CN201655967U - Ridge waveguide tube array antenna - Google Patents
Ridge waveguide tube array antenna Download PDFInfo
- Publication number
- CN201655967U CN201655967U CN2010200011982U CN201020001198U CN201655967U CN 201655967 U CN201655967 U CN 201655967U CN 2010200011982 U CN2010200011982 U CN 2010200011982U CN 201020001198 U CN201020001198 U CN 201020001198U CN 201655967 U CN201655967 U CN 201655967U
- Authority
- CN
- China
- Prior art keywords
- waveguide
- array antenna
- ridge
- waveguide body
- waveguide array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000000750 progressive effect Effects 0.000 claims description 6
- 230000005855 radiation Effects 0.000 abstract description 21
- 230000000694 effects Effects 0.000 abstract description 4
- 230000010287 polarization Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 12
- 230000001808 coupling effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- PHCDZUPEIPGYOG-UHFFFAOYSA-N [Fe].[Co].[Zn] Chemical compound [Fe].[Co].[Zn] PHCDZUPEIPGYOG-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Images
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及一种脊状波导管数组天线。The utility model relates to a ridge waveguide array antenna.
背景技术Background technique
一般现有的导管数组天线至少可分为垂直极化与水平极化两种。图1A为一种垂直极化波导管数组天线100,包含波导管槽孔110,使信号沿着波导管槽孔110向纵轴112的方向(即z-轴)传播,而在纵轴112的横向长度中,该导波管槽孔110主要包含宽度113(即沿着x-轴)以及高度114(即沿着y-轴),而该波导管数组天线100的低频频率是由宽度113决定。一般而言,该宽度113通常为0.5λ波长长度,其中波导管槽孔110包含多数边缘槽孔122、124,每个夹角α相对于高度114轴向方向分成正极与负极角度,且该垂直极化的波导管数组天线100的顶端具有一盖体130。Generally, existing catheter array antennas can be at least divided into two types: vertical polarization and horizontal polarization. 1A is a vertically polarized
再请参阅图1B,图1B所示为垂直极化的波导管数组天线100在图1A的场形图,该场形图中包括方位辐射场形152和仰角场形154,如图所示,方位角场形152显示8dB的变化量。Please refer to FIG. 1B again. FIG. 1B shows the vertically polarized
水平极化的波导管数组天线200如图2A所示,波导管槽孔210的信号顺着波导管本体槽孔210向纵轴212(即z-轴)传播,而该水平极化的波导管数组天线200的低频频率是由宽度213尺寸加以定义,一般的尺寸为0.5λ,而波导管槽孔210更进一步包含有数个纵向槽孔220,而各槽孔220以偏移中心线纵轴212距离±d作定义,其相邻的槽孔220沿中心线交错排列,且在该水平极化的波导管数组天线200的顶端具有一盖体230。The horizontally polarized
图2B所示为水平极化波导管数组天线200在图2A中的辐射场形,该场形图中包括方位辐射场形252和仰角场形254,如图所示,方位角场形252显示4dB的变化量。Fig. 2B shows the radiation pattern of the horizontally polarized
上述垂直极化波导管数组天线100与水平极化的波导管数组天线200在辐射场形方位所涵盖的范围有很大的变化,也就是说,在使用者的立场上水平讯号在涵盖的范围上有很大的变化;因此,高功率发射机或高增益天线发射水平讯号提供给每个使用者时,会因为变化量大而受到相关的限制,虽然一般槽孔数组天线适合在高功率传输及接收应用,但无法部署应用在需要均一性涵盖的区域中。The above-mentioned vertically polarized
实用新型内容Utility model content
本实用新型的主要目的在于公开一种脊状波导管数组天线,以获得较一致的辐射场形并缩小天线的体积。The main purpose of the utility model is to disclose a ridge-shaped waveguide array antenna, so as to obtain a relatively consistent radiation field shape and reduce the volume of the antenna.
为达上述目的,本实用新型公开的脊状波导管数组天线包含有波导管本体,该波导管本体至少在一边上定义有纵轴,且该波导管本体的至少一边上设有复数第一及第二槽孔,并该波导管本体的至少一边上设有脊状波导管,该脊状波导管包含相对且间隔开的两个脊状部,且脊状部向波导管本体的纵轴延伸。To achieve the above purpose, the ridged waveguide array antenna disclosed in the utility model includes a waveguide body, at least one side of the waveguide body defines a longitudinal axis, and at least one side of the waveguide body is provided with a plurality of first and The second slot, and at least one side of the waveguide body is provided with a ridged waveguide, the ridged waveguide includes two opposite and spaced apart ridges, and the ridges extend toward the longitudinal axis of the waveguide body .
上述脊状波导管数组天线包括垂直极化脊状波导管数组天线与水平极化脊状波导管数组天线,可应用于典型高功率上,而利用脊状波导管、第一及第二槽孔的配合,而可获得较一致的辐射场形,且可同时具有缩小天线体积的功效。The above-mentioned ridge waveguide array antenna includes a vertically polarized ridge waveguide array antenna and a horizontally polarized ridge waveguide array antenna, which can be applied to typical high power, and utilize the ridge waveguide, the first and the second slot With the cooperation, a more consistent radiation pattern can be obtained, and at the same time, it can reduce the size of the antenna.
附图说明Description of drawings
图1A为现有垂直极化的波导管数组天线图。FIG. 1A is a diagram of a conventional vertically polarized waveguide array antenna.
图1B为图1A的方位辐射场形图。Fig. 1B is the azimuthal radiation field diagram of Fig. 1A.
图2A为现有水平极化的波导管数组天线图。FIG. 2A is a diagram of a conventional horizontally polarized waveguide array antenna.
图2B为图2A的方位辐射场形图。FIG. 2B is an azimuthal radiation field diagram of FIG. 2A.
图3A为本实用新型垂直极化脊状波导管数组天线的示意图。FIG. 3A is a schematic diagram of the vertically polarized ridge waveguide array antenna of the present invention.
图3B为本实用新型垂直极化脊状波导管数组天线的俯视图。Fig. 3B is a top view of the vertically polarized ridge waveguide array antenna of the present invention.
图3C为本实用新型垂直极化脊状波导管数组天线的侧视及俯视图。3C is a side view and a top view of the vertically polarized ridge waveguide array antenna of the present invention.
图3D为本实用新型垂直极化脊状波导管数组天线的方位辐射场形和仰角场形图。FIG. 3D is a diagram of the azimuth radiation field shape and the elevation angle field shape of the vertically polarized ridge waveguide array antenna of the present invention.
图4A为本实用新型水平极化脊状波导管数组天线的示意图。FIG. 4A is a schematic diagram of the horizontally polarized ridge waveguide array antenna of the present invention.
图4B为本实用新型水平极化脊状波导管数组天线的俯视图。FIG. 4B is a top view of the horizontally polarized ridge waveguide array antenna of the present invention.
图4C为本实用新型水平极化脊状波导管数组天线的方位辐射场形和仰角场形图。FIG. 4C is a diagram of the azimuth radiation field shape and the elevation angle field shape of the horizontally polarized ridge waveguide array antenna of the present invention.
图4D为本实用新型水平极化脊状波导管数组天线显示条件θ=90°、的示意图。Figure 4D shows the display conditions of the horizontally polarized ridge waveguide array antenna of the present invention: θ=90°, schematic diagram.
图4E为本实用新型水平极化脊状波导管数组天线显示条件θ=90°、 的示意图。Figure 4E shows the display conditions of the horizontally polarized ridge waveguide array antenna of the present invention θ=90°, schematic diagram.
具体实施例specific embodiment
下面结合说明书附图对本实用新型的具体实施方式做详细描述。显然,所描述的实施例仅仅是本实用新型的一部分实施例,本领域的技术人员在不付出创造性劳动的前提下所获取的其它实施例,都属于本实用新型的保护范围。The specific embodiment of the utility model will be described in detail below in conjunction with the accompanying drawings. Apparently, the described embodiments are only a part of the embodiments of the present utility model, and other embodiments obtained by those skilled in the art without creative efforts all belong to the protection scope of the present utility model.
请参阅图3A~图3D,本实用新型的垂直极化脊状波导管数组天线300包含有波导管本体310、及复数设于波导管本体3.10侧边的第一及第二槽孔322、324,该天线300的讯号是朝波导管本体310的纵轴312(即z-轴)的方向进行辐射;其中该波导管本体310的波导管开口315主要包含有宽度尺寸313(即x-轴)与高度尺寸314(即y-轴),且该垂直极化脊状波导管数组天线300频带的低频是由宽度尺寸313加以定义,而该宽度尺寸313小于0.5λ;该波导管本体310的第一及第二槽孔322、324的夹角是相对于高度尺寸314的轴向位置,且沿着波导管本体310的两边延伸,而分成正极与负极的角度方向,而各第一及第二槽孔322、324在波导管本体310的各边上延伸至波导管本体310的整个外部(即延伸至波导管本体310整个边的四周),而该波导管本体310为一个矩形波导管体,且该垂直极化脊状波导管数组天线300的顶端设有一盖体330。Please refer to Figures 3A to 3D, the vertically polarized ridge
该波导管本体310是由预定的宽度尺寸313和高度尺寸314定义有波导管开口315,而该波导管开口315的宽度尺寸通常小于二分之一波长,且该波导管本体310上还具有脊状波导管318,该脊状波导管318是沿着高度尺寸314轴线和内部表面310a设于波导管本体310上,且脊状波导管318是由两个相对应的脊状部318a、318b顺着纵轴中心线延伸组成于波导管本体310,而该相对应的脊状部318a、318b产生有两个波导管310b、310c,其宽度尺寸313为0.34λ、高度尺寸314为0.28λ,而脊状部318a、318b宽度(水平尺寸)为0.073λ,分开的间距0.035λ,且其截面尺寸310b、310c等于0.31λx0.134λ,使该两个间隔分开的脊318a和318b沿着波导管本体310的纵轴312中心线提供电容耦合效果(且还能达到结构尺寸缩小的效果),且如图所示,该脊状波导管318的两个脊状部318a、318b相对且间隔开,等同于微波效应(由表面电流所构成),除此之外还可以其它的方法完成此技术,例如:在波导管本体310的内边上设置相对应且延伸至底部的脊状部,依此可提供理想的(e.g.,电容)耦合效应。另外,该波导管本体310更包含两个侧边311a、311c以及两个邻边311b、311d,使各第一及第二槽孔322、324的夹角相对于高度尺寸314的轴,且各第一及第二槽孔322、324延伸在波导管本体310的两个侧边311a、311c,而非夹角部分(相对于宽度尺寸313)沿伸至波导管本体310的两个邻边311b、311d;又第一槽孔322以β正向角的倾斜角度设于高度尺寸314的轴在线,而第二槽孔324以β反向角的倾斜角度设于高度尺寸314的轴在线,而该倾斜角度的β变化值为0度~90度,通常是界于0度~45度之间,进一步而言,该倾斜角度β为23度,如图3C所示,各第一及第二槽孔322、324的互补角度为23度倾斜于高度尺寸314的轴在线,且各第一及第二槽孔322、324的宽度0.07λ是间隔0.65λ的距离,而末端的盖体330起始于最近中心的位置处间隔为0.325λ的距离,让该垂直极化脊状波导管数组天线300各第一及第二槽孔322、324的总长度为2.925λ,当然也可依据实际使用所需而以不同的槽孔数加以改良设计;且各第一及第二槽孔322、324延伸至波导管本体310四个面上,而距离接近于0.5λ,进而使波导管本体310的截面积缩小。The
再如图3D所示,该垂直极化脊状波导管数组天线300的方位辐射场形352显示仰角场形变化量小于1dB,比前述现有垂直极化脊状波导管数组天线仰角场形的变化量8dB具有更一致方位辐射场形,使本实用新型的垂直极化脊状波导管数组天线300可在1.8GHzGSM系统、2.2GHzWiFi系统、或3.5GHzWiMax系统中加以运用。As shown in Figure 3D again, the azimuth
请参阅图4A~图4E,本实用新型的水平极化脊状波导管数组天线400包含有波导管本体410、以及设波导管本体410纵轴上412的第一及第二槽孔422、424,讯号是朝波导管本体410的纵轴412(即z-轴)的方向进行辐射;其中该波导管本体410的波导管开口415主要包含有宽度尺寸413(即x-轴)与高度尺寸414(即y-轴),且该水平极化脊状波导管数组天线400的低频是由宽度尺寸413加以定义,而其宽度尺寸313小于0.5λ,且各第一及第二槽孔422、424相对应设于波导管本体410的两个面上,该第一槽孔422以波导管本体410中心线CL为中心左右偏移距离定为±d,而第二槽孔424位于波导管本体410的反面,该第一槽孔422贯穿波导管本体410至对面的第二槽孔424,如此,第二槽孔424反面的设置大致沿着波导管本体410中心线左右偏移,且正面的排列与反面一样,且该水平极化脊状波导管数组天线400的顶端设有一盖体430。Please refer to FIGS. 4A-4E , the horizontally polarized ridge
且该波导管本体410是由预定的宽度尺寸413和高度尺寸414定义有开口尺寸小于0.5λ的波导管开口415,该波导管本体410上更具有两个脊状波导管4181、4182,而各脊状波导管4181、4182连结于波导管本体410的左右边上,且波导管本体410的横切面包含波导管开口415的宽度尺寸413与两个相对的渐进式波导管411a、411b,并在该两个脊状波导管4181、4182之间设有宽度尺寸413较窄的波导管416,该较窄的波导管416尺寸为0.20λ(w)x 0.009λ(h),而该渐进式波导管411a、411b的尺寸为0.085λ(w)x 0.09λ(h),且渐近式波导管411a、411b的侧边高度为0.009λ(h)。And the
各第一槽孔422是由脊状波导管410的中心线CL做偏移距离d且沿着纵轴412排列,而各第一槽孔422偏移中线的距离由操作频率决定,且各第一及第二槽孔422、424设于该波导管本体410内较窄的波导管416相对的侧边位置处,各第一及第二槽孔422、424长度尺寸为0.43λ、宽度为0.046尺寸,另各第一及第二槽孔422、424中心至中心线偏移距离±d为0.045λ,而中心到中心距离为0.56λ。Each
且该水平极化脊状波导管数组天线400通常有相对应的槽孔422a、424a,每个槽孔422a、424a都具有谐振器特性,可在波导管本体410上激发电流而影响场形总辐射能量,该数组排列使讯号范围达360°,且相对槽孔422a、424a之间的距离一致,或应该相对短(例如:比0.01λ小),进而使用补偿技术使两槽孔422a、424a之间的距离产生相位差;各脊状波导管4181、4182是分别包含两个相对的脊状部418a、418b,各脊状波导管4181、4182的表面接合于波导管本体410且向邻边延伸;进一步的,各脊状波导管4181、4182的切角设计,是在波导管本体410上以渐进式的方式提供一与辐射路径相对应的槽孔422a、424a,而各脊状波导管4181、4182也可为椭圆、圆形、或椎形...等形状,且各脊状波导管4181、4182的尺寸为0.13λ(w)x 0.004λ(h),而斜边临边高度为0.0036λ(h),且各脊状部418a、418b的间距419的隔开距离为0.001λ(h)。And the horizontally polarized ridge
此外,各脊状波导管4181、4182的各脊状部418a、418b可修改成各种形式(状在上或下及相邻边上延伸至底部)与不同的槽孔422a、424a间距及长度,以作为电性的调整与修改,得到最佳水平辐射场形与耦合效果。In addition, each
请参阅图4C所示,为对应频率0.545GHz的方位辐射场形452及仰角辐射场形452,其显示条件θ=90°、如图所示,该水平极化脊状波导管数组天线400具有一致性的方位辐射场形,呈现变化量小于1dB;再由图4D所示,显示条件θ=90°、同样具有一致性的方位辐射场形454,且呈现变化量小于1dB,由此可知,本实用新型较一般现有水平极化脊状波导管数组天线的变化量4dB具有更一致性的性能。Please refer to Fig. 4C, which is the azimuth
当然本实用新型的垂直极化与水平极化脊状波导管数组天线300、400在制造时,可利用机械加工、铸件或其它方式进行制作,且也可使用多种材料与氧化处理,其结构材料可选用铁钴锌合金、黄铜、铝或与其它材料;运用时,可使其操作频带介于542MHz~580MHz之间,或是运用于射频或微波的任何一个频带,该频带介于100MHz~40GHz之间。Of course, the vertically polarized and horizontally polarized ridge
本实用新型是一种垂直极化与水平极化脊状波导管数组天线,可利用脊状波导管、第一及第二槽孔的配合,而获得较一致的辐射场形,使垂直极化与水平极化脊状波导管数组天线有更好的表现,且同时具有缩小天线体积的功效;利用本实用新型所衍生的产品,可充分满足目前市场的需求。The utility model is a vertically polarized and horizontally polarized ridge-shaped waveguide array antenna, which can use the cooperation of the ridge-shaped waveguide and the first and second slots to obtain a relatively consistent radiation field shape and make the vertically polarized The horizontally polarized ridge waveguide array antenna has better performance, and at the same time has the effect of reducing the volume of the antenna; the products derived from the utility model can fully meet the needs of the current market.
以上,仅为本实用新型的较佳实施例,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应该以权利要求所界定的保护范围为准。The above are only preferred embodiments of the present utility model, but the scope of protection of the present utility model is not limited thereto. Any skilled person familiar with the art within the technical scope disclosed by the utility model can easily think of changes or Replacement should be covered within the protection scope of the present utility model. Therefore, the protection scope of the present utility model should be determined by the protection scope defined in the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010200011982U CN201655967U (en) | 2010-01-15 | 2010-01-15 | Ridge waveguide tube array antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010200011982U CN201655967U (en) | 2010-01-15 | 2010-01-15 | Ridge waveguide tube array antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201655967U true CN201655967U (en) | 2010-11-24 |
Family
ID=43121209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010200011982U Expired - Fee Related CN201655967U (en) | 2010-01-15 | 2010-01-15 | Ridge waveguide tube array antenna |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201655967U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105633585A (en) * | 2014-10-06 | 2016-06-01 | 芳兴科技股份有限公司 | Ridged waveguide array for broadband applications |
US9935365B2 (en) | 2014-04-06 | 2018-04-03 | Pyras Technology Inc. | Slot array antenna with dielectric slab for electrical control of beam down-tilt |
CN110336109A (en) * | 2019-08-10 | 2019-10-15 | 江苏俊知技术有限公司 | Composite copper layer polyvinyl chloride leaky waveguide feeder and manufacturing method thereof |
-
2010
- 2010-01-15 CN CN2010200011982U patent/CN201655967U/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9935365B2 (en) | 2014-04-06 | 2018-04-03 | Pyras Technology Inc. | Slot array antenna with dielectric slab for electrical control of beam down-tilt |
CN105633585A (en) * | 2014-10-06 | 2016-06-01 | 芳兴科技股份有限公司 | Ridged waveguide array for broadband applications |
CN105633585B (en) * | 2014-10-06 | 2018-11-30 | 芳兴科技股份有限公司 | Ridged waveguide array for broadband applications |
CN110336109A (en) * | 2019-08-10 | 2019-10-15 | 江苏俊知技术有限公司 | Composite copper layer polyvinyl chloride leaky waveguide feeder and manufacturing method thereof |
CN110336109B (en) * | 2019-08-10 | 2024-06-04 | 江苏俊知技术有限公司 | Composite copper layer polyvinyl chloride leaky waveguide feeder and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9673532B2 (en) | Antenna | |
CN106571532B (en) | A substrate-integrated waveguide leaky-wave antenna with circularly polarized beam scanning range | |
US8604990B1 (en) | Ridged waveguide slot array | |
CN105958196B (en) | Air Coupling low section circularly polarized dielectric lens antenna | |
US11621495B2 (en) | Antenna device including planar lens | |
CN112838376B (en) | Broadband High-Gain Fabry-Perot Resonant Cavity Antenna Based on Regular Hexagonal Elements | |
CN106785393A (en) | A kind of double frequency based on plane single pole sub antenna lobe millimeter wave micro-strip antenna wide | |
US20220102855A1 (en) | Antenna assembly and electronic device | |
CN104993243A (en) | Ultra-wide-band horn antenna | |
CN101488604A (en) | Composite fractal antenna comprising two fractals | |
CN107134652A (en) | Circular polarisation slot antenna based on triangle substrate integral waveguide resonator | |
TWI580106B (en) | Ridge waveguide slot array for broadband application | |
CN108899648A (en) | A kind of wide band high-gain antenna applied to cerebration detection | |
CN107978858A (en) | A kind of directional diagram reconstructable aerial for working in 60GHz frequency ranges | |
WO2018227827A1 (en) | Method for designing vehicle-mounted antenna | |
CN105226395B (en) | Broad-band chip integrated waveguide electromagnetic horn without wide wall | |
CN201655967U (en) | Ridge waveguide tube array antenna | |
CN102904011B (en) | Balance microstrip line transition full-mode dual-ridged integrated waveguide feed dipole printed antenna | |
EP4040601A1 (en) | Antenna apparatus and electronic device | |
CN103022703A (en) | Broadband cavity-backed double-slot microstrip antenna | |
CN210443662U (en) | Novel K-band high-gain metamaterial microstrip antenna | |
CN107196069A (en) | Compact substrate integrated waveguide back cavity slot antenna | |
CN108134206B (en) | Step ripple terahertz horn antenna | |
CN106374196A (en) | High-gain and low-profile loop slot antenna based on artificial electromagnetic materials | |
CN103840258B (en) | The micro-strip array antenna of low radar cross section |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20160419 Address after: Taiwan Taoyuan City, Taoyuan District China Road No. 1353 6 floor Patentee after: VICTORY MICROWAVE CORPORATION Address before: Taiwan County, Taipei, China Patentee before: Victory Microwave Corporation |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101124 Termination date: 20180115 |