30相接触的金属电极50。1 , the
所述隧穿层20能够隔绝金属电极50与半导体基片10接触,且不影响电流传递,其与掺杂多晶硅层30相结合,改善半导体基片10的表面钝化效果,降低反向饱和电流J0。此处,所述隧穿层20设置为氧化硅膜或氮氧化硅膜或由氧化硅膜与氮氧化硅膜两者相互层叠得到的复合膜。所述隧穿层20的厚度设置为0.5~3nm,更优选地,所述隧穿层20的厚度设置为1~2nm。The
所述掺杂多晶硅层30具有第一部分31及位于第一部分31旁侧的第二部分32,所述金属电极50设置在所述第一部分31上。所述第一部分31的厚度大于第二部分32的厚度,且所述第一部分31的掺杂浓度大于第二部分32的掺杂浓度,以使得所述第二部分32对入射光线的吸收小于第一部分31对入射光线的吸收。换言之,所述第一部分31设置在所述半导体基片10的电极区域,其位于所述金属电极50与隧穿层20之间;所述第二部分32则设置在该半导体基片10的非电极区域。针对电极区域与非电极区域,所述掺杂多晶硅层30通过厚度与掺杂浓度的区分设计,既能降低所述金属电极50位置的复合损失与接触电阻,又能减小非电极区域的吸光影响。The doped
所述第一部分31的厚度可设置为80~300nm;所述第二部分32通常采用局部刻蚀得到,在现有工艺条件下若需保证膜层的均匀稳定性,所述第二部分32的厚度优选为10~80nm。并且,所述第一部分31的掺杂浓度为1E20~8E20cm-3;所述第二部分32的掺杂浓度为2E19~8E19cm-3。实际制备过程中,我们可将所述第一部分31的厚度设置为80nm、120nm、170nm或200nm;将所述第二部分32的厚度设置为10nm、20nm或30nm。需要说明的是,所述第一部分31、第二部分32的设置厚度并非严格意义的精确取值点,而是根据现场工艺控制相应的膜层厚度处于相应的设定厚度的合理波动范围内。The thickness of the first part 31 can be set to 80-300 nm; the
为提高所述减反射层40的膜层性能与减反射效果,同时兼顾该减反射层40的“可烧穿”性能,通过气体流量、反应时间、温度等工艺参数调节,所述减反射层40可设置呈层叠或渐变的膜层结构。此处,所述减反射层40具有第一减反射膜层、层叠设置在第一减反射膜层背离所述半导体基片10一侧表面上的第二减反射膜层,所述第一减反射膜层的厚度小于第二减反射膜层的厚度,且所述第一减反射膜层的折射率大于第二减反射膜层的折射率。所述减反射层40由若干折射率、厚度各不相同的氮化硅膜层构成,厚度优选为70~85nm。当然,所述减反射层40中亦可设置折射率相对较小的氧化硅、氮氧化硅膜层,此时,所述减反射层40的厚度需适当增加,优选为80~100nm。In order to improve the film performance and anti-reflection effect of the
本实施例中,所述半导体基片10设置为P型硅片,且其电阻率设置为0.5~6Ω·cm。所述隧穿层20、掺杂多晶硅层30、减反射层40依次设置在所述半导体基片10的正面,所述金属电极50即为该太阳能电池100的正面电极。所述金属电极50优选为银电极。In this embodiment, the
所述太阳能电池100还包括形成于所述半导体基片10背面的背钝化层60、穿过所述背钝化层60并与该半导体基片10相接触的背面电极70。其中,所述背钝化层60可设置为Al2O3膜层,所述Al2O3膜层的厚度设置为3~20nm。此处,所述太阳能电池100设置为双面电池,所述太阳能电池100还包括层叠设置在所述背钝化层60背离所述半导体基片10一侧表面上的背面减反射层80,所述背面减反射层80同样可采用氮化硅膜层,且所述背面减反射层80的厚度设置为60~150nm。The
参图2所示,在本申请的另一实施方式中,所述半导体基片10在表面处理完成后,先进行正面扩散得到相应的扩散层11,所述扩散层11能够避免掺杂多晶硅层30损伤而影响表面电流的传输,相应的太阳能电池100结构更为稳定可靠。实际制备中,采用HF溶液对扩散完成后的半导体基片10进行清洗、干燥,再于该扩散层11上依次制得所述隧穿层20与掺杂多晶硅层30,所述扩散层11的掺杂类型与所述掺杂多晶硅层30的掺杂类型相一致。Referring to FIG. 2 , in another embodiment of the present application, after the surface treatment of the
参图3所示,在本申请的另一实施例中,所述太阳能电池100设置为双面电池,所述太阳能电池100的背面还依次层叠设置有背面隧穿层20'、背面掺杂多晶硅层30'、背面减反射层80。所述背面掺杂多晶硅层30'具有第三部分33与第四部分34,所述第三部分33的厚度大于所述第四部分34的厚度,且所述第三部分33的掺杂浓度大于第四部分34的掺杂浓度,所述背面电极70穿透所述背面减反射层80并与所述第三部分33相接触。所述背面掺杂多晶硅层30'与掺杂多晶硅层30的掺杂类型相反,上述设计实现所述半导体基片10背面的钝化的同时,减小对背面吸光的影响。Referring to FIG. 3 , in another embodiment of the present application, the
参图4所示,就双面电池而言,也可以仅仅在所述半导体基片10的背表面设置上述背面隧穿层20'、背面掺杂多晶硅层30'。所述背面电极70穿透背面减反射层80并与所述背面掺杂多晶硅层30'相接触;所述半导体基片10的正面则形成有扩散层11,所述金属电极50穿透所述减反射层40并与所述扩散层11形成欧姆接触。当然,所述扩散层11与减反射层40直接也还可以设置正面钝化膜层,此处不再赘述。As shown in FIG. 4 , for a double-sided cell, the above-mentioned back-
综上所述,本申请太阳能电池100通过隧穿层20、掺杂多晶硅层30对半导体基片10表面形成有效钝化。所述第一部分31较厚且掺杂浓度较高,能够有效降低金属电极50区域的复合损失与接触电阻;所述第二部分32厚度较小且掺杂浓度较低,在对半导体基片10的非电极区域进行钝化的同时,减少对光线的吸收,利于该太阳能电池100转换效率的提升。To sum up, in the
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。It should be understood that although this specification is described in terms of embodiments, not every embodiment only includes an independent technical solution, and this description in the specification is only for the sake of clarity, and those skilled in the art should take the specification as a whole, and each The technical solutions in the embodiments can also be appropriately combined to form other embodiments that can be understood by those skilled in the art.
上文所列出的一系列的详细说明仅仅是针对本申请的可行性实施方式的具体说明,它们并非用以限制本申请的保护范围,凡未脱离本申请技艺精神所作的等效实施方式或变更均应包含在本申请的保护范围之内。The series of detailed descriptions listed above are only specific descriptions for the feasible embodiments of the present application, and they are not intended to limit the protection scope of the present application. Changes should be included within the scope of protection of this application.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921837898.2U CN210897294U (en) | 2019-10-29 | 2019-10-29 | Solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921837898.2U CN210897294U (en) | 2019-10-29 | 2019-10-29 | Solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
CN210897294U true CN210897294U (en) | 2020-06-30 |
Family
ID=71324366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921837898.2U Active CN210897294U (en) | 2019-10-29 | 2019-10-29 | Solar cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN210897294U (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112349798A (en) * | 2020-10-27 | 2021-02-09 | 浙江晶科能源有限公司 | Solar cell and method for manufacturing same |
CN112466961A (en) * | 2020-11-19 | 2021-03-09 | 晶科绿能(上海)管理有限公司 | Solar cell and method for manufacturing same |
JP2022058069A (en) * | 2020-09-30 | 2022-04-11 | ジョジアン ジンコ ソーラー カンパニー リミテッド | Solar cells and solar cell modules |
CN114613866A (en) * | 2020-11-25 | 2022-06-10 | 嘉兴阿特斯技术研究院有限公司 | Solar cell and preparation method thereof |
CN114613865A (en) * | 2020-11-25 | 2022-06-10 | 嘉兴阿特斯技术研究院有限公司 | Solar cell and preparation method thereof |
CN114765224A (en) * | 2020-12-30 | 2022-07-19 | 苏州阿特斯阳光电力科技有限公司 | Back contact battery and preparation method thereof |
CN115312608A (en) * | 2022-08-26 | 2022-11-08 | 三一集团有限公司 | Passivation contact structure, solar cell and preparation method |
WO2023284771A1 (en) * | 2021-07-14 | 2023-01-19 | 天合光能股份有限公司 | Selective passivated contact cell and preparation method therefor |
CN115692534A (en) * | 2022-12-14 | 2023-02-03 | 浙江晶科能源有限公司 | Solar cell and photovoltaic module |
CN115985981A (en) * | 2023-02-22 | 2023-04-18 | 浙江晶科能源有限公司 | Solar cell and its preparation method, photovoltaic module |
WO2023167385A1 (en) | 2022-03-03 | 2023-09-07 | 샹라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 | Solar cell and manufacturing method therefor |
CN117317041A (en) * | 2023-11-29 | 2023-12-29 | 浙江晶科能源有限公司 | Solar cell and photovoltaic module |
EP4300599A1 (en) * | 2022-06-27 | 2024-01-03 | Zhejiang Jinko Solar Co., Ltd. | Solar cell and photovoltaic module |
JP7445053B1 (en) | 2023-02-08 | 2024-03-06 | ジョジアン ジンコ ソーラー カンパニー リミテッド | Solar cells and their manufacturing methods, photovoltaic modules |
CN118367039A (en) * | 2024-06-19 | 2024-07-19 | 天合光能股份有限公司 | Solar cell and method for manufacturing solar cell |
EP4333080A4 (en) * | 2021-04-30 | 2024-10-09 | Jolywood (Taizhou) Solar Technology Co., Ltd. | CONTACT STRUCTURE APPLIED TO TUNNEL TYPE SOLAR CELL, SOLAR CELL HAVING CONTACT STRUCTURE AND MANUFACTURING METHOD THEREFOR |
JP7597968B1 (en) | 2023-12-15 | 2024-12-10 | ジョジアン ジンコ ソーラー カンパニー リミテッド | Solar Cells and Photovoltaic Modules |
US12176448B2 (en) | 2022-09-28 | 2024-12-24 | Zhejiang Jinko Solar Co., Ltd. | Photovoltaic cell and photovoltaic module |
US12216041B2 (en) | 2022-05-31 | 2025-02-04 | Saudi Arabian Oil Company | Method to detect diesel in fluid samples using partially dissolvable cuvettes |
EP4525055A1 (en) * | 2023-09-15 | 2025-03-19 | Jinko Solar Co., Ltd | Solar cell and photovoltaic module |
US12342657B1 (en) | 2023-12-15 | 2025-06-24 | Zhejiang Jinko Solar Co., Ltd. | Solar cell, method for preparing the same, and photovoltaic module |
-
2019
- 2019-10-29 CN CN201921837898.2U patent/CN210897294U/en active Active
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022058069A (en) * | 2020-09-30 | 2022-04-11 | ジョジアン ジンコ ソーラー カンパニー リミテッド | Solar cells and solar cell modules |
US11588065B2 (en) * | 2020-09-30 | 2023-02-21 | Zhejiang Jinko Solar Co., Ltd | Solar cell and photovoltaic module |
US12015095B2 (en) * | 2020-09-30 | 2024-06-18 | Zhejiang Jinko Solar Co., Ltd | Solar cell and photovoltaic module |
US20220302334A1 (en) * | 2020-09-30 | 2022-09-22 | Zhejiang Jinko Solar Co., Ltd | Solar Cell And Photovoltaic Module |
US11387376B2 (en) * | 2020-09-30 | 2022-07-12 | Zhejiang Jinko Solar Co., Ltd | Solar cell and photovoltaic module |
CN112349798A (en) * | 2020-10-27 | 2021-02-09 | 浙江晶科能源有限公司 | Solar cell and method for manufacturing same |
CN112349798B (en) * | 2020-10-27 | 2024-03-08 | 浙江晶科能源有限公司 | Solar cells and manufacturing methods |
US11450775B2 (en) | 2020-11-19 | 2022-09-20 | Jinko Green Energy (shanghai) Management Co., Ltd. | Solar cell and method for producing same |
EP4099400A1 (en) * | 2020-11-19 | 2022-12-07 | Jinko Green Energy (Shanghai) Management Co., Ltd | Solar cell and method for producing same |
US11990554B2 (en) | 2020-11-19 | 2024-05-21 | Jinko Green Energy (shanghai) Management Co., Ltd. | Solar cell and method for producing same |
CN112466961B (en) * | 2020-11-19 | 2024-05-10 | 晶科绿能(上海)管理有限公司 | Solar cell and method for manufacturing the same |
JP2022081367A (en) * | 2020-11-19 | 2022-05-31 | 晶科▲緑▼能(上海)管理有限公司 | Solar cells and their manufacturing methods |
CN112466961A (en) * | 2020-11-19 | 2021-03-09 | 晶科绿能(上海)管理有限公司 | Solar cell and method for manufacturing same |
AU2022202235B2 (en) * | 2020-11-19 | 2023-05-18 | Jinko Solar Co., Ltd. | Solar cell and method for producing same |
CN114613865A (en) * | 2020-11-25 | 2022-06-10 | 嘉兴阿特斯技术研究院有限公司 | Solar cell and preparation method thereof |
CN114613866A (en) * | 2020-11-25 | 2022-06-10 | 嘉兴阿特斯技术研究院有限公司 | Solar cell and preparation method thereof |
CN114765224A (en) * | 2020-12-30 | 2022-07-19 | 苏州阿特斯阳光电力科技有限公司 | Back contact battery and preparation method thereof |
EP4333080A4 (en) * | 2021-04-30 | 2024-10-09 | Jolywood (Taizhou) Solar Technology Co., Ltd. | CONTACT STRUCTURE APPLIED TO TUNNEL TYPE SOLAR CELL, SOLAR CELL HAVING CONTACT STRUCTURE AND MANUFACTURING METHOD THEREFOR |
JP7674515B2 (en) | 2021-07-14 | 2025-05-09 | トリナ・ソーラー・カンパニー・リミテッド | Selective passivation contact battery and method for producing same |
WO2023284771A1 (en) * | 2021-07-14 | 2023-01-19 | 天合光能股份有限公司 | Selective passivated contact cell and preparation method therefor |
EP4318599A4 (en) * | 2021-07-14 | 2025-04-09 | Trina Solar Co., Ltd | Selective passivated contact cell and preparation method therefor |
AU2022310239B2 (en) * | 2021-07-14 | 2025-04-24 | Trina Solar Co., Ltd | Selective passivated contact cell and preparation method therefor |
JP2024517203A (en) * | 2021-07-14 | 2024-04-19 | トリナ・ソーラー・カンパニー・リミテッド | Selective passivation contact battery and method for producing same |
CN115700925A (en) * | 2021-07-14 | 2023-02-07 | 天合光能股份有限公司 | A kind of selective passivation contact battery and preparation method thereof |
WO2023167385A1 (en) | 2022-03-03 | 2023-09-07 | 샹라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 | Solar cell and manufacturing method therefor |
EP4328980A4 (en) * | 2022-03-03 | 2025-04-09 | JingAo Solar Co., Ltd. | SOLAR CELL AND ASSOCIATED MANUFACTURING METHOD |
JP2024511940A (en) * | 2022-03-03 | 2024-03-18 | シャンラオ シンユエン ユエドン テクノロジー デベロップメント シーオー.,エルティーディー | Solar cells and their manufacturing method |
US12216041B2 (en) | 2022-05-31 | 2025-02-04 | Saudi Arabian Oil Company | Method to detect diesel in fluid samples using partially dissolvable cuvettes |
AU2023200098B2 (en) * | 2022-06-27 | 2024-04-04 | Jinko Solar Co., Ltd. | Solar cell and photovoltaic module |
NL2034431A (en) * | 2022-06-27 | 2024-01-08 | Zhejiang Jinko Solar Co Ltd | Solar cell and photovoltaic module |
EP4300599A1 (en) * | 2022-06-27 | 2024-01-03 | Zhejiang Jinko Solar Co., Ltd. | Solar cell and photovoltaic module |
CN115312608A (en) * | 2022-08-26 | 2022-11-08 | 三一集团有限公司 | Passivation contact structure, solar cell and preparation method |
US12176448B2 (en) | 2022-09-28 | 2024-12-24 | Zhejiang Jinko Solar Co., Ltd. | Photovoltaic cell and photovoltaic module |
CN115692534A (en) * | 2022-12-14 | 2023-02-03 | 浙江晶科能源有限公司 | Solar cell and photovoltaic module |
JP7445053B1 (en) | 2023-02-08 | 2024-03-06 | ジョジアン ジンコ ソーラー カンパニー リミテッド | Solar cells and their manufacturing methods, photovoltaic modules |
JP2024112747A (en) * | 2023-02-08 | 2024-08-21 | ジョジアン ジンコ ソーラー カンパニー リミテッド | Solar cell and its manufacturing method, photovoltaic module |
US12364053B2 (en) | 2023-02-08 | 2025-07-15 | Zhejiang Jinko Solar Co., Ltd. | Solar cell and method for manufacturing solar cell, and photovoltaic module |
US12183841B2 (en) | 2023-02-22 | 2024-12-31 | Zhejiang Jinko Solar Co., Ltd. | Solar cell and manufacturing method thereof, and photovoltaic module |
CN115985981A (en) * | 2023-02-22 | 2023-04-18 | 浙江晶科能源有限公司 | Solar cell and its preparation method, photovoltaic module |
EP4525055A1 (en) * | 2023-09-15 | 2025-03-19 | Jinko Solar Co., Ltd | Solar cell and photovoltaic module |
CN117317041A (en) * | 2023-11-29 | 2023-12-29 | 浙江晶科能源有限公司 | Solar cell and photovoltaic module |
JP7597968B1 (en) | 2023-12-15 | 2024-12-10 | ジョジアン ジンコ ソーラー カンパニー リミテッド | Solar Cells and Photovoltaic Modules |
US12278303B1 (en) | 2023-12-15 | 2025-04-15 | Zhejiang Jinko Solar Co., Ltd. | Solar cell and photovoltaic module |
US12342657B1 (en) | 2023-12-15 | 2025-06-24 | Zhejiang Jinko Solar Co., Ltd. | Solar cell, method for preparing the same, and photovoltaic module |
JP2025096094A (en) * | 2023-12-15 | 2025-06-26 | ジョジアン ジンコ ソーラー カンパニー リミテッド | Solar Cells and Photovoltaic Modules |
CN118367039B (en) * | 2024-06-19 | 2025-03-18 | 天合光能股份有限公司 | Solar cell and method for manufacturing solar cell |
CN118367039A (en) * | 2024-06-19 | 2024-07-19 | 天合光能股份有限公司 | Solar cell and method for manufacturing solar cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN210897294U (en) | Solar cell | |
CN112201701B (en) | Solar cell and photovoltaic module | |
CN110137274B (en) | P-type efficient battery with double-sided passivation contact and preparation method thereof | |
CN210926046U (en) | Solar cell | |
CN109244194B (en) | A preparation method of low-cost p-type all-back-electrode crystalline silicon solar cell | |
CN109585578A (en) | A kind of back junction solar battery and preparation method thereof | |
TW201917904A (en) | Solar cell | |
CN104993019A (en) | Preparation method of localized back contact solar cell | |
CN114613865A (en) | Solar cell and preparation method thereof | |
CN103594529A (en) | MWT and passivation combined crystal silicon solar cell and manufacturing method thereof | |
CN213519984U (en) | Solar battery | |
CN112820793A (en) | Solar cell and preparation method thereof | |
CN209912878U (en) | Passivation solar cell of multilayer tunnel junction | |
CN114613866A (en) | Solar cell and preparation method thereof | |
WO2023284771A1 (en) | Selective passivated contact cell and preparation method therefor | |
CN110061072A (en) | TBC solar cell structure and preparation method thereof | |
CN210866196U (en) | Photovoltaic cell local tunneling oxide layer passivation contact structure and photovoltaic module | |
CN112951927A (en) | Preparation method of solar cell | |
CN103618033A (en) | Silk-screen printing production manufacturing method of passivated-back solar cell | |
CN104269457A (en) | n-type IBC silicon solar cell manufacturing method based on ion implantation technology | |
CN111477720A (en) | A kind of N-type back junction solar cell with passivated contact and preparation method thereof | |
CN219371038U (en) | Solar cell back structure and N-TBC back contact solar cell | |
CN207489888U (en) | A kind of P-type crystalline silicon solar cell | |
CN110021673A (en) | A kind of double-sided solar battery and preparation method thereof | |
CN103594530A (en) | Crystalline silicon solar cell combining obverse side thermal oxidation, selective emitter junctions and reverse passivation and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: No. 199, deer mountain road, Suzhou high tech Zone, Jiangsu Province Patentee after: CSI Cells Co.,Ltd. Patentee after: Atlas sunshine Power Group Co.,Ltd. Address before: No. 199, deer mountain road, Suzhou high tech Zone, Jiangsu Province Patentee before: CSI Cells Co.,Ltd. Patentee before: CSI SOLAR POWER GROUP Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230821 Address after: 501-389, 5th Floor, Building D, Zhigu Technology Complex, No. 186 Yangzijiang Middle Road, Yangzhou Economic Development Zone, Jiangsu Province, 225000 Patentee after: Yangzhou Ates Solar Cell Co.,Ltd. Patentee after: CSI CELLS Co.,Ltd. Patentee after: Atlas sunshine Power Group Co.,Ltd. Address before: No. 199, deer mountain road, Suzhou high tech Zone, Jiangsu Province Patentee before: CSI CELLS Co.,Ltd. Patentee before: Atlas sunshine Power Group Co.,Ltd. |