CN201158702Y - A dynamic magnetron arc source device for improving arc ion plating deposition process - Google Patents
A dynamic magnetron arc source device for improving arc ion plating deposition process Download PDFInfo
- Publication number
- CN201158702Y CN201158702Y CNU2008200101515U CN200820010151U CN201158702Y CN 201158702 Y CN201158702 Y CN 201158702Y CN U2008200101515 U CNU2008200101515 U CN U2008200101515U CN 200820010151 U CN200820010151 U CN 200820010151U CN 201158702 Y CN201158702 Y CN 201158702Y
- Authority
- CN
- China
- Prior art keywords
- magnetic
- magnetic field
- target
- arc
- field generating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Plasma Technology (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本实用新型涉及薄膜制备领域,具体地说是一种新型的改善电弧离子镀沉积工艺的动态磁控弧源装置。所述改善电弧离子镀沉积工艺的动态磁控弧源装置设有动态控制磁场发生装置、靶材、靶材底座,靶材安装于靶材底座上,动态控制磁场发生装置为主控磁场发生装置和辅助磁场发生装置构成,主控磁场发生装置放置于靶材后面,和靶材同轴放置,辅助磁场发生装置套在主控磁场发生装置周围。本实用新型通过两组磁场发生装置配合使用,在靶面上形成动态分布的拱形磁场,达到改善弧斑的放电形式和工作稳定性,控制弧斑的运动轨迹,提高靶材刻蚀均匀性和靶材利用率,减少靶材大颗粒的发射,用以制备高质量的薄膜的目的。
The utility model relates to the field of film preparation, in particular to a novel dynamic magnetron arc source device for improving the arc ion plating deposition process. The dynamic magnetron arc source device for improving the arc ion plating deposition process is provided with a dynamic control magnetic field generator, a target, and a target base, the target is installed on the target base, and the dynamic control magnetic field generator is the main control magnetic field generator It is composed of an auxiliary magnetic field generating device, the main control magnetic field generating device is placed behind the target, and placed coaxially with the target, and the auxiliary magnetic field generating device is sleeved around the main control magnetic field generating device. The utility model uses two sets of magnetic field generating devices to form a dynamically distributed arched magnetic field on the target surface, so as to improve the arc spot discharge form and work stability, control the arc spot movement trajectory, and improve the etching uniformity of the target. and target utilization, reducing the emission of large particles of the target for the purpose of preparing high-quality thin films.
Description
技术领域 technical field
本实用新型涉及薄膜制备领域,具体地说是一种改善电弧离子镀沉积工艺的动态磁控弧源装置。The utility model relates to the field of film preparation, in particular to a dynamic magnetron arc source device for improving the arc ion plating deposition process.
背景技术 Background technique
电弧离子镀是工业镀膜生产以及科学研究中最重要的技术之一,由于其结构和工艺简单,离化率高(70%-80%),入射粒子能量高,绕射性好,可实现低温沉积等一系列优点,使电弧离子镀技术得到快速发展并获得广泛应用,展示出很大的经济效益和工业应用前景。Arc ion plating is one of the most important technologies in industrial coating production and scientific research. Due to its simple structure and process, high ionization rate (70%-80%), high incident particle energy, and good diffraction, it can achieve low temperature A series of advantages such as deposition have enabled the rapid development and wide application of arc ion plating technology, showing great economic benefits and industrial application prospects.
电弧离子镀是基于气体放电等离子体物理气相沉积原理的镀膜技术。这种技术依靠在真空镀膜室中阴极靶材表面上产生的电弧斑点的局部高温,使作为靶材的阴极材料瞬时蒸发和离化,产生电离度高而且离子能量大的等离子体,在工件上加上负电位,即可在工件加热温度比较低的条件下,在工件表面镀上一层硬度高、组织致密而且结合性好的各种硬质薄膜。Arc ion plating is a coating technology based on the principle of gas discharge plasma physical vapor deposition. This technology relies on the local high temperature of the arc spot generated on the surface of the cathode target in the vacuum coating chamber, so that the cathode material as the target is evaporated and ionized instantaneously, and a plasma with high ionization degree and high ion energy is generated. Adding a negative potential can coat a layer of various hard films with high hardness, dense structure and good bonding on the surface of the workpiece under the condition of relatively low heating temperature of the workpiece.
电弧离子镀所用的弧源结构是冷阴极弧源,电弧的行为被阴极表面许多快速游动,高度明亮的阴极斑点所控制,阴极斑点的运动对电弧等离子体的物理特性以及随后的镀膜特性有很大的影响。真空弧光放电实际上是一系列电弧事件,由于其快速地连续发生,以至于给人运动电弧的印象,阴极斑点及弧根的运动决定了整个电弧的运动,相邻弧斑的次第燃起和熄灭构成了弧斑的运动。尽管对弧斑内部结构的过程还没有确切的了解,但是为了更好的提高沉积薄膜的质量和有效的利用靶材,提高放电稳定性,必须对弧斑的运动进行合理的控制。The arc source structure used in arc ion plating is a cold cathode arc source. The behavior of the arc is controlled by many fast-moving, highly bright cathode spots on the cathode surface. The movement of the cathode spots has an impact on the physical characteristics of the arc plasma and the subsequent coating properties. big impact. Vacuum arc discharge is actually a series of arc events. Due to its rapid and continuous occurrence, it gives the impression of a moving arc. The movement of the cathode spot and the arc root determines the movement of the entire arc. The sequence of adjacent arc spots is ignited and Extinction constitutes the motion of the arc spot. Although the process of the internal structure of the arc spot is not well understood, in order to better improve the quality of the deposited film, effectively use the target material, and improve the discharge stability, the movement of the arc spot must be reasonably controlled.
由于真空电弧的物理特性,外加电磁场是控制弧斑运动的有效方法,不同磁场分量对弧斑的运动影响规律不同,当施加平行于阴极靶面的磁场时(横向磁场,磁感应强度B,见图1(a)),电弧斑点做逆安培力的反向运动(Retrograde motion),也就是运动方向和电流力的方向相反(-I×B),见图1(b)。弧斑的运动速度和横向磁场的强度成抛物线关系,因此可以用来提高弧斑的运动速度。当磁场与阴极表面相交呈一定角度θ的时候(尖角磁场,磁感应强度B,见图1(c)),则电弧斑点17在反向运动上还叠加一个漂移运动(Robson drift),漂移运动的方向指向磁力线与阴极靶面所夹的锐角θB区域,这就是锐角法则(Acute angle principle),见图1(d);图1(d)中,ΦR代表弧斑运动的方向和磁力线与靶面相交线之间的夹角,θB≈ΦR。锐角法则可以用来限制弧斑的运动方向,控制弧斑在靶面上的出现的位置,此法则对弧斑运动的控制、靶材刻蚀得均匀性非常重要。上述规律是磁场对弧斑运动影响的基本规律,也是磁场设计必须考虑的规律。Due to the physical characteristics of the vacuum arc, applying an external electromagnetic field is an effective method to control the movement of the arc spot. Different magnetic field components have different influences on the movement of the arc spot. When a magnetic field parallel to the cathode target surface is applied (transverse magnetic field, magnetic induction intensity B, see Fig. 1(a)), the arc spot does a reverse motion against the ampere force (Retrograde motion), that is, the direction of motion is opposite to the direction of the current force (-I×B), see Figure 1(b). The moving speed of the arc spot has a parabolic relationship with the strength of the transverse magnetic field, so it can be used to increase the moving speed of the arc spot. When the magnetic field intersects the cathode surface at a certain angle θ (sharp magnetic field, magnetic induction intensity B, see Figure 1(c)), the
目前的电弧离子镀技术中靶材附近施加的磁场主要有在小尺寸圆柱靶下加轴向磁场,如CN89200444.4、US3,793,179、US3,625,878等,大的平面靶施加拱形磁场,如CN1157335A,以及俄罗斯弧源结构中的淹没整个靶材的纵向约束磁场。这些在靶面附近施加的具有一定位形的磁场虽然可以有效地控制弧斑在靶面的运动,但是根据上述不同磁场分量对弧斑的运动影响规律,弧斑在轴向磁场和拱形磁场下的运动会被限制在靶面上一定范围内,长时间的刻蚀会在靶面形成明显的刻蚀轨道,不利于靶材刻蚀均匀,造成了靶材浪费。而俄罗斯弧源中的磁场结构虽然可以使弧斑在整个靶面刻蚀,有效的利用靶材,但是整个弧源结构复杂,操作麻烦,靶材特殊的形状使得靶材加工困难,成本高,而且靶材尺寸小,综合利用率低。由于这些控制弧斑运动的磁场都是静态的,因此很难突破相互之间影响的限制。In the current arc ion plating technology, the magnetic field applied near the target mainly includes adding an axial magnetic field under a small-sized cylindrical target, such as CN89200444.4, US3,793,179, US3,625,878, etc., and applying an arched magnetic field to a large planar target, such as CN1157335A, and the longitudinal confinement magnetic field submerging the entire target in the Russian arc source structure. Although these magnetic fields with a certain shape applied near the target surface can effectively control the movement of the arc spot on the target surface, but according to the influence of the above-mentioned different magnetic field components on the movement of the arc spot, the arc spot in the axial magnetic field and the arc magnetic field The lower movement will be limited to a certain range on the target surface, and long-term etching will form obvious etching tracks on the target surface, which is not conducive to uniform etching of the target material, resulting in waste of target material. Although the magnetic field structure in the Russian arc source can make the arc spot etched on the entire target surface and effectively use the target material, the structure of the entire arc source is complicated, the operation is troublesome, and the special shape of the target material makes the target material difficult to process and high in cost. Moreover, the size of the target is small, and the comprehensive utilization rate is low. Since the magnetic fields controlling the movement of arc spots are all static, it is difficult to break through the limitation of mutual influence.
Ramalingam在专利WO8503954和US4,673,477中提出了一种动态的磁场设计思路,可以实现弧斑在结构简单的大面积靶材上的均匀刻蚀,这种方法是靠永磁体在靶背后的机械转动来改变磁场在靶面的分布,从而影响弧斑在靶面的刻蚀位置的。但是这种方法需要增加一套复杂的机械控制机构,而且涉及到密封、冷却等诸多问题,因此难以推广应用。但是这种动态的磁场设计思路值得思考和借鉴。Ramalingam proposed a dynamic magnetic field design idea in patents WO8503954 and US4,673,477, which can achieve uniform etching of arc spots on large-area targets with simple structures. This method relies on the mechanical rotation of permanent magnets behind the target To change the distribution of the magnetic field on the target surface, thereby affecting the etching position of the arc spot on the target surface. However, this method needs to add a complex mechanical control mechanism, and involves many problems such as sealing and cooling, so it is difficult to popularize and apply. But this dynamic magnetic field design idea is worth thinking about and learning from.
实用新型内容Utility model content
本实用新型的目的在于提供一种新型的改善电弧离子镀沉积工艺的动态磁控弧源装置,用以改善电弧离子镀阴极弧斑的放电形式和工作稳定性,控制弧斑的运动轨迹,提高靶材刻蚀均匀性和靶材利用率,减少靶材大颗粒的发射,用以制备高质量的薄膜。The purpose of this utility model is to provide a new type of dynamic magnetron arc source device for improving the deposition process of arc ion plating, which is used to improve the discharge form and work stability of the arc spot of the arc ion plating cathode, control the movement track of the arc spot, and improve the Target etching uniformity and target utilization, reduce the emission of large particles of the target, to prepare high-quality thin films.
为了实现上述目的,本实用新型的技术方案是:In order to achieve the above object, the technical solution of the utility model is:
一种改善电弧离子镀沉积工艺的动态磁控弧源装置,所述动态磁控弧源装置设有动态控制磁场发生装置、靶材、靶材底座,靶材安装于靶材底座上,动态控制磁场发生装置为主控磁场发生装置和辅助磁场发生装置构成,主控磁场发生装置放置于靶材后面,和靶材同轴放置,辅助磁场发生装置套在主控磁场发生装置周围。A dynamic magnetron arc source device for improving the arc ion plating deposition process, the dynamic magnetron arc source device is provided with a dynamic control magnetic field generator, a target, and a target base, the target is installed on the target base, and the dynamic control The magnetic field generating device is composed of a main control magnetic field generating device and an auxiliary magnetic field generating device. The main controlling magnetic field generating device is placed behind the target and placed coaxially with the target, and the auxiliary magnetic field generating device is set around the main controlling magnetic field generating device.
所述主控磁场发生装置为电磁线圈和磁轭构成,磁轭由外周的导磁筒和中心的导磁柱构成,导磁筒和导磁柱的下端由同样的导磁材料连接或者做成一体的,磁轭上端保持开口;电磁线圈套在磁轭中心的磁柱上,放置于导磁筒和导磁柱中间的空隙位置。The main control magnetic field generating device is composed of an electromagnetic coil and a magnetic yoke. The magnetic yoke is composed of a magnetically permeable cylinder on the periphery and a magnetically permeable column at the center. The lower ends of the magnetically permeable cylinder and the magnetically permeable column are connected or made of the same magnetically permeable material. In one piece, the upper end of the yoke remains open; the electromagnetic coil is sleeved on the magnetic post in the center of the yoke, and placed in the gap between the magnetic permeable cylinder and the magnetic permeable post.
所述主控磁场发生装置中的电磁线圈和磁轭的形状是圆的或者方的,磁轭中的导磁筒和导磁柱以及线圈的形状保持一致,三者同轴。The shapes of the electromagnetic coil and the yoke in the main control magnetic field generating device are round or square, and the shapes of the magnetically permeable cylinder, the magnetically permeable column and the coil in the yoke are consistent, and the three are coaxial.
所述主控磁场发生装置中的线圈的内径略大于导磁柱的直径,外径略小于导磁筒的内径,线圈的高度低于磁轭的高度。The inner diameter of the coil in the main control magnetic field generating device is slightly larger than the diameter of the magnetically permeable cylinder, the outer diameter is slightly smaller than the inner diameter of the magnetically permeable cylinder, and the height of the coil is lower than the height of the magnetic yoke.
所述主控磁场发生装置中的电磁线圈由漆包线绕制在线圈骨架上,线圈内外通过绝缘保护,磁轭由高磁导率的镀镍纯铁或者其他材料制作。The electromagnetic coil in the main control magnetic field generating device is wound on the coil frame by enameled wire, the inside and outside of the coil are protected by insulation, and the magnetic yoke is made of nickel-plated pure iron with high magnetic permeability or other materials.
所述主控磁场发生装置中的导磁筒和导磁柱顶端是平的或者有斜面;导磁筒和导磁柱顶端是斜面时,导磁柱顶端的斜面为轴对称上窄下宽的凸台状,导磁筒顶端的斜面与导磁柱顶端的斜面对称,磁轭的斜面呈W形。The tops of the magnetic tube and the magnetic column in the main control magnetic field generating device are flat or have slopes; when the tops of the magnetic tube and the magnetic column are sloped, the slopes at the top of the magnetic column are axisymmetrically narrow at the top and wide at the bottom. In the shape of a boss, the slope at the top of the magnetic cylinder is symmetrical to the slope at the top of the magnetic column, and the slope of the magnetic yoke is W-shaped.
所述辅助磁场发生装置套在主控磁场发生装置中的导磁筒的外周或者靶材底座的靶材底柱外周,和主控磁场发生装置或者靶材底柱同轴,辅助磁场发生装置与主控磁场发生装置或者靶材底柱之间通过绝缘保护,辅助磁场发生装置的位置可调。The auxiliary magnetic field generating device is set on the outer periphery of the magnetic cylinder in the main control magnetic field generating device or the outer periphery of the target base column of the target base, and is coaxial with the main control magnetic field generating device or the target bottom column, and the auxiliary magnetic field generating device and the target base column are coaxial. The main control magnetic field generating device or the bottom pillars of the target are protected by insulation, and the position of the auxiliary magnetic field generating device is adjustable.
所述辅助磁场发生装置形状和主控磁场发生装置一致,由漆包线绕制的电磁线圈组成。The shape of the auxiliary magnetic field generating device is consistent with that of the main control magnetic field generating device, and it is composed of an electromagnetic coil wound with enameled wire.
所述主控磁场发生装置与辅助磁场发生装置中的线圈单独调节或者共同调节,两者之间通反向电流;通过调节主控磁场发生装置与辅助磁场发生装置中线圈电流大小调节动态磁场的强度,线圈的电流形式是直流、交流或者脉冲的,可实现对弧斑的多种控制方式。The coils in the main control magnetic field generating device and the auxiliary magnetic field generating device are adjusted individually or jointly, and a reverse current is passed between the two; the dynamic magnetic field is adjusted by adjusting the coil current in the main control magnetic field generating device and the auxiliary magnetic field generating device. Intensity, the current form of the coil is DC, AC or pulse, which can realize a variety of control methods for arc spots.
所述靶材直接水冷或者间接水冷,直接水冷的主控磁场发生装置放在靶材底柱圆筒之间冷却水中或者冷却水通道外靶材底柱圆筒之间,间接水冷的主控磁场发生装置放在冷却水通道外底柱圆筒之间。The target is directly water-cooled or indirectly water-cooled. The direct water-cooled main control magnetic field generating device is placed in the cooling water between the target base cylinders or between the target base cylinders outside the cooling water channel. The indirect water-cooled main control magnetic field The generating device is placed between the cylinders of the outer bottom column of the cooling water channel.
本实用新型的技术原理是:The technical principle of the utility model is:
如图2所示,根据不同磁场分量对弧斑运动的影响规律,如果在靶面上形成一定曲率的拱形磁场15,在一定的磁场强度下可以将弧斑约束在拱形区域内,弧斑优先刻蚀的地方是靶面纵向磁场为零,横向磁场最大的位置,也就是拱形的顶点位置,在这种磁场位形下弧斑将约束在以这个位置为中心的附近的区域运动,形成比较窄的固定刻蚀轨道16。如果能够合理的调节拱形磁场在靶面的位置,改变其顶点(纵向磁场为零,横向磁场最大)的位置,使其动态的在整个靶面上移动,而不再是固定在特定的位置不变,那么弧斑将会随着磁场的动态变化而在整个靶面上不同的位置出现,而不是限制在特定的区域,从而实现靶材的均匀刻蚀,在靶材1上形成均匀的刻蚀轨道。As shown in Figure 2, according to the influence of different magnetic field components on the movement of the arc spot, if an arched
本实用新型动态控制磁场由两组磁场发生装置组成,主控磁场发生装置和辅助磁场发生装置。主控磁场发生装置放置于靶材后面,和靶材同轴放置,主要用以产生约束弧斑运动范围的拱形磁场。辅助磁场发生装置套在主控磁场发生装置周围,主要用于调节拱形磁场的位形,改变靶面上磁场横向分量最大值和纵向分量为零的位置,从而调节弧斑在靶面上的刻蚀区域。两组磁场发生装置配合使用,在靶面上形成动态分布的拱形磁场,达到改善弧斑的放电形式和工作稳定性,控制弧斑的运动轨迹,提高靶材刻蚀均匀性和靶材利用率,减少靶材大颗粒的发射,用以制备高质量的薄膜的目的。The dynamic control magnetic field of the utility model is composed of two sets of magnetic field generating devices, the main control magnetic field generating device and the auxiliary magnetic field generating device. The main control magnetic field generating device is placed behind the target and placed coaxially with the target, and is mainly used to generate an arched magnetic field that restricts the arc spot movement range. The auxiliary magnetic field generating device is set around the main control magnetic field generating device, which is mainly used to adjust the configuration of the arched magnetic field, change the position of the maximum value of the horizontal component of the magnetic field on the target surface and the position of the longitudinal component of zero, thereby adjusting the position of the arc spot on the target surface etched area. Two sets of magnetic field generators are used together to form a dynamically distributed arched magnetic field on the target surface to improve the arc spot discharge form and work stability, control the arc spot movement track, and improve target etching uniformity and target utilization Efficiency, reducing the emission of large particles of the target, for the purpose of preparing high-quality thin films.
本实用新型具有以下优点:The utility model has the following advantages:
1.本实用新型通过主控磁场发生装置与辅助磁场发生装置产生的动态可调耦合磁场,实现了对弧斑运动的动态控制,达到改善电弧离子镀阴极弧斑的放电形式和工作稳定性,控制弧斑的运动轨迹,提高靶材刻蚀均匀性和靶材利用率,减少靶材大颗粒的发射,用以制备高质量的薄膜的目的。1. The utility model realizes the dynamic control of the arc spot movement through the dynamic adjustable coupling magnetic field generated by the main control magnetic field generator and the auxiliary magnetic field generator, and improves the discharge form and working stability of the arc spot of the arc ion plating cathode. Control the trajectory of the arc spot, improve the uniformity of target etching and target utilization, reduce the emission of large target particles, and prepare high-quality thin films.
2.本实用新型中主控磁场通直流电,辅助磁场通不同形式和大小的反向电流,可以实现对弧斑的多种控制方式,适应不同的条件和需要。2. In the utility model, the main control magnetic field passes direct current, and the auxiliary magnetic field passes reverse currents of different forms and sizes, which can realize various control methods for arc spots and adapt to different conditions and needs.
3.本实用新型中两组磁场发生装置的耦合使用,不仅可以改变磁场的分布,控制弧斑的运动轨迹,同时可以调节磁场的大小,控制弧斑的运动速度。3. The coupled use of two sets of magnetic field generating devices in the utility model can not only change the distribution of the magnetic field and control the movement track of the arc spot, but also can adjust the size of the magnetic field and control the movement speed of the arc spot.
4.本实用新型中两组磁场发生装置调节方便,操作简单,只需改变两者之间的电流比就可以实现对弧斑的有效控制,满足工业生产以及科研中人性化操作的要求。4. The two sets of magnetic field generating devices in the utility model are easy to adjust and easy to operate. Only by changing the current ratio between the two can realize effective control of the arc spot, which meets the requirements of humanized operation in industrial production and scientific research.
5.本实用新型中主控磁场发生装置中的线圈和磁轭独立制作,装卸容易,可单独更换;辅助磁场发生装置线圈位置可调,也可以单独更换。5. The coil and yoke in the main control magnetic field generating device of the utility model are manufactured independently, easy to assemble and disassemble, and can be replaced separately; the coil position of the auxiliary magnetic field generating device is adjustable and can also be replaced separately.
6.本实用新型中磁场发生装置制作简单,调节范围大,成本低,易于推广。6. The magnetic field generating device in the utility model is simple to manufacture, has a large adjustment range, low cost, and is easy to popularize.
附图说明 Description of drawings
图1(a)-图1(d)是不同磁场分量对弧斑运动的影响示意图。其中,图1(a)为施加平行于阴极靶面的横向磁场;图1(b)为横向磁场对弧斑的运动的影响(反向运动);图1(c)为施加与阴极表面相交呈一定角度尖角磁场;图1(d)为尖角磁场对弧斑的运动的影响(尖角法则)。Figure 1(a)-Figure 1(d) are schematic diagrams of the influence of different magnetic field components on arc spot motion. Among them, Figure 1(a) is the application of a transverse magnetic field parallel to the cathode target surface; Figure 1(b) is the effect of the transverse magnetic field on the movement of the arc spot (reverse motion); Figure 1(c) is the application of a transverse magnetic field that intersects with the cathode surface A sharp-angle magnetic field at a certain angle; Figure 1(d) shows the influence of the sharp-angle magnetic field on the movement of the arc spot (the sharp-angle rule).
图2为拱形磁场下弧斑的运动规律示意图。Fig. 2 is a schematic diagram of the movement law of the arc spot under the arched magnetic field.
图3是实施例1改善电弧离子镀沉积工艺的动态磁控弧源装置示意图。3 is a schematic diagram of a dynamic magnetron arc source device for improving the arc ion plating deposition process in
图4是实施例1辅助磁场发生装置线圈与主控磁场发生装置线圈的不同“电流×匝数”比下磁力线的位形变化图。Fig. 4 is a diagram of configuration changes of the magnetic lines of force under different ratios of "current × number of turns" between the coil of the auxiliary magnetic field generator and the coil of the main control magnetic field generator in
图5是实施例2可调节静态磁控的电弧离子镀弧源装置示意图。Fig. 5 is a schematic diagram of an arc ion plating arc source device with adjustable static magnetron control in
图6是实施例2不同磁场条件下弧斑的运动轨迹示意图。Fig. 6 is a schematic diagram of the movement track of the arc spot under different magnetic field conditions in Example 2.
图7是实施例3改善电弧离子镀沉积工艺的动态磁控弧源装置示意图。Fig. 7 is a schematic diagram of a dynamic magnetron arc source device for improving the arc ion plating deposition process in
图8(a)-图8(b)是实施例3不同磁场条件下弧斑的运动轨迹示意图;其中,图8(a)是指辅助磁场发生装置的交流电从小到大变化弧斑的螺旋扩展运动轨迹;图8(b)是指辅助磁场发生装置的交流电从大到小变化弧斑的螺旋收缩运动轨迹。Figure 8(a)-Figure 8(b) is a schematic diagram of the movement track of the arc spot under different magnetic field conditions in Example 3; wherein, Figure 8(a) refers to the spiral expansion of the arc spot when the alternating current of the auxiliary magnetic field generating device changes from small to large Motion trajectory; Fig. 8(b) refers to the helical contraction trajectory of the alternating current of the auxiliary magnetic field generating device changing the arc spot from large to small.
图9(a)-图9(d)是实施例1不同靶材厚度下、不同“电流×匝数”比下纵向磁场分量的大小分布图,零点位置为刻蚀轨道位置;其中,图9(a)是指靶材的厚度为1cm;图9(b)是指靶材的厚度为2cm;图9(c)是指靶材的厚度为3cm;图9(d)是指靶材的厚度为4cm。Figure 9(a)-Figure 9(d) is the size distribution diagram of the longitudinal magnetic field component under different target thicknesses and different "current × turns" ratios in Example 1, and the zero point position is the position of the etching track; among them, Figure 9 (a) means that the thickness of the target is 1cm; Figure 9(b) means that the thickness of the target is 2cm; Figure 9(c) means that the thickness of the target is 3cm; Figure 9(d) means the thickness of the target The thickness is 4cm.
图10(a)-图10(b)是实施例1同一“电流×匝数”比下、不同厚度靶材表面的横向磁场分量大小分布图;其中,图10(a)是“电流×匝数”比为-0.5;图10(b)是指“电流×匝数”比为-1.5。Fig. 10(a)-Fig. 10(b) are the size distribution diagrams of transverse magnetic field components on the surface of targets with different thicknesses under the same ratio of "current × turns" in Example 1; among them, Fig. 10(a) is "current × turns" The "number" ratio is -0.5; Figure 10(b) means that the "current × turns" ratio is -1.5.
图11是实施例1-实施例3同一“电流×匝数”比下、不同磁轭结构的磁场位形分布图。Fig. 11 is a distribution diagram of magnetic field configurations of different magnetic yoke structures under the same ratio of "current × number of turns" in
图12是实施例1-实施例3同一“电流×匝数”比不同磁轭结构下相同厚度靶材表面的纵向磁场大小分布图。Fig. 12 is the size distribution diagram of the longitudinal magnetic field on the surface of the target with the same thickness under the same "current × number of turns" ratio and different yoke structures in Example 1-Example 3.
图中,1靶材;2靶材底座;3靶材底柱;4绝缘环;5磁轭;6主控磁场发生装置线圈;7进水口;8出水口;9引弧线圈;10引弧针;11辅助磁场发生装置线圈;12屏蔽罩;13螺栓;14动态磁力线;15拱形磁场;16固定刻蚀轨道;17电弧斑点;18静态磁力线;19导磁柱;20导磁筒;21绝缘薄板;22位置变化的圆形刻蚀轨道;23动态螺旋刻蚀轨道。In the figure, 1 target; 2 target base; 3 target bottom column; 4 insulating ring; 5 magnetic yoke; 6 main control magnetic field generating device coil; 7 water inlet; 8 water outlet; Arc needle; 11 Coil of auxiliary magnetic field generating device; 12 Shielding cover; 13 Bolt; 14 Dynamic magnetic force line; 15 Arched magnetic field; 16 Fixed etching track; 17 Arc spot; 18 Static magnetic force line; 21 insulating thin plate; 22 circular etching track with changing position; 23 dynamic spiral etching track.
具体实施方式 Detailed ways
本实用新型的改善电弧离子镀沉积工艺的动态磁控弧源装置主要包括动态控制磁场发生装置、靶材、靶材底座,靶材安装于靶材底座上,动态控制磁场发生装置的主要结构如下:The dynamic magnetron arc source device for improving the arc ion plating deposition process of the utility model mainly includes a dynamic control magnetic field generator, a target material, and a target base. The target material is installed on the target base. The main structure of the dynamic control magnetic field generator is as follows :
1.本实用新型放置于靶材后面的主控磁场发生装置由两部分组成,电磁线圈和磁轭。磁轭由外周的导磁筒和中心的导磁柱组成,导磁筒和导磁柱的下端由同样的导磁材料连接或者做成一体的,上端保持开口。电磁线圈套在磁轭中心的磁柱上,放置于导磁筒和导磁柱中间的空隙位置。通过调节线圈电流的大小来调节磁感应强度的大小,通过调节电流的方向来改变磁极的方向。1. The main control magnetic field generating device placed behind the target in this utility model consists of two parts, an electromagnetic coil and a magnetic yoke. The magnetic yoke is composed of a magnetically permeable cylinder on the periphery and a magnetically permeable column at the center. The lower ends of the magnetically permeable cylinder and the magnetically permeable column are connected by the same magnetically permeable material or integrated, and the upper end remains open. The electromagnetic coil is sleeved on the magnetic post in the center of the yoke, and placed in the gap between the magnetic permeable cylinder and the magnetic permeable post. The magnitude of the magnetic induction is adjusted by adjusting the magnitude of the coil current, and the direction of the magnetic pole is changed by adjusting the direction of the current.
2.本实用新型主控磁场发生装置中的电磁线圈和磁轭的形状是圆的或者方的,磁轭中的导磁筒和导磁柱以及线圈的形状保持一致,三者同轴。2. The shapes of the electromagnetic coil and the magnetic yoke in the main control magnetic field generating device of the present invention are round or square, and the shapes of the magnetic-conducting cylinder, the magnetic-conducting column and the coil in the magnetic yoke are consistent, and the three are coaxial.
3.本实用新型主控磁场发生装置中的电磁线圈和磁轭的大小不受限制,根据具体靶材制作。线圈的内径略大于导磁柱的直径,外径略小于导磁筒的内径,线圈的高度低于磁轭的高度。磁轭中的导磁筒的厚度大约是导磁柱直径的一半。3. The size of the electromagnetic coil and the magnetic yoke in the main control magnetic field generating device of the utility model is not limited, and it is made according to the specific target material. The inner diameter of the coil is slightly larger than the diameter of the magnetic conducting cylinder, the outer diameter is slightly smaller than the inner diameter of the magnetic conducting cylinder, and the height of the coil is lower than that of the magnetic yoke. The thickness of the magnetic cylinder in the yoke is about half of the diameter of the magnetic cylinder.
4.本实用新型主控磁场发生装置中的电磁线圈由漆包线绕制在线圈骨架上,漆包线的型号没有限制,线圈内外通过绝缘保护。磁轭由高磁导率的镀镍纯铁或者其他材料制作。4. The electromagnetic coil in the main control magnetic field generating device of the utility model is wound on the coil frame by enameled wire. The type of enameled wire is not limited, and the inside and outside of the coil are protected by insulation. The yoke is made of nickel-plated pure iron with high magnetic permeability or other materials.
5.本实用新型主控磁场发生装置中的导磁筒和导磁柱顶端是平的或者有一定角度的斜面,导磁柱顶端的斜面为轴对称的凸台状(上窄下宽),导磁筒顶端的斜面与导磁柱顶端的斜面对称,磁轭的斜面呈W形,斜面的角度不受限制。5. The tops of the magnetic tube and the magnetic column in the main control magnetic field generating device of the utility model are flat or inclined at a certain angle. The slope at the top of the magnetic cylinder is symmetrical to the slope at the top of the magnetic column, the slope of the magnetic yoke is W-shaped, and the angle of the slope is not limited.
6.本实用新型辅助磁场发生装置套在主控磁场发生装置中的导磁筒的外周或者靶材底柱的外周,和主控磁场发生装置或者靶材底柱同轴,与主控磁场发生装置或者靶材底柱之间通过绝缘保护。6. The auxiliary magnetic field generating device of the utility model is set on the outer periphery of the magnetic tube or the outer periphery of the target bottom column in the main control magnetic field generating device, and is coaxial with the main control magnetic field generating device or the target bottom column, and generates The device or the base of the target is protected by insulation.
7.本实用新型辅助磁场发生装置形状和主控磁场发生装置一致,大小不受限制,由漆包线绕制的电磁线圈组成。辅助磁场发生装置的位置可以调节,通过调节电流的大小来改变主控磁场的分布。7. The shape of the auxiliary magnetic field generating device of the utility model is consistent with that of the main control magnetic field generating device, and the size is not limited, and it is composed of an electromagnetic coil wound by enameled wire. The position of the auxiliary magnetic field generating device can be adjusted, and the distribution of the main control magnetic field can be changed by adjusting the magnitude of the current.
8.本实用新型主控磁场发生装置与辅助磁场发生装置中的线圈可以单独调节或者共同调节,两者之间通反向电流。为了达到不同的效果,电磁线圈的电流形式可以是直流,交流或者脉冲的,电流大小可以通过调压电源调节。8. The coils in the main control magnetic field generating device and the auxiliary magnetic field generating device of the utility model can be adjusted individually or jointly, and a reverse current is passed between the two. In order to achieve different effects, the current form of the electromagnetic coil can be DC, AC or pulse, and the current size can be adjusted by a voltage-regulated power supply.
(1)主控磁场通一定大小的直流电形成固定位形的拱形磁场,辅助磁场发生装置可以通反向的直流电,通过调节电流的大小,改变两者之间不同的“电流×匝数”比,从而改变拱形磁场的分布,达到弧斑在不同位置的刻蚀。(1) The main control magnetic field passes a certain size of direct current to form an arched magnetic field with a fixed configuration, and the auxiliary magnetic field generator can pass reverse direct current. By adjusting the magnitude of the current, the different "current × number of turns" between the two can be changed. Ratio, thereby changing the distribution of the arched magnetic field, to achieve the etching of the arc spot at different positions.
(2)主控磁场通一定大小的直流电形成固定位形的拱形磁场,辅助磁场发生装置可以通反向的方向不变大小变化的交流电(频率可以调节),从而使两者之间的“电流×匝数”比连续变化,动态连续的改变弧斑的运动。(2) The main control magnetic field passes a certain size of direct current to form an arched magnetic field in a fixed position, and the auxiliary magnetic field generating device can pass an alternating current (frequency can be adjusted) with the same size and change in the opposite direction, so that the " The ratio of "current × turns" changes continuously, and the movement of the arc spot is dynamically and continuously changed.
9.本实用新型靶材直接水冷或者间接水冷,直接水冷的靶材后的主控磁场发生装置放在靶材底柱圆筒之间冷却水中或者冷却水通道外靶材底柱圆筒之间,间接水冷的靶材后的主控磁场发生装置放在冷却水通道外底柱圆筒之间,放在冷却水中的主控磁场的磁轭采用不易生锈的高磁导率材料制作,或者进行镀镍防护。放在冷却水通道外的主控磁场发生装置与靶材底座之间绝缘固定。9. The target material of this utility model is directly water-cooled or indirectly water-cooled, and the main control magnetic field generating device behind the directly water-cooled target material is placed in the cooling water between the target bottom column cylinders or between the target material bottom column cylinders outside the cooling water channel The main control magnetic field generating device behind the indirect water-cooled target is placed between the outer bottom cylinder of the cooling water channel, and the yoke of the main control magnetic field placed in the cooling water is made of a material with high magnetic permeability that is not easy to rust, or Protected by nickel plating. The main control magnetic field generating device placed outside the cooling water channel and the base of the target are insulated and fixed.
10.本实用新型直接水冷的靶材与靶材底座之间采用螺纹连接,间接水冷的靶材与靶材底座之间可以采用螺纹连接或者其他方式固定,比如铆钉或者螺栓固定。10. In the utility model, the direct water-cooled target and the target base are connected by thread, and the indirect water-cooled target and the target base can be fixed by thread or other methods, such as rivets or bolts.
11.本实用新型靶材底座与靶材底柱以及冷却水通道采用不导磁的不锈钢制作,与磁场发生装置之间通过绝缘保护。11. The base of the target material, the bottom column of the target material and the cooling water channel of the utility model are made of non-magnetic stainless steel, and are protected by insulation from the magnetic field generating device.
下面通过实施例和附图对本实用新型作进一步详细说明。Below by embodiment and accompanying drawing, the utility model is described in further detail.
实施例1:Example 1:
附图3是本实用新型的实施例1改善电弧离子镀沉积工艺的动态磁控弧源装置示意图。Accompanying drawing 3 is the schematic diagram of the dynamic magnetron arc source device for improving the arc ion plating deposition process in
改善电弧离子镀沉积工艺的动态磁控弧源装置主要包括:靶材1;靶材底座2;靶材底柱3;绝缘环4;磁轭5;主控磁场发生装置线圈6;进水口7;出水口8;引弧线圈9;引弧针10;辅助磁场发生装置线圈11;屏蔽罩12;螺栓13;动态磁力线14。绝缘环4用于靶材底柱3和辅助磁场发生装置线圈11之间的绝缘,主控磁场发生装置线圈6套在磁轭5中的导磁柱19上并一起放置于靶材1后,辅助磁场发生装置线圈11套在靶材底座2圆筒外。循环水通过进水口7、出水口8进行循环,对靶材1进行冷却。螺栓13用于固定磁轭5在靶材底座上。引弧针10连至靶材底座2外的引弧线圈9,引弧线圈9带动引弧针10与靶材1接触进行引弧。屏蔽罩12安装于靶材1外侧,其作用是约束弧斑,防止弧斑向靶材侧面跑弧;主控磁场发生装置线圈6通直流电,产生约束弧斑运动范围的拱形磁场;辅助磁场发生装置线圈11通大小变化的直流电或者交流电,其产生变化的磁场主要用于调节拱形磁场的位形,两种磁场耦合产生动态磁力线14。动态磁场约束控制弧斑的运动,产生高密度的颗粒较少的等离子体,在基体负偏压的作用下沉积成膜。The dynamic magnetron arc source device for improving the arc ion plating deposition process mainly includes:
靶材1为直径200mm的圆柱状金属靶,靶材底座2为不导磁的不锈钢。靶材1与靶材底座2之间采用螺纹连接,直接水冷。主控磁场发生装置线圈6放置于冷却水通道外靶材底柱3圆筒之间,与靶材底柱3之间通过绝缘环4(绝缘薄管)保护。主控磁场发生装置中的磁轭5和主控磁场发生装置线圈6都为圆柱状,磁轭5中心导磁柱19直径30mm,导磁筒20外径130mm,内径100mm。导磁筒20和导磁柱19的下端做成一体的,上端平齐,保持开口,磁轭5由镀镍纯铁制作。主控磁场发生装置线圈6套在磁轭5中心的导磁柱19上,放置于导磁筒20和导磁柱19中间的空隙位置。主控磁场发生装置线圈6的内径为35mm,外径95mm,高度35mm,主控磁场发生装置通过底端的套在冷却水管上的绝缘薄板21保护,通过螺栓13固定在靶材底座2上。The
辅助磁场发生装置套在靶材底座2圆筒外,与靶材底柱3之间通过绝缘环4(绝缘薄管)保护,辅助磁场发生装置线圈11外径220mm,内径170mm,高度40mm。辅助磁场发生装置的位置可以调节。所用辅助磁场发生装置线圈11采用线径为1.25mm的QZY-2漆包线缠绕在线圈骨架上制作而成。The auxiliary magnetic field generating device is set outside the cylinder of the
本实例中,主控磁场发生装置与辅助磁场发生装置中的线圈通过调压电源单独调节,主控磁场发生装置线圈通2A的直流电在靶面上形成固定位形的拱形磁场,辅助磁场发生装置线圈通反向的直流电或者交流电,改变电流的大小可以改变两者之间不同的“电流×匝数”比,从而改变拱形磁场的分布,达到弧斑在不同位置的刻蚀。附图4是实施例1辅助磁场发生装置线圈与主控磁场发生装置线圈的不同“电流×匝数”比下磁力线的位形变化图。可以看出,随着辅助磁场反向电流的增加(0.5A,1A,1.5A,2A),拱形磁场位形发生变化,其顶点(纵向磁场为零,横向磁场最大)在靶面的位置不断从靶材边缘向靶材中心移动,而不再是固定在特定的位置不变,那么弧斑将会随着磁场的动态变化而在整个靶面上不同的位置出现,而不是限制在特定的区域,从而实现靶材的均匀刻蚀。图4中的动态磁力线示意图表示了弧斑刻蚀区域的变化,通过调节磁场强度的大小可以改变弧斑的运动速度,提高弧斑的运动速度可以减少颗粒的发射,提高沉积薄膜的表面质量。In this example, the coils in the main control magnetic field generator and the auxiliary magnetic field generator are individually adjusted by the voltage regulating power supply, and the coil of the main control magnetic field generator passes a 2A direct current to form an arched magnetic field with a fixed configuration on the target surface, and the auxiliary magnetic field generates The coil of the device passes reverse direct current or alternating current. Changing the magnitude of the current can change the ratio of "current × turns" between the two, thereby changing the distribution of the arched magnetic field and achieving the etching of the arc spot at different positions. Accompanying drawing 4 is
实施例2:Example 2:
附图5是本实用新型的实施例2可调节静态磁控的电弧离子镀弧源装置示意图。基本结构与实施例1相同,所不同的是磁轭5的导磁筒20顶端内侧采用向外15°的斜面结构,导磁柱19顶端的斜面为轴对称的凸台状(上窄下宽),导磁筒顶端的斜面与导磁柱顶端的斜面对称,磁轭的斜面呈W形。主控磁场发生装置线圈6通直流电,产生一定的拱形磁场;辅助磁场发生装置线圈11通不同大小的直流电,产生一定的反向磁场,两种磁场耦合产生位置变化的静态磁力线18。Accompanying drawing 5 is the schematic diagram of the arc ion plating arc source device of the adjustable static magnetron of
主控磁场发生装置与辅助磁场发生装置中的线圈通过调压电源单独调节,主控磁场发生装置线圈通2A的直流电在靶面上形成固定位形的拱形磁场,辅助磁场发生装置线圈通反向的直流电,调节拱形磁场的分布。工作一段时间后,改变辅助磁场发生装置线圈电流的大小,从而改变与主控磁场发生装置线圈之间的“电流×匝数”比,改变拱形磁场的分布,达到弧斑在不同位置的刻蚀,避免长时间在固定位置刻蚀在靶面上形成明显的刻蚀轨道。附图6是辅助磁场发生装置线圈通不同大小的直流电下弧斑的刻蚀位置的变化示意图。不同电流值下弧斑的刻蚀轨道为圆形,随着电流的变化引起的磁场位形的变化,轨道的位置会发生变化(即图6中位置变化的圆形刻蚀轨道22)。The coils in the main control magnetic field generator and the auxiliary magnetic field generator are individually regulated by the voltage regulating power supply, the coil of the main control magnetic field generator passes a 2A direct current to form an arched magnetic field with a fixed configuration on the target surface, and the coil of the auxiliary magnetic field generator is turned on and off direct current to adjust the distribution of the arched magnetic field. After working for a period of time, change the magnitude of the coil current of the auxiliary magnetic field generating device, thereby changing the "current × turns" ratio with the coil of the main magnetic field generating device, changing the distribution of the arched magnetic field, and achieving the engraving of the arc spot at different positions. Etching to avoid forming obvious etching tracks on the target surface by etching at a fixed position for a long time. Accompanying drawing 6 is the change schematic diagram of the etching position of the arc spot when the coil of the auxiliary magnetic field generating device passes through the direct current of different sizes. The etching track of the arc spot is circular under different current values, and the position of the track will change with the change of the magnetic field configuration caused by the change of the current (ie, the
实施例3:Example 3:
附图7是本实用新型的实施例3改善电弧离子镀沉积工艺的动态磁控弧源装置示意图。基本结构与实施例2相同,所不同的是磁轭5的导磁筒20顶端内侧采用向外30°的斜面结构。Accompanying drawing 7 is the schematic diagram of the dynamic magnetron arc source device for improving the arc ion plating deposition process in
主控磁场发生装置与辅助磁场发生装置中的线圈通过调压电源单独调节,主控磁场发生装置线圈通2A的直流电在靶面上形成固定位形的拱形磁场,辅助磁场发生装置线圈通反向的交流电调节拱形磁场的分布,交流电的大小连续变化(0-2A),方向不变,从而连续的改变与主控磁场发生装置线圈之间的“电流×匝数”比,改变拱形磁场的分布,使其顶点(纵向磁场为零,横向磁场最大)在靶面的上位置不断的在靶材边缘与靶材中心连续移动,而不再是固定在特定的位置不变,从而使弧斑随着磁场的动态变化而在整个靶面上不同的位置出现,而不是限制在特定的区域,从而实现靶材的均匀刻蚀以及放电形式的变化。图8(a)-图8(b)是辅助磁场发生装置线圈通大小变化,方向不变的交流电下弧斑的刻蚀位置的变化示意图。弧斑将会随着磁场位形的连续改变呈螺旋状的刻蚀轨迹(即图8(a)-图8(b)中的动态螺旋刻蚀轨道23),不断的螺旋扩展(图8(a))和收缩(图8(b)),均匀的刻蚀靶材。The coils in the main control magnetic field generator and the auxiliary magnetic field generator are individually regulated by the voltage regulating power supply, the coil of the main control magnetic field generator passes a 2A direct current to form an arched magnetic field with a fixed configuration on the target surface, and the coil of the auxiliary magnetic field generator is turned on and off Directional alternating current adjusts the distribution of the arched magnetic field, the magnitude of the alternating current changes continuously (0-2A), and the direction remains unchanged, thereby continuously changing the ratio of "current × turns" between the coil of the main control magnetic field generating device and changing the arched shape The distribution of the magnetic field makes its apex (the longitudinal magnetic field is zero and the transverse magnetic field is the largest) continuously move on the target surface between the edge of the target and the center of the target, instead of being fixed at a specific position, so that With the dynamic change of the magnetic field, the arc spot appears at different positions on the entire target surface, rather than being limited to a specific area, so as to achieve uniform etching of the target and change of the discharge form. Fig. 8(a) - Fig. 8(b) are schematic diagrams of the change of the etching position of the arc spot under the alternating current with the coil flux of the auxiliary magnetic field generator changing in magnitude and direction unchanged. The arc spot will form a spiral etching track (ie, the dynamic spiral etching track 23 in Fig. 8(a)-Fig. a)) and shrinkage (Fig. 8(b)), uniform etching of the target.
实施例4:靶材厚度的要求Example 4: Requirements for target thickness
为了更好的利用本实用新型的产生的磁场动态控制弧斑的运动,达到有效的利用靶材的效果。实施例4结合有限元模拟结果对本实用新型的磁场分布作详细的分析说明。本模拟针对实施例1中的装置结构进行,本分析对辅助磁场发生装置线圈通反向的直流电和交流电的结果一样。In order to make better use of the magnetic field generated by the utility model to dynamically control the movement of the arc spot and achieve the effect of effectively using the target.
图9(a)-图9(d)是实施例1中不同靶材厚度下、不同“电流×匝数”比下纵向磁场分量的大小分布图,零点位置为刻蚀轨道位置。靶材的厚度分别为1cm,2cm,3cm,4cm。同一靶材厚度下,纵向磁场的零点位置会随着“电流×匝数”比的变化而改变,而纵向磁场的零点位置是弧斑优先刻蚀的位置,也就是刻蚀轨道的位置。随着靶材的厚度的增加,纵向磁场的零点位置随“电流×匝数”比的变化愈大,说明靶材越厚,弧斑的刻蚀面积越大,越有利于靶材的利用。但是,控制弧斑运动还有一个重要的参数就是横向磁场分量的大小,横向磁场可以改变弧斑的运动速度。图9(a)-图9(d)中,n0I0/niIi为辅助磁场发生装置线圈的“电流×匝数”与主控磁场发生装置线圈的“电流×匝数”之比。Figure 9(a)-Figure 9(d) are the size distribution diagrams of the longitudinal magnetic field component under different target thicknesses and different "current × turns" ratios in Example 1, and the zero point position is the position of the etched track. The thickness of the target is 1cm, 2cm, 3cm, 4cm respectively. Under the same target thickness, the zero point position of the longitudinal magnetic field will change with the change of the "current × turns" ratio, and the zero point position of the longitudinal magnetic field is the position where the arc spot is preferentially etched, that is, the position of the etched track. As the thickness of the target increases, the zero point position of the longitudinal magnetic field changes more with the ratio of "current × turns", indicating that the thicker the target, the larger the etching area of the arc spot, which is more conducive to the utilization of the target. However, another important parameter to control the movement of the arc spot is the magnitude of the transverse magnetic field component, and the transverse magnetic field can change the movement speed of the arc spot. In Fig. 9(a)-Fig. 9(d), n 0 I 0 /n i I i is the difference between the "current × number of turns" of the coil of the auxiliary magnetic field generating device and the "current × number of turns" of the coil of the main control magnetic field generating device Compare.
图10(a)-图10(b)是实施例1同一“电流×匝数”比下、不同厚度靶材表面的横向磁场分量大小分布图。可以看出,横向磁场分量的大小随着靶材厚度的增加下降很快,而这对靶材的有效刻蚀以及提高弧斑速度减少颗粒的发射都是不利的,因此靶材的厚度不宜太大。Fig. 10(a) - Fig. 10(b) are distribution diagrams of transverse magnetic field components on the surface of targets with different thicknesses under the same ratio of "current × number of turns" in Example 1. It can be seen that the magnitude of the transverse magnetic field component decreases rapidly as the thickness of the target increases, which is not conducive to the effective etching of the target and the increase of the arc spot speed to reduce the emission of particles, so the thickness of the target should not be too large. big.
综上所述,靶材的厚度必须控制在一定的范围内,才能达到既大面积刻蚀提高靶材利用率,又提高弧斑的运动速度减少颗粒发射提高薄膜表面质量的综合效果。实施例1中靶材厚度为2.5cm最宜。To sum up, the thickness of the target must be controlled within a certain range in order to achieve the comprehensive effect of not only etching a large area to improve the utilization of the target, but also increasing the moving speed of the arc spot, reducing particle emission and improving the surface quality of the film. In Example 1, the optimum target thickness is 2.5 cm.
实施例5:不同磁轭结构的影响Example 5: Effect of different yoke structures
实施例1-实施例3分别采用了三种不同的磁轭结构,磁轭在磁场发生装置中对磁场的位形影响很大,因此必须采取合理的磁轭结构。下面结合有限元模拟结果对不同磁轭结构的影响进行说明。Embodiment 1-
附图11是实施例1-实施例3同一“电流×匝数”比下、不同磁轭结构的磁场位形分布图,“电流×匝数”比为-1。可以看出,随着磁轭顶端结构的变化,磁场的位形有一定的变化。具有一定斜面结构的磁轭,可以减小拱形磁场的曲率。图12是实施例1-实施例3同一“电流×匝数”比不同磁轭结构下相同厚度靶材表面的纵向磁场大小分布图。可以看出纵向磁场的“V”形分布角度随着磁轭顶端结构的变化有所改变,具有一定斜面结构的磁轭产生的纵向磁场“V”形分布角度大一些。拱形磁场曲率的减小,“V”形分布角的度扩大,对于直流调节的磁场,可以拓宽刻蚀轨道的面积,增大刻蚀效率。对于交流调节的磁场,影响不大。Accompanying drawing 11 is the magnetic field configuration distribution diagram of different magnetic yoke structures under the same "current x turns" ratio of embodiment 1-
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2008200101515U CN201158702Y (en) | 2008-01-11 | 2008-01-11 | A dynamic magnetron arc source device for improving arc ion plating deposition process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2008200101515U CN201158702Y (en) | 2008-01-11 | 2008-01-11 | A dynamic magnetron arc source device for improving arc ion plating deposition process |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201158702Y true CN201158702Y (en) | 2008-12-03 |
Family
ID=40109294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU2008200101515U Expired - Fee Related CN201158702Y (en) | 2008-01-11 | 2008-01-11 | A dynamic magnetron arc source device for improving arc ion plating deposition process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201158702Y (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102226268A (en) * | 2011-06-14 | 2011-10-26 | 星弧涂层科技(苏州工业园区)有限公司 | Initialization method for plane arc metallic target material |
CN102296274A (en) * | 2011-08-18 | 2011-12-28 | 北京镨玛泰克真空科技有限公司 | Shielding device for cathode arc metal ion source |
CN102953034A (en) * | 2012-11-02 | 2013-03-06 | 温州职业技术学院 | Special multifunctional ion plating gun having compact structure |
CN103601372A (en) * | 2013-11-12 | 2014-02-26 | 无锡康力电子有限公司 | Silicon target water cooling system for coated glass |
CN104342621A (en) * | 2013-07-25 | 2015-02-11 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Magnetic field adjusting apparatus and plasma processing equipment |
CN104404455A (en) * | 2014-12-05 | 2015-03-11 | 大连维钛克科技股份有限公司 | Novel magnetic field structure for vacuum ion plating equipment |
CN108149209A (en) * | 2017-12-26 | 2018-06-12 | 中国科学院电工研究所 | A kind of composite magnetic control sputtering cathode |
CN109182985A (en) * | 2018-10-16 | 2019-01-11 | 深圳精匠云创科技有限公司 | Arc source device and arc source magnetic field regulating method |
CN109385607A (en) * | 2018-10-16 | 2019-02-26 | 深圳精匠云创科技有限公司 | The adjusting method in the arc source magnetic field of arc source device and the arc source device |
CN111690899A (en) * | 2019-03-15 | 2020-09-22 | 纳峰真空镀膜(上海)有限公司 | Improved cathode arc source apparatus |
CN114481046A (en) * | 2022-01-26 | 2022-05-13 | 纳狮新材料有限公司 | Electric arc evaporation device |
-
2008
- 2008-01-11 CN CNU2008200101515U patent/CN201158702Y/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102226268A (en) * | 2011-06-14 | 2011-10-26 | 星弧涂层科技(苏州工业园区)有限公司 | Initialization method for plane arc metallic target material |
CN102296274A (en) * | 2011-08-18 | 2011-12-28 | 北京镨玛泰克真空科技有限公司 | Shielding device for cathode arc metal ion source |
CN102953034A (en) * | 2012-11-02 | 2013-03-06 | 温州职业技术学院 | Special multifunctional ion plating gun having compact structure |
CN104342621A (en) * | 2013-07-25 | 2015-02-11 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Magnetic field adjusting apparatus and plasma processing equipment |
CN104342621B (en) * | 2013-07-25 | 2017-03-22 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Magnetic field adjusting apparatus and plasma processing equipment |
CN103601372A (en) * | 2013-11-12 | 2014-02-26 | 无锡康力电子有限公司 | Silicon target water cooling system for coated glass |
CN104404455A (en) * | 2014-12-05 | 2015-03-11 | 大连维钛克科技股份有限公司 | Novel magnetic field structure for vacuum ion plating equipment |
CN108149209B (en) * | 2017-12-26 | 2019-12-20 | 中国科学院电工研究所 | Combined type magnetron sputtering cathode |
CN108149209A (en) * | 2017-12-26 | 2018-06-12 | 中国科学院电工研究所 | A kind of composite magnetic control sputtering cathode |
CN109182985A (en) * | 2018-10-16 | 2019-01-11 | 深圳精匠云创科技有限公司 | Arc source device and arc source magnetic field regulating method |
CN109385607A (en) * | 2018-10-16 | 2019-02-26 | 深圳精匠云创科技有限公司 | The adjusting method in the arc source magnetic field of arc source device and the arc source device |
CN109182985B (en) * | 2018-10-16 | 2021-05-07 | 深圳精匠云创科技有限公司 | Arc source device and arc source magnetic field adjusting method |
CN111690899A (en) * | 2019-03-15 | 2020-09-22 | 纳峰真空镀膜(上海)有限公司 | Improved cathode arc source apparatus |
CN111690899B (en) * | 2019-03-15 | 2023-11-17 | 纳峰真空镀膜(上海)有限公司 | Improved cathode arc source apparatus |
US11926890B2 (en) | 2019-03-15 | 2024-03-12 | Nanofilm Technologies International Limited | Cathode arc source |
CN114481046A (en) * | 2022-01-26 | 2022-05-13 | 纳狮新材料有限公司 | Electric arc evaporation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201158702Y (en) | A dynamic magnetron arc source device for improving arc ion plating deposition process | |
CN101358328A (en) | A Dynamically Controlled Arc Ion Plating Arc Source | |
CN101363114B (en) | A magnetic field enhanced arc ion plating deposition process | |
CN101363115B (en) | Rotating magnetron arc ion plating arc source | |
CN101363116B (en) | Arc ion plating device controlled by rotating transverse magnetic field with multi-mode programmable modulation | |
CN102953035B (en) | Multi-mode atternation coupling magnetic field assisted electrical arc ion plating deposition arc source apparatus | |
CN101358330A (en) | A compact and multifunctional magnetron ion plating arc source device | |
CN102936717A (en) | Compact and efficient cold cathode arc source of quasi diffusion arc | |
CN103540900B (en) | A kind of magnetron arc ion plating composite deposition technique and deposition apparatus | |
CN202945317U (en) | Bipolar rotating coupling magnetic field auxiliary quasi diffusion arc cold cathode ion plating device | |
CN102936718B (en) | Multi-structure coupling magnetic field adaptability type rotating arc ion plating device | |
CN102779711B (en) | Ion source with ultra-large ion beam divergence angle | |
CN201162038Y (en) | PLC controllable rotary transverse magnetic field assisted arc ion plating equipment | |
CN102534513B (en) | Rectangular plane cathode arc evaporation source of combined magnetic field | |
CN103643213B (en) | A kind of rotating transverse magnetic field coupling axial magnetic field assistant electric arc ion plating apparatus | |
JP6048319B2 (en) | Magnetron sputtering equipment | |
CN201190180Y (en) | Arc spot control device of ion plating | |
CN201158701Y (en) | Coupled magnetic field assisted arc ion plating deposition device | |
CN203498466U (en) | Magnetic-control arc-ion-plating composite deposition device | |
CN201132848Y (en) | A device for depositing high-quality thin films by arc ion plating | |
CN202945315U (en) | Efficient dynamically coupled magnetic control arc source device | |
CN1029568C (en) | Heavy current multi-arc-spot controlled vacuum arc evaporation source | |
CN203065569U (en) | Multi-magnetic-field structural adaptive control magnetic field group device | |
CN203569181U (en) | Rotary horizontal magnetic field coupling axial magnetic field auxiliary arc ion plating device | |
CN102953034B (en) | Special multifunctional ion plating gun having compact structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081203 Termination date: 20130111 |
|
CF01 | Termination of patent right due to non-payment of annual fee |