CN202995505U - Temperature control system - Google Patents
Temperature control system Download PDFInfo
- Publication number
- CN202995505U CN202995505U CN 201220645672 CN201220645672U CN202995505U CN 202995505 U CN202995505 U CN 202995505U CN 201220645672 CN201220645672 CN 201220645672 CN 201220645672 U CN201220645672 U CN 201220645672U CN 202995505 U CN202995505 U CN 202995505U
- Authority
- CN
- China
- Prior art keywords
- module
- temperature
- temperature control
- sample chamber
- control system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
本实用新型提供了一种温控系统,包括冷却模块、样品腔、加热模块和控制模块;其中所述冷却模块、所述样品腔和所述加热模块依次叠放,所述控制模块采集所述样品腔的温度,并控制冷却模块及加热模块的温度;所述冷却模块、所述样品腔和所述加热模块都采用透光材料。本实用新型提供的温控系统结构简单,易于集成至其它系统中,其冷却模块、样品腔及加热模块都采用了透光材料,因此不需要再定制进光孔即能观察化学反应及物质形态变化的具体过程。
The utility model provides a temperature control system, which includes a cooling module, a sample chamber, a heating module and a control module; wherein the cooling module, the sample chamber and the heating module are stacked in sequence, and the control module collects the The temperature of the sample chamber is controlled, and the temperature of the cooling module and the heating module are controlled; the cooling module, the sample chamber and the heating module are all made of light-transmitting materials. The temperature control system provided by the utility model has a simple structure and is easy to integrate into other systems. The cooling module, sample chamber and heating module all use light-transmitting materials, so chemical reactions and material forms can be observed without customizing light inlet holes. specific process of change.
Description
技术领域technical field
本实用新型涉及温控领域,特别涉及一种温控系统。The utility model relates to the field of temperature control, in particular to a temperature control system.
背景技术Background technique
温度是化学反应和物质形态变化的重要影响因素,并且在某些领域中的化学反应及物质形态变化还需要在显微镜下实时的记录其具体过程。例如在低温生物医学领域中经常需要观察和记录细胞或生物组织在冷冻和复温过程中以及添加和去除低温保护剂过程中的体积变化等信息,这些信息对于优化细胞和组织的低温保存尤其重要,通过记录细胞在不同的升降温速率和不同浓度的低温保护剂的条件下的体积变化,然后根据测得的数据,结合相关数学模型,拟合出细胞的特定生物物理学参数,从而制定出特定的低温保存方案。Temperature is an important factor affecting chemical reactions and changes in material form, and chemical reactions and changes in material forms in certain fields also need to record their specific processes in real time under a microscope. For example, in the field of low-temperature biomedicine, it is often necessary to observe and record information such as the volume change of cells or biological tissues during freezing and rewarming, as well as during the process of adding and removing cryoprotectants. This information is especially important for optimizing the cryopreservation of cells and tissues. , by recording the volume change of cells under different heating and cooling rates and different concentrations of cryoprotectants, and then according to the measured data, combined with relevant mathematical models, to fit the specific biophysical parameters of the cells, so as to formulate Specific cryopreservation protocols.
目前,灌流显微镜常用于观察化学反应及物质形态变化的具体过程。但灌流显微镜的温控系统的冷却模块通常采用不透明的金属材料(如铝、铜等),加热模块通常采用电热薄膜,当该温控系统与显微镜配套使用时,冷却模块和加热模块都需要定制进光孔,不但工艺复杂而且有效视野极其有限,在进行观察时不易充分了解反应或物质形态变化的具体过程。At present, perfusion microscopy is often used to observe the specific process of chemical reactions and material form changes. However, the cooling module of the temperature control system of the perfusion microscope is usually made of opaque metal materials (such as aluminum, copper, etc.), and the heating module is usually made of electrothermal film. When the temperature control system is used with the microscope, both the cooling module and the heating module need to be customized The light inlet is not only complicated in process, but also has an extremely limited effective field of view. It is difficult to fully understand the specific process of reaction or material form change during observation.
进一步地,由于灌流显微镜中采用的电热薄膜是由聚酰亚胺薄层内嵌电阻丝构成,其热量是以电阻丝为中心向外传导,因此电热薄膜表面的温度分布是不均匀的,从而造成加热不均匀。Furthermore, since the electrothermal film used in the perfusion microscope is composed of polyimide thin layer with embedded resistance wire, the heat is conducted outward from the center of the resistance wire, so the temperature distribution on the surface of the electrothermal film is uneven, thus cause uneven heating.
此外,商业冷冻干燥台也广泛地应用于观察样品形态的变化,由于样品处在一个密闭的环境中,因此不能动态向样品区加入药品,即不能实现在特定温度和溶液组分同时变化时,对样品形态变化进行观察。并且冷冻干燥台的温度传感器采集的温度是冷却模块表面的温度,而不是样品周围的温度,不能清楚地表明样品的实际温度。In addition, commercial freeze-drying benches are also widely used to observe changes in sample morphology. Since the sample is in a closed environment, it is not possible to dynamically add drugs to the sample area, that is, it cannot be achieved when a specific temperature and solution components change at the same time. Observe the shape changes of the samples. And the temperature collected by the temperature sensor of the freeze-drying station is the temperature on the surface of the cooling module, not the temperature around the sample, which cannot clearly indicate the actual temperature of the sample.
实用新型内容Utility model content
本实用新型提供了一种温控系统,这种温控系统结构简单,有利于清晰地观察化学反应及物质形态变化的具体过程。The utility model provides a temperature control system. The temperature control system has a simple structure and is beneficial to clearly observing the specific process of chemical reaction and material form change.
为了实现本实用新型的目的,本实用新型提出的温控系统包括:In order to realize the purpose of the utility model, the temperature control system proposed by the utility model includes:
冷却模块、样品腔、加热模块和控制模块;其中cooling module, sample chamber, heating module and control module; wherein
所述冷却模块、所述样品腔和所述加热模块依次叠放,所述控制模块采集所述样品腔的温度,并控制冷却模块及加热模块的温度;The cooling module, the sample chamber and the heating module are stacked sequentially, the control module collects the temperature of the sample chamber, and controls the temperature of the cooling module and the heating module;
所述冷却模块、所述样品腔和所述加热模块都采用透光材料。The cooling module, the sample chamber and the heating module all use light-transmitting materials.
优选地,所述样品腔具有至少一个输入口和至少一个输出口。Preferably, the sample chamber has at least one input port and at least one output port.
进一步地,所述样品腔的输入口和输出口贯通所述冷却模块或所述加热模块。Further, the input port and the output port of the sample chamber pass through the cooling module or the heating module.
优选地,所述冷却模块的材料为聚甲基苯烯酸甲酯、聚碳酸酯、聚对苯二甲酸乙二醇酯、丙烯腈-丁二烯-苯乙烯中的一种或几种。Preferably, the material of the cooling module is one or more of polymethyl methacrylate, polycarbonate, polyethylene terephthalate, and acrylonitrile-butadiene-styrene.
优选地,所述样品腔的材料为聚二甲基硅氧烷、聚酰亚胺、聚甲基丙烯酸甲脂、聚对二甲苯、聚四氟乙烯中的一种或几种。Preferably, the material of the sample cavity is one or more of polydimethylsiloxane, polyimide, polymethyl methacrylate, parylene and polytetrafluoroethylene.
优选地,所述加热模块的材料为导电玻璃。Preferably, the material of the heating module is conductive glass.
优选地,所述控制模块包括温度传感器、制冷装置和PID温控装置,其中所述温度传感器置于所述样品腔内并与PID温控装置连接,所述制冷装置与所述冷却模块连接,所述PID温控装置与所述加热模块连接。Preferably, the control module includes a temperature sensor, a refrigeration device and a PID temperature control device, wherein the temperature sensor is placed in the sample chamber and connected to the PID temperature control device, and the refrigeration device is connected to the cooling module, The PID temperature control device is connected with the heating module.
进一步地,所述制冷装置为低温循环浴槽,所述温度传感器为T型热电偶。Further, the refrigeration device is a low-temperature circulating bath, and the temperature sensor is a T-type thermocouple.
更进一步地,所述冷却模块的内部具有U型冷却槽,所述冷却模块的外壁具有两个开口与所述U型冷却槽连通,所述开口与所述低温循环浴槽连接。Furthermore, the inside of the cooling module has a U-shaped cooling groove, and the outer wall of the cooling module has two openings communicating with the U-shaped cooling groove, and the openings are connected with the low-temperature circulation bath.
本实用新型提供的温控系统有如下优点:The temperature control system provided by the utility model has the following advantages:
1)结构简单,体积大小可控,易于集成至别的配套系统中;1) Simple structure, controllable volume, easy to integrate into other supporting systems;
2)冷却模块、样品腔和加热模块都采用了透光材料,因此不需要再定制进光孔即能观察化学反应及物质形态变化的具体过程。2) The cooling module, sample chamber and heating module are all made of light-transmitting materials, so the specific process of chemical reaction and substance form change can be observed without customizing the light inlet.
进一步地,本实用新型提供的温控系统还有如下优点:Further, the temperature control system provided by the utility model has the following advantages:
1)样品腔具有输入口和输出口,可以实现动态加样的目的;1) The sample chamber has an input port and an output port, which can realize the purpose of dynamic sample addition;
2)样品腔的输入口和输出口贯通冷却模块或加热模块,可使温控系统的结构更加紧凑;2) The input port and output port of the sample chamber pass through the cooling module or heating module, which can make the structure of the temperature control system more compact;
3)采用导电玻璃为加热模块,因导电玻璃是由玻璃表面涂覆的金属氧化物薄层加热,因此整个玻璃表面温度均匀,可使温控系统的加热更加均匀;3) Conductive glass is used as the heating module. Since the conductive glass is heated by a thin layer of metal oxide coated on the glass surface, the temperature of the entire glass surface is uniform, which can make the heating of the temperature control system more uniform;
4)将温度传感器置于样品腔内,有利于更准确的测得样品的实际温度,且PID温控装置采用神经网络PID算法控温,有利于减小温控系统在升降温过程中的温度误差;4) The temperature sensor is placed in the sample chamber, which is conducive to more accurate measurement of the actual temperature of the sample, and the PID temperature control device uses the neural network PID algorithm to control the temperature, which is conducive to reducing the temperature of the temperature control system during the heating and cooling process error;
5)使用低温循环浴槽有利于更好地控制冷却模块的温度,且T型热电偶测温迅速而准确,可使温控系统更加准确真实地反应出样品的实际温度;5) The use of a low-temperature circulating bath is beneficial to better control the temperature of the cooling module, and the T-type thermocouple measures the temperature quickly and accurately, which can make the temperature control system more accurately and truly reflect the actual temperature of the sample;
6)冷却槽U型设计可使冷冻液在其内的流速更大,进而冷却模块能有较大的降温速率。6) The U-shaped design of the cooling tank can increase the flow rate of the refrigerant in it, so that the cooling module can have a greater cooling rate.
附图说明Description of drawings
图1为本实用新型实施例1的结构示意图。Fig. 1 is a schematic structural view of Embodiment 1 of the present utility model.
图2为本实用新型实施例2的结构示意图。Fig. 2 is a schematic structural view of Embodiment 2 of the present utility model.
具体实施方式Detailed ways
为使实用新型的上述目的、特征和优点能够更加明显易懂,下面结合附图对本实用新型的具体实施方式做详细的说明。In order to make the above purpose, features and advantages of the utility model more obvious and easy to understand, the specific implementation of the utility model will be described in detail below in conjunction with the accompanying drawings.
在下面的描述中阐述了很多具体细节以便于充分理解本实用新型,但是本实用新型还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本实用新型内涵的情况下做类似推广,因此本实用新型不受下面公开的具体实施例的限制。In the following description, a lot of specific details have been set forth in order to fully understand the utility model, but the utility model can also be implemented in other ways that are different from those described here, and those skilled in the art can do so without violating the connotation of the utility model. Under the circumstances, similar promotion is done, so the utility model is not limited by the specific embodiments disclosed below.
实施例1Example 1
请参阅图1,如图所示,冷却模块1、样品腔2和导电玻璃3依次叠放。本领域技术人员可容易想到,上述冷却模块可有水冷、空冷等多种冷却模式,冷却模块的材料可为各种透光材料如聚甲基苯烯酸甲酯、聚碳酸酯、聚对苯二甲酸乙二醇酯、丙烯腈-丁二烯-苯乙烯中的一种或几种,上述样品腔的形状可为矩形、圆柱形或其他合适的形状,样品腔的材料可为各种透光材料如聚二甲基硅氧烷、聚酰亚胺、聚甲基丙烯酸甲脂、聚对二甲苯、聚四氟乙烯中的一种或几种,上述导电玻璃也可替换为其他透明的加热装置。在本实施例中,冷却模块1由PMMA(聚甲基苯烯酸甲酯)制成,样品腔2由PDMS(聚二甲基硅氧烷)制成,冷却模块1内部具有U型冷却槽10,并且U型冷却槽10和低温循环浴槽9连接,低温循环浴槽9内的冷冻液从“U”一边流进,从“U”的另一边流出,冷冻液在其内流动通畅,流速较大。此外,导电玻璃3表面的加热层可由绝缘带(如不涂覆金属氧化物薄层部分或绝缘涂层)隔成相互独立的区域,在这些不同区域接不同的电压,可实现在一个二维平面内的温度按梯度变化。Please refer to FIG. 1 , as shown in the figure, the cooling module 1 , the sample chamber 2 and the
如图1所示,样品腔2具有一个输入口4及输出口5、6。本领域技术人员可容易看出,样品腔只要具有一个输入口和一个输出口就可以实现动态加样,在具体的实施中,可以根据实际需要来设定输入口及输出口的个数。在本实施例中,两个注入注射泵11、12通过导管并联后与混合器13连接,混合器13通过导管与输入口4连接,抽取注射泵14通过导管与输出口5连接,其中混合器12可起到混合两个注入注射泵11注入的样品。As shown in FIG. 1 , the sample chamber 2 has an
如图1所示,温控系统的控制模块包括PID(比例-积分-微分)温控装置7、T型热电偶8及低温循环浴槽9。本领域技术人员可容易想到其他可用于控温的设备如控温器等,可用于测温的设备如测温仪等,可用于制冷的装置如制冷机、换热器等。在本实施例中,PID温控装置7与导电玻璃3连接,通过导电玻璃自身电阻值和PID温控装置7提供给导电玻璃3的电源电压值来控制导电玻璃3的发热量。并且T型热电偶8通过输出口6放置于样品腔2内,PID温控装置与T型热电偶8连接,检测样品腔2内的温度。As shown in Figure 1, the control module of the temperature control system includes a PID (proportional-integral-differential)
本实施例提供了温控系统是由冷却模块和加热模块的协同工作来实现样品腔的升降温,具体地说,首先固定低温循环浴槽9的温度使冷却模块1提供一个稳定制冷量,再通过控制导电玻璃3的发热量的大小来控制样品腔2升温或降温,同时PID温控装置接收T型热电偶8测得的温度,并控制导电玻璃的工作时间,在低温循环浴槽9的温度、导电玻璃3自身的电阻值和PID温控装置7提供的电源电压值在一定范围内时,即能实现样品腔2的升降温速率可控。This embodiment provides that the temperature control system realizes the temperature rise and fall of the sample chamber by the cooperative work of the cooling module and the heating module. Specifically, firstly, the temperature of the low-temperature circulating bath 9 is fixed so that the cooling module 1 provides a stable cooling capacity, and then through Control the heating value of the
实施例2Example 2
请参阅图2,如图所示,实施例2和实施例1的区别在于,实施例2的输入口4和输出口5贯通冷却模块1,通过这种贯通设计,实现了从温控系统的外部直接加样,使温控系统的结构更加紧凑。本领域技术人员可容易想到,本实用新型的样品腔的输入口和输出口可根据实际需要选择贯通冷却模块或加热模块。Please refer to Figure 2, as shown in the figure, the difference between Embodiment 2 and Embodiment 1 is that the
为了更好地理解本实用新型,下面将本实用新型的实施例1和显微镜结合,根据细胞体积响应,测定细胞在添加和去除低温保护过程中,在不同降温温度和不同降温速率的条件下,考察细胞膜的渗透性参数。其中,低温保护剂采用含低温保护剂(CPA)的磷酸盐缓冲液或含低温保护剂(CPA)的生理盐水。In order to better understand the utility model, the following will combine Example 1 of the utility model with a microscope, and according to the cell volume response, it is determined that the cells are added and removed during the cryoprotection process, under the conditions of different cooling temperatures and different cooling rates, Investigate the permeability parameters of the cell membrane. Wherein, the cryoprotectant is phosphate buffer containing cryoprotectant (CPA) or physiological saline containing cryoprotectant (CPA).
在添加低温保护剂过程中具体实施过程如下:The specific implementation process in the process of adding cryoprotectant is as follows:
实验用的细胞通过注入注射泵11注入温控系统的样品腔2中。由于本实用新型冷却模块和加热模块都是透明的,因此只需调整显微镜载物台的位置,显微镜就可在整个样品腔中挑选最适合观察的样品。一般等待十五分钟,使细胞贴在样品腔2的内壁上。接着在注入注射泵11中装入不含低温保护剂的溶液,在注入注射泵12中装入含低温保护剂的溶液。设定注入注射泵和抽取注射泵的工作速率,注入注射泵11先以一定速率向样品腔2中注入不含低温保护剂的溶液,抽取注射泵14以相同的速率向外抽取溶液,同时冷却模块1和导电玻璃3协同工作,通过T型热电偶8的温度8反馈,由PID温控装置精确控制样品腔2内的溶液温度。当整个管路和样品腔2内充满不含低温保护剂的溶液时,关闭注入注射泵11,启动注入注射泵12并以与抽取注射泵14相同的工作速率往样品腔2中注入含低温保护剂的溶液,则样品腔完成了从不含低温保护剂到含低温保护剂溶液的切换,从而实现对细胞模拟添加低温保护剂的过程。The cells used in the experiment are injected into the sample chamber 2 of the temperature control system through the injection syringe pump 11 . Since the cooling module and the heating module of the utility model are both transparent, the microscope can select the most suitable sample for observation in the entire sample cavity only by adjusting the position of the microscope stage. Generally, wait for fifteen minutes to make the cells adhere to the inner wall of the sample cavity 2 . Then, the injection pump 11 is loaded with a solution not containing a cryoprotectant, and the
模拟去除低温保护剂过程与模拟添加低温保护剂过程的区别是:对调注入注射泵11和注入注射泵12的开启顺序。The difference between the process of simulating the removal of the cryoprotectant and the process of simulating the addition of the cryoprotectant is that the opening sequence of the injection syringe pump 11 and the
进一步地,为了更好地理解本实用新型,下面以采用本实用新型模拟非平衡冷冻过程和复温解冻过程。其中,低温保护剂溶液均为水-食盐-低温保护剂三元溶液,溶液的组分由非平衡冷冻过程多元溶液的相图加以确定。Further, in order to better understand the utility model, the following uses the utility model to simulate the non-equilibrium freezing process and the rewarming and thawing process. Among them, the cryoprotectant solutions are all water-salt-cryoprotectant ternary solutions, and the components of the solutions are determined by the phase diagram of the multiple solution in the non-equilibrium freezing process.
模拟非平衡冷冻过程实施过程如下:The implementation process of simulating non-equilibrium freezing process is as follows:
实验用的细胞通过注入注射泵11注入温控系统的样品腔2中,调整显微镜找到合适的观察视野,等待十五分钟,使细胞贴在样品腔2的内壁上。接着往注入注射泵11内装入低浓度的低温保护剂溶液,往注入注射泵12内装入高浓度的低温保护剂溶液。同步启动注入注射泵11和抽取注射泵14,控制两者的流速相等,使整个管路和样品腔2内充满低浓度的低温保护剂溶液。同时冷却模块1和导电玻璃3协同工作,通过T型热电偶8的温度反馈,由PID温控装置精确控制样品腔2内的溶液温度按照实际冷冻过程的降温速率而降低。下一步开启注入注射泵12,通过调整注入注射泵11和注入注射泵12的工作速率,实现含不同浓度低温保护剂溶液的切换,即实现样品腔2内的溶液浓度按照实际冷冻过程的变化而变化。以上为模拟细胞非平衡冷冻过程的具体操作。The cells used in the experiment are injected into the sample chamber 2 of the temperature control system through the injection pump 11, the microscope is adjusted to find a suitable observation field, and the cells are attached to the inner wall of the sample chamber 2 after waiting for fifteen minutes. Next, fill the injection pump 11 with a low-concentration cryoprotectant solution, and fill the
模拟复温解冻过程与模拟非平衡冷冻过程的区别是:对调注入注射泵11和注入注射泵12的开启顺序,并由PID温控装置精确控制样品腔2内的溶液温度按照实际解冻过程的升温速率而升高。The difference between simulating rewarming and thawing process and simulating non-equilibrium freezing process is: reverse the opening sequence of injection syringe pump 11 and
虽然本实用新型是结合以上实施例进行描述的,但本实用新型并不被限定于上述实施例,而只受所附权利要求的限定,本领域普通技术人员能够容易地对其进行修改和变化,但并不离开本实用新型的实质构思和范围。Although the utility model is described in conjunction with the above embodiments, the utility model is not limited to the above embodiments, but is only limited by the appended claims, and those of ordinary skill in the art can easily modify and change it , but does not depart from the essential concept and scope of the present utility model.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201220645672 CN202995505U (en) | 2012-11-30 | 2012-11-30 | Temperature control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201220645672 CN202995505U (en) | 2012-11-30 | 2012-11-30 | Temperature control system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202995505U true CN202995505U (en) | 2013-06-12 |
Family
ID=48566662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201220645672 Expired - Fee Related CN202995505U (en) | 2012-11-30 | 2012-11-30 | Temperature control system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202995505U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102999066A (en) * | 2012-11-30 | 2013-03-27 | 中国科学技术大学 | Temperature control system |
CN105597850A (en) * | 2015-10-14 | 2016-05-25 | 华中科技大学 | Electric heating objective table for laboratories |
-
2012
- 2012-11-30 CN CN 201220645672 patent/CN202995505U/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102999066A (en) * | 2012-11-30 | 2013-03-27 | 中国科学技术大学 | Temperature control system |
CN102999066B (en) * | 2012-11-30 | 2014-12-10 | 中国科学技术大学 | Temperature control system |
CN105597850A (en) * | 2015-10-14 | 2016-05-25 | 华中科技大学 | Electric heating objective table for laboratories |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102692495B (en) | Perfusion microscope | |
CN106669873A (en) | Micro-fluidic chip for cell freezing, mixing system and control method of mixing system | |
CN102999066B (en) | Temperature control system | |
Lin et al. | Experiment investigation of a two-stage thermoelectric cooler under current pulse operation | |
CN202995505U (en) | Temperature control system | |
CN204473527U (en) | A kind of clinical laboratory sample transports controlled-temperature cabinet | |
Sotoudegan et al. | based passive pumps to generate controllable whole blood flow through microfluidic devices | |
CN109385374B (en) | Miniature cell culture device and cavity internal environment control method thereof | |
CN115747044A (en) | Rapid temperature control device based on microfluidic chip cell culture | |
CN103495444A (en) | Low and constant temperature bath and low and constant temperature control method | |
CN207258375U (en) | A kind of short distance blood collection low temperature carrying case | |
CN103344565A (en) | Temperature-controlled magnetic tweezer device | |
Tseng et al. | A microfluidic study of megakaryocytes membrane transport properties to water and dimethyl sulfoxide at suprazero and subzero temperatures | |
Das et al. | A microfluidic platform for studying the effects of small temperature gradients in an incubator environment | |
CN201136864Y (en) | Programmed cell freezer with rapid cooling and rewarming | |
CN202631531U (en) | Perfusion microscope | |
CN203203917U (en) | Magnetic tweezers device capable of controlling temperature | |
CN201464703U (en) | A cryogenic microscope stage | |
Li et al. | Cell membrane permeability coefficients determined by single-step osmotic shift are not applicable for optimization of multi-step addition of cryoprotective agents: As revealed by HepG2 cells | |
CN206696720U (en) | A kind of nine hole cryogenic thermostat bath apparatus | |
CN105861304B (en) | A kind of PCR thermocirculators | |
JP4117341B2 (en) | Hot water circulation microscope culture chamber | |
Hong et al. | An integrative temperature-controlled microfluidic system for budding yeast heat shock response analysis at the single-cell level | |
CN103674678A (en) | Microchannel chip and device for low-temperature preservation of biomaterial | |
Tseng et al. | On-board array for multiplexed semi-active cooling-rate-controlled cryopreservation of living cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130612 Termination date: 20151130 |
|
EXPY | Termination of patent right or utility model |