CN201082898Y - Vacuum surface strengthening device - Google Patents
Vacuum surface strengthening device Download PDFInfo
- Publication number
- CN201082898Y CN201082898Y CNU2007200146530U CN200720014653U CN201082898Y CN 201082898 Y CN201082898 Y CN 201082898Y CN U2007200146530 U CNU2007200146530 U CN U2007200146530U CN 200720014653 U CN200720014653 U CN 200720014653U CN 201082898 Y CN201082898 Y CN 201082898Y
- Authority
- CN
- China
- Prior art keywords
- vacuum
- power supply
- workpiece
- cylinder
- double
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005728 strengthening Methods 0.000 title claims abstract description 12
- 238000001816 cooling Methods 0.000 claims abstract description 13
- 238000002955 isolation Methods 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 8
- 239000012212 insulator Substances 0.000 abstract description 7
- 238000009529 body temperature measurement Methods 0.000 abstract description 6
- 150000001875 compounds Chemical class 0.000 abstract description 5
- 230000004048 modification Effects 0.000 abstract description 2
- 238000012986 modification Methods 0.000 abstract description 2
- 238000012423 maintenance Methods 0.000 abstract 1
- 238000005121 nitriding Methods 0.000 description 28
- 239000010410 layer Substances 0.000 description 19
- 150000002500 ions Chemical class 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000007789 gas Substances 0.000 description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000010849 ion bombardment Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005685 electric field effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- -1 nitrogen ions Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Images
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及等离子体表面改性的技术领域,尤其涉及一种在真空条件下对工件表面进行离子渗氮处理的设备。The utility model relates to the technical field of plasma surface modification, in particular to a device for performing ion nitriding treatment on the surface of a workpiece under vacuum conditions.
背景技术Background technique
离子渗氮是将工件置于辉光放电装置的真空容器中,以工件为阴极,容器壁或另设金属板作为阳极,充一稀薄的含氮气体,在直流高压电场的作用下,使气体原子电离成离子,离子以比较高的速度撞击阴极工件,工件表面上的氮离子失去能量被工件吸收,并向内部扩散形成渗氮层的过程。Ion nitriding is to place the workpiece in the vacuum container of the glow discharge device, use the workpiece as the cathode, and set the container wall or another metal plate as the anode, fill a thin nitrogen-containing gas, and under the action of a DC high-voltage electric field, the gas Atoms are ionized into ions, and the ions hit the cathode workpiece at a relatively high speed. The nitrogen ions on the surface of the workpiece lose energy and are absorbed by the workpiece, and diffuse to the inside to form a nitrided layer.
离子渗氮不仅能实现可控氮化、可局部硬化、使用纯氢、氮气为气源无环境污染等优点,并且离子渗氮不生成脆性相,渗层致密,与气体渗氮相比有更高的耐磨性、耐蚀性和抗疲劳性能。但是,离子渗氮也存在以下缺点:1)温度不均匀性:现有的离子渗氮加热很难保证温度的均匀性,当等离子体加热时,工件的温度不仅取决于等离子体的能量,也和表面积和体积有关,在电压、气体成分等参数一定的条件下,表面积和体积比越大,离子轰击输入的能量越大,温度升高很快,不同形状的工件进行受热不均匀,造成工件性能下降;2)表面打弧:在工件表面的局部位置因清理不干净而存在有机物质时,则会引起打弧,产生极高的温度,使该部位的金属材料熔化或溅射出来,伤害工件表面;3)边缘效应:由于加热的不均匀性,造成边缘部位与中心区域温度不一,表面颜色不均匀,氮化层厚度不一致。Ion nitriding can not only realize the advantages of controllable nitriding, local hardening, use of pure hydrogen and nitrogen as the gas source without environmental pollution, but also does not generate brittle phases, and the permeated layer is dense, which is more effective than gas nitriding. High wear resistance, corrosion resistance and fatigue resistance. However, ion nitriding also has the following disadvantages: 1) temperature inhomogeneity: the existing ion nitriding heating is difficult to ensure temperature uniformity. When plasma is heated, the temperature of the workpiece not only depends on the energy of the plasma, but also It is related to the surface area and volume. Under certain parameters such as voltage and gas composition, the larger the surface area to volume ratio, the greater the energy input by ion bombardment, and the temperature rises rapidly. The workpieces of different shapes are heated unevenly, resulting in workpieces Performance degradation; 2) Surface arcing: When there are organic substances in some parts of the surface of the workpiece due to unclean cleaning, it will cause arcing and generate extremely high temperatures, causing the metal materials in this part to melt or sputter out, damaging The surface of the workpiece; 3) Edge effect: Due to the inhomogeneity of heating, the temperature of the edge and the center area are different, the surface color is uneven, and the thickness of the nitride layer is inconsistent.
发明内容Contents of the invention
本实用新型的目的是提供一种新型真空表面强化设备,具有渗氮速度快、工艺简单、保持工件表面原有光洁度、工件表面化合物层厚、致密度高、设备简单、成本低的优点。The purpose of this utility model is to provide a new type of vacuum surface strengthening equipment, which has the advantages of fast nitriding speed, simple process, maintaining the original smoothness of the workpiece surface, thick compound layer on the workpiece surface, high density, simple equipment and low cost.
为了达到上述目的,本实用新型的技术方案如下:In order to achieve the above object, the technical scheme of the utility model is as follows:
一种新型真空表面强化设备,包括真空炉、进气系统12、抽真空系统13、供电系统14、测温系统15、冷却系统、载物台6和绝缘体7,进气系统12通过进气口8接入真空炉内,抽真空系统13接入真空炉的炉体夹层空气室内,供电系统14的阳极通过阳极接口5与真空炉炉体电连接,测温系统15与待处理的工件1连接,冷却系统与真空炉炉体连接;该强化设备还包括一个双层圆筒,该双层圆筒位于真空炉内,通过绝缘体7与真空炉炉体电绝缘,该双层圆筒由小圆筒2和大圆筒3组成,小圆筒2位于大圆筒3内,小圆筒2与大圆筒3的间距为10mm,小圆筒上平均分布直径为5mm~6mm的孔洞,相邻两孔洞的间距为30mm~40mm,载物台6位于小圆筒2内,并通过绝缘体7与真空炉炉体电绝缘,供电系统14的阴极通过阴极接口4与大圆筒3电连接。A new type of vacuum surface strengthening equipment, including a vacuum furnace, an
上述进气系统12主要由气瓶和稳压阀组成,其作用是保证氨气可以连续均衡地供应给真空炉。The
上述抽真空系统13主要由旋片式机械泵和电阻真空计组成,其作用是通过旋片式机械泵对真空炉炉体夹层空气室进行抽真空,使其成为真空隔热层,并用电阻真空计对真空炉内进行气压测量。The above-mentioned
上述供电系统14主要由变压器和整流器组成,其主要用于调节施加给真空炉内的电压。The above-mentioned
上述测温系统15主要由铠装热电偶、绝缘部分、屏蔽部分、间隙保护部分和防电场干扰部分组成,其可直接接触不同形状的工件带电测温,测温误差小,并且测量高度与位置均可调节,接触可靠,不产生放电现象,测温系统15主要用于测量工件温度,控制渗氮过程。The above-mentioned
上述真空炉主要由放电罩、底板和密封圈组成,放电罩和底板由两层钢板组成,中间由冷却系统通水冷却,以保证真空炉不至于升温变质而失去密封作用。The above-mentioned vacuum furnace is mainly composed of a discharge cover, a bottom plate and a sealing ring. The discharge cover and the bottom plate are composed of two layers of steel plates, and the cooling system is cooled by water in the middle to ensure that the vacuum furnace will not lose its sealing effect due to temperature rise and deterioration.
上述冷却系统主要由水泵、进水口9、冷却观察窗10和出水口11组成,进水口9、冷却观察窗10和出水口11置于放电罩和底板的两层钢板之间。The above-mentioned cooling system is mainly composed of a water pump, a
本实用新型的有益效果如下:The beneficial effects of the utility model are as follows:
1)与气体渗氮相比:本实用新型不存在氮势控制问题,渗氮速度提高3~5倍,废气排放量约为气体渗氮的1/10000、真空渗氮的1/100,能源消耗为气体渗氮的1/3;1) Compared with gas nitriding: the utility model does not have the problem of nitrogen potential control, the nitriding speed is increased by 3 to 5 times, the waste gas emission is about 1/10000 of gas nitriding, 1/100 of vacuum nitriding, and the energy Consumption is 1/3 of gas nitriding;
2)与普通离子渗氮相比:本实用新型渗氮基体与放电过程无关,工件表面不再产生弧光放电,工件形状也不再成为渗氮不均匀的限制因素,温度均匀性好,表面基本无离子轰击溅射,保持工件表面原有的光洁度,工件表面化合物层厚、致密度高,工作气压适用范围大(10Pa~1000Pa);2) Compared with ordinary ion nitriding: the nitriding matrix of the utility model has nothing to do with the discharge process, arc discharge will no longer occur on the surface of the workpiece, and the shape of the workpiece will no longer be a limiting factor for uneven nitriding. The temperature uniformity is good and the surface is basically No ion bombardment and sputtering, maintain the original smoothness of the workpiece surface, the compound layer on the surface of the workpiece is thick and dense, and the working pressure range is wide (10Pa~1000Pa);
3)与全方位等离子体注入相比:本实用新型不需要高压电源和高真空设备,设备简单,成本低。3) Compared with omnidirectional plasma injection: the utility model does not need high-voltage power supply and high-vacuum equipment, and the equipment is simple and low in cost.
附图说明Description of drawings
图1是本实用新型的一种新型真空表面强化设备的结构示意图。Fig. 1 is a structural schematic diagram of a novel vacuum surface strengthening equipment of the present invention.
图中:1、工件,2、小圆筒,3、大圆筒,4、阴极接口,5、阳极接口,6、载物台,7、绝缘体,8、进气口,9、进水口,10、冷却观察窗,11、出水口,12、进气系统,13、抽真空系统,14、供电系统,15、测温系统。In the figure: 1. workpiece, 2. small cylinder, 3. large cylinder, 4. cathode interface, 5. anode interface, 6. stage, 7. insulator, 8. air inlet, 9. water inlet, 10 1. Cooling observation window, 11. Water outlet, 12. Air intake system, 13. Vacuum pumping system, 14. Power supply system, 15. Temperature measuring system.
具体实施方式Detailed ways
下面结合附图对本实用新型做进一步详细地描述:Below in conjunction with accompanying drawing, the utility model is described in further detail:
如图1所示,本实用新型的一种新型真空表面强化设备是将供电系统14的负极接在真空炉内一个铁制的网状双层圆筒上,双层圆筒由小圆筒2与大圆筒3组成,双层圆筒的直径约为300mm~350mm,小圆筒2与大圆筒3间距为10mm,小圆筒上平均分布直径为5mm~6mm的孔洞,孔洞间距为30mm~40mm,这些孔洞是进行渗氮的物质传递通道;被处理的工件1置于小圆筒2的中间,工件1呈电悬浮状态或与直流偏压相接,当供电系统14提供的直流高压电源被接通后,真空炉内的氨气被电离;在直流电场的作用下,由辉光放电特性可知,当两阴极的间距L、阴极放电长度Lk与阴极位降区宽度dk三者满足dk<L/2,L>Lk>L/2关系时,将出现因两负辉区迭加而致光强增大的现象,即空心阴极效应,从而引起阴极之间的电子振荡,增加电子与气体分子碰撞几率,产生更多的激发和电离,从而加大极间的电流与离子密度。等离子体放电空心阴极效应产生高浓度、高活性的渗扩原子,与活性很强的氮原子相结合,通过吸附作用生成FeN吸附在工件表面,工件表面的FeN是不稳定的,随着表面继续吸附和吸收活性氮原子,最初的渗层中的氮原子向基体金属深处扩散形成Fe2N→Fe3N→Fe4N。一部分扩散形成γ′相化合物层,同时也有一部分粒子和吸附的氮反应生成ε相化合物层。As shown in Figure 1, a new type of vacuum surface strengthening equipment of the present utility model is to connect the negative pole of the
在离子渗氮过程中,双层圆筒起两个作用:一是作为阴极,保护工件;二是通过辐射对工件进行加热,在弧光放电过程中,有三种电子发射形式,即光电子发射、热电子发射、场致发射,这些电子能量多为20ev~70ev,能将工件加热到渗氮处理所需的温度;由于在渗氮处理过程中,气体离子是轰击这个双层圆筒,而不是直接轰击工件的表面,所以直流离子渗氮技术中存在的问题也就应刃而解,如工件打弧、边缘效应、电场效应、温度测量等问题,同时对离子渗氮电源的要求也大大降低,取消了以往消耗大量电能的限流电阻。In the ion nitriding process, the double-layer cylinder plays two roles: one is as a cathode to protect the workpiece; the other is to heat the workpiece through radiation. In the arc discharge process, there are three forms of electron emission, namely photoelectron emission, thermal Electron emission and field emission, the energy of these electrons is mostly 20ev~70ev, which can heat the workpiece to the temperature required for nitriding treatment; because during the nitriding treatment, the gas ions bombard the double-layer cylinder instead of directly The surface of the workpiece is bombarded, so the problems existing in the DC ion nitriding technology will be solved, such as workpiece arcing, edge effect, electric field effect, temperature measurement, etc. At the same time, the requirements for the ion nitriding power supply are also greatly reduced. The current limiting resistor that consumes a large amount of electric energy in the past is cancelled.
本实用新型的一种新型真空表面强化设备的操作流程具体如下:The operation process of a new type of vacuum surface strengthening equipment of the present invention is as follows:
(一)工件清洗与装炉(1) Workpiece cleaning and furnace loading
用工业清洗剂清洗工件1的表面,然后进行装炉,将工件1放置在载物台6上,通过绝缘体7使之与电源隔离,这一点区别于现有的离子渗氮把工件作为阴极进行热处理的方式。Clean the surface of the workpiece 1 with an industrial cleaning agent, then load the furnace, place the workpiece 1 on the stage 6, and isolate it from the power supply through the insulator 7, which is different from the existing ion nitriding that uses the workpiece as a cathode. The way of heat treatment.
(二)抽真空、起辉(2) Vacuumizing and glowing
启动抽真空系统13的机械泵对真空炉炉体夹层空气室进行抽真空,同时启动冷却系统,由进水口9进水,通过出水口11排水,期间根据冷却观察窗10的窗口观察水流是否通畅;当炉内真空度达到13.3Pa~133Pa时,进气系统12通过进气口8向真空炉内充入净化过的氨气,氨气经过小圆筒2的孔洞,均匀分布在整个真空炉内,使工件1周围的氨气浓度均衡;调节氨气的流量,使真空炉内的压强保持在133Pa~1333Pa,打开供电系统14的电源,真空炉内的氨气在高压电场的作用下发生电离,产生辉光放电效应。Start the mechanical pump of the
(三)升温阶段(3) Heating stage
根据氮化工艺参数的不同,可向真空炉内连续通入适量氨气使炉内气压达到50Pa~3000Pa的真空度,并通过供电系统14逐步调节电压、电流,控制氮化温度,通过流量计调节炉内气压,使双层圆筒保持空心阴极放电效应。According to different nitriding process parameters, an appropriate amount of ammonia gas can be continuously fed into the vacuum furnace to make the pressure in the furnace reach a vacuum degree of 50Pa to 3000Pa, and the voltage and current can be gradually adjusted through the
(四)保温阶段(4) Insulation stage
根据氮化工艺参数要求,使真空炉内的氮化温度保持在450℃~650℃,并保持3小时~6小时的时间。According to the requirements of the nitriding process parameters, the nitriding temperature in the vacuum furnace is kept at 450° C. to 650° C. for 3 hours to 6 hours.
(五)冷却阶段(5) Cooling stage
启动抽真空系统13将真空炉内抽成低真空,关闭供电系统14的电源,当工件1随真空炉冷却到200℃时,将工件1从炉内取出。Start the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2007200146530U CN201082898Y (en) | 2007-09-19 | 2007-09-19 | Vacuum surface strengthening device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2007200146530U CN201082898Y (en) | 2007-09-19 | 2007-09-19 | Vacuum surface strengthening device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201082898Y true CN201082898Y (en) | 2008-07-09 |
Family
ID=39625362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU2007200146530U Expired - Fee Related CN201082898Y (en) | 2007-09-19 | 2007-09-19 | Vacuum surface strengthening device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201082898Y (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103459651A (en) * | 2011-02-02 | 2013-12-18 | 株式会社Ihi | Plasma processing device |
CN105220108A (en) * | 2015-10-23 | 2016-01-06 | 西华大学 | Interactive double cathode ion surface heat treatment furnace |
CN105861979A (en) * | 2016-06-13 | 2016-08-17 | 日照舜臣模具有限公司 | Small glow ion die treatment device |
WO2021190560A1 (en) * | 2020-03-25 | 2021-09-30 | 费勉仪器科技(上海)有限公司 | Plasma generating device and large-volume plasma treatment system |
-
2007
- 2007-09-19 CN CNU2007200146530U patent/CN201082898Y/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103459651A (en) * | 2011-02-02 | 2013-12-18 | 株式会社Ihi | Plasma processing device |
CN103459651B (en) * | 2011-02-02 | 2015-09-16 | 株式会社Ihi | Plasma treatment appts |
CN105220108A (en) * | 2015-10-23 | 2016-01-06 | 西华大学 | Interactive double cathode ion surface heat treatment furnace |
CN105861979A (en) * | 2016-06-13 | 2016-08-17 | 日照舜臣模具有限公司 | Small glow ion die treatment device |
WO2021190560A1 (en) * | 2020-03-25 | 2021-09-30 | 费勉仪器科技(上海)有限公司 | Plasma generating device and large-volume plasma treatment system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101122004A (en) | A New Vacuum Surface Strengthening Technology and Equipment | |
CN109797363B (en) | Arc light electron source assisted ion nitriding process | |
CN1305023A (en) | Plasma surface-alloying process for titanium alloy | |
CN105177493B (en) | A kind of surface of hot working die arc-plasma auxiliary low pressure nitriding method | |
CN105070619B (en) | Preparation method for carbon nanotube array cathode on Fe-based metal alloy substrate | |
CN101158022A (en) | Austenitic stainless steel electron beam assisted plasma surface modification method and equipment | |
CN201082898Y (en) | Vacuum surface strengthening device | |
CN101736283A (en) | Composite processing device and processing method for nitriding and oxidizing surface of low-alloy steel | |
CN101195913A (en) | Process of Forming Chromium Carbon Nitride Surface Alloy Layer by Plasma Composite Treatment at Low Temperature | |
CN107881466B (en) | Silver-doped graphite-like carbon coating and preparation method thereof | |
CN101709449A (en) | Surface oxidation treatment device and method of aluminum alloy | |
CN101045989B (en) | Large-area DC pulsed plasma-based low-energy ion implantation device | |
CN102943230B (en) | The nitriding method on Al and Alalloy surface | |
CN210030866U (en) | A gas arc discharge device and a coupling system with a vacuum cavity | |
CN204434714U (en) | The equipment of a kind of subatmospheric plasma enhancing nitriding | |
CN201106063Y (en) | A device for electron beam-assisted plasma surface modification of austenitic stainless steel | |
CN101591763B (en) | Insulating type multifunctional ion chemical heat treatment device | |
CN107151779A (en) | Nitriding controllable zero pollution ion nitriding device | |
CN102011087B (en) | Ion chemical heat treating furnace having glow discharge-aided heating function | |
CN104109830A (en) | Surface hafnium-infiltrated austenitic stainless steel resistant to high temperature and preparation method thereof | |
CN104100492B (en) | High vacuum electric arc pump and its pumping unit | |
CN1944688A (en) | Heat insulation type multifunction ionic thermal processing device | |
Veselov et al. | Formation of dielectric silicon compounds by reactive magnetron sputtering | |
CN100366784C (en) | Vacuum high voltage pulse discharge catalytic chemical heat treatment equipment and method | |
CN201538810U (en) | Aluminum alloy surface oxidation treatment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080709 Termination date: 20091019 |