CN104269457A - n-type IBC silicon solar cell manufacturing method based on ion implantation technology - Google Patents
n-type IBC silicon solar cell manufacturing method based on ion implantation technology Download PDFInfo
- Publication number
- CN104269457A CN104269457A CN201410450314.1A CN201410450314A CN104269457A CN 104269457 A CN104269457 A CN 104269457A CN 201410450314 A CN201410450314 A CN 201410450314A CN 104269457 A CN104269457 A CN 104269457A
- Authority
- CN
- China
- Prior art keywords
- type
- ion implantation
- manufacturing
- silicon solar
- silicon wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 49
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 49
- 239000010703 silicon Substances 0.000 title claims abstract description 49
- 238000005468 ion implantation Methods 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 238000005516 engineering process Methods 0.000 title claims description 6
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000009792 diffusion process Methods 0.000 claims abstract description 13
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052796 boron Inorganic materials 0.000 claims abstract description 11
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 12
- 238000002161 passivation Methods 0.000 claims description 12
- 239000005360 phosphosilicate glass Substances 0.000 claims description 12
- 229910004205 SiNX Inorganic materials 0.000 claims description 10
- 238000002513 implantation Methods 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 9
- 238000000137 annealing Methods 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 6
- 229910017604 nitric acid Inorganic materials 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- 239000003929 acidic solution Substances 0.000 claims description 4
- 239000012670 alkaline solution Substances 0.000 claims description 4
- 238000003486 chemical etching Methods 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 238000010329 laser etching Methods 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 8
- 238000005457 optimization Methods 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- XGCTUKUCGUNZDN-UHFFFAOYSA-N [B].O=O Chemical compound [B].O=O XGCTUKUCGUNZDN-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种基于离子注入工艺的n型IBC硅太阳能电池制作方法,通过采用硼扩散和硼离子注入方式相结合实现n+、p+区域的掺杂,且该工艺无需在背面的n+/p+界面进行隔离,即可有效地避免电池的隧道结漏电。
The invention discloses a manufacturing method of n-type IBC silicon solar cells based on an ion implantation process. The doping of n + and p + regions is realized by combining boron diffusion and boron ion implantation, and the process does not require n + /p + interface is isolated, which can effectively avoid the tunnel junction leakage of the battery.
Description
技术领域 technical field
本发明属于太阳电池技术领域,具体涉及一种基于离子注入工艺的n型IBC硅太阳能电池制作方法。 The invention belongs to the technical field of solar cells, and in particular relates to a manufacturing method of an n-type IBC silicon solar cell based on an ion implantation process.
背景技术 Background technique
太阳能电池可将太阳能直接转化为电能,是利用太阳能资源的有效方式,由于在使用中不会产生有害物质,所以太阳能电池在解决能源与环境问题方面倍受青睐,具有良好的市场前景,太阳能也被誉为是最理想的能源,是解决人类社会赖以生存和发展的重要资源。 Solar cells can directly convert solar energy into electrical energy, which is an effective way to utilize solar energy resources. Since no harmful substances are produced during use, solar cells are favored in solving energy and environmental problems and have a good market prospect. Solar energy is also Known as the most ideal energy source, it is an important resource for the survival and development of human society.
目前主流的太阳能电池材料是用P型硅做衬底,通过高温磷扩散来形成pn结,然而p型硅电池受体内硼氧对的影响存在光致衰减的现象,而n型硅材料相对于p型硅材料来说,由于其对金属杂质和许多非金属缺陷不敏感,且体内具有较少的硼氧对,所以在性能的稳定性上要高于p型晶硅电池,同时n型电池的少子寿命更高,这为制备更高效的太阳电池奠定了基础。 At present, the mainstream solar cell material uses p-type silicon as the substrate, and forms a pn junction through high-temperature phosphorus diffusion. For p-type silicon materials, because it is insensitive to metal impurities and many non-metal defects, and has fewer boron-oxygen pairs in the body, its performance stability is higher than that of p-type crystalline silicon cells, while n-type The higher minority carrier life of the battery lays the foundation for the preparation of more efficient solar cells.
背结背接触太阳电池早在1977年开始进入人们的视线,直到现在仍具有太阳电池行业研究的热点,相对于常规的硅电池,背结背接触太阳电池的优势明显,主要可以表现在以下几个方面: Back-junction and back-contact solar cells began to come into people's sight as early as 1977, and until now it is still a research hotspot in the solar cell industry. Compared with conventional silicon cells, back-junction and back-contact solar cells have obvious advantages, mainly in the following aspects Aspects:
1. 背结背接触太阳电池以n型晶体硅作为衬底,少子寿命高,适用于制备高效电池,特别适用于背结背接触太阳电池这种pn结在背表面的电池结构,因为产生于前表面的光生载流子必须要迁移到电池背表面的pn结才能被利用,较高的少子寿命是减少光生载流子在太阳电池表面和体内复合的保证; 1. Back-junction and back-contact solar cells use n-type crystalline silicon as the substrate, which has a high minority carrier life, and is suitable for the preparation of high-efficiency cells, especially for back-junction and back-contact solar cells, which have a pn junction on the back surface of the cell structure. The photo-generated carriers on the front surface must migrate to the pn junction on the back surface of the cell before they can be utilized, and the higher minority carrier lifetime is the guarantee to reduce the recombination of photo-generated carriers on the surface and body of the solar cell;
2. N型基体的硼含量极低,因此硼氧对造成的光致衰减没有p型基体材料明显,对封装后组件的效率提升更为明显; 2. The boron content of the N-type substrate is extremely low, so the light-induced attenuation caused by the boron-oxygen pair is not as obvious as that of the p-type substrate material, and the efficiency improvement of the packaged components is more obvious;
3. 背结背接触太阳电池的正面没有电极,减少了遮光面积,增加光生电流,电池的正负电池呈交指状的分布在电池的背面; 3. There is no electrode on the front of the back-junction and back-contact solar cells, which reduces the shading area and increases the photo-generated current. The positive and negative cells of the battery are distributed on the back of the battery in a finger-like shape;
4. 背结背接触太阳电池易于封装,与常规电池相比,无需把前一片的负极交叉接到后一片的正极,易于操作。 4. Back-junction and back-contact solar cells are easy to package. Compared with conventional batteries, there is no need to cross the negative electrode of the previous sheet to the positive electrode of the latter sheet, which is easy to operate.
发明内容 Contents of the invention
发明目的:针对上述现有技术存在的问题和不足,本发明的目的是提供一种基于离子注入工艺的n型IBC硅太阳电池制作方法,该方法安全可靠,与传统的太阳电池生产线兼容,适合目前太阳电池的产线升级。 Purpose of the invention: For the problems and deficiencies in the above-mentioned prior art, the purpose of the present invention is to provide a method for manufacturing n-type IBC silicon solar cells based on ion implantation technology, which is safe and reliable, compatible with traditional solar cell production lines, suitable for The current solar cell production line is being upgraded.
技术方案:本发明公开了一种基于离子注入工艺的n型IBC硅太阳能电池制作方法,包括以下步骤: Technical solution: The invention discloses a method for manufacturing an n-type IBC silicon solar cell based on an ion implantation process, comprising the following steps:
(1)选取电阻率在3-12Ω·cm 的n型硅衬底,并用化学腐蚀去除硅片表面的损伤层,而后进行双面制绒; (1) Select an n-type silicon substrate with a resistivity of 3-12Ω·cm, and use chemical etching to remove the damaged layer on the surface of the silicon wafer, and then perform double-sided texturing;
(2)双面磷扩散; (2) Double-sided phosphorus diffusion;
(3)通过印刷腐蚀性浆料或者激光蚀刻的方式去除p+定义区域的磷硅玻璃; (3) Remove the phosphosilicate glass in the p + defined area by printing corrosive paste or laser etching;
(4)采用有机碱性溶液对p+定义区域进行选择性抛光,并去除p+定义区域的n+扩散层; (4) Selectively polish the p + defined area with an organic alkaline solution, and remove the n + diffusion layer in the p + defined area;
(5)去除前表面的磷硅玻璃,而后采用酸性溶液对前表面进行蚀刻,蚀刻后的前表面方阻控制在100Ω/□-200Ω/□; (5) Remove the phosphosilicate glass on the front surface, and then use an acidic solution to etch the front surface. The square resistance of the etched front surface is controlled at 100Ω/□-200Ω/□;
(6)去除n型硅片背表面的磷硅玻璃,并进行RCA清洗; (6) Remove the phosphosilicate glass on the back surface of the n-type silicon wafer, and perform RCA cleaning;
(7)在n型硅片背面P+定义区域选择性地进行硼注入,硼注入量为1x1015cm-3-5x1016cm-3; (7) Boron implantation is selectively performed in the P+ defined area on the back of the n-type silicon wafer, and the amount of boron implantation is 1x10 15 cm -3 -5x10 16 cm -3 ;
(8)退火:退火温度控制在900℃-1000℃,退火时间控制在20-90min,同时在N型硅片的前表面和背表面形成氧化层,所述氧化层厚度在3-15nm; (8) Annealing: the annealing temperature is controlled at 900°C-1000°C, the annealing time is controlled at 20-90min, and an oxide layer is formed on the front and back surfaces of the N-type silicon wafer at the same time, and the thickness of the oxide layer is 3-15nm;
(9)沉积钝化层:在N型硅片的双面进行SiNx的沉积; (9) Deposit passivation layer: SiNx is deposited on both sides of the N-type silicon wafer;
(10)背面接触区域的介质膜开孔; (10) Holes in the dielectric film in the contact area on the back;
(11)在n型硅片的背面n++和 p++接触区域分别印刷金属浆料并烧结形成欧姆接触; (11) Print metal paste on the n ++ and p ++ contact areas on the back of the n-type silicon wafer and sinter to form ohmic contacts;
其中,步骤(4)中的有机碱性溶液为TMAH或者TMAH与其他碱性溶液的混合液,刻蚀温度在60-80℃,刻蚀时间在10min-30min; Wherein, the organic alkaline solution in step (4) is TMAH or a mixture of TMAH and other alkaline solutions, the etching temperature is 60-80°C, and the etching time is 10min-30min;
步骤(5)中的酸性溶液为氢氟酸、硝酸的混合溶液。 The acidic solution in step (5) is a mixed solution of hydrofluoric acid and nitric acid.
本发明通过采用硼扩散和硼离子注入方式相结合实现n+、p+区域的掺杂,且该工艺无需在背面的n+ /p+界面进行隔离,即可有效地避免电池的隧道结漏电。 In the present invention, the doping of n + and p + regions is realized by combining boron diffusion and boron ion implantation, and this process does not need to isolate the n + /p + interface on the back, so that the tunnel junction leakage of the battery can be effectively avoided .
作为本发明的进一步优化,本发明所述的步骤(2)中的扩散方阻为40Ω/□-100Ω/□。 As a further optimization of the present invention, the diffusion resistance in step (2) of the present invention is 40Ω/□-100Ω/□.
作为本发明的进一步优化,本发明所述的步骤(5)中氢氟酸、硝酸、水以体积比1:30:300混合而成。 As a further optimization of the present invention, in step (5) of the present invention, hydrofluoric acid, nitric acid, and water are mixed at a volume ratio of 1:30:300.
作为本发明的进一步优化,本发明所述的步骤(9)中前表面SiNx的厚度为65nm-75nm。 As a further optimization of the present invention, the thickness of the SiNx on the front surface in step (9) of the present invention is 65nm-75nm.
作为本发明的进一步优化,本发明所述的步骤(9)中背面SiNx厚度为80nm-150nm。 As a further optimization of the present invention, the thickness of the back SiNx in step (9) of the present invention is 80nm-150nm.
作为本发明的进一步优化,本发明所述的步骤(5)中采用激光或者印刷腐蚀性浆料完成介质膜开孔,若背表面采用烧穿型金属化浆料,该步骤可以省去。 As a further optimization of the present invention, in step (5) of the present invention, laser or printing corrosive paste is used to complete the opening of the dielectric film. If the back surface uses burn-through metallization paste, this step can be omitted.
作为本发明的进一步优化,本发明所述的步骤(8)中退火后的背表面p+区域的方阻为50Ω/□-100Ω/□之间。 As a further optimization of the present invention, the square resistance of the p + region on the back surface after annealing in step (8) of the present invention is between 50Ω/□-100Ω/□.
有益效果:本发明与现有技术相比,本发明采用n型晶体硅片作为基体材料,其少子寿命高且光致衰减小,对制备电池和封装组件具有较大优势,本发明采用钝化膜钝化电池的前后表面能够有效地降低表面少数载流子的复合速率,提高表面少子寿命,且在前表面和背面制备减反膜,能够减少光子的反射,增加表面对光子的吸收,增加光生电流进而增加电池的转换效率。本发明的电池正、负电极均制作于背面,较少遮光面积,增加光生电流,能更好地收集硅片产生的电流,同时在金属与硅片之间形成良好的欧姆接触。 Beneficial effects: Compared with the prior art, the present invention adopts n-type crystalline silicon wafer as the base material, which has high minority carrier life and small light-induced attenuation, which has great advantages for preparing batteries and packaging components. The present invention adopts passivation The front and rear surfaces of the film passivation battery can effectively reduce the recombination rate of minority carriers on the surface and improve the lifetime of minority carriers on the surface, and prepare anti-reflection films on the front surface and the back surface, which can reduce the reflection of photons, increase the absorption of photons by the surface, and increase Photogenerated current in turn increases the conversion efficiency of the cell. Both the positive and negative electrodes of the battery of the present invention are made on the back side, so the light-shielding area is reduced, the photogenerated current is increased, the current generated by the silicon chip can be better collected, and a good ohmic contact is formed between the metal and the silicon chip.
本发明具有技术简单成熟、离子注入技术精准、可选择性掺杂等特点,通过控制背面p+和 n+区域的掺杂浓度,无需进行背面的n+ /p+界面的隔离,可有效避免电池的隧道结漏电等情况的发生,大大降低电池制作工艺的复杂性。 The present invention has the characteristics of simple and mature technology, precise ion implantation technology, and selective doping. By controlling the doping concentration of the p + and n + regions on the back, there is no need to isolate the n + /p + interface on the back, which can effectively avoid The occurrence of tunnel junction leakage of the battery greatly reduces the complexity of the battery manufacturing process.
附图说明 Description of drawings
图1为本发明的结构示意图。 Fig. 1 is a structural schematic diagram of the present invention.
具体实施方式 Detailed ways
下面结合附图和实施例进一步阐明本发明。 The present invention is further illustrated below in conjunction with the accompanying drawings and examples.
如图1所述,本发明所述的太阳电池从上至下依次层叠有前表面钝化层5、前表面n+区域2、n型硅衬底1、背表面n++掺杂区域3、背表面p+掺杂区域4、背表面钝化层6、背表面n++接触电极7和背表面p+接触电极8。 As shown in Figure 1, the solar cell according to the present invention is sequentially stacked with a front surface passivation layer 5, a front surface n+ region 2, an n-type silicon substrate 1, a back surface n++ doped region 3, a back surface p+ doped region 4 , back surface passivation layer 6 , back surface n++ contact electrode 7 and back surface p+ contact electrode 8 .
实施例1: Example 1:
本实施例包括以下步骤: This embodiment includes the following steps:
1.选择电阻率在3-5Ω·cm 的n型硅衬底,其少子寿命大于500us,采用化学腐蚀去除硅片表面的损伤层,并双面制绒。 1. Select an n-type silicon substrate with a resistivity of 3-5Ω·cm, and its minority carrier lifetime is greater than 500us, use chemical etching to remove the damaged layer on the surface of the silicon wafer , and make texture on both sides.
双面磷扩散:扩散方阻为60Ω/□。 Double-sided phosphorus diffusion: the diffusion resistance is 60Ω/□.
3.在背面p+定义区域印刷腐蚀性浆料,去除p+定义区域的磷硅玻璃。 3. Print corrosive paste on the p + defined area on the back to remove the phosphosilicate glass in the p + defined area.
4.采用20%的TMAH溶液在60℃下进行选择性腐蚀特性,对p+定义区域进行抛光,腐蚀时间30min。 4. Use 20% TMAH solution for selective etching at 60°C, and polish the p + defined area for 30 minutes.
5.去除n型硅片前表面的磷硅玻璃,采用体积比为1:30:300的氢氟酸,硝酸和水对n型硅片前表面进行蚀刻,蚀刻后的前表面方阻为140Ω/□。 5. Remove the phosphosilicate glass on the front surface of the n-type silicon wafer, use hydrofluoric acid, nitric acid and water with a volume ratio of 1:30:300 to etch the front surface of the n-type silicon wafer, and the square resistance of the etched front surface is 140Ω/□ .
6.去除背面磷硅玻璃,并进行RCA清洗。 6. Remove the back phosphosilicate glass and perform RCA cleaning.
7.利用离子注入的选择性注入的特性,在n型硅片背面的p+定义区域进行硼注入,注入量为1x1015cm-3。 7. Using the selective implantation feature of ion implantation, perform boron implantation in the p + defined region on the back of the n-type silicon wafer, with an implantation amount of 1x10 15 cm -3 .
8.在950℃的温度下退火30min,同时在N型硅片的前表面和背表面分别生长一层薄SiO2层,SiO2层厚度为10nm,退火后背面P+区域的方阻为80Ω/□。 8. Anneal at a temperature of 950°C for 30 minutes, and at the same time grow a thin SiO 2 layer on the front surface and the back surface of the N-type silicon wafer respectively. The thickness of the SiO 2 layer is 10nm. □.
9.在N型硅片前表面沉积75nm的SiNx钝化层,在N型硅片的背面沉积120nm的SiNx钝化层。 9. Deposit a 75nm SiNx passivation layer on the front surface of the N-type silicon wafer, and deposit a 120nm SiNx passivation layer on the back of the N-type silicon wafer.
10.制备电极: 10. Preparation of electrodes:
在n型硅片的背面N++区域印刷银浆,并进行烘干; Print silver paste on the N++ area on the back of the n-type silicon wafer and dry it;
在背面p+区域印刷铝浆,并烧结形成欧姆接触。 Aluminum paste is printed on the backside p + area and sintered to form an ohmic contact.
the
实施例2 Example 2
本实施例包括以下步骤: This embodiment includes the following steps:
1.选择电阻率在5-12Ω·cm 的N型硅衬底,其少子寿命大于500us,化学腐蚀去除硅片表面的损伤层,并双面制绒。 1. Select an N-type silicon substrate with a resistivity of 5-12Ω·cm, and its minority carrier lifetime is greater than 500us, remove the damaged layer on the surface of the silicon wafer by chemical etching, and make texture on both sides.
2.双面磷扩散:扩散方阻为80Ω/□。 2. Double-sided phosphorus diffusion: the diffusion resistance is 80Ω/□.
3.利用激光去除P+定义区域的磷硅玻璃。 3. Use laser to remove the phosphosilicate glass in the P+ defined area. the
4.采用25%的TMAH溶液在70℃下进行选择性腐蚀特性,对p+定义区域进行抛光,腐蚀时间为20min。 4. Use 25% TMAH solution at 70°C for selective etching properties, and polish the p + defined area for 20 minutes.
5.去除n型硅片前表面的磷硅玻璃,采用1:30:300的氢氟酸,硝酸和水在25℃下对n型硅片前表面进行蚀刻,刻蚀时间为20min,蚀刻后的前表面方阻为130Ω/□。 5. Remove the phosphosilicate glass on the front surface of the n-type silicon wafer, use 1:30:300 hydrofluoric acid, nitric acid and water to etch the front surface of the n-type silicon wafer at 25°C, and the etching time is 20min. The surface square resistance was 130Ω/□.
6.去除背面磷硅玻璃,并进行RCA清洗。 6. Remove the back phosphosilicate glass and perform RCA cleaning.
7.利用离子注入的选择性注入的特性,在n型硅片背面的p+定义区域进行硼注入,注入量为5x1015cm-3。 7. Using the selective implantation feature of ion implantation, perform boron implantation in the p + defined region on the back of the n-type silicon wafer, with an implantation amount of 5x10 15 cm -3 .
8.在950℃的温度下退火40min,同时在n型硅片的前表面和背表面分别生长一层薄SiO2层,SiO2层厚度为13nm,退火后背面P+区域的方阻为70Ω/□。 8. Anneal at a temperature of 950°C for 40 minutes, and at the same time grow a thin SiO 2 layer on the front surface and the back surface of the n-type silicon wafer respectively. The thickness of the SiO 2 layer is 13nm. □.
9.在N型硅片前表面沉积72nm的SiNx钝化层,在N型硅片的背面沉积110nm的SiNx钝化层。 9. Deposit a 72nm SiNx passivation layer on the front surface of the N-type silicon wafer, and deposit a 110nm SiNx passivation layer on the back of the N-type silicon wafer.
10.制备电极: 10. Preparation of electrodes:
在N型硅片的背面n++区域印刷银浆,并进行烘干; Print silver paste on the n ++ area on the back of the N-type silicon wafer and dry it;
在背面p+区域印刷铝浆,并烧结形成欧姆接触。 Aluminum paste is printed on the backside p + area and sintered to form an ohmic contact.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410450314.1A CN104269457B (en) | 2014-09-05 | 2014-09-05 | A kind of N-type IBC silicon solar cell manufacture method based on ion implantation technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410450314.1A CN104269457B (en) | 2014-09-05 | 2014-09-05 | A kind of N-type IBC silicon solar cell manufacture method based on ion implantation technology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104269457A true CN104269457A (en) | 2015-01-07 |
CN104269457B CN104269457B (en) | 2016-08-24 |
Family
ID=52160964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410450314.1A Expired - Fee Related CN104269457B (en) | 2014-09-05 | 2014-09-05 | A kind of N-type IBC silicon solar cell manufacture method based on ion implantation technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104269457B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106784163A (en) * | 2017-01-20 | 2017-05-31 | 英利能源(中国)有限公司 | The preparation method of solar cell |
CN106784152A (en) * | 2016-12-29 | 2017-05-31 | 英利能源(中国)有限公司 | A kind of preparation method of IBC batteries |
CN107425086A (en) * | 2017-05-18 | 2017-12-01 | 阳光中科(福建)能源股份有限公司 | A kind of ion implantation makes the preparation technology of N-type PERT double-side solar cells |
CN107785456A (en) * | 2017-09-27 | 2018-03-09 | 泰州中来光电科技有限公司 | A kind of preparation method of back contact solar cell |
CN107833931A (en) * | 2017-11-02 | 2018-03-23 | 晶科能源有限公司 | Preparation method of solar battery |
CN111029438A (en) * | 2019-12-04 | 2020-04-17 | 江苏杰太光电技术有限公司 | Preparation method of N-type passivated contact solar cell |
CN111162145A (en) * | 2020-02-26 | 2020-05-15 | 泰州中来光电科技有限公司 | Passivated contact solar cell with selective emitter structure and preparation method thereof |
CN111211199A (en) * | 2020-01-17 | 2020-05-29 | 陕西优顺赛辉新能源科技有限公司 | Preparation method of efficient IBC battery |
CN113284982A (en) * | 2021-05-28 | 2021-08-20 | 浙江爱旭太阳能科技有限公司 | Processing technology of IBC battery with passivation contact structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101540350A (en) * | 2009-04-30 | 2009-09-23 | 中山大学 | Process for preparing back point-contact crystalline-silicon solar cells |
CN101777603A (en) * | 2009-01-08 | 2010-07-14 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Method for manufacturing back contact solar energy batteries |
CN102738264A (en) * | 2011-04-15 | 2012-10-17 | 上海凯世通半导体有限公司 | Doping unit, doping wafer, doping method, solar battery and manufacturing method |
KR20130088643A (en) * | 2012-01-31 | 2013-08-08 | 현대중공업 주식회사 | Method for fabricating back contact solar cell |
-
2014
- 2014-09-05 CN CN201410450314.1A patent/CN104269457B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101777603A (en) * | 2009-01-08 | 2010-07-14 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Method for manufacturing back contact solar energy batteries |
CN101540350A (en) * | 2009-04-30 | 2009-09-23 | 中山大学 | Process for preparing back point-contact crystalline-silicon solar cells |
CN102738264A (en) * | 2011-04-15 | 2012-10-17 | 上海凯世通半导体有限公司 | Doping unit, doping wafer, doping method, solar battery and manufacturing method |
KR20130088643A (en) * | 2012-01-31 | 2013-08-08 | 현대중공업 주식회사 | Method for fabricating back contact solar cell |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106784152A (en) * | 2016-12-29 | 2017-05-31 | 英利能源(中国)有限公司 | A kind of preparation method of IBC batteries |
CN106784163A (en) * | 2017-01-20 | 2017-05-31 | 英利能源(中国)有限公司 | The preparation method of solar cell |
CN106784163B (en) * | 2017-01-20 | 2018-07-27 | 英利能源(中国)有限公司 | The preparation method of solar cell |
CN107425086A (en) * | 2017-05-18 | 2017-12-01 | 阳光中科(福建)能源股份有限公司 | A kind of ion implantation makes the preparation technology of N-type PERT double-side solar cells |
CN107785456A (en) * | 2017-09-27 | 2018-03-09 | 泰州中来光电科技有限公司 | A kind of preparation method of back contact solar cell |
CN107833931A (en) * | 2017-11-02 | 2018-03-23 | 晶科能源有限公司 | Preparation method of solar battery |
CN107833931B (en) * | 2017-11-02 | 2020-04-07 | 晶科能源有限公司 | Solar cell preparation method |
CN111029438A (en) * | 2019-12-04 | 2020-04-17 | 江苏杰太光电技术有限公司 | Preparation method of N-type passivated contact solar cell |
CN111211199A (en) * | 2020-01-17 | 2020-05-29 | 陕西优顺赛辉新能源科技有限公司 | Preparation method of efficient IBC battery |
CN111162145A (en) * | 2020-02-26 | 2020-05-15 | 泰州中来光电科技有限公司 | Passivated contact solar cell with selective emitter structure and preparation method thereof |
CN113284982A (en) * | 2021-05-28 | 2021-08-20 | 浙江爱旭太阳能科技有限公司 | Processing technology of IBC battery with passivation contact structure |
Also Published As
Publication number | Publication date |
---|---|
CN104269457B (en) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104269457B (en) | A kind of N-type IBC silicon solar cell manufacture method based on ion implantation technology | |
CN204303826U (en) | A kind of high-efficiency N-type double-side solar cell | |
CN102222726B (en) | Fabrication process of staggered back contact IBC crystalline silicon solar cells by ion implantation | |
CN104218123A (en) | N-type IBC silicon solar cell manufacturing method based on ion implantation process | |
CN107968127A (en) | One kind passivation contact N-type solar cell and preparation method, component and system | |
CN103887347B (en) | A kind of two-sided P-shaped crystalline silicon battery structure and preparation method thereof | |
CN210926046U (en) | Solar cell | |
CN205564789U (en) | Passivation contact N type solar cell and subassembly and system thereof | |
CN105702758A (en) | Preparation method of back junction N type solar battery, back junction N type solar battery, back junction N type solar battery assembly and back junction N type solar battery system | |
CN103618033A (en) | Silk-screen printing production manufacturing method of passivated-back solar cell | |
CN103985778A (en) | Heterojunction solar cell with selective emitter and preparation method thereof | |
CN105390555A (en) | Full-back-electrode solar cell structure and preparation method therefor | |
CN111613688A (en) | An interdigitated back-contact solar cell structure and its manufacturing method | |
CN107785457A (en) | A kind of manufacture craft of the two-sided crystal silicon solar battery of p-type | |
CN103594534B (en) | Aluminum emitter stage back junction back contact crystalline silicon solar cell and manufacture method thereof | |
CN103681963A (en) | Back-junction back-contact crystalline silicon solar cell manufacturing method | |
CN103022174B (en) | A kind of metal-through type emitters on back side crystal silicon solar battery based on n-type silicon chip and preparation method thereof | |
CN105449018A (en) | Solar cell and preparation method thereof | |
CN103594530A (en) | Crystalline silicon solar cell combining obverse side thermal oxidation, selective emitter junctions and reverse passivation and manufacturing method thereof | |
CN108615775B (en) | An interdigitated back-contact heterojunction monocrystalline silicon cell | |
CN105957921A (en) | Method for preparing N-type silicon IBC solar cell by using printing technology | |
CN203312314U (en) | N type crystal silicon solar battery fully covered with aluminum back emitter junctions | |
CN204315591U (en) | A kind of selective emitter crystal silicon solar batteries | |
CN208507687U (en) | Interdigital back contact heterojunction monocrystalline silicon battery | |
CN207602582U (en) | A kind of N-type crystalline silicon battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160824 Termination date: 20180905 |