CN201825870U - Single-silver-layer low-radiation glass - Google Patents
Single-silver-layer low-radiation glass Download PDFInfo
- Publication number
- CN201825870U CN201825870U CN2010205031198U CN201020503119U CN201825870U CN 201825870 U CN201825870 U CN 201825870U CN 2010205031198 U CN2010205031198 U CN 2010205031198U CN 201020503119 U CN201020503119 U CN 201020503119U CN 201825870 U CN201825870 U CN 201825870U
- Authority
- CN
- China
- Prior art keywords
- layer
- glass
- thickness
- low
- dielectric combination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 title claims abstract description 44
- 229910052709 silver Inorganic materials 0.000 claims abstract description 36
- 239000004332 silver Substances 0.000 claims abstract description 34
- 230000004888 barrier function Effects 0.000 claims abstract description 22
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 21
- 230000005855 radiation Effects 0.000 claims description 11
- 230000000903 blocking effect Effects 0.000 claims 3
- 239000002131 composite material Substances 0.000 abstract description 35
- 239000005344 low-emissivity glass Substances 0.000 abstract description 17
- 239000003086 colorant Substances 0.000 abstract description 6
- 238000002310 reflectometry Methods 0.000 abstract description 6
- 238000002834 transmittance Methods 0.000 abstract description 6
- 230000007935 neutral effect Effects 0.000 abstract description 5
- 230000003287 optical effect Effects 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 162
- 239000010408 film Substances 0.000 description 25
- 238000000151 deposition Methods 0.000 description 16
- 238000004544 sputter deposition Methods 0.000 description 16
- 229910007717 ZnSnO Inorganic materials 0.000 description 12
- 230000008021 deposition Effects 0.000 description 12
- 238000001755 magnetron sputter deposition Methods 0.000 description 12
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 9
- 229910001120 nichrome Inorganic materials 0.000 description 9
- 239000012300 argon atmosphere Substances 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical compound [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 description 5
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- PWKWDCOTNGQLID-UHFFFAOYSA-N [N].[Ar] Chemical compound [N].[Ar] PWKWDCOTNGQLID-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Surface Treatment Of Glass (AREA)
Abstract
本实用新型公开了一种单银低辐射玻璃,膜层结构依次为:玻璃、基层、电介质组合层、第一阻挡层、AgCu层、第二阻挡层、上层电介质组合层。该单银低辐射玻璃采用独特的膜层结构改进传统低辐射镀膜玻璃,使产品具有低反射率、低透射率、低辐射率和良好的选择系数等优点。这种玻璃室内外颜色接近中性低反射色,并且光学性能稳定、颜色多样、耐候性好,便于广泛推广。
The utility model discloses a single-silver low-radiation glass. The film layer structure is as follows: glass, a base layer, a dielectric composite layer, a first barrier layer, an AgCu layer, a second barrier layer, and an upper dielectric composite layer. The single-silver low-emissivity glass uses a unique film structure to improve the traditional low-emissivity coated glass, so that the product has the advantages of low reflectivity, low transmittance, low emissivity and good selectivity coefficient. The indoor and outdoor colors of this kind of glass are close to neutral low-reflection color, and the optical performance is stable, the colors are diverse, and the weather resistance is good, which is convenient for widespread promotion.
Description
【技术领域】【Technical field】
本实用新型涉及特种玻璃领域,尤其涉及一种单银低辐射玻璃。 The utility model relates to the field of special glass, in particular to a single-silver low-radiation glass. the
【背景技术】【Background technique】
低辐射玻璃是一种在玻璃表面沉积一层红外线反射材料,使太阳光中的可见光能够透过,又像红外线反射镜一样,将太阳光中的红外线排除在外同时将物体二次辐射热反射回去的特种玻璃。通过使用低辐射玻璃,可以达到控制阳光、节约能源、热量控制调节及改善环境的效果。 Low-emissivity glass is a layer of infrared reflective material deposited on the surface of the glass, so that the visible light in the sunlight can pass through, and like an infrared reflector, it excludes the infrared rays in the sunlight and reflects the secondary radiant heat of the object back. special glass. Through the use of low-e glass, the effects of controlling sunlight, saving energy, controlling heat and improving the environment can be achieved. the
在传统的单银低辐射玻璃加工过程中,为了能实现较好的U值和选择系数Lsg,就必须增加膜层中的银层厚度来降低玻璃膜层的辐射率,以得到理想的选择系数,但是增加银层厚度就意味着可见光反射率升高、外观颜色呈现干扰色,影响玻璃的使用。 In the traditional single-silver low-emissivity glass processing, in order to achieve a better U value and selectivity coefficient Lsg, it is necessary to increase the thickness of the silver layer in the film layer to reduce the emissivity of the glass film layer to obtain an ideal selectivity coefficient , but increasing the thickness of the silver layer means that the reflectance of visible light increases, and the appearance color presents interference colors, which affects the use of glass. the
【实用新型内容】【Content of utility model】
基于此,有必要提供一种可见光反射率低、外观不呈现干扰色的单银低辐射玻璃。 Based on this, it is necessary to provide a single-silver low-emissivity glass with low reflectance of visible light and no disturbing color in appearance. the
一种单银低辐射玻璃,膜层结构依次为:玻璃、基层、电介质组合层、第一阻挡层、AgCu层、第二阻挡层、上层电介质组合层。 A single-silver low-radiation glass, the film layer structure is as follows: glass, base layer, dielectric composite layer, first barrier layer, AgCu layer, second barrier layer, and upper dielectric composite layer. the
优选的,所述电介质组合层厚度为40~50nm。 Preferably, the thickness of the dielectric composite layer is 40-50 nm. the
优选的,所述上层电介质组合层厚度为40~50nm。 Preferably, the thickness of the upper dielectric combination layer is 40-50 nm. the
优选的,所述基层厚度为2~3nm。 Preferably, the thickness of the base layer is 2-3 nm. the
优选的,所述第一阻挡层厚度为0.5~1.5nm。 Preferably, the thickness of the first barrier layer is 0.5-1.5 nm. the
优选的,所述第二阻挡层厚度为0.5~1.5nm。 Preferably, the thickness of the second barrier layer is 0.5-1.5 nm. the
优选的,所述AgCu层厚度为15~19nm。 Preferably, the thickness of the AgCu layer is 15-19 nm. the
优选的,所述上层电介质组合层包括沉积于所述第二阻挡层上的第一上层电介质组合层和沉积于所述第一上层电介质组合层上的第二上层电介质组合 层。 Preferably, the upper dielectric composite layer includes a first upper dielectric composite layer deposited on the second barrier layer and a second upper dielectric composite layer deposited on the first upper dielectric composite layer. the
优选的,所述第一上层电介质组合层的厚度为10~15nm。 Preferably, the thickness of the first upper dielectric combination layer is 10-15 nm. the
优选的,所述第二上层电介质组合层的厚度为30~35nm。 Preferably, the thickness of the second upper dielectric combination layer is 30-35 nm. the
这种单银低辐射玻璃用AgCu替代Ag以获得中性透射色;电介质组合层为减反射膜层,通过添加电介质组合层,降低了可见光反射率,外观不呈现干扰色,具有良好的市场应用前景。 This single-silver low-emissivity glass uses AgCu instead of Ag to obtain a neutral transmission color; the dielectric combination layer is an anti-reflection film layer. By adding a dielectric combination layer, the visible light reflectance is reduced, and the appearance does not show interference color, which has good market application. prospect. the
【附图说明】【Description of drawings】
图1为一实施方式的单银低辐射玻璃的结构示意图; Fig. 1 is the structural representation of the single silver low-emissivity glass of an embodiment;
图2为一实施方式的单银低辐射玻璃的制造流程图。 Fig. 2 is a flow chart of manufacturing single-silver low-emissivity glass in one embodiment. the
【具体实施方式】【Detailed ways】
如图1所示的一种单银低辐射玻璃,包括依次排列的如下结构:玻璃、基层、电介质组合层、第一阻挡层、AgCu层、第二阻挡层、上层电介质组合层。 A single-silver low-emissivity glass as shown in Figure 1 includes the following structures arranged in sequence: glass, base layer, dielectric composite layer, first barrier layer, AgCu layer, second barrier layer, and upper dielectric composite layer. the
电介质组合层、上层电介质组合层由TiO2、ZnSnOx、SnO2、ZnO、SiO2、Ta2O5、BiO2、Al2O3、ZnAl2O4、Nb2O5和Si3N4中的一种或几种构成;电介质组合层厚度为40~50nm;上层电介质组合层厚度为40~50nm。 The dielectric combination layer and the upper dielectric combination layer are composed of TiO 2 , ZnSnO x , SnO 2 , ZnO, SiO 2 , Ta 2 O 5 , BiO 2 , Al 2 O 3 , ZnAl 2 O 4 , Nb 2 O 5 and Si 3 N 4 One or more of them; the thickness of the dielectric composite layer is 40-50nm; the thickness of the upper dielectric composite layer is 40-50nm.
优选的,电介质组合层可以为两种不同的化合物依次沉积形成。 Preferably, the dielectric combination layer can be formed by sequentially depositing two different compounds. the
基层由Ni、Cr、Ti和NiCr中的一种或几种构成;第一阻挡层、第二阻挡层NiCrOx和NiCrNx中的一种或两种构成;基层厚度为2~3nm;第一阻挡层厚度为0.5~1.5nm;第二阻挡层厚度为0.5~1.5nm;AgCu层由质量组成比Ag为45~55%、Cu为55~45%的银铜合金构成。 The base layer is composed of one or more of Ni, Cr, Ti and NiCr; the first barrier layer and the second barrier layer are composed of one or two of NiCrO x and NiCrN x ; the thickness of the base layer is 2-3nm; the first The thickness of the barrier layer is 0.5-1.5nm; the thickness of the second barrier layer is 0.5-1.5nm; the AgCu layer is composed of silver-copper alloy whose mass composition ratio is 45-55% for Ag and 55-45% for Cu.
优选的,AgCu层厚度关系满足产品外观颜色如下表内的颜色值范围: Preferably, the thickness relationship of the AgCu layer satisfies the range of color values in the following table for the appearance color of the product:
更优选的,AgCu层厚度为15~19nm。 More preferably, the thickness of the AgCu layer is 15-19 nm. the
优选的,上层电介质组合层包括沉积于第二阻挡层上的第一上层电介质组合层和沉积于第一上层电介质组合层上的第二上层电介质组合层;第一上层电介质组合层由TiO2、ZnSnOx、SnO2、ZnO、SiO2、Ta2O5、BiO2、Al2O3、ZnAl2O4、Nb2O5和Si3N4中的一种或几种构成;第二上层电介质组合层由TiO2、SnO2、ZnO、SiO2、Ta2O5、BiO2、Al2O3、ZnAl2O4、Nb2O5和Si3N4中的一种或几种构成;第一上层电介质组合层的厚度为10~15nm;第二上层电介质组合层的厚度为30~35nm。 Preferably, the upper dielectric composite layer includes a first upper dielectric composite layer deposited on the second barrier layer and a second upper dielectric composite layer deposited on the first upper dielectric composite layer; the first upper dielectric composite layer consists of TiO 2 , One or more of ZnSnO x , SnO 2 , ZnO, SiO 2 , Ta 2 O 5 , BiO 2 , Al 2 O 3 , ZnAl 2 O 4 , Nb 2 O 5 and Si 3 N 4 ; the second upper layer The dielectric combination layer is composed of one or more of TiO 2 , SnO 2 , ZnO, SiO 2 , Ta 2 O 5 , BiO 2 , Al 2 O 3 , ZnAl 2 O 4 , Nb 2 O 5 and Si 3 N 4 ; The thickness of the first upper dielectric composite layer is 10-15nm; the thickness of the second upper dielectric composite layer is 30-35nm.
更优选的,第一、第二上层电介质组合层通常以不同材料交替溅射叠加组成。 More preferably, the first and second upper dielectric combination layers are generally composed of different materials alternately sputtered and stacked. the
特别优选的,第二上层电介质组合层最外层材料至少包含TiO2、SiO2和Si3N4中的一种。 Particularly preferably, the material of the outermost layer of the second upper dielectric composite layer includes at least one of TiO 2 , SiO 2 and Si 3 N 4 .
如图2所示的上述单银低辐射玻璃的制造方法,包括依次沉积各膜层的步骤,具体如下: The manufacturing method of the above-mentioned single silver low-emissivity glass as shown in Figure 2, comprises the step of depositing each film layer successively, specifically as follows:
清洗玻璃,干燥后置于磁控溅射区; Clean the glass and place it in the magnetron sputtering area after drying;
直流电源加脉冲溅射沉积基层; DC power supply plus pulse sputtering to deposit the base layer;
中频电源加旋转阴极溅射沉积第一电介质组合层; Intermediate frequency power supply plus rotating cathode sputtering to deposit the first dielectric combination layer;
中频电源加旋转阴极溅射沉积第二电介质组合层; Intermediate frequency power supply plus rotating cathode sputtering to deposit the second dielectric combination layer;
直流电源加脉冲溅射沉积第一阻挡层; DC power supply plus pulse sputtering to deposit the first barrier layer;
直流电源加脉冲溅射沉积AgCu层; DC power supply plus pulse sputtering to deposit AgCu layer;
直流电源加脉冲溅射沉积第二阻挡层; DC power supply plus pulse sputtering to deposit the second barrier layer;
中频电源加旋转阴极溅射沉积上层电介质组合层; Intermediate frequency power supply plus rotating cathode sputtering to deposit the upper dielectric combination layer;
成品检验。 Product testing. the
优选的,沉积镀膜时,镀膜线配置有保持系统背景真空的真空度在3×10-6mbar以上的无油分子泵;银靶的邻近隔仓位配置有用于吸收水分的低温泵;中频电源加旋转阴极溅射是在功率为80~90kW的氩氮氛围中进行或功率为50~60kW的氩氧氛围中进行,频率为40kHz;直流电源加脉冲溅射是在氩气氛围中进行,功率为2~3kW。 Preferably, when depositing the coating, the coating line is equipped with an oil-free molecular pump to keep the vacuum degree of the system background vacuum above 3 × 10 -6 mbar; the adjacent compartment of the silver target is equipped with a cryopump for absorbing moisture; Rotary cathode sputtering is carried out in an argon-nitrogen atmosphere with a power of 80-90kW or an argon-oxygen atmosphere with a power of 50-60kW, and the frequency is 40kHz; DC power plus pulse sputtering is carried out in an argon atmosphere with a power of 2~3kW.
其中,中频电源加旋转阴极溅射沉积形成氧化物层时在氩氧氛围中进行, 而沉积形成氮化物时在氩氮氛围内进行;直流电源加脉冲溅射沉积形成金属层或合金层时在氩气氛围中进行,而沉积形成氧化物层时在氩氧氛围中进行。 Among them, the intermediate frequency power supply plus rotating cathode sputtering deposits and forms oxide layers in an argon-oxygen atmosphere, while the deposition and formation of nitrides is carried out in an argon-nitrogen atmosphere; DC power plus pulse sputtering deposits and forms metal layers or alloy layers in It is carried out in an argon atmosphere, and the deposition is carried out in an argon-oxygen atmosphere when forming an oxide layer. the
单银低辐射玻璃的制造采用真空磁控溅射镀膜,每一膜层可以由单一物质沉积形成,也可以由几种不同物质依次沉积形成。 The manufacture of single-silver low-emissivity glass adopts vacuum magnetron sputtering coating, and each film layer can be formed by depositing a single substance, or several different substances can be deposited sequentially. the
下面结合具体实施例对单银低辐射玻璃及其制造方法作进一步的说明。 The single-silver low-emissivity glass and its manufacturing method will be further described below in conjunction with specific examples. the
实施例1 Example 1
该单银低辐射玻璃的膜层结构依次为:玻璃、NiCr、Si3N4、ZnSnOx、NiCrOx、AgCu、NiCrOx、ZnSnOx、Si3N4。 The film layer structure of the single silver low-emissivity glass is: glass, NiCr, Si 3 N 4 , ZnSnO x , NiCrO x , AgCu, NiCrO x , ZnSnO x , Si 3 N 4 .
本实施例中,基层为NiCr层,厚度为2nm。 In this embodiment, the base layer is a NiCr layer with a thickness of 2 nm. the
本实施例中,电介质组合层由两种化合物依次沉积形成第一电介质组合层和第二电介质组合层;第一电介质组合层为Si3N4层,厚度为30nm;第二电介质组合层为ZnSnOx层,厚度为10nm。 In this embodiment, the dielectric combination layer is deposited sequentially by two compounds to form the first dielectric combination layer and the second dielectric combination layer; the first dielectric combination layer is Si 3 N 4 layers with a thickness of 30nm; the second dielectric combination layer is ZnSnO x- layer with a thickness of 10 nm.
本实施例中,第一阻挡层为NiCrOx层,厚度为2nm。 In this embodiment, the first barrier layer is a NiCrO x layer with a thickness of 2 nm.
本实施例中,AgCu厚度为15nm,AgCu层由质量组成比Ag为50%、Cu为50%的银铜合金构成;在其他的实施例中,Ag的质量比范围为45~55%。 In this embodiment, the thickness of AgCu is 15 nm, and the AgCu layer is composed of a silver-copper alloy with a mass composition ratio of 50% Ag and 50% Cu; in other embodiments, the mass ratio of Ag ranges from 45% to 55%. the
本实施例中,第二阻挡层为NiCrOx层,厚度为2nm。 In this embodiment, the second barrier layer is a NiCrO x layer with a thickness of 2 nm.
本实施例中,上层电介质组合层由两种化合物依次沉积形成第一上层电介质组合层和第二上层电介质组合层;其中,第一上层电介质组合层为ZnSnOX层,厚度为10nm,第二上层电介质组合层为Si3N4层,厚度为35nm。 In this embodiment, the upper dielectric composite layer is deposited sequentially by two compounds to form the first upper dielectric composite layer and the second upper dielectric composite layer; wherein, the first upper dielectric composite layer is a ZnSnO X layer with a thickness of 10 nm, and the second upper dielectric composite layer The dielectric composite layer is a Si 3 N 4 layer with a thickness of 35nm.
上述各膜层具体制造工艺为: The specific manufacturing process of the above-mentioned film layers is as follows:
Si3N4层沉积采用中频电源加旋转阴极在氩氮氛围中溅射沉积,真空磁控溅射设备功率为80~90kW,中频电源频率为40kHz。 The Si 3 N 4 layer is deposited by sputtering deposition in an argon-nitrogen atmosphere with an intermediate frequency power supply and a rotating cathode. The power of the vacuum magnetron sputtering equipment is 80-90kW, and the frequency of the intermediate frequency power supply is 40kHz.
ZnSnOx层沉积采用中频电源加旋转阴极在氩氧氛围中进行,真空磁控溅射设备功率为50~60kW,中频电源频率为40kHz。 ZnSnO x- layer deposition is carried out in an argon-oxygen atmosphere with an intermediate frequency power supply and a rotating cathode. The power of the vacuum magnetron sputtering equipment is 50-60kW, and the frequency of the intermediate frequency power supply is 40kHz.
NiCrOx层沉积采用直流脉冲在氩气氛围中进行,真空磁控溅射设备功率为2kW。 The deposition of NiCrO x layer was carried out in argon atmosphere with DC pulse, and the power of the vacuum magnetron sputtering equipment was 2kW.
AgCu层沉积采用直流脉冲在氩气氛围中进行,真空磁控溅射设备功率为 2kW。 The deposition of the AgCu layer was carried out in an argon atmosphere using DC pulses, and the power of the vacuum magnetron sputtering equipment was 2kW. the
NiCr层沉积采用直流脉冲在氩气氛围中进行,真空磁控溅射设备功率为3kW。 NiCr layer deposition is carried out in an argon atmosphere with DC pulses, and the power of the vacuum magnetron sputtering equipment is 3kW. the
该单银低辐射玻璃光学性能和热性能如下: The optical and thermal properties of the single silver low-e glass are as follows:
辐射率≤0.05,中空产品(结构为:6mm镀膜玻璃+12mm空气层+6mm普通白玻)的传热系数<1.5W/m2·K,透过率≤50%,反射率≤15%,选择系数≥1.3。 Emissivity ≤ 0.05, heat transfer coefficient of hollow product (structure: 6mm coated glass + 12mm air layer + 6mm ordinary white glass) < 1.5W/m 2 ·K, transmittance ≤ 50%, reflectivity ≤ 15%, Selection factor ≥ 1.3.
其各银铜层厚度关系满足产品外观颜色如下表内的颜色值范围: The relationship between the thickness of each silver-copper layer satisfies the range of color values in the following table for the appearance color of the product:
实施例2 Example 2
该单银低辐射玻璃的膜层结构依次为:玻璃、NiCr、Si3N4、ZnSnOx、NiCrOx、AgCu、NiCrOx、ZnSnOx、Si3N4。 The film layer structure of the single silver low-emissivity glass is: glass, NiCr, Si 3 N 4 , ZnSnO x , NiCrO x , AgCu, NiCrO x , ZnSnO x , Si 3 N 4 .
本实施例中,基层为NiCr层,厚度为2nm。 In this embodiment, the base layer is a NiCr layer with a thickness of 2 nm. the
本实施例中,电介质组合层由两种化合物依次沉积形成第一电介质组合层和第二电介质组合层;第一电介质组合层为Si3N4层,厚度为30nm;第二电介质组合层为ZnSnOx层,厚度为15nm。 In this embodiment, the dielectric combination layer is deposited sequentially by two compounds to form the first dielectric combination layer and the second dielectric combination layer; the first dielectric combination layer is Si 3 N 4 layers with a thickness of 30nm; the second dielectric combination layer is ZnSnO x- layer with a thickness of 15 nm.
本实施例中,第一阻挡层为NiCr层,厚度为2nm。 In this embodiment, the first barrier layer is a NiCr layer with a thickness of 2 nm. the
本实施例中,AgCu厚度为19nm,AgCu层由质量组成比Ag为50%、Cu为50%的银铜合金构成;在其他的实施例中,Ag的质量比范围为45~55%。 In this embodiment, the thickness of AgCu is 19nm, and the AgCu layer is composed of a silver-copper alloy with a mass composition ratio of 50% Ag and 50% Cu; in other embodiments, the mass ratio of Ag ranges from 45% to 55%. the
本实施例中,第二阻挡层为NiCr层,厚度为2nm。 In this embodiment, the second barrier layer is a NiCr layer with a thickness of 2 nm. the
本实施例中,上层电介质组合层由两种化合物依次沉积形成第一上层电介质组合层和第二上层电介质组合层;其中,第一上层电介质组合层为ZnSnOX层,厚度为15nm,第二上层电介质组合层为Si3N4层,厚度为35nm。 In this embodiment, the upper dielectric composite layer is deposited sequentially by two compounds to form the first upper dielectric composite layer and the second upper dielectric composite layer; wherein, the first upper dielectric composite layer is a ZnSnO X layer with a thickness of 15 nm, and the second upper dielectric composite layer The dielectric composite layer is a Si 3 N 4 layer with a thickness of 35nm.
上述各膜层具体制造工艺为: The specific manufacturing process of the above-mentioned film layers is as follows:
Si3N4层沉积采用中频电源加旋转阴极在氩氮氛围中溅射沉积,真空磁控溅射设备功率为80~90kW,中频电源频率为40kHz。 The Si 3 N 4 layer is deposited by sputtering deposition in an argon-nitrogen atmosphere with an intermediate frequency power supply and a rotating cathode. The power of the vacuum magnetron sputtering equipment is 80-90kW, and the frequency of the intermediate frequency power supply is 40kHz.
ZnSnOx层沉积采用中频电源加旋转阴极在氩氧氛围中进行,真空磁控溅射设备功率为50~60kW,中频电源频率为40kHz。 ZnSnO x- layer deposition is carried out in an argon-oxygen atmosphere with an intermediate frequency power supply and a rotating cathode. The power of the vacuum magnetron sputtering equipment is 50-60kW, and the frequency of the intermediate frequency power supply is 40kHz.
NiCrOx层沉积采用直流脉冲在氩气氛围中进行,真空磁控溅射设备功率为2kW。 The deposition of NiCrO x layer was carried out in argon atmosphere with DC pulse, and the power of the vacuum magnetron sputtering equipment was 2kW.
AgCu层沉积采用直流脉冲在氩气氛围中进行,真空磁控溅射设备功率为2kW。 The deposition of the AgCu layer was carried out in an argon atmosphere using DC pulses, and the power of the vacuum magnetron sputtering equipment was 2kW. the
NiCr层沉积采用直流脉冲在氩气氛围中进行,真空磁控溅射设备功率为3kW。 NiCr layer deposition is carried out in an argon atmosphere with DC pulses, and the power of the vacuum magnetron sputtering equipment is 3kW. the
该单银低辐射玻璃光学性能和热性能如下: The optical and thermal properties of the single silver low-e glass are as follows:
辐射率≤0.05,中空产品(结构为:6mm镀膜玻璃+12mm空气层+6mm普通白玻)的传热系数<1.5W/m2·K,透过率≤50%,反射率≤15%,选择系数≥1.3。 Emissivity ≤ 0.05, heat transfer coefficient of hollow product (structure: 6mm coated glass + 12mm air layer + 6mm ordinary white glass) < 1.5W/m 2 ·K, transmittance ≤ 50%, reflectivity ≤ 15%, Selection factor ≥ 1.3.
其各银铜层厚度关系满足产品外观颜色如下表内的颜色值范围: The relationship between the thickness of each silver-copper layer satisfies the range of color values in the following table for the appearance color of the product:
这种单银低辐射玻璃用AgCu替代Ag以获得中性透射色;电介质组合层为减反射膜层,通过添加电介质组合层,降低了可见光反射率。 This single-silver low-emissivity glass uses AgCu instead of Ag to obtain a neutral transmission color; the dielectric combination layer is an anti-reflection film layer, and the visible light reflectance is reduced by adding a dielectric combination layer. the
基层为金属或金属合金薄膜层,通过添加基层,提高膜层吸收率,减缓了因AgCu层加厚导致的高反射率;通过膜层设计,使AgCu层两边的介质层膜层折射率采用前高后低搭配,获取更宽的中性透射色的调色范围。 The base layer is a metal or metal alloy thin film layer. By adding the base layer, the absorption rate of the film layer is increased, and the high reflectivity caused by the thickening of the AgCu layer is slowed down; through the design of the film layer, the refractive index of the dielectric layer on both sides of the AgCu layer is adopted. Matching high and low to obtain a wider color range of neutral transmission colors. the
AgCu层厚度为15~19nm,满足产品外观颜色如下表内的颜色值范围: The thickness of the AgCu layer is 15-19nm, which meets the color value range in the following table for the appearance color of the product:
这样使得该含银低辐射玻璃外观更好,选择系数更高。 In this way, the appearance of the silver-containing low-emissivity glass is better, and the selectivity coefficient is higher. the
第一、第二上层电介质组合层通常以不同材料交替溅射叠加组成,便于控制膜层均匀性、牢固性和合理光学效果。 The first and second upper dielectric composite layers are usually composed of different materials alternately sputtered and stacked, which is convenient for controlling the uniformity, firmness and reasonable optical effect of the film layer. the
第二上层电介质组合层最外层材料至少包含TiO2、SiO2和Si3N4中的一种,使得产品耐磨和耐久性最终符合理化性能标准。 The material of the outermost layer of the second upper dielectric combination layer contains at least one of TiO 2 , SiO 2 and Si 3 N 4 , so that the wear resistance and durability of the product finally meet the physical and chemical performance standards.
镀膜时镀膜线上配置有高抽速的无油分子泵,保持背景真空在高真空3×10-6mbar以上,系统在几种工艺气氛溅射区之间具有很好的气氛隔离效果,隔离系数大于30,同时具有较好的膜厚均匀性和膜层组成成分均匀性,在大抽速的真空获得系统下,加大工艺气体的压力,采用直流加脉冲的阴极电源进行溅射,并在AgCu靶的邻近隔仓位配置低温泵吸收水分,提高了AgCu层的成膜质量,有效的提高了产品的可见光透过率以及整个辐射膜层的颜色饱和度和耐候性。 When coating, the coating line is equipped with a high-speed oil-free molecular pump to keep the background vacuum above 3×10 -6 mbar. The system has a good atmosphere isolation effect between sputtering areas of several process atmospheres. The coefficient is greater than 30, and it has good film thickness uniformity and film composition uniformity. Under the vacuum acquisition system with high pumping speed, the pressure of the process gas is increased, and the cathode power supply of DC plus pulse is used for sputtering, and A cryopump is installed adjacent to the AgCu target to absorb water, which improves the film quality of the AgCu layer, effectively improves the visible light transmittance of the product, and the color saturation and weather resistance of the entire radiation film layer.
电介质组合层为减反射膜层,同时起着连接玻璃和功能层的作用,与玻璃之间粘接性能好,并缓解了整个低辐射膜的内部应力。上层电介质组合层直接增加了所述单银低辐射玻璃抗划伤、耐磨和抗腐蚀的性能。电介质组合层采用频率40kHz的具有良好灭弧性能的中频电源加旋转阴极溅射形成,折射率良好匹配,使产品的反射率和透过率达到理想值。 The dielectric combination layer is an anti-reflection film layer, which also plays the role of connecting the glass and the functional layer, has good bonding performance with the glass, and relieves the internal stress of the entire low-emissivity film. The upper dielectric composite layer directly increases the scratch resistance, wear resistance and corrosion resistance of the single silver low-emissivity glass. The dielectric combination layer is formed by an intermediate frequency power supply with good arc extinguishing performance at a frequency of 40kHz and rotating cathode sputtering. The refractive index is well matched, so that the reflectivity and transmittance of the product can reach ideal values. the
该单银低辐射玻璃采用独特的膜层结构、新工艺、新方法改进传统低辐射镀膜玻璃,使产品具有低反射率、低透射率、低辐射率和良好的选择系数等优点。这种玻璃室内外颜色接近中性低反射色,并且光学性能稳定、颜色多样、耐候性好,便于广泛推广。 The single-silver low-emissivity glass adopts a unique film structure, new process and new method to improve the traditional low-emissivity coated glass, so that the product has the advantages of low reflectivity, low transmittance, low emissivity and good selectivity coefficient. The indoor and outdoor colors of this kind of glass are close to neutral low-reflection color, and the optical performance is stable, the colors are diverse, and the weather resistance is good, which is convenient for widespread promotion. the
以上所述实施例仅表达了本实用新型的实施方式,其描述较为具体和详细,但并不能因此而理解为对本实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的 保护范围应以所附权利要求为准。 The above-mentioned embodiments only express the implementation manner of the present utility model, and its description is relatively specific and detailed, but it should not be interpreted as limiting the patent scope of the present utility model. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the scope of protection of the utility model patent should be based on the appended claims. the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010205031198U CN201825870U (en) | 2010-08-24 | 2010-08-24 | Single-silver-layer low-radiation glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010205031198U CN201825870U (en) | 2010-08-24 | 2010-08-24 | Single-silver-layer low-radiation glass |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201825870U true CN201825870U (en) | 2011-05-11 |
Family
ID=43964420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010205031198U Expired - Lifetime CN201825870U (en) | 2010-08-24 | 2010-08-24 | Single-silver-layer low-radiation glass |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201825870U (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102372445A (en) * | 2010-08-24 | 2012-03-14 | 中国南玻集团股份有限公司 | Single-silver and low-radiation glass and manufacturing method thereof |
CN102501452A (en) * | 2011-11-25 | 2012-06-20 | 林嘉宏 | Temperable low-emissivity coated glass |
CN102501451A (en) * | 2011-11-25 | 2012-06-20 | 林嘉宏 | Temperable di-silver low-emissivity coated glass and manufacturing process thereof |
CN103144379A (en) * | 2011-12-06 | 2013-06-12 | 天津南玻节能玻璃有限公司 | Low-emissivity coated glass and manufacturing method thereof |
CN104710112A (en) * | 2014-07-15 | 2015-06-17 | 北京冠华东方玻璃科技有限公司 | Low-emissivity glass |
CN106746733A (en) * | 2017-01-19 | 2017-05-31 | 吴江南玻华东工程玻璃有限公司 | A kind of double silver-layer low-radiation glass of low transmission antiradar reflectivity |
CN107117832A (en) * | 2017-05-05 | 2017-09-01 | 信义节能玻璃(芜湖)有限公司 | Low anti-low permeability, tempered single silver low-radiation coated glass and its manufacture method and application |
-
2010
- 2010-08-24 CN CN2010205031198U patent/CN201825870U/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102372445A (en) * | 2010-08-24 | 2012-03-14 | 中国南玻集团股份有限公司 | Single-silver and low-radiation glass and manufacturing method thereof |
CN102372445B (en) * | 2010-08-24 | 2013-09-04 | 中国南玻集团股份有限公司 | Single-silver and low-radiation glass and manufacturing method thereof |
CN102501452A (en) * | 2011-11-25 | 2012-06-20 | 林嘉宏 | Temperable low-emissivity coated glass |
CN102501451A (en) * | 2011-11-25 | 2012-06-20 | 林嘉宏 | Temperable di-silver low-emissivity coated glass and manufacturing process thereof |
CN103144379A (en) * | 2011-12-06 | 2013-06-12 | 天津南玻节能玻璃有限公司 | Low-emissivity coated glass and manufacturing method thereof |
CN104710112A (en) * | 2014-07-15 | 2015-06-17 | 北京冠华东方玻璃科技有限公司 | Low-emissivity glass |
CN106746733A (en) * | 2017-01-19 | 2017-05-31 | 吴江南玻华东工程玻璃有限公司 | A kind of double silver-layer low-radiation glass of low transmission antiradar reflectivity |
CN107117832A (en) * | 2017-05-05 | 2017-09-01 | 信义节能玻璃(芜湖)有限公司 | Low anti-low permeability, tempered single silver low-radiation coated glass and its manufacture method and application |
CN107117832B (en) * | 2017-05-05 | 2023-06-16 | 信义节能玻璃(芜湖)有限公司 | Low-reflection and low-transmission temperable single-silver low-emissivity coated glass and its manufacturing method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102372445B (en) | Single-silver and low-radiation glass and manufacturing method thereof | |
CN102372447B (en) | Low emissivity glass containing silver and manufacture method | |
CN201825870U (en) | Single-silver-layer low-radiation glass | |
CN101497501A (en) | Three-silver low radiation film glass | |
CN101497500A (en) | Three-silver low radiation film glass capable of being subsequently processed | |
CN101830643B (en) | Double-silver coated glass and manufacturing method thereof | |
HK1215564A1 (en) | Coated glass and preparation method thereof | |
CN108328942A (en) | High low anti-double-silver low-emissivity coated glass and preparation method thereof thoroughly | |
CN110028251B (en) | Copper-containing double-silver low-emissivity coated glass capable of being subsequently processed and preparation method thereof | |
CN206553403U (en) | A kind of high infrared reflection coated glass | |
CN107382093B (en) | Orange double-silver low-emissivity coated glass and preparation method thereof | |
TW201305078A (en) | Triple-silver low radiation coating glass and manufacturing method thereof | |
CN110746123A (en) | Temperable double-silver coated glass and preparation method thereof | |
CN105481267A (en) | High-penetrability single-sliver low-emissivity coated glass for subsequent processing and production technology thereof | |
CN104310801A (en) | A kind of neutral color triple silver LOW-E glass and preparation method | |
CN102582167B (en) | Low-emission glass and manufacturing method for low-emission glass | |
CN112694264A (en) | Blue-gray three-silver low-emissivity coated glass and preparation method thereof | |
CN103879080A (en) | Three-silver-layer low-radiation glass and preparation method thereof | |
RU2683727C2 (en) | Architectural glass with low emission coating, having a multilayer structure, having a high strength, and / or way of its manufacture | |
CN101935169A (en) | Film glass structure adopting TiO2 ceramic target magnetron sputtering and method thereof | |
CN201825868U (en) | Silver-containing low emissivity glass | |
CN203651100U (en) | Copper and silver containing four-layer low-radiation coated glass capable of subsequent processing | |
CN201999858U (en) | Low-reflectivity coated glass coated with double silver layers and with TiO2 (titanium dioxide) serving as base layer | |
CN210030460U (en) | Copper-containing double-silver low-emissivity coated glass capable of being subsequently processed | |
CN215480590U (en) | Single silver layer HTLE glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20110511 |