CN204589340U - A kind of super anti-corrosion nickel plating-chromium parts - Google Patents
A kind of super anti-corrosion nickel plating-chromium parts Download PDFInfo
- Publication number
- CN204589340U CN204589340U CN201520136286.6U CN201520136286U CN204589340U CN 204589340 U CN204589340 U CN 204589340U CN 201520136286 U CN201520136286 U CN 201520136286U CN 204589340 U CN204589340 U CN 204589340U
- Authority
- CN
- China
- Prior art keywords
- nickel
- nickel layer
- layer
- potential
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 1047
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 521
- 238000005260 corrosion Methods 0.000 title claims abstract description 129
- 239000010410 layer Substances 0.000 claims abstract description 562
- 238000007747 plating Methods 0.000 claims abstract description 109
- 230000007797 corrosion Effects 0.000 claims abstract description 103
- 238000000576 coating method Methods 0.000 claims abstract description 72
- 239000011248 coating agent Substances 0.000 claims abstract description 71
- 239000000758 substrate Substances 0.000 claims abstract description 57
- 239000011593 sulfur Substances 0.000 claims abstract description 48
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 48
- 239000002346 layers by function Substances 0.000 claims abstract description 32
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052802 copper Inorganic materials 0.000 claims abstract description 24
- 239000010949 copper Substances 0.000 claims abstract description 24
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910018487 Ni—Cr Inorganic materials 0.000 claims abstract description 17
- 239000002131 composite material Substances 0.000 claims abstract description 13
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 43
- 229910052804 chromium Inorganic materials 0.000 claims description 37
- 239000011651 chromium Substances 0.000 claims description 37
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 claims description 9
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 claims description 4
- 238000009713 electroplating Methods 0.000 abstract description 22
- 239000000243 solution Substances 0.000 description 60
- 238000000034 method Methods 0.000 description 38
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 34
- 239000000126 substance Substances 0.000 description 34
- 239000000463 material Substances 0.000 description 32
- 230000008569 process Effects 0.000 description 30
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 16
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 16
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 16
- 239000011259 mixed solution Substances 0.000 description 16
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 13
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 13
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 10
- 239000004327 boric acid Substances 0.000 description 10
- 238000005034 decoration Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 229910052763 palladium Inorganic materials 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000006386 neutralization reaction Methods 0.000 description 7
- 238000007788 roughening Methods 0.000 description 7
- 239000000080 wetting agent Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 239000004519 grease Substances 0.000 description 5
- 208000014451 palmoplantar keratoderma and congenital alopecia 2 Diseases 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 4
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 229910000365 copper sulfate Inorganic materials 0.000 description 4
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 4
- 238000005238 degreasing Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 238000002203 pretreatment Methods 0.000 description 4
- 239000001119 stannous chloride Substances 0.000 description 4
- 235000011150 stannous chloride Nutrition 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- 239000004115 Sodium Silicate Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 229910052911 sodium silicate Inorganic materials 0.000 description 3
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 2
- 206010040844 Skin exfoliation Diseases 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000004637 bakelite Substances 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000006056 electrooxidation reaction Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 1
- 229910001141 Ductile iron Inorganic materials 0.000 description 1
- 229910001060 Gray iron Inorganic materials 0.000 description 1
- 229910001296 Malleable iron Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- FOHJPICINKLVIP-UHFFFAOYSA-N O.[O-2].[O-2].[O-2].[Cr+6] Chemical compound O.[O-2].[O-2].[O-2].[Cr+6] FOHJPICINKLVIP-UHFFFAOYSA-N 0.000 description 1
- 101150003085 Pdcl gene Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241001125046 Sardina pilchardus Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910001037 White iron Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical group 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- XIKYYQJBTPYKSG-UHFFFAOYSA-N nickel Chemical compound [Ni].[Ni] XIKYYQJBTPYKSG-UHFFFAOYSA-N 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 229910003445 palladium oxide Inorganic materials 0.000 description 1
- JQPTYAILLJKUCY-UHFFFAOYSA-N palladium(ii) oxide Chemical compound [O-2].[Pd+2] JQPTYAILLJKUCY-UHFFFAOYSA-N 0.000 description 1
- 239000012994 photoredox catalyst Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- WFIZEGIEIOHZCP-UHFFFAOYSA-M potassium formate Chemical compound [K+].[O-]C=O WFIZEGIEIOHZCP-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000019512 sardine Nutrition 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910001432 tin ion Inorganic materials 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Landscapes
- Electroplating Methods And Accessories (AREA)
Abstract
本实用新型涉及一种超耐蚀镀镍-铬部件,属于电镀技术领域。其包括基材;预处理镀层,其沉积在整个基材上,在预处理镀层上形成有镀铜层;和半光镍层,其形成于镀铜层上;和全光镍层或沙丁镍层,其形成于半光镍层;和功能层,其形成于全光镍层或沙丁镍层上,其中功能层包括低电位镍层和形成于低电位镍层上的微孔镍层;和装饰层,其形成于微孔镍层上。低电位镍层与微孔镍层之间的电位差为10-120mv;低电位镍层包括有高硫镍层、微裂纹镍层中一层或两层之间的复合,当采用微裂纹与高硫镍复合镀层时,微裂纹与高硫镍之间电位差为10-80mv。既保证部件微孔镍层的外观光亮,又使其具有超高耐蚀性、硬度、耐磨性。
The utility model relates to a super-corrosion-resistant nickel-chromium plated part, which belongs to the technical field of electroplating. It includes a substrate; a pretreatment coating deposited over the entire substrate, on which a copper plating layer is formed; and a semi-bright nickel layer, which is formed on the copper plating layer; and a full-gloss nickel layer or satin A nickel layer formed on the semi-bright nickel layer; and a functional layer formed on the full-gloss nickel layer or satin nickel layer, wherein the functional layer includes a low-potential nickel layer and a microporous nickel layer formed on the low-potential nickel layer and a decorative layer formed on the microporous nickel layer. The potential difference between the low-potential nickel layer and the microporous nickel layer is 10-120mv; the low-potential nickel layer includes a high-sulfur nickel layer and a composite between one or two layers of the micro-cracked nickel layer. When using micro-cracks and In the case of high-sulfur nickel composite coating, the potential difference between microcracks and high-sulfur nickel is 10-80mv. It not only ensures the bright appearance of the microporous nickel layer of the component, but also makes it have super high corrosion resistance, hardness and wear resistance.
Description
技术领域 technical field
本实用新型涉及一种具有表面电镀层结构的工件,特别是一种超耐蚀镀镍-铬部件。 The utility model relates to a workpiece with a surface electroplating layer structure, in particular to a super-corrosion-resistant nickel-chrome plated part.
本申请中电势差均为以相邻两层各自作为一个整体测得的标准电势之差。 In this application, the potential difference is the difference between the standard potentials measured by taking each of the two adjacent layers as a whole.
背景技术 Background technique
欧洲市场对环保要求的越来越严,以及各汽车厂对电镀耐蚀性的要求越来越高,目前铬电镀无法满足特定环境的腐蚀要求(同时达到耐盐雾试验80h和耐俄罗斯泥试验336h)。 The European market has increasingly stringent environmental protection requirements, and automobile factories have higher and higher requirements for electroplating corrosion resistance. At present, chromium electroplating cannot meet the corrosion requirements of specific environments (at the same time, it can meet the salt spray resistance test of 80h and the Russian mud resistance test. 336h).
电镀工业上一般应用先镀双层镍或三层镍再镀铬的方法提高工件的防腐能力,被广泛应用的双层镍工艺有:半光镍+光镍+无裂纹铬,被广泛应用的三层镍工艺有:半光镍+光镍+微孔镍+无裂纹铬,或者半光镍+光镍+微裂纹镍+无裂纹铬,但由于铬层自身的应力大,工业上很难得到一种完全没有裂纹或孔隙的铬电镀层(包括六价铬和三价铬镀层),暴露在空气中的铬电镀层被钝化后,其电位比镍正,当遇到腐蚀介质时,便与镍层构成腐蚀电池,造成镍层的腐蚀,在极端环境中会出现腐蚀过度,导致表面铬层的大面积脱落,影响产品的品质。为了进一步改善镀层的防腐能力,微孔镍和微裂纹镍被应用到光镍镀层上,其作用是通过不同的施镀工艺,促使产品表面产生大量的微裂纹或微孔,形成大量的微小的腐蚀通道,从而将腐蚀点分隔为肉眼不能识别的点,减少铬层的脱落,以达到提高使用过程中的外观品质。由于单独使用微孔镍或微裂纹镍,对耐蚀性的提高是有限的;以及微裂纹与三价铬配合,存在外观差等问题,导致对于高耐腐要求的产品存在不适 用性。同时部分现有技术中,公开了改变微孔镍工艺来达到贵电势特性,从而满足三价铬耐腐蚀性能要求,但此此工艺技术无法实现与六价铬、三价铬共线生产,两种部件都满足高品质耐腐蚀要求。 In the electroplating industry, the method of firstly plating double-layer nickel or triple-layer nickel and then chromium plating is generally used to improve the anti-corrosion ability of the workpiece. The layer nickel process includes: semi-bright nickel + light nickel + microporous nickel + crack-free chromium, or semi-bright nickel + light nickel + micro-crack nickel + crack-free chromium, but due to the high stress of the chromium layer itself, it is difficult to obtain in industry A chromium electroplating layer (including hexavalent chromium and trivalent chromium plating) without cracks or pores at all. After the chromium electroplating layer exposed to the air is passivated, its potential is more positive than that of nickel. When it encounters a corrosive medium, it will It forms a corrosion battery with the nickel layer, causing corrosion of the nickel layer. In extreme environments, excessive corrosion will occur, resulting in large-scale peeling off of the surface chromium layer, which will affect the quality of the product. In order to further improve the anti-corrosion ability of the coating, microporous nickel and microcracked nickel are applied to the light nickel coating. Its function is to promote a large number of microcracks or micropores on the surface of the product through different plating processes, forming a large number of tiny Corrosion channels, so as to separate the corrosion points into points that cannot be recognized by the naked eye, reduce the shedding of the chrome layer, and improve the appearance quality during use. Due to the use of microporous nickel or microcracked nickel alone, the improvement of corrosion resistance is limited; and the combination of microcracks and trivalent chromium has problems such as poor appearance, resulting in inapplicability for products with high corrosion resistance requirements. At the same time, in some existing technologies, it is disclosed to change the microporous nickel process to achieve noble potential characteristics, so as to meet the corrosion resistance requirements of trivalent chromium, but this process technology cannot achieve collinear production with hexavalent chromium and trivalent chromium. All components meet high-quality corrosion-resistant requirements.
现有技术中,如中国专利申请(公开号:CN 101988211A)涉及一种具有优良防腐性能的金属表面多层镀镍工艺,电镀工艺流程为:A.塑料件表面金属化,B.光亮铜,C.半亮镍,D.高硫镍E.光亮镍,F.微孔镍,G.水洗,H.光亮铬,I.水洗,J.干燥;虽然该技术方案中采用该四层镍镍电镀液在塑料表面进行电镀在一定程度上提高了塑料件的抗腐蚀性,然而该工艺的抗腐蚀能力仍然无法达到含有除冰盐(CaCl2)腐蚀环境的要求。而有关介绍微裂纹镍的工艺,如中国专利申请(公开号:CN101705508A)涉及一种用于微裂纹镍电镀的电镀液及其应用,该微裂纹镍电镀液的主要组成如下:氯化镍:180-260克/升,醋酸:20-60毫升/升,ELPELYT MR:80-20毫升/升,62A:1-5毫升/升,专利文献中描述的实例的评价实际限制为六价铬镀,没有谈及三价铬电镀,同时进验证存在耐腐蚀性能差,外观不符合等现象。 In the prior art, for example, the Chinese patent application (publication number: CN 101988211A) relates to a multi-layer nickel plating process on metal surfaces with excellent anti-corrosion properties. The electroplating process flow is: A. metallization of the surface of plastic parts, B. bright copper, C. semi-bright nickel, D. high-sulfur nickel E. bright nickel, F. microporous nickel, G. washing, H. bright chrome, I. washing, J. drying; although the four-layer nickel nickel is used in this technical scheme Electroplating the plastic surface with electroplating solution improves the corrosion resistance of plastic parts to a certain extent, but the corrosion resistance of this process still cannot meet the requirements of the corrosive environment containing deicing salt (CaCl 2 ). And about the technique of introducing micro-crack nickel, as Chinese patent application (publication number: CN101705508A) relates to a kind of electroplating solution and application thereof for micro-crack nickel electroplating, the main composition of this micro-crack nickel electroplating solution is as follows: nickel chloride: 180-260 g/l, acetic acid: 20-60 ml/l, ELPELYT MR: 80-20 ml/l, 62A: 1-5 ml/l, the evaluation of the examples described in the patent literature is practically limited to hexavalent chromium plating , did not talk about trivalent chromium plating, and at the same time, it was verified that there were phenomena such as poor corrosion resistance and inconsistent appearance.
发明内容 Contents of the invention
本实用新型所要解决的技术问题是针对现有技术的现状,而提供一种超耐蚀镀镍-铬部件,通过有机结合地利用功能层多层镍结构的耐腐蚀特性和电化学性能,既保证了微孔镍层的外观光亮特性,又具有包含微孔镍、微裂纹镍和\或高硫镍层的功能层的多重耐蚀性,可使产品达到超高耐蚀性、结构稳定性、硬度、耐磨性,即便在低电位镍层受到腐蚀后,微孔镍层、半光镍层、全光镍层或沙丁镍层同样可以起到支持和延缓腐蚀的效果。 The technical problem to be solved by the utility model is to provide a super-corrosion-resistant nickel-chromium plated part in view of the current situation of the prior art. It ensures the bright appearance of the microporous nickel layer, and has the multiple corrosion resistance of the functional layer containing microporous nickel, microcracked nickel and/or high-sulfur nickel layer, which can make the product achieve ultra-high corrosion resistance and structural stability , hardness, wear resistance, even after the low-potential nickel layer is corroded, the microporous nickel layer, semi-bright nickel layer, full-bright nickel layer or satin nickel layer can also support and delay corrosion.
本实用新型解决上述技术问题所采用的技术方案为:一种超耐蚀镀镍-铬部件,该超耐蚀镀镍-铬部件包括: The technical solution adopted by the utility model to solve the above-mentioned technical problems is: a super corrosion-resistant nickel-chrome plated part, the super corrosion-resistant nickel-chrome plated part comprises:
基材;这里本实用新型基材可以采用金属、塑料以及其它能够适用电镀的部件; Substrate; here the utility model substrate can adopt metal, plastics and other parts that can be applicable to electroplating;
预处理镀层(预处理镀层可以包括化学镍层或者打底镍层中的任一或者两层复合,也在基材上不存在该层,具体选择视基材的材质而定,当化学镍层和打底镍层同时存在时,则化学镍层形成于基材上,打底镍层形成于化学镍层上),其沉积在整个基材上,在预处理镀层上形成有镀铜层;和 Pretreatment coating (pretreatment coating can include any one or two layers of chemical nickel layer or primer nickel layer, and there is no such layer on the substrate. The specific choice depends on the material of the substrate. When the chemical nickel layer When existing simultaneously with the bottoming nickel layer, then the chemical nickel layer is formed on the substrate, and the bottoming nickel layer is formed on the chemical nickel layer), which is deposited on the entire substrate, and a copper plating layer is formed on the pretreatment coating; and
半光镍层,其形成于镀铜层上;和 a semi-gloss nickel layer formed on the copper plating layer; and
全光镍层或沙丁镍层,其形成于半光镍层;和 a full-bright nickel layer or a satin nickel layer formed over a semi-bright nickel layer; and
功能层,其形成于全光镍层或沙丁镍层上,其中功能层包括低电位镍层和形成于低电位镍层上的微孔镍层;和 A functional layer formed on the full-bright nickel layer or satin nickel layer, wherein the functional layer includes a low-potential nickel layer and a microporous nickel layer formed on the low-potential nickel layer; and
装饰层,其形成于微孔镍层上,所述装饰层为三价铬镀层或者六价铬镀层的任一,其中三价铬镀层可以为三价白铬镀层或者三价黑铬镀层或者其它种类的三价铬镀层,三价铬镀层表面还可含有钝化膜。 Decorative layer, which is formed on the microporous nickel layer, said decorative layer is any one of trivalent chromium plating or hexavalent chromium plating, wherein the trivalent chromium plating can be trivalent white chromium plating or trivalent black chromium plating or other Types of trivalent chromium coating, the surface of the trivalent chromium coating can also contain a passivation film.
为优化上述方案采取的措施具体包括: Measures taken to optimize the above-mentioned scheme include:
在上述的一种超耐蚀镀镍-铬部件中,所述微孔镍层与低电位镍层之间的电位差为10-120mv范围内。 In the aforementioned super-corrosion-resistant nickel-chrome plated part, the potential difference between the microporous nickel layer and the low-potential nickel layer is in the range of 10-120mv.
在上述的一种超耐蚀镀镍-铬部件中,所述的低电位镍层包括有高硫镍层、微裂纹镍层中一层或两层之间的复合镀层。 In the above-mentioned super-corrosion-resistant nickel-chrome plated part, the low-potential nickel layer includes a high-sulfur nickel layer and a layer of micro-cracked nickel layer or a composite coating between the two layers.
在上述的一种超耐蚀镀镍-铬部件中,所述微孔镍层与低电位镍层之间的电位差为20-100mv范围内。 In the above-mentioned super corrosion-resistant nickel-chrome plated part, the potential difference between the microporous nickel layer and the low potential nickel layer is in the range of 20-100mv.
在上述的一种超耐蚀镀镍-铬部件中,当低电位镍层采用微裂纹镍层与高硫镍层的复合镀层时,微裂纹镍层与高硫镍层之间电位差为10-80mv内。这里当腐蚀到达低电位镍层时,由于微裂纹镍层的电位比高硫镍层的电位高,此时高硫镍层又被作为阳极性镀层优先腐蚀,延长微裂纹镍层的腐蚀,从而进一步提升了耐腐蚀度。 In above-mentioned a kind of super-corrosion-resistant nickel-chromium plating parts, when the low-potential nickel layer adopts the composite coating of micro-crack nickel layer and high-sulfur nickel layer, the potential difference between the micro-crack nickel layer and the high-sulfur nickel layer is 10 Within -80mv. Here, when the corrosion reaches the low-potential nickel layer, since the potential of the micro-cracked nickel layer is higher than that of the high-sulfur nickel layer, the high-sulfur nickel layer is preferentially corroded as an anodic coating, prolonging the corrosion of the micro-cracked nickel layer, thereby Further improved corrosion resistance.
在上述的一种超耐蚀镀镍-铬部件中,所述全光镍层或沙丁镍层与低电位镍层之间的电位差为0-100mv范围内。 In the aforementioned super-corrosion-resistant nickel-chrome plated part, the potential difference between the all-gloss nickel layer or satin nickel layer and the low-potential nickel layer is in the range of 0-100mv.
在上述的一种超耐蚀镀镍-铬部件中,所述半光镍层与全光镍层或沙丁镍层之间的电位差为100-200mv范围内。 In the aforementioned super-corrosion-resistant nickel-chrome plated part, the potential difference between the semi-bright nickel layer and the full-gloss nickel layer or satin nickel layer is within the range of 100-200mv.
本实用新型公开的超耐蚀镀镍-铬部件的制造方法包括如下步骤: The manufacturing method of the super-corrosion-resistant nickel-chrome plated part disclosed by the utility model comprises the following steps:
将基材的表面进行预处理; Pretreating the surface of the substrate;
将预处理镀层沉积在整个基材上,并将镀铜层形成于预处理镀层上;和 depositing a pretreatment coating over the entire substrate, and forming a copper plating layer on the pretreatment coating; and
将半光镍层形成于镀铜层上;和 forming a semi-gloss nickel layer on the copper plating layer; and
将全光镍层或沙丁镍层形成于半光镍层;和 forming a full-bright nickel layer or a satin nickel layer on the semi-bright nickel layer; and
将功能层中的低电位层形成于全光镍层或沙丁镍层上;和 forming the low-potential layer in the functional layer on the all-bright nickel layer or the satin nickel layer; and
将功能层中的微孔镍层形成于低电位镍层上;所述微孔镍层与低电位镍层之间的电位差为10-120mv,将电位差控制在这一范围内,在电镀过程中不易出现鼓泡,同时镀层结构更为稳定牢固,不易发生分离剥落; The microporous nickel layer in the functional layer is formed on the low-potential nickel layer; the potential difference between the microporous nickel layer and the low-potential nickel layer is 10-120mv, and the potential difference is controlled within this range. Bubbling is not easy to occur during the process, and the coating structure is more stable and firm, and it is not easy to separate and peel off;
将装饰层形成于微孔镍层上。 A decorative layer is formed on the microporous nickel layer.
在上述的一种超耐蚀镀镍-铬部件的制造方法中,所述的低电位镍层包括有高硫镍层、微裂纹镍层中一层或两层之间的复合。 In the above-mentioned manufacturing method of a super-corrosion-resistant nickel-chrome plated part, the low-potential nickel layer includes a high-sulfur nickel layer, a layer of micro-cracked nickel layer or a composite between the two layers.
在上述的一种超耐蚀镀镍-铬部件的制造方法中,所述的微孔镍层采用镀微孔镍镀液电镀而成,所述镀微孔镍镀液包括成分及浓度为:含水硫酸镍300-350g/L,含水氯化镍50-60g/L,硼酸40-50g/L,镍封光亮剂6-12ml/L(确信乐思化学贸易(上海)有限公司以下简称乐思,麦德美科技(苏州)有限公司以下简称麦德美,如乐思的63和麦德美的NIMAC 14INDEX),镍封主光剂4-7.5ml/L(如乐思的610CFC和麦德美的NIMAC 33),镍封颗粒0.2-1.5g/L(如乐思的ENHANCER和麦德美的NiMac Hypore XL分散剂)、镍封颗粒分散剂0.5-3ml/L,湿润剂1-5ml/L。微孔镍层 镀制时操作温度控制在50-60℃之间,pH值控制在3.8-4.6之间,电流密度为2-5ASD,操作时间控制在2-8min之间,通过直流电电解的方式使镍沉积在电镀件上,微孔镍层厚度不低于1.5微米。镀微孔镍是指在基材表面镀一层均匀的含有无数个不导电微粒的镀层,进一步分散腐蚀电流,降低腐蚀电流密度,全面提高镀层抗蚀性。 In the above-mentioned manufacturing method of a super corrosion-resistant nickel-chrome plated part, the microporous nickel layer is formed by electroplating with a microporous nickel plating solution, and the microporous nickel plating solution includes a composition and a concentration of: Hydrous nickel sulfate 300-350g/L, hydrous nickel chloride 50-60g/L, boric acid 40-50g/L, nickel seal brightener 6-12ml/L , MacDermid Technology (Suzhou) Co., Ltd. hereinafter referred to as MacDermid, such as Lesi’s 63 and MacDermid’s NIMAC 14INDEX), nickel sealing master light agent 4-7.5ml/L (such as Lesi’s 610CFC and MacDermid’s NIMAC 33), nickel-sealed particles 0.2-1.5g/L (such as ENHANCER from Schleich and MacDermid’s NiMac Hypore XL dispersant), nickel-sealed particle dispersant 0.5-3ml/L, wetting agent 1-5ml/L. The microporous nickel layer is plated at an operating temperature of 50-60°C, a pH value of 3.8-4.6, a current density of 2-5ASD, and an operating time of 2-8 minutes, through direct current electrolysis The nickel is deposited on the electroplated parts, and the thickness of the microporous nickel layer is not less than 1.5 microns. Microporous nickel plating refers to plating a layer of uniform coating containing countless non-conductive particles on the surface of the substrate to further disperse the corrosion current, reduce the corrosion current density, and comprehensively improve the corrosion resistance of the coating.
在上述的一种超耐蚀镀镍-铬部件的制造方法中,所述的微裂纹镍层采用镀微裂纹镍镀液电镀而成,所述微裂纹镍镀液包括成分及浓度为:含水氯化镍:180-260g/L,醋酸:20-60ml/L,PN-1A:40-90g/L,PN-2A:1-5ml/L,湿润剂:1-5ml/L。操作温度控制在25-35℃之间,pH值控制在3.6-4.6之间,电流密度为5-9ASD,操作时间控制在2-5min之间,通过直流电电解的方式使镍沉积在镀镍-铬部件全光镍层表面上,要求微裂纹镍层厚度不低于1.5微米。镀微裂纹镍是指在基材表面镀一层均与的含有无数个裂纹的镀层,分散腐蚀电流,降低腐蚀电流密度。 In the above-mentioned manufacturing method of a super-corrosion-resistant nickel-chrome plated part, the microcracked nickel layer is formed by electroplating with a microcracked nickel plating solution, and the microcracked nickel plating solution includes a composition and a concentration of: Nickel chloride: 180-260g/L, acetic acid: 20-60ml/L, PN-1A: 40-90g/L, PN-2A: 1-5ml/L, wetting agent: 1-5ml/L. The operating temperature is controlled between 25-35°C, the pH value is controlled between 3.6-4.6, the current density is 5-9ASD, and the operating time is controlled between 2-5min. The nickel is deposited on the nickel-plated- On the surface of the all-bright nickel layer of chromium parts, the thickness of the micro-cracked nickel layer is required to be not less than 1.5 microns. Nickel plating with microcracks refers to plating a layer of uniform coating containing numerous cracks on the surface of the substrate to disperse the corrosion current and reduce the corrosion current density.
在上述的一种超耐蚀镀镍-铬部件的制造方法中,所述的高硫镍层采用镀高硫镍镀液电镀而成,所述高硫镍镀液包括成分及浓度为:含水硫酸镍250-350g/L,含水氯化镍35-60g/L,硼酸35-65g/L,高硫添加剂3-10ml/L,湿润剂0.5-3ml/L。湿润剂如乐思的62A和麦德美的NIMAC 32C WETTER。操作温度控制在55-65℃之间,pH至控制在2.0-3.5之间,电流密度为2-6ASD,操作时间控制在2-8min之间,通过直流电电解的方式使镍沉积在部件全光镍层或沙丁镍层表面上,所述高硫镍镀层厚度不低于1.0微米。 In the above-mentioned manufacturing method of a super-corrosion-resistant nickel-chrome plated part, the high-sulfur nickel layer is formed by electroplating with a high-sulfur nickel plating solution, and the high-sulfur nickel plating solution includes a composition and a concentration of: Nickel sulfate 250-350g/L, hydrous nickel chloride 35-60g/L, boric acid 35-65g/L, high sulfur additive 3-10ml/L, wetting agent 0.5-3ml/L. Wetting agents such as Lesi's 62A and MacDermid's NIMAC 32C WETTER. The operating temperature is controlled between 55-65°C, the pH is controlled between 2.0-3.5, the current density is 2-6ASD, the operating time is controlled between 2-8min, and nickel is deposited on the parts through direct current electrolysis On the surface of the nickel layer or satin nickel layer, the thickness of the high-sulfur nickel plating layer is not less than 1.0 micron.
在上述的一种超耐蚀镀镍-铬部件的制造方法中,所述的半光镍层采用镀半光镍镀液电镀而成,所述半光镍镀液包括成分及浓度为:含水硫酸镍200-300g/L,含水氯化镍35-50g/L,硼酸35-50g/L,半光镍初级光亮剂3.0-7.0ml/L(如乐思的BTL MU和 麦德美的NIMAC SF DUCT),半光镍次级光亮剂0.3-1.0ml/L(如乐思的TL-2和麦德美的NIMAC SF LEVELER),电位差调整剂0.1-0.6ml/L(如乐思的B补和麦德美的NIMAC SF MAINTENANCE),润湿剂1.0-3.0ml/L(如乐思的62A和麦德美的NIMAC 32C WETTER)。操作温度控制在50-60℃之间,pH值控制在3.6-4.6之间,电流密度为2-5ASD,操作时间控制在12-24min之间,通过直流电电解的方式使镍沉积在镀镍-铬部件镀铜层表面上,所述半光镍层厚度不低于8微米。 In the above-mentioned manufacturing method of a super corrosion-resistant nickel-chrome plated part, the semi-gloss nickel layer is formed by electroplating with a semi-gloss nickel plating solution, and the semi-gloss nickel plating solution includes a composition and a concentration of: Nickel sulfate 200-300g/L, hydrated nickel chloride 35-50g/L, boric acid 35-50g/L, semi-gloss nickel primary brightener 3.0-7.0ml/L (such as BTL MU from Lesi and NIMAC SF from MacDermid DUCT), semi-gloss nickel secondary brightener 0.3-1.0ml/L (such as TL-2 of Lesi and NIMAC SF LEVELER of Mai Demei), potential difference regulator 0.1-0.6ml/L (such as B supplement of Lesi and NIMAC SF MAINTENANCE), wetting agent 1.0-3.0ml/L (such as Lesi's 62A and NIMAC 32C WETTER). The operating temperature is controlled between 50-60°C, the pH value is controlled between 3.6-4.6, the current density is 2-5ASD, and the operating time is controlled between 12-24min. The nickel is deposited on the nickel-plated- On the surface of the copper plating layer of the chromium component, the thickness of the semi-gloss nickel layer is not less than 8 microns.
在上述一种超耐蚀镀镍-铬部件的制造方法中,全光镍层采用镀全光镍镀液电镀而成,所述全光镍镀液包括成分及浓度为:含水硫酸镍240-360g/L,含水氯化镍35-65g/L,硼酸35-65g/L,光亮镍柔软剂8-15ml/L(如乐思的63和麦德美的NIMAC 14INDEX),光亮镍光亮剂A 5-10ml/L(如乐思的610CFC和麦德美的NIMAC 33),光亮镍主光剂0.5-0.9ml/L(如乐思的66E和麦德美的NiMac Chanllenger Plus),润湿剂1.0-3.0ml/L(如乐思的62A和麦德美的NIMAC 32C WETTER)。操作温度控制在50-60℃之间,pH值控制在3.6-4.6之间,电流密度为2-5ASD,操作时间控制在9-20min之间,通过直流电电解的方式使镍沉积在镀镍-铬部件半光镍层表面上,所述全光镍层厚度不低于5微米。 In the manufacturing method of above-mentioned a kind of super-corrosion-resistant nickel-chrome plating parts, the all-gloss nickel layer is formed by electroplating with all-gloss nickel plating solution, and the all-gloss nickel plating solution includes composition and concentration: aqueous nickel sulfate 240- 360g/L, hydrated nickel chloride 35-65g/L, boric acid 35-65g/L, bright nickel softener 8-15ml/L (such as Lesi’s 63 and MacDermid’s NIMAC 14INDEX), bright nickel brightener A 5 -10ml/L (such as Schleich's 610CFC and MacDermid's NIMAC 33), bright nickel main light agent 0.5-0.9ml/L (such as Schleich's 66E and MacDermid's NiMac Challenger Plus), wetting agent 1.0-3.0 ml/L (such as Lesi's 62A and MacDermid's NIMAC 32C WETTER). The operating temperature is controlled between 50-60°C, the pH value is controlled between 3.6-4.6, the current density is 2-5ASD, and the operating time is controlled between 9-20min. The nickel is deposited on the nickel-plated- On the surface of the semi-bright nickel layer of the chromium component, the thickness of the full-bright nickel layer is not less than 5 microns.
在上述超耐蚀镀镍-铬部件的制造方法中,沙丁镍层采用镀沙丁镍镀液电镀而成,所述沙丁镍镀液包括成分及浓度为:含水硫酸镍250-350g/L,含水氯化镍35-60g/L,硼酸35-65g/L,辅助添加剂5-20ml/L(如乐思的Elpelyt pearlbrite carrier K4和Elpelyt carrier brightener H),沙丁镍形成剂0.1-0.6ml/L(如乐思的Elpelyt pearlbrite additive K6AL)。 In the manufacturing method of the above-mentioned super corrosion-resistant nickel-chromium parts, the satin nickel layer is formed by electroplating with a satin nickel plating solution, and the satin nickel plating solution includes composition and concentration: hydrated nickel sulfate 250-350g/ L, aqueous nickel chloride 35-60g/L, boric acid 35-65g/L, auxiliary additives 5-20ml/L (such as Elpelyt pearlbrite carrier K4 and Elpelyt carrier brightener H of Lesi), sardine nickel former 0.1-0.6 ml/L (such as Elpelyt pearlbrite additive K6AL of Lesi).
当基础层中为半光镍层、全光镍层时,镀半光镍、全光镍中镀液成分一样,添加剂不同,从而使得形成的镀层结构不一样,使得各步骤均起到不同的作用,半光镍层可以提高镀层的抗腐蚀 性,全光镍层可以提高镀层的光亮度,镀半光镍是指在镀镍-铬部件表面镀一层半光亮的镍层,半光镍层为柱状结构,可以提高镀层的抗腐蚀性。镀全光镍是指在镀镍-铬部件表面镀一层全光亮的镍层,全光镍层为层状结构,可以提高镀层的光亮度。 When the base layer is a semi-bright nickel layer or a full-bright nickel layer, the composition of the plating solution in the semi-bright nickel and full-gloss nickel plating is the same, but the additives are different, so that the formed coating structure is different, and each step has a different effect. Function, the semi-bright nickel layer can improve the corrosion resistance of the coating, and the full-gloss nickel layer can improve the brightness of the coating. Semi-bright nickel plating refers to plating a layer of semi-bright nickel layer on the surface of nickel-chromium-plated parts. Semi-bright nickel The layer has a columnar structure, which can improve the corrosion resistance of the coating. All-bright nickel plating refers to plating a layer of all-bright nickel layer on the surface of nickel-chrome-plated parts. The full-bright nickel layer has a layered structure, which can improve the brightness of the coating.
在上述超耐蚀镀镍-铬部件的制造方法中,还包括基材前期预处理工序,其中包括ABS树脂在内的非金属类基材前期预处理工序至少包括有表面油脂处理工序、表面亲水、表面粗化处理工序、表面中和处理工序、表面预浸、表面活化处理工序以及表面解胶处理工序;而金属类基材则在表面油脂处理工序进行除油后即可进行后续镀制工作,同样适用以下陈述的非金属基础前期预处理工序中的相应工序。 In the manufacturing method of the above-mentioned super-corrosion-resistant nickel-chromium parts, it also includes the pretreatment process of the base material, wherein the pretreatment process of the non-metallic base material including ABS resin at least includes a surface grease treatment process, a surface affinity Water, surface roughening treatment process, surface neutralization treatment process, surface pre-dipping, surface activation treatment process and surface debonding treatment process; while metal substrates can be subsequently plated after degreasing in the surface grease treatment process The work also applies to the corresponding procedures in the pre-treatment procedures of non-metallic foundations stated below.
在上述超耐蚀镀镍-铬部件的制造方法中,非金属类基材前期预处理工序具体为将基材坯件在氢氧化钠、碳酸钠和硅酸钠混合溶液中清洗去油脂,去油脂后浸入铬酸酐和硫酸混合液中进行表面粗化处理,然后放入盐酸溶液中进行表面中和,中和后采用胶体钯溶液进行表面活化处理,接着在硫酸溶液中进行表面解胶处理。 In the manufacturing method of the above-mentioned super-corrosion-resistant nickel-chrome plated parts, the pretreatment process of the non-metallic substrate is specifically to clean the substrate blank in a mixed solution of sodium hydroxide, sodium carbonate and sodium silicate to remove grease, remove The grease is then immersed in a mixture of chromic anhydride and sulfuric acid for surface roughening, then put into hydrochloric acid solution for surface neutralization, after neutralization, use colloidal palladium solution for surface activation treatment, and then perform surface degelling treatment in sulfuric acid solution.
作为优选,表面油脂处理工序的混合溶液中包括成分及浓度为:氢氧化钠的浓度为20-50g/L,碳酸钠的浓度为10-40g/L,硅酸钠的浓度为10-40g/L,表面活性剂1-3g/L。 As preferably, composition and concentration are included in the mixed solution of surface grease treatment step: the concentration of sodium hydroxide is 20-50g/L, the concentration of sodium carbonate is 10-40g/L, the concentration of sodium silicate is 10-40g/L L, surfactant 1-3g/L.
这里表面去油脂步骤能清除基材表面的油污和其他杂质,促使表面粗化均匀,提高镀层结合力。 Here, the surface degreasing step can remove oil and other impurities on the surface of the substrate, promote uniform surface roughening, and improve the bonding force of the coating.
作为优选,表面亲水工序的硫酸溶液浓度为20-100g/L,整面剂0.5-2ml/L。 Preferably, the concentration of the sulfuric acid solution in the surface hydrophilic step is 20-100g/L, and the finishing agent is 0.5-2ml/L.
作为优选,表面粗化处理工序的混合液中包括成分及浓度为:铬酸酐的浓度为330-480g/L,硫酸的浓度为330-480g/L。 Preferably, the components and concentrations included in the mixed liquid in the surface roughening treatment step are: the concentration of chromic anhydride is 330-480 g/L, and the concentration of sulfuric acid is 330-480 g/L.
这里铬酸酐是镀液中的主盐,通过氧化-还原反应及电子得失的机理在基材表面沉积出金属铬以及生产三氧化二铬水化物等, 使得镀层发黑,铬酸酐对镀液的深镀能力有较大影响,若铬酸酐含量高,则深镀能力强,结晶细致,但是若铬酸酐含量过高,则会使得镀层的硬度下降,另外,铬酸酐和硫酸作为腐蚀剂能在腐蚀基材表面以在基材表面形成微观粗糙表面,以确保化学镀时所需要的“锁扣效应”,以此提高基材表面与镀层的结合力。然而硫酸根会降低镀层的颜色性能,使得镀层发黄,为了能同时达到腐蚀基材表面和降低有害影响,需要精确配置硫酸的含量。 Here, chromic anhydride is the main salt in the plating solution. Metal chromium is deposited on the surface of the substrate through the mechanism of oxidation-reduction reaction and electron gain and loss, and chromium trioxide hydrate is produced, which makes the coating black, and chromic anhydride has an effect on the plating solution The deep-plating ability has a great influence. If the content of chromic anhydride is high, the deep-plating ability will be strong and the crystallization will be fine. The surface of the substrate is to form a microscopic rough surface on the surface of the substrate to ensure the "locking effect" required for electroless plating, thereby improving the bonding force between the surface of the substrate and the coating. However, sulfate radicals will reduce the color properties of the coating and make the coating yellow. In order to corrode the surface of the substrate and reduce harmful effects at the same time, it is necessary to precisely configure the content of sulfuric acid.
作为优选,表面中和工序的盐酸溶液浓度为30-100ml/L,水合肼15-60ml/L。 Preferably, the concentration of the hydrochloric acid solution in the surface neutralization process is 30-100ml/L, and the concentration of hydrazine hydrate is 15-60ml/L.
作为优选,表面预浸工序的盐酸溶液浓度为40-120ml/L。 Preferably, the concentration of the hydrochloric acid solution in the surface pre-soaking process is 40-120ml/L.
作为优选,表面活化处理的胶体钯溶液中包括成分及浓度为:氯化钯的浓度为20-60ppm,氯化亚锡的浓度1-6g/L,盐酸180-280ml/L。 Preferably, the colloidal palladium solution for surface activation treatment includes components and concentrations: the concentration of palladium chloride is 20-60ppm, the concentration of stannous chloride is 1-6g/L, and hydrochloric acid is 180-280ml/L.
这里胶体钯溶液中,氯化钯覆盖于基材表面,为后续的化学镍提供催化中心,而氯化亚锡的锡离子则能以化合太的基团沉积在钯离子周围,避免钯离子在水中或空气中氧化和脱落,能增加胶体钯溶液的使用周期。 Here, in the colloidal palladium solution, palladium chloride covers the surface of the substrate to provide a catalytic center for the subsequent chemical nickel, while the tin ions of stannous chloride can be deposited around the palladium ion as a compound group to prevent the palladium ion from Oxidation and shedding in water or air can increase the service life of the colloidal palladium solution.
作为优选,表面解胶处理工序的硫酸溶液浓度为40-100g/L。 Preferably, the concentration of the sulfuric acid solution in the surface degumming treatment process is 40-100 g/L.
表面解胶处理是指利用硫酸去除胶体钯溶液中包覆于氧化钯周围的氯化亚锡,将金属钯颗粒暴露出来,使得后续化学沉镍工艺更为顺畅。 Surface degelling treatment refers to the use of sulfuric acid to remove the stannous chloride coated around the palladium oxide in the colloidal palladium solution, exposing the metal palladium particles, making the subsequent chemical nickel deposition process smoother.
作为优选,化学镍层工序的化学镍层镀液中包括成分及浓度为:硫酸镍的浓度为15-40g/L,次磷酸钠的浓度为20-50g/L,柠檬酸钠的浓度为10-4g/L,氯化铵10-50g/L,氨水,PH调节用,PH=8.6-9.2。 As preferably, include composition and concentration in the electroless nickel layer plating solution of chemical nickel layer process: the concentration of nickel sulfate is 15-40g/L, and the concentration of sodium hypophosphite is 20-50g/L, and the concentration of sodium citrate is 10 -4g/L, ammonium chloride 10-50g/L, ammonia water, for pH adjustment, PH=8.6-9.2.
作为优选,镀打底镍工序的打底镍镀液中包括成分及浓度为:含水硫酸镍的浓度为180-280g/L,含水氯化镍的浓度为35-60g/L,硼酸的浓度为35-60g/L,湿润剂1-3ml/L。 As preferably, include composition and concentration in the bottoming nickel plating solution of laying nickel plating step: the concentration of aqueous nickel sulfate is 180-280g/L, the concentration of aqueous nickel chloride is 35-60g/L, the concentration of boric acid is 35-60g/L, wetting agent 1-3ml/L.
当化学镍层和打底镍层在基体上同时存在时,基体在化学沉镍中,已经通过氧化还原反应使得基材表面覆盖了一层较薄的导电的镍层后;而在镀打底镍中,则采用电化学的方法在化学镍上镀上一层镍,进一步加强镀层的导电性。本步骤中,含水硫酸镍、含水氯化镍提供电化学反应所需镍离子。 When the chemical nickel layer and the bottoming nickel layer exist on the substrate at the same time, the substrate has been covered with a thin conductive nickel layer through the oxidation-reduction reaction in the chemical nickel deposition; In nickel, a layer of nickel is plated on the chemical nickel by electrochemical method to further enhance the conductivity of the coating. In this step, the hydrated nickel sulfate and hydrated nickel chloride provide the nickel ions required for the electrochemical reaction.
作为优选,镀铜层工序的镀铜层镀液中各组分以及浓度为:硫酸铜的浓度为160-260g/L,硫酸的浓度为50-100g/L,氯离子为40-100ppm,整平剂0.2-1ml/L,走位剂0.2-1ml/L,开缸剂2-10ml/L。 As preferably, each component and concentration are in the copper plating layer bath of copper plating layer process: the concentration of copper sulfate is 160-260g/L, the concentration of sulfuric acid is 50-100g/L, and chloride ion is 40-100ppm, the whole Leveling agent 0.2-1ml/L, moving agent 0.2-1ml/L, cylinder opening agent 2-10ml/L.
这里镀铜层的目的是利用硫酸铜的特性以提高基材表面的光亮度和平整性,并且还能提高镀层整体的韧性。这是因为铜镀层相比镍镀层和其他金属镀层,其延展性更好,因此镀上酸铜层后,整体镀层的韧性和整平性得到提高。 The purpose of the copper plating layer here is to use the characteristics of copper sulfate to improve the brightness and smoothness of the substrate surface, and also to improve the overall toughness of the plating layer. This is because copper plating has better ductility than nickel plating and other metal plating, so after the acid copper layer is plated, the toughness and leveling of the overall plating are improved.
其中,在本实用新型镀镍-铬部件中,当低电位镍层采用单独微裂纹镍层或者为高硫镍层和微裂纹镍层组成的复合镍层,能使本实用新型达到最佳的耐腐蚀效果,这里功能层中微裂纹镍层、微孔镍层或者两者结合能起到防腐蚀和保护基材的原因在于,工件上镀层金属/基材金属极其容易形成腐蚀电池,在阴阳极电位确定的情况下,其腐蚀速率由镀层金属(阴极)表面基材金属(阳极)暴露面积的比率所控制。当只有一处的腐蚀点时,这时阴极/阳极比率最大,腐蚀电流就集中在这一点,腐蚀速率就变得很大,容易向内形成孔蚀,但当金属镀层表面存在较多潜在的腐蚀点时,阴极/阳极比率较小,腐蚀电流被分配到各处,原来腐蚀点上的电流就明显地减少了,腐蚀速率也大大降低。同时,由于微孔或裂纹之间的分割,使镀层阴极形成不连续,被分割后的镀层由大面积变成小面积,如此又进一步限制了阴极/阳极比率。然而随着时问的推移,当镀层表面受到外界因素影响开始出现大型裂纹时,微裂纹、微孔结构的潜在的腐蚀电池就会被引发,从而其到保护受腐蚀点的作用,从而就可以起到双核降低腐蚀电流密度的 作用,从而极大提升了耐腐蚀度。 Wherein, in the nickel-chromium plated part of the present utility model, when the low-potential nickel layer adopts a single micro-crack nickel layer or a composite nickel layer composed of a high-sulfur nickel layer and a micro-crack nickel layer, the utility model can be made to achieve the best Corrosion resistance effect, the reason why the micro-cracked nickel layer, microporous nickel layer or the combination of the two in the functional layer can prevent corrosion and protect the substrate is that the coating metal/base metal on the workpiece is extremely easy to form a corrosion cell, and the negative and positive When the electrode potential is determined, the corrosion rate is controlled by the ratio of the exposed area of the base metal (anode) on the surface of the coating metal (cathode). When there is only one corrosion point, the cathode/anode ratio is the largest at this time, the corrosion current is concentrated at this point, the corrosion rate becomes very large, and it is easy to form pitting corrosion inward, but when there are more potential corrosion points on the surface of the metal coating At the corrosion point, the cathode/anode ratio is small, the corrosion current is distributed everywhere, the current on the original corrosion point is significantly reduced, and the corrosion rate is also greatly reduced. At the same time, due to the division between micropores or cracks, the cathode of the coating is discontinuous, and the divided coating changes from a large area to a small area, which further limits the cathode/anode ratio. However, as time goes by, when the surface of the coating is affected by external factors and large cracks begin to appear, the potential corrosion cells of micro-cracks and micro-porous structures will be triggered, thereby protecting the corrosion points, so that it can be It plays the role of dual core to reduce the corrosion current density, thus greatly improving the corrosion resistance.
低电位镍抗腐蚀机理 Anticorrosion Mechanism of Low Potential Nickel
第一步:在零件表面解除腐蚀介质时,由于装饰层(比如铬层)存在高耐腐蚀的钝化层,铬层表面的微孔存在,引导腐蚀在微孔处的镍层展开,由于微孔的不连续性,导致在腐蚀总量不变的情况下,腐蚀被分隔为众多的区域,因此腐蚀在不影响外观状态下进行。。 Step 1: When removing the corrosive medium on the surface of the part, due to the presence of a highly corrosion-resistant passivation layer on the decorative layer (such as the chromium layer), micropores on the surface of the chromium layer exist, which guide the corrosion of the nickel layer at the micropores to expand. The discontinuity of the pores leads to the fact that the corrosion is divided into many areas when the total amount of corrosion remains unchanged, so the corrosion proceeds without affecting the appearance. .
第二步:当腐蚀到达低电位镍层时,由于微孔镍电位比低电位镍电位高,此时低电位镍被作为阳极性镀层优先腐蚀(即低电位镍层优先作为牺牲层),微孔镍中的腐蚀被终止。在大量不连续微裂纹的作用下引导腐蚀在裂纹纵深和横向同时展开,遭受腐蚀的镍层面积将大大增多且不连续,在腐蚀电流一定的情况下,这些“微孔”极大的分散了腐蚀电流,再次降低了单点腐蚀速率,延缓的腐蚀速度,同时保护了外观面上的铬层及其附着层微孔镍层,产品表面耐腐蚀能力进一步提高。 Step 2: When the corrosion reaches the low-potential nickel layer, since the potential of the microporous nickel is higher than that of the low-potential nickel, the low-potential nickel is preferentially corroded as an anodic coating (that is, the low-potential nickel layer is preferentially used as a sacrificial layer), and the micro Corrosion in the porous nickel is stopped. Under the action of a large number of discontinuous micro-cracks, the corrosion is guided to develop simultaneously in the depth and lateral direction of the cracks, and the area of the corroded nickel layer will be greatly increased and discontinuous. Under the condition of a certain corrosion current, these "micro-pores" are greatly dispersed. The corrosion current reduces the single point corrosion rate again, delays the corrosion rate, and protects the chromium layer on the appearance surface and the microporous nickel layer attached to it, further improving the corrosion resistance of the product surface.
第三步:腐蚀在低电位镍层中进一步向下延伸时,由于低电位镍层下方镀层(如镀铜层)的电位同样比低电位镍高,低电位镍同样被当做了阳极性镀层,此时向下延伸的腐蚀被终止,腐蚀方向在低电位镍中横向进行,这样又进一步延缓了腐蚀至基材的时间,大大降底了腐蚀的速度。 Step 3: When the corrosion extends further downward in the low-potential nickel layer, since the potential of the plating layer (such as copper plating layer) under the low-potential nickel layer is also higher than that of low-potential nickel, the low-potential nickel is also regarded as an anodic coating. At this time, the corrosion extending downward is terminated, and the corrosion direction is carried out horizontally in the low-potential nickel, which further delays the time for corrosion to the substrate and greatly reduces the corrosion speed.
与现有技术相比,本实用新型的优点在于: Compared with the prior art, the utility model has the advantages of:
1、本实用新型基材表面的双核法多层镍即半光镍层、全光镍层或沙丁镍层、低电位镍层中的高硫镍层和\或微裂纹镍层、微孔镍层,具有高防腐蚀性能,高硬度,高耐磨性,镀层结合力好,光亮度高等优点,本实用新型基材表面电镀得到的微孔镍层和低电位镍层,具有高防腐蚀性能,高硬度,高耐磨性,镀层结合力好,光亮度高等优点;同时以具有高电位特性的微孔镍层以及具有低电位特性的多层镍——低电位镍层为功能层,并以低电位镍 层为牺牲层,以具有微孔结构的微孔镍层能够分散电化学腐蚀的微电流,延缓在受到腐蚀发生,同时形成还能够通过微孔结构在氧化后形成氧化物进行支持,可以在作为牺牲层的低电位镍层受到较为严重的腐蚀后对其形成支撑,降低零件镀层损毁速度。设置的作为牺牲层的低电位镍层具有较低的电势,在零件表面镀层发生电化学腐蚀时,低电位镍层优先发生腐蚀,并且具有微孔镍层或者微裂纹镍层时,其微孔或者微裂纹结构同样能够起到分散腐蚀微电流,同时在低电位镍层外侧还具有外层结构时(如装饰层或者保护层时)还可以通过微孔或者微裂纹结构对外侧结构进行支持,增强材料结构的稳固性。另外本实用新型方案利用微孔镍和微裂纹镍的孔隙结构,在增强材料结构支持性能的同时,还可以起到降低镀层质量和降低原料耗费的作用。同时其微孔隙结构还能够在发生氧化腐蚀时形成大面积的氧化物薄膜结构,从而极大地延缓腐蚀的发生。 1. The dual-core method multi-layer nickel on the surface of the substrate of the present invention is a semi-gloss nickel layer, a full-gloss nickel layer or a satin nickel layer, a high-sulfur nickel layer in a low-potential nickel layer and/or a micro-crack nickel layer, and micropores The nickel layer has the advantages of high anti-corrosion performance, high hardness, high wear resistance, good coating adhesion, and high brightness. The microporous nickel layer and low-potential nickel layer obtained by electroplating the substrate surface of the utility model have high anti-corrosion properties. High performance, high hardness, high wear resistance, good bonding force of the coating, high brightness, etc.; at the same time, the microporous nickel layer with high potential characteristics and the multilayer nickel with low potential characteristics—low potential nickel layer are used as functional layers. The low-potential nickel layer is used as a sacrificial layer, and the microporous nickel layer with a microporous structure can disperse the microcurrent of electrochemical corrosion, delay the occurrence of corrosion, and at the same time form an oxide through the microporous structure after oxidation. The support can form a support for the low-potential nickel layer as a sacrificial layer after it is corroded more severely, reducing the damage speed of the plating layer of the part. The low-potential nickel layer set as a sacrificial layer has a lower potential. When electrochemical corrosion occurs on the surface coating of the part, the low-potential nickel layer corrodes preferentially, and when there is a microporous nickel layer or a microcracked nickel layer, its micropores Or the micro-crack structure can also disperse the corrosion micro-current, and at the same time, when there is an outer layer structure outside the low-potential nickel layer (such as a decorative layer or a protective layer), the outer structure can also be supported by the micro-pore or micro-crack structure. Enhance the stability of the material structure. In addition, the utility model scheme utilizes the pore structure of microporous nickel and microcracked nickel, which can reduce the quality of the coating and reduce the consumption of raw materials while enhancing the structural support performance of the material. At the same time, its microporous structure can also form a large-area oxide film structure when oxidation and corrosion occur, thereby greatly delaying the occurrence of corrosion.
附图说明 Description of drawings
图1为本实用新型镀镍-铬部件的一实施例的镀层结构示意图。 Fig. 1 is a schematic diagram of the coating structure of an embodiment of the nickel-chrome plated part of the present invention.
图2现有技术的镀镍-铬部件CASS 72小时后金相图,图2中(a)为实验后样品的正面金相图,图2中(b)为实验后样品的侧面(断面)金相图。 Metallographic diagram after 72 hours of nickel-chromium plating parts CASS of Fig. 2 prior art, among Fig. 2 (a) is the front metallographic diagram of sample after experiment, among Fig. 2 (b) is the side (section) of sample after experiment Metallographic chart.
图3本实用新型镀镍-铬部件CASS 72小时后金相图,图3中(a)为实验后样品的正面金相图,图3中(a)为实验后样品的侧面金相图。 Fig. 3 metallographic diagram after 72 hours of nickel-chromium plating part CASS of the utility model, among Fig. 3 (a) is the front metallographic diagram of sample after experiment, among Fig. 3 (a) is the side metallographic diagram of sample after experiment.
图4现有技术的镀镍-铬部件氟石膏实验进行168和336小时之后的图片。 Fig. 4. Pictures of prior art nickel-chrome plated parts after fluorogypsum experiments were carried out for 168 and 336 hours.
图5本实用新型镀镍-铬部件氟石膏实验进行168和336小时之后的图片。 Fig. 5 is the pictures after 168 hours and 336 hours of the fluorogypsum experiment of the nickel-chromium plated part of the utility model.
图6本实用新型复合低电位镍层电位差图片(低电位镍层为高硫镍层与微裂纹镍层的复合层)。 Fig. 6 potential difference picture of composite low-potential nickel layer of the utility model (low-potential nickel layer is a composite layer of high-sulfur nickel layer and micro-crack nickel layer).
图7本实用新型单低电位镍层电位差图片(低电位镍层为高硫镍层或者微裂纹镍层的任一)。 Figure 7 is a picture of the potential difference of the single low-potential nickel layer of the utility model (the low-potential nickel layer is either a high-sulfur nickel layer or a micro-cracked nickel layer).
图8本实用新型的多层镍腐蚀原理图(以ABS为零件基材)。 Figure 8 is a schematic diagram of multilayer nickel corrosion of the utility model (using ABS as the part base material).
附图标记列表: List of reference signs:
1、基材;2、预处理镀层;21、腐蚀空缺;3、镀铜层;31、表面微孔;32、腐蚀孔;4、功能层;141、低电位镍层;142、微孔镍层;62、半光镍层;61、全光镍层或沙丁镍层;801、腐蚀介质;802、装饰层;805、腐蚀面;808、打底镍层;809、化学镍层;810、ABS基材。 1. Substrate; 2. Pretreatment coating; 21. Corrosion vacancies; 3. Copper plating layer; 31. Surface micropores; 32. Corrosion holes; 4. Functional layer; 141. Low potential nickel layer; 142. Microporous nickel layer; 62, semi-bright nickel layer; 61, full-gloss nickel layer or satin nickel layer; 801, corrosion medium; 802, decorative layer; 805, corrosion surface; 808, primer nickel layer; 809, chemical nickel layer; 810 , ABS substrate.
具体实施方式 Detailed ways
下面结合附图和具体实施方式,进一步阐明本实用新型,应理解下述具体实施方式仅用于说明本实用新型而不用于限制本实用新型的范围。 The utility model will be further explained below in conjunction with the accompanying drawings and specific embodiments. It should be understood that the following specific embodiments are only used to illustrate the utility model and are not intended to limit the scope of the utility model.
本实用新型实施例中溶液的溶剂除特别说明外均为水(包括而不限于蒸馏水、去离子水、低硬度水等)。 The solvent of the solution in the embodiment of the utility model is water (including but not limited to distilled water, deionized water, low hardness water, etc.) unless otherwise specified.
如图1所示,以下对本实用新型镀镍部件的镀层结构进行说明。 As shown in FIG. 1 , the coating structure of the nickel-plated part of the present invention will be described below.
结构实施例1 Structural Example 1
基材1(ABS材质);预处理镀层2包括化学镍层809、打底镍层808,化学镍层809沉积在整个基材1上,打底镍层808沉积在化学镍层809上,在打底镍层808上形成有镀铜层3;半光镍层62,其形成于镀铜层3上;和全光镍层61,其形成于半光镍层62上;和功能层4,其形成于全光镍层61上,其中功能层4包括低电位镍层141和形成于低电位镍层上的微孔镍层142,其中低电位镍层141为高硫镍层,其形成于全光镍层61上;和装饰 层802,其形成于微孔镍层142上,装饰层802为三价白铬镀层。 Substrate 1 (ABS material); Pretreatment coating 2 comprises chemical nickel layer 809, making a bottom nickel layer 808, and chemical nickel layer 809 is deposited on the whole substrate 1, and making bottom nickel layer 808 is deposited on the chemical nickel layer 809, in A copper-plated layer 3 is formed on the bottom nickel layer 808; a semi-gloss nickel layer 62, which is formed on the copper-plate layer 3; and a full-gloss nickel layer 61, which is formed on the semi-gloss nickel layer 62; and a functional layer 4, It is formed on the all-optical nickel layer 61, wherein the functional layer 4 includes a low-potential nickel layer 141 and a microporous nickel layer 142 formed on the low-potential nickel layer, wherein the low-potential nickel layer 141 is a high-sulfur nickel layer, which is formed on On the full light nickel layer 61; And decoration layer 802, it is formed on the microporous nickel layer 142, and decoration layer 802 is trivalent white chromium plating.
结构实施例2 Structural Example 2
基材1(ABS材质);预处理镀层2包括化学镍层809、打底镍层808,化学镍层809沉积在整个基材1上,打底镍层808沉积在化学镍层809上,在打底镍层808上形成有镀铜层3;半光镍层62,其形成于镀铜层3上;和全光镍层61,其形成于半光镍层62上;和功能层4,其形成于全光镍层61上,其中功能层4包括低电位镍层141和形成于低电位镍层上的微孔镍层142,其中低电位镍层141为微裂纹镍层,其形成于全光镍层61上;和装饰层802,其形成于微孔镍层142上,装饰层802为三价黑铬镀层。 Substrate 1 (ABS material); Pretreatment coating 2 comprises chemical nickel layer 809, making a bottom nickel layer 808, and chemical nickel layer 809 is deposited on the whole substrate 1, and making bottom nickel layer 808 is deposited on the chemical nickel layer 809, in A copper-plated layer 3 is formed on the bottom nickel layer 808; a semi-gloss nickel layer 62, which is formed on the copper-plate layer 3; and a full-gloss nickel layer 61, which is formed on the semi-gloss nickel layer 62; and a functional layer 4, It is formed on the all-optical nickel layer 61, wherein the functional layer 4 includes a low-potential nickel layer 141 and a microporous nickel layer 142 formed on the low-potential nickel layer, wherein the low-potential nickel layer 141 is a micro-crack nickel layer, which is formed on on the full-gloss nickel layer 61; and a decoration layer 802, which is formed on the microporous nickel layer 142, and the decoration layer 802 is a trivalent black chromium plating layer.
结构实施例3 Structural Example 3
基材1(ABS材质);预处理镀层2包括化学镍层809、打底镍层808,化学镍层809沉积在整个基材1上,打底镍层808沉积在化学镍层809上,在打底镍层808上形成有镀铜层3;半光镍层62,其形成于镀铜层3上;和全光镍层61,其形成于半光镍层62上;和功能层4,其形成于全光镍层61上,其中功能层4包括低电位镍层141和形成于低电位镍层上的微孔镍层142,其中低电位镍层141为微裂纹镍层,其形成于全光镍层61为高硫镍层和微裂纹镍层(可以是高硫镍层形成于全光镍层或沙丁镍层5上,微裂纹镍层形成于高硫镍层上;也可以是微裂纹镍层形成于全光镍层或沙丁镍层5上,高硫镍层形成于微裂纹镍层上);和装饰层802,其形成于微孔镍层142上,装饰层802为三价黑铬镀层。 Substrate 1 (ABS material); Pretreatment coating 2 comprises chemical nickel layer 809, making a bottom nickel layer 808, and chemical nickel layer 809 is deposited on the whole substrate 1, and making bottom nickel layer 808 is deposited on the chemical nickel layer 809, in A copper-plated layer 3 is formed on the bottom nickel layer 808; a semi-gloss nickel layer 62, which is formed on the copper-plate layer 3; and a full-gloss nickel layer 61, which is formed on the semi-gloss nickel layer 62; and a functional layer 4, It is formed on the all-optical nickel layer 61, wherein the functional layer 4 includes a low-potential nickel layer 141 and a microporous nickel layer 142 formed on the low-potential nickel layer, wherein the low-potential nickel layer 141 is a micro-crack nickel layer, which is formed on All-light nickel layer 61 is a high-sulfur nickel layer and microcrack nickel layer (can be that high-sulfur nickel layer is formed on all-light nickel layer or satin nickel layer 5, and micro-crack nickel layer is formed on high-sulfur nickel layer; It is that the micro-crack nickel layer is formed on the full light nickel layer or the satin nickel layer 5, and the high-sulfur nickel layer is formed on the micro-crack nickel layer); and the decoration layer 802, which is formed on the microporous nickel layer 142, the decoration layer 802 Trivalent black chrome plating.
结构实施例4 Structural Example 4
基材1(ABS材质);预处理镀层2包括化学镍层809,化学镍层809沉积在整个基材1上,在化学镍层809上形成有镀铜层3;半光镍层62,其形成于镀铜层3上;和全光镍层61,其形成 于半光镍层62上;和功能层4,其形成于全光镍层61上,其中功能层4包括低电位镍层141和形成于低电位镍层上的微孔镍层142,其中低电位镍层141为高硫镍层,其形成于全光镍层61上;和装饰层802,其形成于微孔镍层142上,装饰层802为三价白铬镀层。 Substrate 1 (ABS material); Pretreatment coating 2 comprises chemical nickel layer 809, and chemical nickel layer 809 is deposited on the whole substrate 1, is formed with copper plating layer 3 on chemical nickel layer 809; Semi-light nickel layer 62, its Formed on the copper-plated layer 3; and the full light nickel layer 61, which is formed on the semi-light nickel layer 62; and the functional layer 4, which is formed on the full light nickel layer 61, wherein the functional layer 4 includes a low-potential nickel layer 141 And the microporous nickel layer 142 formed on the low-potential nickel layer, wherein the low-potential nickel layer 141 is a high-sulfur nickel layer, which is formed on the full-gloss nickel layer 61; and the decoration layer 802, which is formed on the microporous nickel layer 142 Above, the decorative layer 802 is a trivalent white chrome plating.
结构实施例5 Structural Example 5
基材1(ABS材质);预处理镀层2包括化学镍层809,化学镍层809沉积在整个基材1上,在化学镍层809上形成有镀铜层3;半光镍层62,其形成于镀铜层3上;和全光镍层61,其形成于半光镍层62上;和功能层4,其形成于全光镍层61上,其中功能层4包括低电位镍层141和形成于低电位镍层上的微孔镍层142,其中低电位镍层141为微裂纹镍层,其形成于全光镍层61上;和装饰层802,其形成于微孔镍层142上,装饰层802为六价铬镀层。 Substrate 1 (ABS material); Pretreatment coating 2 comprises chemical nickel layer 809, and chemical nickel layer 809 is deposited on the whole substrate 1, is formed with copper plating layer 3 on chemical nickel layer 809; Semi-light nickel layer 62, its Formed on the copper-plated layer 3; and the full light nickel layer 61, which is formed on the semi-light nickel layer 62; and the functional layer 4, which is formed on the full light nickel layer 61, wherein the functional layer 4 includes a low-potential nickel layer 141 And the microporous nickel layer 142 formed on the low-potential nickel layer, wherein the low-potential nickel layer 141 is a microcrack nickel layer, which is formed on the full-gloss nickel layer 61; and the decoration layer 802, which is formed on the microporous nickel layer 142 Above, the decorative layer 802 is a hexavalent chromium plating layer.
结构实施例6 Structural Example 6
基材1(ABS材质);预处理镀层2包括化学镍层809,化学镍层809沉积在整个基材1上,在化学镍层809上形成有镀铜层3;半光镍层62,其形成于镀铜层3上;和全光镍层61,其形成于半光镍层62上;和功能层4,其形成于全光镍层61上,其中功能层4包括低电位镍层141和形成于低电位镍层上的微孔镍层142,其中低电位镍层141为微裂纹镍层,其形成于全光镍层61为高硫镍层和微裂纹镍层(可以是高硫镍层形成于全光镍层或沙丁镍层5上,微裂纹镍层形成于高硫镍层上;也可以是微裂纹镍层形成于全光镍层或沙丁镍层5上,高硫镍层形成于微裂纹镍层上);和装饰层802,其形成于微孔镍层142上,装饰层802为六价铬镀层。 Substrate 1 (ABS material); Pretreatment coating 2 comprises chemical nickel layer 809, and chemical nickel layer 809 is deposited on the whole substrate 1, is formed with copper plating layer 3 on chemical nickel layer 809; Semi-light nickel layer 62, its Formed on the copper-plated layer 3; and the full light nickel layer 61, which is formed on the semi-light nickel layer 62; and the functional layer 4, which is formed on the full light nickel layer 61, wherein the functional layer 4 includes a low-potential nickel layer 141 And the microporous nickel layer 142 formed on the low-potential nickel layer, wherein the low-potential nickel layer 141 is a micro-crack nickel layer, which is formed on the full-light nickel layer 61 as a high-sulfur nickel layer and a micro-crack nickel layer (which can be a high-sulfur nickel layer) The nickel layer is formed on the full-bright nickel layer or the satin nickel layer 5, and the micro-crack nickel layer is formed on the high-sulfur nickel layer; it can also be that the micro-crack nickel layer is formed on the full-bright nickel layer or the satin nickel layer 5, and the high sulfur nickel layer formed on the microcracked nickel layer); and a decorative layer 802 formed on the microporous nickel layer 142, the decorative layer 802 is a hexavalent chromium plating layer.
结构实施例7 Structural Example 7
基材1(ABS材质);预处理镀层2包括打底镍层808,化学 镍层808沉积在整个基材1上,在打底镍层808上形成有镀铜层3;半光镍层62,其形成于镀铜层3上;和全光镍层61,其形成于半光镍层62上;和功能层4,其形成于全光镍层61上,其中功能层4包括低电位镍层141和形成于低电位镍层上的微孔镍层142,其中低电位镍层141为高硫镍层,其形成于全光镍层61上;和装饰层802,其形成于微孔镍层142上,装饰层802为三价黑铬镀层。 Substrate 1 (ABS material); Pretreatment coating 2 comprises nickel layer 808, and chemical nickel layer 808 is deposited on the whole substrate 1, and is formed with copper-plated layer 3 on nickel layer 808; Semi-light nickel layer 62 , which is formed on the copper-plated layer 3; and a full-bright nickel layer 61, which is formed on the semi-bright nickel layer 62; and a functional layer 4, which is formed on the full-bright nickel layer 61, wherein the functional layer 4 includes low-potential nickel Layer 141 and the microporous nickel layer 142 formed on the low-potential nickel layer, wherein the low-potential nickel layer 141 is a high-sulfur nickel layer, which is formed on the full-bright nickel layer 61; and the decorative layer 802, which is formed on the microporous nickel On the layer 142, the decorative layer 802 is a trivalent black chromium plating layer.
结构实施例8 Structural Example 8
基材1(ABS材质);预处理镀层2包括打底镍层808,化学镍层808沉积在整个基材1上,在打底镍层808上形成有镀铜层3;半光镍层62,其形成于镀铜层3上;和全光镍层61,其形成于半光镍层62上;和功能层4,其形成于全光镍层61上,其中功能层4包括低电位镍层141和形成于低电位镍层上的微孔镍层142,其中低电位镍层141为微裂纹镍层,其形成于全光镍层61上;和装饰层802,其形成于微孔镍层142上,装饰层802为三价黑铬镀层,三价黑铬镀层表面含有钝化膜。 Substrate 1 (ABS material); Pretreatment coating 2 comprises a nickel layer 808, and the chemical nickel layer 808 is deposited on the entire substrate 1, and a copper-plated layer 3 is formed on the nickel layer 808; Semi-gloss nickel layer 62 , which is formed on the copper-plated layer 3; and a full-bright nickel layer 61, which is formed on the semi-bright nickel layer 62; and a functional layer 4, which is formed on the full-bright nickel layer 61, wherein the functional layer 4 includes low-potential nickel Layer 141 and the microporous nickel layer 142 formed on the low-potential nickel layer, wherein the low-potential nickel layer 141 is a micro-cracked nickel layer, which is formed on the full-gloss nickel layer 61; and the decorative layer 802, which is formed on the microporous nickel layer On the layer 142, the decoration layer 802 is a trivalent black chromium plating layer, and the surface of the trivalent black chromium plating layer contains a passivation film.
结构实施例9 Structural Example 9
基材1(ABS材质);预处理镀层2包括打底镍层808,化学镍层808沉积在整个基材1上,在打底镍层808上形成有镀铜层3;半光镍层62,其形成于镀铜层3上;和全光镍层61,其形成于半光镍层62上;和功能层4,其形成于全光镍层61上,其中功能层4包括低电位镍层141和形成于低电位镍层上的微孔镍层142,其中低电位镍层141为微裂纹镍层,其形成于全光镍层61为高硫镍层和微裂纹镍层(可以是高硫镍层形成于全光镍层5上,微裂纹镍层形成于高硫镍层上;也可以是微裂纹镍层形成于全光镍层5上,高硫镍层形成于微裂纹镍层上);和装饰层802,其形成于微孔镍层142上,装饰层802为三价白铬镀层,三价白铬镀层表面含有钝化膜。 Substrate 1 (ABS material); Pretreatment coating 2 comprises a nickel layer 808, and the chemical nickel layer 808 is deposited on the entire substrate 1, and a copper-plated layer 3 is formed on the nickel layer 808; Semi-gloss nickel layer 62 , which is formed on the copper-plated layer 3; and a full-bright nickel layer 61, which is formed on the semi-bright nickel layer 62; and a functional layer 4, which is formed on the full-bright nickel layer 61, wherein the functional layer 4 includes low-potential nickel Layer 141 and the microporous nickel layer 142 formed on the low-potential nickel layer, wherein the low-potential nickel layer 141 is a micro-cracked nickel layer, which is formed on the full-light nickel layer 61 as a high-sulfur nickel layer and a micro-cracked nickel layer (which can be The high-sulfur nickel layer is formed on the full-bright nickel layer 5, and the micro-crack nickel layer is formed on the high-sulfur nickel layer; it may also be that the micro-crack nickel layer is formed on the full-bright nickel layer 5, and the high-sulfur nickel layer is formed on the micro-crack nickel layer); and a decorative layer 802, which is formed on the microporous nickel layer 142, the decorative layer 802 is a trivalent white chromium coating, and the surface of the trivalent white chromium coating contains a passivation film.
结构实施例10-18与结构实施例1-9的唯一区别仅在于:全光镍层5为沙丁镍层5。 The only difference between Structural Examples 10-18 and Structural Examples 1-9 is that: the all-bright nickel layer 5 is a satin nickel layer 5 .
结构实施例19-36与结构实施例1-18的唯一区别仅在于:基材1为尼龙材质。 The only difference between structural examples 19-36 and structural examples 1-18 is that the base material 1 is made of nylon.
结构实施例37-54与结构实施例1-18的唯一区别仅在于:基材1为pvc材质。 The only difference between structural examples 37-54 and structural examples 1-18 is that the base material 1 is made of PVC.
结构实施例55-72与结构实施例1-18的唯一区别仅在于:基材1为pc材质。 The only difference between structural examples 55-72 and structural examples 1-18 is that the base material 1 is made of pc.
结构实施例73-90与结构实施例1-18的唯一区别仅在于:基材1为pet材质。 The only difference between structural examples 73-90 and structural examples 1-18 is that the base material 1 is made of pet material.
结构实施例91-108与结构实施例1-18的唯一区别仅在于:基材1为胶木材质。 The only difference between the structural examples 91-108 and the structural examples 1-18 is that the base material 1 is bakelite.
结构实施例109-126与结构实施例1-18的唯一区别仅在于:基材1为铸铁(包括而不限于灰口铸铁、白口铸铁、球墨铸铁、蠕墨铸铁、可锻铸铁以及合金铸铁等)材质。 The only difference between structural examples 109-126 and structural examples 1-18 is that the base material 1 is cast iron (including but not limited to gray cast iron, white cast iron, nodular cast iron, vermicular cast iron, malleable cast iron and alloy cast iron, etc.) material.
结构实施例127-144与结构实施例1-18的唯一区别仅在于:基材1为钢质(包括各种普通钢、不锈钢等)以及铝合金材质、镁合金材质。 The only difference between structural examples 127-144 and structural examples 1-18 is that the base material 1 is made of steel (including various common steels, stainless steel, etc.), aluminum alloy, and magnesium alloy.
本实用新型技术方案中所采用的基材1材质还可以为其它可以用于在其表面镀制铜、镍、铬镀层的材料。 The material of the base material 1 adopted in the technical solution of the utility model can also be other materials that can be used for plating copper, nickel, and chrome coatings on its surface.
本实用新型实施例中溶液的溶剂除特别说明外均为水(包括而不限于蒸馏水、去离子水、低硬度水等),浓度均以单位体积或者质量的溶液计量。 The solvent of the solution in the embodiment of the utility model is water (including but not limited to distilled water, deionized water, low hardness water, etc.) unless otherwise specified, and the concentration is measured by the solution per unit volume or mass.
以下实施例零件的基材优选采用ABS材质。 The base material of the parts in the following examples is preferably made of ABS.
制备实施例1-5 Preparation Examples 1-5
本实用新型一种实施例的镀镍部件的制造方法如下,将基材的表面进行预处理(预处理依次包括如下步骤:表面去油脂、表面亲水处理、表面粗化处理、表面中和处理、预浸、表面活化处 理、表面解胶处理);将预处理镀层(包括化学沉镍和打底镍,除此以外预处理镀层是否保留以及预处理镀层组成的选择根据基材材质以及工艺产品需求进行灵活选择)沉积在整个基材上,由基材表面顺次向外形成的化学镍层和打底镍层,并将镀铜层形成于预处理镀层(打底镍层外)上;和将半光镍层形成于镀铜层上;和将全光镍层形成于半光镍层;和将功能层中的低电位层形成于镀铜层上,这里低电位镍层为高硫镍层;和将功能层中的微孔镍层形成于高硫镍层上;将装饰层形成于微孔镍层上。 The manufacturing method of the nickel-plated part of an embodiment of the present invention is as follows, the surface of the substrate is pretreated (the pretreatment includes the following steps in turn: surface degreasing, surface hydrophilic treatment, surface roughening treatment, surface neutralization treatment , pre-dipping, surface activation treatment, surface debonding treatment); the pre-treatment coating (including electroless nickel and primer nickel, in addition to whether the pre-treatment coating is retained and the selection of the composition of the pre-treatment coating depends on the material of the substrate and the process Flexible selection according to product requirements) deposited on the entire substrate, the chemical nickel layer and the bottom nickel layer formed from the surface of the substrate in sequence, and the copper plating layer is formed on the pretreatment coating (outside the bottom nickel layer) and the semi-light nickel layer is formed on the copper-plated layer; and the full-light nickel layer is formed on the semi-light nickel layer; and the low-potential layer in the functional layer is formed on the copper-plated layer, where the low-potential nickel layer is high a sulfur nickel layer; and forming the microporous nickel layer in the functional layer on the high sulfur nickel layer; forming a decoration layer on the microporous nickel layer.
其中,所述微孔镍层与低电位镍层之间的电位差分别为20、30、40、50、60、10、80、90、100mv的任一或者20-100mv范围内的其他任意值(实施例1-5可以分别选择20-100mv中(如20、40、60、80、100mv)不同数值为相应实施例中微孔镍层与低电位镍层之间的电位差,各实施例中微孔镍层与低电位镍层间的电位差也可以相同)。 Wherein, the potential difference between the microporous nickel layer and the low potential nickel layer is any of 20, 30, 40, 50, 60, 10, 80, 90, 100mv or any other value within the range of 20-100mv (Embodiments 1-5 can select (as 20, 40, 60, 80, 100mv) different numerical values in 20-100mv respectively to be the potential difference between the microporous nickel layer and the low-potential nickel layer in the corresponding embodiment, each embodiment The potential difference between the microporous nickel layer and the low potential nickel layer can also be the same).
所述全光镍层与低电位镍层之间的电位差分别为0、10、20、30、40、50、60、10、80、90、100mv的任一或者0-100mv范围内的其他任意值(实施例1-5可以分别选择0-100mv中(如0、30、60、80、100mv)不同数值为相应实施例中全光镍层与低电位镍层之间的电位差,各实施例中全光镍层与低电位镍层间的电位差也可以相同)。 The potential difference between the all-optical nickel layer and the low-potential nickel layer is any of 0, 10, 20, 30, 40, 50, 60, 10, 80, 90, 100mv or other within the range of 0-100mv Arbitrary value (embodiment 1-5 can select respectively in 0-100mv (as 0,30,60,80,100mv) different numerical value is the potential difference between all light nickel layer and low potential nickel layer in the corresponding embodiment, each In the embodiment, the potential difference between the all-optical nickel layer and the low-potential nickel layer can also be the same).
所述半光镍层与全光镍层之间的电位差分别为100、110、120、130、140、150、160、170、180、190、200mv的任一或者100-200mv范围内的其他任意值(实施例1-5可以分别选择100-200mv中(如100、120、150、180、200mv)不同数值为相应实施例中半光镍层与全光镍层之间的电位差,各实施例中半光镍层与全光镍层间的电位差也可以相同)。 The potential difference between the semi-bright nickel layer and the full-bright nickel layer is any of 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200mv or other within the range of 100-200mv Any value (embodiment 1-5 can select (as 100, 120, 150, 180, 200mv) different numerical values in 100-200mv respectively is the potential difference between semi-bright nickel layer and full-bright nickel layer in the corresponding embodiment, each In the embodiment, the potential difference between the semi-bright nickel layer and the full-bright nickel layer can also be the same).
在上述镀镍-铬部件上电镀镍的方法包括如下步骤: The method for electroplating nickel on the above-mentioned nickel-chromium plated parts may further comprise the steps:
(1)表面去油脂:在氢氧化钠NaOH、碳酸钠Na2CO3和硅 酸钠Na2SiO3混合溶液中清洗处理。本步骤中,混合溶液中各组分在不同实施例中的浓度配比见表一: (1) Surface degreasing: cleaning treatment in a mixed solution of sodium hydroxide NaOH, sodium carbonate Na 2 CO 3 and sodium silicate Na 2 SiO 3 . In this step, the concentration ratio of each component in the mixed solution in different embodiments is shown in Table 1:
表一: Table I:
(2)表面亲水工序:在硫酸H2SO4和整面剂中进行。本步骤中,整面剂和硫酸H2SO4在不同实施例中的浓度配比见表二: (2) Surface hydrophilic process: carried out in sulfuric acid H 2 SO 4 and finishing agent. In this step, the concentration ratio of the surface conditioner and sulfuric acid H2SO4 in different embodiments is shown in Table 2 :
表二: Table II:
(3)表面粗化处理:在铬酸酐CrO3和硫酸H2SO4混合液中进行。本步骤中,铬酸酐CrO3和硫酸H2SO4在不同实施例中的浓度配比见表三: (3) Surface roughening treatment: carried out in a mixed solution of chromic anhydride CrO 3 and sulfuric acid H 2 SO 4 . In this step, the concentration ratios of chromic anhydride CrO3 and sulfuric acid H2SO4 in different embodiments are shown in Table 3 :
表三: Table three:
(4)表面中和处理:将表面粗化处理后的部件放入盐酸溶液中进行。本步骤中,盐酸溶液在不同实施例的浓度配比见表四: (4) Surface neutralization treatment: put the parts after surface roughening treatment into hydrochloric acid solution. In this step, the concentration ratio of the hydrochloric acid solution in different embodiments is shown in Table 4:
表四: Table four:
(5)表面预浸工序:将表面中和处理后的部件放入盐酸溶液中进行。本步骤中,盐酸溶液在不同实施例的浓度配比见表五: (5) Surface pre-soaking process: put the parts after surface neutralization treatment into hydrochloric acid solution. In this step, the concentration ratio of the hydrochloric acid solution in different embodiments is shown in Table 5:
表五: Table five:
(6)表面活化处理:表面活化处理采用胶体钯溶液,胶体钯溶液中氯化钯PdCl2和氯化亚锡SnCl2在不同实施例的浓度配比见表六: (6) surface activation treatment: surface activation treatment adopts colloidal palladium solution, palladium chloride PdCl in the colloidal palladium solution 2 and stannous chloride SnCl 2 concentration ratios in different embodiments are shown in Table 6:
表六: Table six:
(7)表面解胶处理:在硫酸H2SO4溶液中进行。本步骤中硫酸溶液在不同实施例的浓度配比见表七: (7) Surface degumming treatment: carried out in sulfuric acid H 2 SO 4 solution. In this step, the concentration ratio of sulfuric acid solution in different embodiments is shown in Table 7:
表七: Table seven:
(8)化学沉镍:在含有硫酸镍Ni2SO4-6H2O、次亚磷酸钠NaH2PO3-H2O和柠檬酸钠C6H5Na3O7混合溶液中进行。本步骤中,混合溶液中各组分在不同实施例中的浓度配比见表八: (8) Electroless nickel precipitation: carried out in a mixed solution containing nickel sulfate Ni 2 SO 4 -6H 2 O, sodium hypophosphite NaH 2 PO 3 -H 2 O and sodium citrate C 6 H 5 Na 3 O 7 . In this step, the concentration ratio of each component in the mixed solution in different embodiments is shown in Table 8:
表八: Table Eight:
(9)镀打底镍:在含有含水硫酸镍Ni2SO4-6H2O、含水氯化镍NiCl2-6H2O、硼酸H3BO3的混合溶液中进行。本步骤中,混合溶液中各组分在不同实施例中的浓度配比见表九: (9) Primer nickel plating: carried out in a mixed solution containing aqueous nickel sulfate Ni 2 SO 4 -6H 2 O, aqueous nickel chloride NiCl 2 -6H 2 O, and boric acid H 3 BO 3 . In this step, the concentration ratio of each component in the mixed solution in different embodiments is shown in Table 9:
表九: Table nine:
(10)镀铜层:在硫酸铜CuSO4和硫酸H2SO4混合溶液中进行。硫酸铜CuSO4和硫酸H2SO4在不同实施例的浓度配比见表十: (10) Copper plating: carried out in a mixed solution of copper sulfate CuSO 4 and sulfuric acid H 2 SO 4 . The concentration ratio of copper sulfate CuSO 4 and sulfuric acid H 2 SO 4 in different embodiments is shown in Table 10:
表十: Table ten:
(11)镀半光镍层:在含有硫酸镍Ni2SO4-6H2O、氯化镍NiCl2--6H2O、硼酸H3BO3的混合溶液中进行。本步骤中,混合溶液中各组分在不同实施例中的浓度配比见表十一;镀半光镍工序中的其他参数见表十二: (11) Semi-gloss nickel layer: carried out in a mixed solution containing nickel sulfate Ni 2 SO 4 -6H 2 O, nickel chloride NiCl 2 -6H 2 O, and boric acid H 3 BO 3 . In this step, the concentration ratio of each component in the mixed solution in different embodiments is shown in Table 11; other parameters in the semi-gloss nickel plating process are shown in Table 12:
表十一: Table Eleven:
表十二: Table twelve:
(12)镀全光镍层:在含有硫酸镍Ni2SO4-6H2O、含水氯化镍NiCl2-6H2O、硼酸H3BO3的混合溶液中进行。本步骤中,混合溶液中各组分在不同实施例中的浓度配比见表十三;镀全光镍工序中的其他参数见表十四: (12) Full-bright nickel plating: carried out in a mixed solution containing nickel sulfate Ni 2 SO 4 -6H 2 O, aqueous nickel chloride NiCl 2 -6H 2 O, and boric acid H 3 BO 3 . In this step, the concentration ratio of each component in the mixed solution in different embodiments is shown in Table 13; other parameters in the all-bright nickel plating process are shown in Table 14:
表十三: Table 13:
表十四: Table Fourteen:
(13)依次镀高硫镍层(低电位镍层)、镀微孔镍层。其中镀微孔镍、高硫镍的工艺步骤中,镀液的主要成分一样,均为含水硫酸镍Ni2SO4-6H2O、含水氯化镍NiCl2-6H2O和硼酸H3BO3混合溶液。镀高硫镍和镀微孔镍在不同实施例的浓度配比分别见表十五和表十七,这里镍封光亮剂为乐思的63;镍封主光剂为乐思的610CFC;镍封颗粒载体为乐思的ENHANCER;其中,镀高硫镍和镀微孔镍工序中的其他参数分别见表十六和表十八: (13) A high-sulfur nickel layer (low-potential nickel layer) and a microporous nickel layer are plated in sequence. Among them, in the process steps of microporous nickel plating and high-sulfur nickel plating, the main components of the plating solution are the same, which are aqueous nickel sulfate Ni 2 SO 4 -6H 2 O, aqueous nickel chloride NiCl 2 -6H 2 O and boric acid H 3 BO 3 Mix the solution. The concentration ratios of high-sulfur nickel plating and microporous nickel plating in different examples are shown in Table 15 and Table 17 respectively. Here, the nickel sealing brightener is Schleich 63; The encapsulation particle carrier is ENHANCER from Schleich; among them, other parameters in the processes of high-sulfur nickel plating and microporous nickel plating are shown in Table 16 and Table 18 respectively:
表十五: Table 15:
表十六: Table sixteen:
表十七: Table 17:
表十八: Table eighteen:
(14)镀装饰层:在含有氯化铬、甲酸钾的混合溶液中进行。 本步骤中,混合溶液中各组分在不同实施例中的浓度配比见表十九: (14) Decorative plating: carried out in a mixed solution containing chromium chloride and potassium formate. In this step, the concentration ratio of each component in the mixed solution in different embodiments is shown in Table 19:
表十九: Table nineteen:
制备实施例6-10与制备实施例1-5的唯一区别仅在于,低电位镍层为微裂纹层,并且对应地微裂纹镍层镀液采用如下表二十所示镀液,镀微裂纹镍工序中的其他参数见表二十一: The only difference between Preparation Examples 6-10 and Preparation Examples 1-5 is that the low-potential nickel layer is a microcrack layer, and the corresponding microcrack nickel layer plating solution uses the plating solution shown in Table 20 below to plate microcracks Other parameters in the nickel process are shown in Table 21:
表二十: Table 20:
表二十一: Table 21:
制备实施例11-15与制备实施例1-5的唯一区别仅在于,低电位镍层包括有高硫镍层(各实施例镀液对应地顺次参见表十五所示)、微裂纹镍层(各实施例镀液对应地顺次参见表二十所示) 两层之间的复合。其中,所述微裂纹镍层与高硫镍层之间的电位差分别为10、20、30、40、50、60、10、80mv的任一或者10-80mv范围内的其他任意值(实施例11-15可以分别选择10-80mv中(如10、20、40、60、80mv)不同数值为相应实施例中微裂纹镍层与高硫镍层之间的电位差,各实施例中微裂纹镍层与高硫镍层间的电位差也可以相同)。 The only difference between Preparation Examples 11-15 and Preparation Examples 1-5 is that the low-potential nickel layer includes a high-sulfur nickel layer (each embodiment plating solution is shown in Table 15 in sequence), micro-cracked nickel layer (each embodiment plating solution is correspondingly shown in Table 20 sequentially) Composite between two layers. Wherein, the potential difference between the microcracked nickel layer and the high-sulfur nickel layer is respectively any of 10, 20, 30, 40, 50, 60, 10, 80mv or any other value within the range of 10-80mv (implementation Example 11-15 can select (as 10, 20, 40, 60, 80mv) different numerical values in 10-80mv respectively to be the potential difference between the micro-crack nickel layer and the high-sulfur nickel layer in the corresponding embodiments, and the micro-crack nickel layer in each embodiment The potential difference between the cracked nickel layer and the high-sulfur nickel layer can also be the same).
制备实施例16-30与制备实施例1-15的唯一区别仅在于,将全光镍层替换成沙丁镍层,并且对应地沙丁镍层镀液采用如下表二十二所示镀液(任一编号实施例对应值)。 The only difference between Preparation Examples 16-30 and Preparation Examples 1-15 is that the all-bright nickel layer is replaced by a satin nickel layer, and the corresponding plating solution for the satin nickel layer is as shown in Table 22. (Any numbered embodiment corresponds to the value).
表二十二: Table 22:
制备实施例31-60与制备实施例1-30的唯一区别仅在于,将装饰层中的三价白铬层替换成三价黑铬层,并且对应地三价黑铬层镀液采用如下表二十三所示镀液(任一编号实施例对应值)。 The only difference between Preparation Examples 31-60 and Preparation Examples 1-30 is that the trivalent white chromium layer in the decorative layer is replaced by a trivalent black chromium layer, and the corresponding trivalent black chromium layer plating solution uses the following table Plating solution shown in twenty-three (corresponding value of any numbering embodiment).
表二十三: Table 23:
制备实施例61-90与制备实施例1-30的唯一区别仅在于,将装饰层中的三价白铬层替换成六价铬层,并且对应地六价铬层镀液采用如下表二十四所示镀液(任一编号实施例对应值)。 The only difference between Preparation Examples 61-90 and Preparation Examples 1-30 is that the trivalent white chromium layer in the decorative layer is replaced by a hexavalent chromium layer, and the corresponding hexavalent chromium layer plating solution uses the following table 20 Plating solution shown in four (corresponding value of any numbering embodiment).
表二十四: Table twenty-four:
以上制备实施例中PN-1A、PN-2A均为安美特(中国)化学有限公司市售产品。 In the above preparation examples, PN-1A and PN-2A are commercially available products from Atotech (China) Chemical Co., Ltd.
综合以上所有实施例,可以看出,本实用新型技术方案所有实施例通过CASS实验达到96-120h及以上(现有技术则提出为40-48h),氟石膏实验则达到稳定336h以上(现有技术所得到的产品则不稳定,无法进行量化表征)。 Based on all the above embodiments, it can be seen that all the embodiments of the technical solution of the present invention reach 96-120h and above through the CASS experiment (the prior art then proposes to be 40-48h), and the fluorogypsum experiment then reaches a stability of more than 336h (the existing The product obtained by the technology is unstable and cannot be quantified).
本实用新型技术方案中基材还可以采用包括而不限于PC、PP、PVC、PET、胶木及金属材料等材料在内的材料制成的。在选用除ABS外的其它基材时,预处理镀层可以根据实际材质的性能以及工艺需求进行选择有预处理镀层或无预处理镀层。 In the technical solution of the utility model, the base material can also be made of materials including but not limited to PC, PP, PVC, PET, bakelite and metal materials. When selecting other substrates except ABS, the pretreatment coating can be selected according to the actual material performance and process requirements with pretreatment coating or without pretreatment coating.
如图3为本实用新型一个实施例所得到的镀镍部件样品经过72h CASS实验后得到的腐蚀状态图,与图2为现有技术的镀镍部件样品经过72h CASS实验后(同等实验条件下)得到的腐蚀状态图,经过对比可以直观地看到,现有的样品在实验后存在大量的镀层剥落以及腐蚀后产生的腐蚀空缺21,严重地影响了产品镀层的质量。图3则可以看出,本实用新型得到的镀镍样品则在表面仅仅存在一定数量的表面微孔31,而断面显示则同样仅仅存在较小的腐蚀孔32,无论是表面微孔以及牺牲层产生的腐蚀孔都没有能够破坏部件的镀层结构,不影响产品的使用和美观。 Fig. 3 is the corrosion state diagram obtained after the nickel-plated part sample obtained by an embodiment of the utility model through the 72h CASS experiment, and Fig. 2 is after the nickel-plated part sample of the prior art through the 72h CASS experiment (under the same experimental conditions ) obtained by comparing the corrosion state diagram, it can be seen intuitively that the existing samples have a large number of coating peelings after the experiment and corrosion vacancies 21 after corrosion, which seriously affects the quality of the product coating. It can be seen from Fig. 3 that the nickel-plated sample obtained by the utility model only has a certain number of surface micropores 31 on the surface, while the cross-section shows that there are only small corrosion holes 32, no matter the surface micropores and the sacrificial layer. The resulting corrosion holes are not able to damage the coating structure of the components, and do not affect the use and appearance of the product.
图4和图5则分别为现有技术的镀镍部件样品以及本实用新型一个实施例所得的镀镍部件样品经氟石膏实验(336h、336h、168h)后的样品表面腐蚀状态图(图中圆内部分为实验区域),图中可以看出,现有技术的镀镍部件样品表面均受到不同程度的腐 蚀,而本实用新型得到的样品则受到腐蚀程度非常轻微,基本没有变色。由此可见,毫无疑问的本实用新型技术方案得到的镀镍部件具有更为优良的镀层稳定性和耐腐蚀性,使得镀镍部件更为耐用,美观。 Fig. 4 and Fig. 5 are respectively the sample surface corrosion state diagram (in the figure) of the nickel-plated part sample of the prior art and the nickel-plated part sample gained by an embodiment of the utility model through the fluorogypsum experiment (336h, 336h, 168h) The inside of the circle is divided into experimental areas), as can be seen from the figure, the surface of the nickel-plated parts sample of the prior art is corroded to varying degrees, while the sample obtained by the utility model is corroded very slightly and does not change color substantially. It can be seen that there is no doubt that the nickel-plated part obtained by the technical solution of the utility model has better plating stability and corrosion resistance, making the nickel-plated part more durable and beautiful.
由图6和图7的镀层电位图则可以看出,本实用新型方案中,无论低电位层是单一层或者复合层结构,均为受到腐蚀时以低电位镍层为牺牲层,低电位镍层为高硫镍层与微裂纹镍层的复合层时,高硫镍层与微裂纹镍层的电位的高低随实际生产工艺进行调节,可以是高硫镍层电势稍高,也可以是微裂纹镍层电势稍高。 It can be seen from the coating potential diagrams of Fig. 6 and Fig. 7 that in the utility model scheme, no matter whether the low-potential layer is a single layer or a composite layer structure, the low-potential nickel layer is used as the sacrificial layer when being corroded, and the low-potential nickel layer is used as the sacrificial layer. When the layer is a composite layer of high-sulfur nickel layer and micro-cracked nickel layer, the potential of the high-sulfur nickel layer and micro-cracked nickel layer is adjusted according to the actual production process, and the potential of the high-sulfur nickel layer can be slightly higher or slightly higher. The potential of the cracked nickel layer is slightly higher.
如图8所示,本实用新型方案得到的镀镍部件受到腐蚀时的机理为:图中为在ABS基材1上逐层地形成化学镍层809、打底镍层808、镀铜层3、半光镍层62、全光镍或沙丁镍层61、低电位镍层141和微孔镍层142、装饰层802,腐蚀介质801于微孔镍层142的微孔结构分散腐蚀电流并进入低电位镍层141(减小实际参与腐蚀的面积,具有较小的腐蚀面积,形成多个独立的腐蚀点,从而分散腐蚀电流,延缓腐蚀速度),在腐蚀形成腐蚀面805后,当腐蚀面805贯穿低电位镍层141后遇到高电势的镀铜层3,后中止纵向腐蚀为横向腐蚀直至将整个低电位镍层141腐蚀完,才会进行下一步的腐蚀,直至镀层结构被整体破坏。 As shown in Figure 8, the mechanism when the nickel-plated parts obtained by the utility model scheme is corroded is: in the figure, an chemical nickel layer 809, a nickel layer 808, and a copper-plated layer 3 are formed layer by layer on the ABS substrate 1 , semi-bright nickel layer 62, full-gloss nickel or satin nickel layer 61, low-potential nickel layer 141 and microporous nickel layer 142, decorative layer 802, corrosion medium 801 disperses corrosion current in the microporous structure of microporous nickel layer 142 and Enter the low-potential nickel layer 141 (reduce the area actually involved in corrosion, have a smaller corrosion area, form a plurality of independent corrosion points, thereby disperse the corrosion current, and delay the corrosion speed), after corrosion forms the corrosion surface 805, when the corrosion After the surface 805 penetrates the low-potential nickel layer 141, it encounters the high-potential copper plating layer 3, and then stops the longitudinal corrosion and turns it into horizontal corrosion until the entire low-potential nickel layer 141 is corroded, and then the next step of corrosion will be carried out until the coating structure is completely destroy.
本处实施例对本实用新型要求保护的技术范围中点值未穷尽之处,同样都在本实用新型要求保护的范围内。 The embodiment here does not exhaust the mid-point value of the technical scope claimed by the utility model, and all of them are also within the scope of the utility model.
本实用新型方案所公开的技术手段不仅限于上述技术手段所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。以上是本实用新型的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本实用新型的保护范围。 The technical means disclosed in the solution of the utility model are not limited to the technical means disclosed in the above technical means, but also include technical solutions composed of any combination of the above technical features. The above are the specific embodiments of the present utility model, and it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present utility model, some improvements and modifications can also be made, and these improvements and modifications are also considered It is the protection scope of the utility model.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520136286.6U CN204589340U (en) | 2015-03-11 | 2015-03-11 | A kind of super anti-corrosion nickel plating-chromium parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520136286.6U CN204589340U (en) | 2015-03-11 | 2015-03-11 | A kind of super anti-corrosion nickel plating-chromium parts |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204589340U true CN204589340U (en) | 2015-08-26 |
Family
ID=53925512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201520136286.6U Expired - Lifetime CN204589340U (en) | 2015-03-11 | 2015-03-11 | A kind of super anti-corrosion nickel plating-chromium parts |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204589340U (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104775143A (en) * | 2015-03-11 | 2015-07-15 | 嘉兴敏惠汽车零部件有限公司 | Multilayer ultra corrosion resistant nickel-chromium plating part and manufacturing method thereof |
CN104775142A (en) * | 2015-03-11 | 2015-07-15 | 嘉兴敏惠汽车零部件有限公司 | Ultra-corrosion-resistant nickel-chromium plating component and manufacturing method thereof |
CN104790004A (en) * | 2015-03-11 | 2015-07-22 | 嘉兴敏惠汽车零部件有限公司 | Nickel and/or chromium plated component and manufacturing method thereof |
CN106498480A (en) * | 2016-11-29 | 2017-03-15 | 延康汽车零部件如皋有限公司 | A kind of nickel seals handling process |
CN106702447A (en) * | 2016-11-14 | 2017-05-24 | 惠州威博精密科技有限公司 | Bottom-nickel-plated stainless steel fingerprint decoration part technology |
CN108374186A (en) * | 2018-03-30 | 2018-08-07 | 芜湖强振汽车紧固件有限公司 | A kind of automobile-used fastener electro-plating method |
-
2015
- 2015-03-11 CN CN201520136286.6U patent/CN204589340U/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104775143A (en) * | 2015-03-11 | 2015-07-15 | 嘉兴敏惠汽车零部件有限公司 | Multilayer ultra corrosion resistant nickel-chromium plating part and manufacturing method thereof |
CN104775142A (en) * | 2015-03-11 | 2015-07-15 | 嘉兴敏惠汽车零部件有限公司 | Ultra-corrosion-resistant nickel-chromium plating component and manufacturing method thereof |
CN104790004A (en) * | 2015-03-11 | 2015-07-22 | 嘉兴敏惠汽车零部件有限公司 | Nickel and/or chromium plated component and manufacturing method thereof |
CN104775142B (en) * | 2015-03-11 | 2020-08-18 | 嘉兴敏惠汽车零部件有限公司 | Super-corrosion-resistant nickel-chromium plated part and manufacturing method thereof |
CN104775143B (en) * | 2015-03-11 | 2020-08-18 | 嘉兴敏惠汽车零部件有限公司 | Multilayer super corrosion resistant nickel-chromium plated component and method of making same |
CN106702447A (en) * | 2016-11-14 | 2017-05-24 | 惠州威博精密科技有限公司 | Bottom-nickel-plated stainless steel fingerprint decoration part technology |
CN106498480A (en) * | 2016-11-29 | 2017-03-15 | 延康汽车零部件如皋有限公司 | A kind of nickel seals handling process |
CN108374186A (en) * | 2018-03-30 | 2018-08-07 | 芜湖强振汽车紧固件有限公司 | A kind of automobile-used fastener electro-plating method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104775142B (en) | Super-corrosion-resistant nickel-chromium plated part and manufacturing method thereof | |
CN204589340U (en) | A kind of super anti-corrosion nickel plating-chromium parts | |
RU2618017C2 (en) | Nickel and/or chromium-plated element and method for its production | |
CN102936742B (en) | Method for electroplating black trivalent chromium on surface of plastic for vehicle decorating strip | |
CN101054672B (en) | Decorative Chrome Plating Process | |
CN104772946B (en) | Plate nickel chromium triangle part and its manufacture method | |
CN102943292A (en) | Method for electroplating micro-crack nickel on plastic surface | |
CN204625811U (en) | The super anti-corrosion nickel plating-chromium parts of multilayer | |
CN105386089A (en) | Trivalent chromium hard chromium electroplating solution and application of trivalent chromium hard chromium electroplating solution in hard chromium electroplating | |
CN101525711A (en) | Magnesium alloy with zinc and nickel compound plating layers and preparation method thereof | |
CN102703935B (en) | Novel electroplating solution for microcrack nickel electroplating and plastic part electroplating technology adopting electroplating solution | |
CN104962884A (en) | Metal plated part and preparation method thereof | |
CN103882492A (en) | Chemical plating posttreatment method of metallic matrix | |
CN101078131A (en) | Method for electrodepositing ornamental chromium coating in trivalency chromium coating solution | |
CN204585986U (en) | Nickel plating-chromium parts | |
CN204589341U (en) | Nickel plating and or chromium parts | |
CN204589342U (en) | Nickel plating parts | |
CN104775143B (en) | Multilayer super corrosion resistant nickel-chromium plated component and method of making same | |
CN104746116A (en) | Nickel-plated component and manufacturing method thereof | |
CN204640958U (en) | Nickel plating-chromium parts | |
JPH03153896A (en) | Nickel plating solution, bright copper-nickel-chromium electroplating method using this solution and ensuring superior corrosion resistance and plating film obtained by this method | |
CN104772947B (en) | Plate nickel chromium triangle part and its manufacture method | |
CN107488867A (en) | Surface treatment structure and surface treatment method of stainless steel substrate | |
KR100402730B1 (en) | Method process for forming copper and nickel-plated of electrolytic plating in magnesium compound | |
CN207918993U (en) | A kind of imitative golden composite plating layer structure of bright Zn-Ni alloy, high tin copper-tin alloy, ormolu |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20150826 |