CN1983651A - Light-emitting semiconductor device and device containing the same - Google Patents
Light-emitting semiconductor device and device containing the same Download PDFInfo
- Publication number
- CN1983651A CN1983651A CNA2006100999783A CN200610099978A CN1983651A CN 1983651 A CN1983651 A CN 1983651A CN A2006100999783 A CNA2006100999783 A CN A2006100999783A CN 200610099978 A CN200610099978 A CN 200610099978A CN 1983651 A CN1983651 A CN 1983651A
- Authority
- CN
- China
- Prior art keywords
- semiconductor device
- luminous
- light
- wavelength
- inverting element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 225
- 238000006243 chemical reaction Methods 0.000 claims abstract description 89
- 230000005670 electromagnetic radiation Effects 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 57
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 20
- 239000003822 epoxy resin Substances 0.000 claims description 20
- 229920003023 plastic Polymers 0.000 claims description 20
- 229920000647 polyepoxide Polymers 0.000 claims description 20
- 239000000975 dye Substances 0.000 claims description 16
- 239000011521 glass Substances 0.000 claims description 13
- 239000004033 plastic Substances 0.000 claims description 13
- 230000003595 spectral effect Effects 0.000 claims description 11
- 238000001228 spectrum Methods 0.000 claims description 11
- 229910019990 cerium-doped yttrium aluminum garnet Inorganic materials 0.000 claims description 10
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 9
- 239000003086 colorant Substances 0.000 claims description 7
- 230000000295 complement effect Effects 0.000 claims description 4
- 150000004645 aluminates Chemical class 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 239000002223 garnet Substances 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- 239000004925 Acrylic resin Substances 0.000 claims description 2
- 230000008859 change Effects 0.000 claims description 2
- 239000004973 liquid crystal related substance Substances 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 150000002910 rare earth metals Chemical class 0.000 claims 5
- 239000011159 matrix material Substances 0.000 claims 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims 1
- 229910000204 garnet group Inorganic materials 0.000 claims 1
- 239000002210 silicon-based material Substances 0.000 claims 1
- 239000012815 thermoplastic material Substances 0.000 claims 1
- 238000004020 luminiscence type Methods 0.000 abstract description 82
- 230000005855 radiation Effects 0.000 abstract description 34
- 238000004519 manufacturing process Methods 0.000 abstract description 18
- 238000000034 method Methods 0.000 abstract description 14
- 230000008901 benefit Effects 0.000 description 16
- 238000000295 emission spectrum Methods 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 8
- 238000005253 cladding Methods 0.000 description 7
- 239000004020 conductor Substances 0.000 description 5
- 238000005538 encapsulation Methods 0.000 description 5
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000002966 varnish Substances 0.000 description 4
- 238000000149 argon plasma sintering Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 229910052706 scandium Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- 239000012780 transparent material Substances 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N perylene Chemical compound C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 101100476480 Mus musculus S100a8 gene Proteins 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000001000 anthraquinone dye Substances 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 239000012764 mineral filler Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052605 nesosilicate Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 150000004762 orthosilicates Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 150000003748 yttrium compounds Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/32257—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48257—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/49105—Connecting at different heights
- H01L2224/49107—Connecting at different heights on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85909—Post-treatment of the connector or wire bonding area
- H01L2224/8592—Applying permanent coating, e.g. protective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/882—Scattering means
Landscapes
- Led Device Packages (AREA)
Abstract
本发明涉及发光半导体器件和含有该发光半导体器件的装置。为改良该发光半导体器件,根据本发明,其有一个半导体多层结构,适合于在半导体器件工作时发射第一波长段的电磁射线。发光变换元件将来自于第一波长段的射线变换成不同于该第一波长段的第二波长段的射线并将该射线发出,使得该半导体器件发射出包括所述第一波长段的可见电磁射线和所述第二波长段的可见电磁射线的混合色光。半导体主体发出的射线在波长λ≤520nm时具有相对强度最大值,由所述发光变换元件光谱选择地吸收的波长段位于该强度最大值之外。由此既能采用简单工艺方法进行大批量生产,又能在最大程度上保证器件的可再现性特征。
The present invention relates to a light emitting semiconductor device and a device including the light emitting semiconductor device. To improve the light-emitting semiconductor device, according to the invention, it has a semiconductor multilayer structure which is suitable for emitting electromagnetic radiation in the first wavelength range during operation of the semiconductor device. The luminescence conversion element converts the ray from the first wavelength band into the ray of the second wavelength band different from the first wavelength band and emits the ray, so that the semiconductor device emits visible electromagnetic radiation including the first wavelength band. The mixed color light of the ray and the visible electromagnetic ray of the second wavelength band. The radiation emitted by the semiconductor body has a relative intensity maximum at a wavelength λ≤520nm, and the wavelength range spectrally selectively absorbed by the luminescence conversion element lies outside the intensity maximum. Therefore, a simple process method can be adopted for mass production, and the reproducibility characteristics of the device can be guaranteed to the greatest extent.
Description
本申请是申请号为200510091728.0、申请日为1997年6月26日、发明名称为“发射射线的半导体芯片及包含该半导体芯片的装置”的发明专利申请的分案申请。This application is a divisional application of the invention patent application with the application number 200510091728.0, the application date is June 26, 1997, and the invention title is "radiation-emitting semiconductor chip and device including the semiconductor chip".
技术领域technical field
本发明涉及发光半导体器件、利用该发光半导体器件的显示装置、以及该发光半导体器件在飞机机舱内的应用。The present invention relates to a light emitting semiconductor device, a display device using the light emitting semiconductor device, and an application of the light emitting semiconductor device in an aircraft cabin.
背景技术Background technique
这种类型的半导体器件,例如从公开文件的DE 38 04 293中有所了解。文中介绍了一种电激发光二极管或激光二极管的结构。在此结构中,通过一个掺有发荧光的变光有机染料的塑料元件将二极管发射的全部发射光谱向波长较大的方向推移。通过这种措施,使这种结构发射出另一种不同于发光二极管发射的颜色的光。通过在塑料中掺入不同种类的染料,用同一种发光二极管就可以制成发射不同颜色的光的发光二极管结构。Semiconductor devices of this type are known, for example, from DE 38 04 293 of the open document. The structure of an electrically excited light emitting diode or laser diode is described. In this structure, the entire emission spectrum emitted by the diode is shifted towards larger wavelengths by a plastic element doped with a fluorescent light-changing organic dye. As a result of this measure, the structure emits light of a different color than the light-emitting diode. By mixing different kinds of dyes in the plastic, the same light-emitting diode can be used to make light-emitting diode structures that emit light of different colors.
在DE-OS 2 347 289中发表了一种红外(IR)固体灯,其中,在一个IR二极管的边沿上涂布发光材料,从而使该处所发射的IR射线转变成可见光。采用这种措施的目的在于,为了控制的目的,在尽可能小地降低二极管发射的IR射线强度的同时,将其中尽可能小的一部分射线转换成可见光。In DE-OS 2 347 289 an infrared (IR) solid-state lamp is disclosed, in which a luminescent material is coated on the edge of an IR diode so that the IR radiation emitted there is converted into visible light. The purpose of this measure is to convert the smallest possible fraction of the IR radiation emitted by the diode into visible light while reducing the intensity of the IR radiation emitted by the diode as little as possible for control purposes.
另外,在EP 486 052中发表了一种发光二极管,其中,在基片与一层有源电激发光层之间至少设置一层半导体光激发光层,将来自该有源层朝向基片发射的第一波长段的光变换成第二波长段的光,从而使该发光二极管总共发射各种不同波长段的光。In addition, a light-emitting diode has been published in EP 486 052, wherein at least one semiconductor photoluminescent layer is arranged between the substrate and a layer of active electroluminescent layer, and the emission from the active layer toward the substrate The light of the first wavelength band is converted into the light of the second wavelength band, so that the light-emitting diode emits light of various different wavelength bands in total.
在发光二极管的许多有发展前途的应用范围中,例如在Kfz仪表盘上的显示元件,飞机和汽车的内部照明,以及在能够发射全色光的发光二极管显示器中,都对发光二极管提出严格的要求,使其能够产生混合光,特别是白光。Strict requirements are placed on light-emitting diodes in many promising areas of application, such as display elements on Kfz instrument panels, interior lighting of aircraft and automobiles, and in light-emitting diode displays capable of emitting full-color light , enabling it to produce mixed light, especially white light.
在JP-07 176 794-A中介绍了一种发射白光的平面光源,在其中的一块透明板的前端设置两个发射蓝光的发光二极管,向透明板的内部发射光。在透明板两个相向对面设置的两块主表面中的一个表面上涂有发光物质的涂层,当其受到二极管的蓝光激发之后便会发光。发光物质发射的光的波长与二极管所发射的蓝光的波长有所不同。采用这种已知结构的元件却难以采用这种方式涂布能以使光源发射均匀白光的荧光物质。除此以外,在大批量生产中的可再现性已经成为大问题,因为只要荧光层的厚度略有参差不齐,例如出于透明板表面不平的原因,就会导致发射光的白色色调发生变化。Introduced in JP-07 176 794-A a kind of planar light source that emits white light, two light-emitting diodes that emit blue light are arranged at the front end of one of the transparent plates, and emit light to the inside of the transparent plate. One of the two main surfaces of the transparent plate facing oppositely is coated with a coating of luminescent substance, which emits light when it is excited by the blue light of the diode. The light emitted by the luminescent substance has a different wavelength than the blue light emitted by the diode. However, it is difficult to coat the fluorescent substance which can make the light source emit uniform white light in this way with the element of this known structure. In addition to this, reproducibility in mass production has become a big problem, since even slight variations in the thickness of the phosphor layer, e.g. due to uneven surfaces of the transparent plate, can lead to variations in the white hue of the emitted light .
发明内容Contents of the invention
按照本发明的基本任务是:给出一种按照在开头所述方式的半导体芯片,能够均匀发射混合色,既能采用简单工艺方法进行大批量生产,又能在最大程度上保证器件的可再现性特征。The basic task of the invention is to provide a semiconductor chip in the manner described at the outset, which emits mixed colors uniformly, which can be produced in large quantities using simple technological methods and which ensures maximum reproducibility of the device. sexual characteristics.
根据本发明的一个方面,提供了一种发光半导体器件,其包括:一个半导体主体,其在所述半导体器件工作时发射电磁射线;至少一个第一和至少一个第二导电引线,其与所述半导体主体导电地连接;以及一个包含有至少一种发光材料的发光变换元件。所述半导体主体具有一个半导体多层结构,其适合于在所述半导体器件工作时发射第一波长段的电磁射线。所述的发光变换元件将来自于所述第一波长段的射线变换成不同于该第一波长段的第二波长段的射线并将该射线发出,使得该半导体器件发射出包括所述第一波长段的可见电磁射线和所述第二波长段的可见电磁射线的混合色光。由所述半导体主体发出的射线在波长λ≤520nm时具有相对强度最大值,并且由所述发光变换元件光谱选择地吸收的波长段位于该强度最大值之外。According to one aspect of the present invention, there is provided a light emitting semiconductor device comprising: a semiconductor body emitting electromagnetic radiation when said semiconductor device is in operation; at least one first and at least one second conductive lead connected to said The semiconductor body is electrically conductively connected to; and a luminescence conversion element comprising at least one luminescent material. The semiconductor body has a semiconductor multilayer structure which is suitable for emitting electromagnetic radiation in a first wavelength range during operation of the semiconductor component. The luminescence conversion element converts the ray from the first wavelength band into the ray of the second wavelength band different from the first wavelength band and emits the ray, so that the semiconductor device emits light including the first wavelength band. The mixed color light of the visible electromagnetic ray in the wavelength band and the visible electromagnetic ray in the second wavelength band. The radiation emitted by the semiconductor body has a relative intensity maximum at a wavelength λ≤520 nm, and the wavelength range spectrally selectively absorbed by the luminescence conversion element lies outside the intensity maximum.
根据本发明的另一个方面,提供一种飞机舱内部照明,其中采用所述的发射射线的半导体芯片。According to a further aspect of the invention, an aircraft cabin interior lighting is provided, in which the radiation-emitting semiconductor chip described above is used.
根据本发明的再一个方面,提供一种显示装置,其包括多个所述的半导体芯片,所述的半导体芯片被安排用来照明该显示装置的显示。According to still another aspect of the present invention, a display device is provided, which includes a plurality of said semiconductor chips, and said semiconductor chips are arranged to illuminate a display of the display device.
根据本发明的又一个方面,提供一种全色LED显示装置,包括多个所述的发射射线的半导体芯片。According to yet another aspect of the present invention, a full-color LED display device is provided, including a plurality of the above-mentioned semiconductor chips emitting rays.
按照本发明的规定具有的发光半导体主体是一种多层结构,特别是由一种用GaxIn1-xN或者GaxAl1-xN制成的有源半导体多层结构,在半导体器件工作时,发射一种由紫外、蓝和/或绿光谱段构成的第一波长段的电磁射线。发光变换元件将来自第一波长段的一部分射线按照下列方式变换为一种第二波长段的射线,也就是由半导体器件发射多色射线、特别是由第一波长段的射线和第二波长段的射线构成的混合色光。这就是说,例如发光变换元件是从半导体主体发射的射线中仅只优先选取第一波长段中的一个光谱段进行选择吸收,然后在波长较长的波段(在第二波长段中)进行发射。优先选择的是在半导体主体发射的波长为λ≤520nm射线中的一个相对的强度最大值,而由发光变换元件选择吸收的光谱中的波长段则是处于这个强度最大值以外。According to the provisions of the present invention, the light-emitting semiconductor body is a multilayer structure, in particular an active semiconductor multilayer structure made of GaxIn1 -xN or GaxAl1 -xN , in the semiconductor When the device works, it emits an electromagnetic ray of a first wavelength band consisting of ultraviolet, blue and/or green spectral bands. The luminescence conversion element converts a part of the radiation from the first wavelength band into a second wavelength band of radiation in the following manner, that is, the polychromatic radiation is emitted by the semiconductor device, especially the radiation from the first wavelength band and the second wavelength band The mixed color light composed of rays. That is to say, for example, the luminescence conversion element preferentially selects only one spectral segment in the first wavelength range from the radiation emitted by the semiconductor body for selective absorption, and then emits in a longer wavelength range (in the second wavelength range). It is preferred to select a relative intensity maximum in the radiation emitted by the semiconductor body with a wavelength of λ≤520nm, while the wavelength range in the spectrum selectively absorbed by the luminescence conversion element is outside this intensity maximum.
采用按照本发明的另一个优点是,能够将若干(一个或多个)来自第一波长段的第一光谱段变换成多个第二波长段。从而还可能产生多重色混合和色温的优点。Another advantage of using according to the invention is that several (one or more) first spectral bands from the first wavelength band can be transformed into a plurality of second wavelength bands. Advantages of multiple color mixing and color temperature are thus also possible.
按照本发明的半导体器件具有的特别优点是通过发光变换产生的波长光谱以及由此发射的光色不受流过半导体主体的工作电流大小的约制。当半导体器件的环境温度发生变化的时候,以及由此造成众所周知的工作电流强度产生剧烈变化的时候,这个优点就会具有特别重大的意义。特别是一种以GaN为基的半导体主体的发光二极管在这方面甚为敏感。The semiconductor component according to the invention has the particular advantage that the wavelength spectrum produced by the luminescence conversion and thus the emitted light color is independent of the magnitude of the operating current flowing through the semiconductor body. This advantage is of particular significance when the ambient temperature of the semiconductor component changes, and thus the well-known severe changes in the operating current intensity. In particular a light-emitting diode based on a GaN-based semiconductor body is sensitive in this respect.
除此以外,按照本发明的半导体器件只能需要一个单独的控制电压,因而也只能需要一个单独的控制电压配置,于是使半导体器件的控制线路所需的设置费用停留在很小的程度。In addition, the semiconductor device according to the invention requires only one single control voltage and thus also only one single control voltage configuration, so that the setup outlay required for the control circuit of the semiconductor device is kept to a minimum.
在按照本发明的特别优先选用的结构形式中,在半导体主体的上方或上面设置了一种部分透明的发光变换层,也就是供发射射线的半导体主体发射射线之用的部分透明的发光变换层。为了保证发射的光肯定能够有统一的颜色,优先选用的是将发光变换层做成具有这样的恒定透射路径的结构,这样就具有特别好的优点,使半导体主体发射的所有发射方向的光穿过发光变换层的路径长度几乎恒定。只有在半导体器件在所有的方向上发射的光都是同样的光的时候方才能够达到这样的要求。一种按照改进结构的、按照本发明的半导体器件的另一个特别好的优点在于,采用简单的方法就能达到高度的再现性,这对于一种有效率的大批量生产来说具有重要意义。可以作为发光变换层之用的是,例如掺有发光材料的清漆层或者树脂层。In a particularly preferred embodiment according to the invention, a partially transparent luminescence conversion layer is arranged on or on the semiconductor body, that is to say a partially transparent luminescence conversion layer for the radiation emission of the radiation-emitting semiconductor body . In order to ensure that the emitted light must have a uniform color, it is preferred to make the luminescence conversion layer into a structure with such a constant transmission path, which has a particularly good advantage, so that the light emitted by the semiconductor body in all emission directions can pass through. The path length through the luminescence conversion layer is almost constant. This can only be achieved if the semiconductor device emits the same light in all directions. A further particularly advantageous advantage of a semiconductor component according to the invention according to the improved structure is that a high degree of reproducibility can be achieved with simple methods, which is important for efficient mass production. As the luminescence conversion layer, for example, a varnish layer or a resin layer doped with a luminescent material can be used.
按照本发明的另一种优先选用的结构形式是用部分透明发光变换包壳做的发光变换元件,这种包壳至少包住半导体主体的一部分(有时候还包住导电引线的一部分),并且同时作为结构包壳(外壳)使用。按照这种结构形式的一种半导体器件的优点主要在于,在进行这种制造时能够因袭使用制造发光二极管(例如径向发光二极管)所惯用的生产线。包壳的结构构件是用发光变换包壳的材料取代普通二极管所用的透明塑料。Another preferred embodiment according to the invention is a luminescence conversion element made of a partially transparent luminescence conversion envelope, which encloses at least a part of the semiconductor body (sometimes also a part of the conductive lead), and It is also used as a structural cladding (shell). The advantage of a semiconductor component of this type is essentially that production lines customary for the production of light-emitting diodes (for example radial light-emitting diodes) can be used conventionally for this production. The structural component of the envelope is to replace the transparent plastic used by ordinary diodes with the material of the light-emitting transformation envelope.
采用按照本发明的半导体器件的其他有利结构形式以及上述两个优先选用的结构形式时,发光变换层或者发光变换包壳是用一种至少掺有一种发光材料的透明材料,例如塑料,优先选用是环氧树脂(优先选用的塑料和发光材料见以下所述)。采用这种方法时,以采用发光变换元件的制造成本最为经济。为此所用的制造工序与发光二极管的生产线相比不会另加大笔费用。With other advantageous configurations of the semiconductor device according to the invention and the two preferred configurations mentioned above, the luminescence conversion layer or the luminescence conversion envelope is made of a transparent material doped with at least one luminescent material, such as plastic, preferably is an epoxy resin (see below for preferred plastics and luminescent materials). When this method is adopted, the manufacturing cost of the luminescence conversion element is the most economical. The manufacturing process used for this does not require additional expenditure compared with a production line for light-emitting diodes.
采用本发明的或者上述结构形式的特别优先选用的改进结构预先需要考虑的是,本波长段或者第二波长段的波长要远远大于第一波长段的波长。When adopting the particularly preferred improved structure of the present invention or the above-mentioned structural forms, it needs to be considered in advance that the wavelength of the present wavelength band or the second wavelength band is far greater than the wavelength of the first wavelength band.
特别要考虑的是,第一波长段的一个第二光谱段和一个第二波长段之间要彼此互补。采用这样的办法,可以从一个统一的有色光源,特别是从一个统一发蓝光的半导体主体产生混合光,特别是白光。例如为了使发蓝光的半导体主体产生白光,要将从半导体主体发射的蓝色光谱段中的射线的一部分变换成蓝色的补偿色的黄色光谱段。借此通过选用合适的发光变换元件、特别是通过选用合适的发光材料、发光材料的粒度、浓度,来改变白光的色温或者色位。除此以外,这种结构还有利于提供一种可能性,即采用混合发光材料的可能性,从而能够有利于将色调调整到非常精确的程度。纵然如此,例如出于发光材料不均匀分布的原因,仍然会使发光变换元件发生不均匀发射。通过上述措施,能够有利于对于光线穿过发光变换元件路径的不同长短进行补偿。In particular, it should be considered that a second spectral segment of the first wavelength segment and a second wavelength segment are complementary to each other. In this way, mixed light, in particular white light, can be generated from a uniform colored light source, in particular from a uniform blue-emitting semiconductor body. For example, in order to produce white light from a blue-emitting semiconductor body, a part of the radiation emitted by the semiconductor body in the blue spectral range is converted into the yellow spectral range which compensates for the blue color. In this way, the color temperature or color position of white light can be changed by selecting a suitable luminescence conversion element, in particular by selecting a suitable luminescent material, particle size and concentration of the luminescent material. Among other things, this structure advantageously offers the possibility of using mixed luminescent materials, which facilitates the adjustment of the color tone to a very precise degree. Even so, inhomogeneous emission of the luminescence conversion element can still occur, for example due to an inhomogeneous distribution of the luminescent material. Through the above measures, it can be beneficial to compensate for the different lengths of the paths of light passing through the luminescence conversion element.
通过按照本发明优先选用的半导体器件的结构形式,要使发光变换元件或者构件包壳中的其他构件能以与一种或多种染料适配,而又不会对波长变换产生影响。为此可以使用普通二极管惯用的染料,例如偶氮染料、蒽醌染料或者周萘酮(Perinon)染料。Due to the preferred embodiment of the semiconductor component according to the invention, the luminescence conversion element or other components in the component envelope can be adapted to one or more dyes without affecting the wavelength conversion. The dyes customary for conventional diodes, such as azo dyes, anthraquinone dyes or perinon dyes, can be used for this purpose.
为了防止发光变换元件受到过高辐射剂量的影响,通过对于半导体器件的有利改造,或者通过上述优先选用的结构形式,至少将半导体主体的一部分表面采用,例如塑料制的透明外壳包住,在其表面上涂布发光变换层,借以减少发光变换元件的放射密度、转而减少其辐射剂量,根据所用材料的不同,对发光变换元件的使用寿命产生良好的影响。In order to prevent the luminescence conversion element from being affected by an excessively high radiation dose, at least part of the surface of the semiconductor body is covered by a transparent housing, for example made of plastic, through an advantageous modification of the semiconductor device, or through the above-mentioned preferred structural form. The luminescence conversion layer is coated on the surface, so as to reduce the radiation density of the luminescence conversion element, thereby reducing its radiation dose, which has a good influence on the service life of the luminescence conversion element according to the different materials used.
在通过本发明的特别优先选用的措施及其结构形式中,采用一种发射这样射线的半导体主体,即发射的发射光谱的波长在420nm和460nm之间,特别是在430nm处(例如以GaxAl1-xN为基础的半导体主体),或者在450nm处(例如以GaxIn1-xN为基础的半导体主体)出现一个强度最大值。采用这样的按照本发明的半导体器件,就有利于产生C.I.E.色表中的几乎所有的颜色和混合色。此处发射射线的半导体主体是用如上所列的主要是用电致发光半导体材料,但是也能用一种其他电致发光材料,例如聚合物材料制成。In a particularly preferred measure according to the invention and its construction, a semiconductor body which emits radiation is used which emits an emission spectrum with a wavelength between 420 nm and 460 nm, in particular at 430 nm (for example in the form of Ga x Al 1-x N-based semiconductor hosts), or an intensity maximum occurs at 450 nm (such as Ga x In 1-x N-based semiconductor hosts). With such a semiconductor device according to the invention, it is advantageous to produce almost all colors and mixed colors in the CIE color table. The radiation-emitting semiconductor body here is made of the above-listed mainly electroluminescent semiconductor material, but can also be made of another electroluminescent material, for example a polymer material.
在本发明的其他特别优先选用的改进结构中以及在其结构形式时,发光变换包壳或发光变换层是用一种清漆或塑料制成的,例如是用一种在光激器件包壳中的硅树脂、热塑性塑料或硬质塑料材料(环氧树脂和丙稀酸树脂)制成的。例如还能用热塑性塑料制成顶盖元件,作为发光变换包壳之用。以上所列的材料能够采用简单的方法掺入一种或多种发光材料。In a further particularly preferred development of the invention and in its construction, the luminescence conversion envelope or the luminescence conversion layer is made of a varnish or plastic, for example with a Silicone, thermoplastic or duroplastic materials (epoxy and acrylic). It is also possible, for example, to make the cover element from thermoplastic for the purpose of the luminescence conversion envelope. The materials listed above can be incorporated into one or more luminescent materials in a simple manner.
当将半导体主体设置在一个缺口中,或在预制好的一个外壳之中,并在缺口处用一个涂有发光变换层的顶盖盖住时,就能特别简单地实现按照本发明的半导体器件。这样的一种半导体器件可以在普通的生产线上大批量制造。对此必须做的仅只是要在该外壳之中安装完半导体主体之后再在外壳上装设,例如用清漆层或铸模树脂层做的覆盖元件,或者盖上用热塑性塑料做的预制盖板。也可以改用透明材料的外壳缺口,例如用透明塑料封填,这样特别不会改变来自半导体主体发射的光线的波长;如果愿意,还可以预先做成发光变换结构。The semiconductor device according to the invention can be realized particularly simply when the semiconductor body is arranged in a recess, or in a prefabricated housing, and the recess is covered with a cover coated with a luminescence conversion layer. . Such a semiconductor device can be mass-produced on an ordinary production line. All that has to be done for this is to install the semiconductor body in the housing and then install it on the housing, for example with a covering element made of a layer of varnish or molded resin, or covered with a prefabricated cover made of thermoplastic. It is also possible to use a gap in the shell of a transparent material, such as filling it with a transparent plastic, so that the wavelength of the light emitted from the semiconductor body will not be changed; if desired, a light-emitting conversion structure can also be made in advance.
出于特别容易实现的原因,特别优先选用的按照本发明的半导体器件的改进结构是将半导体主体设置在一个预制的或者业已装好引线框的外壳中,并且将外壳用至少部分透明的铸模树脂填满,在浇注缺口之前,预先掺入发光材料。由于使用掺有发光材料的浇注料来浇注半导体主体,就等具有发光变换元件的发光半导体器件优先选用的材料是掺有一种或多种发光材料的环氧树脂。也可以采用聚甲基丙烯酸甲酯(PMMA)取代环氧树脂。For reasons of particular ease of implementation, a particularly preferred modified structure of the semiconductor device according to the invention is that the semiconductor body is arranged in a prefabricated or leadframed housing, and the housing is molded with at least partially transparent molding resin. Filled, pre-doped with luminescent material before pouring the gap. Since the semiconductor body is casted with a potting material doped with luminescent materials, epoxy resin doped with one or more luminescent materials is preferably used as a material for light-emitting semiconductor devices with luminescence conversion elements. Polymethyl methacrylate (PMMA) can also be used instead of epoxy resin.
可以通过简单的方式在PMMA中掺入有机染料。要想制造发射绿色、黄色和红色的,按照本发明的半导体器件可以使用,例如以周萘烯(Perylen)为基的染料分子。还可以通过掺入4价金属有机化合物的方法来制造发射UV、可见光或红外光的半导体器件。特别是通过掺入Eu3+为基的金属有机螯合物(λ≈620nm)能够实现发射红光的、按照本发明的半导体器件。发射红光的、按照本发明的、特别是发射蓝光的半导体主体的半导体器件能够通过掺入4价蓝宝石的螯合物、或掺入预先掺有Ti+3的蓝宝石进行混合的方法制造。Organic dyes can be incorporated into PMMA in a simple manner. To produce green-, yellow- and red-emitting semiconductor devices according to the invention it is possible to use, for example, dye molecules based on perylen. Semiconductor devices that emit UV, visible light, or infrared light can also be manufactured by doping tetravalent metal organic compounds. Red-emitting semiconductor components according to the invention can be realized in particular by the incorporation of Eu 3+ -based metal-organic chelates (λ≈620 nm). Red-emitting semiconductor components according to the invention, in particular blue-emitting semiconductor bodies, can be produced by doping chelate complexes of 4-valent sapphire or by doping sapphire predoped with Ti +3 for mixing.
采用这样的一种方式有利于制造发射白色光的按照本发明的半导体主体,即通过适当选用发光材料将由半导体主体发射的蓝光变换成补偿色的波段,特别是蓝色及黄色波段或者变换成叠加三色光,例如蓝、绿、和红光。这样就能通过发光材料产生黄光,或者产生绿光和红光。由此产生的白色色调(CIE-色表中的色调)能够通过适当选用混合用的染料及其浓度加以改变。The manufacture of white light-emitting semiconductor bodies according to the invention is facilitated in such a way that the blue light emitted by the semiconductor body is converted into the wavelength bands of complementary colors, in particular the blue and yellow color bands, or into superimposed Three-color light, such as blue, green, and red light. This produces yellow light, or green and red light, through the luminescent material. The resulting white shade (hue in the CIE-color chart) can be varied by the appropriate selection of the dyes used for mixing and their concentrations.
适合于做发射白光的、按照本发明的半导体器件用的发光材料是,例如发绿光用的BASF Lumogen F 083、发黄光用的BASF LumogenF 240、发红光用的BASF Lumogen F 300一类的周萘烯发光材料。这些发光材料可以采用简单的方式掺入,例如透明树脂中。The luminescent materials suitable for emitting white light and according to the semiconductor device of the present invention are, for example, BASF Lumogen F 083 for green light, BASF Lumogen F 240 for yellow light, and BASF Lumogen F 300 for red light. Pericene luminescent material. These luminescent materials can be incorporated in a simple manner, for example into transparent resins.
一种利用发蓝光的半导体主体来制造发绿光的半导体器件的优先选用的方法是用硼硅酸盐玻璃置换发光变换元件中的UO2 ++。A preferred method of using a blue-emitting semiconductor body to produce a green-emitting semiconductor device is to replace the UO 2 ++ in the luminescence conversion element with borosilicate glass.
采用对于按照本发明的半导体器件以及对于上述有利的结构形式的结构进行改进的另一个优先选用的改进结构是在发光变换元件或者结构包壳的其他透射组件中另外掺入称之为扩散剂的光散射颗粒。通过这种办法能够有利于使半导体器件的着色性以及发射性达到最佳化。Another preferred modification of the structure of the semiconductor device according to the invention and of the above-mentioned advantageous structural forms is the additional doping of so-called diffusing agents in the luminescence conversion element or other transmissive components of the structural envelope. Light scattering particles. This approach can help to optimize the colorability and emissivity of the semiconductor device.
按照本发明的半导体器件的一种特别有利的结构形式在于在发光变换元件的至少一部分透明环氧树脂中掺入一种无机发光材料。最有利的方法也就是采用简单方法使无机发光材料与环氧树脂形成化合物。一种特别优先选用的、用来制造发白光的半导体器件的无机发光材料是磷YAG:Ce(Y3Al5O12:Ce3+)。这种发光材料能够采用特别简单的方法与在LED工艺中惯用的透明环氧树脂相混合。其他可以考虑作为发光材料用的有掺杂稀土元素的石榴石,如Y3Ga5O12:Ce3+、Y(Al,Ga)5O12:Ce3+、Y(Al,Ga)5O12:Tb3+以及掺有稀土元素的碱土金属的硫化物如SrS:Ce3+,Na,SrS:Ce3+,Cl,SrS:CeCl3,CaS:Ce3+和SrSe:Ce3+。A particularly advantageous embodiment of the semiconductor component according to the invention consists in the incorporation of a phosphor into at least part of the transparent epoxy resin of the luminescence conversion element. The most advantageous approach is also to compound the phosphor with epoxy resin in a simple manner. A particularly preferred phosphor for producing white-emitting semiconductor components is phosphorous YAG:Ce (Y 3 Al 5 O 12 :Ce 3+ ). Such phosphors can be mixed in a particularly simple manner with transparent epoxy resins customary in LED technology. Other garnets doped with rare earth elements that can be considered as luminescent materials, such as Y 3 Ga 5 O 12 :Ce 3+ , Y(Al,Ga) 5 O 12 :Ce 3+ , Y(Al,Ga) 5 O 12 :Tb 3+ and sulfides of alkaline earth metals doped with rare earth elements such as SrS:Ce 3+ , Na, SrS:Ce 3+ , Cl, SrS:CeCl 3 , CaS:Ce 3+ and SrSe:Ce 3+ .
此外,掺有稀土元素的硫代没食子酸盐,例如CaGa2S4:Ce3+,SrGa2S4:Ce3+特别适合于生成不同类型的混合色光。也可以考虑使用掺有稀土元素的铝酸盐,例如YAlO3:Ce3+,YGaO3:Ce3+,Y(Al,Ga)O3:Ce3+以及掺有稀土元素的正硅酸盐M2SiO5:Ce3+(M:Sc,Y,Sc)例如Y2SiO5Ce3+。所有钇的化合物原则上都可以用钪或镧替代。In addition, thiogallates doped with rare earth elements, such as CaGa 2 S 4 :Ce 3+ , SrGa 2 S 4 :Ce 3+ are particularly suitable for generating different types of mixed shades of light. Aluminates doped with rare earth elements can also be considered, such as YAlO 3 :Ce 3+ , YGaO 3 :Ce 3+ , Y(Al,Ga)O 3 :Ce 3+ and orthosilicates doped with rare earth elements M 2 SiO 5 :Ce 3+ (M:Sc, Y, Sc) such as Y 2 SiO 5 Ce 3+ . All yttrium compounds can in principle be replaced by scandium or lanthanum.
另外一个可用的按照本发明的半导体器件的结构形式是至少采用纯无机材料制成的包壳的发光组件,也就是说,是采用纯无机材料制成的发光变换包壳或发光变换层。因此,发光变换元件是用一种在对温度稳定的透明或部分透明的材料中掺入无机发光材料制成的。特别是用一种有利的方法在低熔融温度的无机玻璃(例如硅玻璃)中掺入一种无机磷制成的。制造这样的发光变换层的一种优先选用的方法是Sol-Gel-技术,采用这种工艺是将整个发光变换层,不仅是无机发光材料还有所掺的材料都可以在一道工序中进行。Another possible embodiment of the semiconductor component according to the invention is a luminous component with at least an envelope made of purely inorganic material, that is to say a luminescence conversion envelope or luminescence conversion layer made of purely inorganic material. The luminescence conversion element is thus produced with a temperature-stable transparent or partially transparent material doped with phosphors. In particular, it is made by doping an inorganic phosphorus in an inorganic glass with a low melting temperature (such as silica glass) in an advantageous manner. A preferred method of producing such a luminescence conversion layer is the Sol-Gel technology, with which the entire luminescence conversion layer, not only the phosphor but also the doped materials, can be carried out in one process step.
为了改善由半导体主体发射的第一波长段的射线与经过发光变换的第二波长段的射线的混合,以及发射光的色均匀性,要在按照本发明的半导体器件中采用有利措施,在发光包壳或发光变换层中和/或结构包壳的其他元件中另外掺入一种发蓝光的染料,借以降低由半导体主体发射射线的所称的取向特征。取向特征是指使半导体主体发射的射线呈现一种优先选用的发射方向。In order to improve the mixing of the radiation of the first wavelength range emitted by the semiconductor body and the radiation of the second wavelength range after the luminescence conversion, as well as the color uniformity of the emitted light, advantageous measures are adopted in the semiconductor device according to the invention. A blue-emitting dye is additionally incorporated into the envelope or the luminescence conversion layer and/or into other elements of the structural envelope in order to reduce the so-called orientation characteristic of the radiation emitted by the semiconductor body. Orientation is characterized by causing the radiation emitted by the semiconductor body to assume a preferred emission direction.
在按照本发明半导体器件的一个优先选用的一种措施中,采用有机发光材料粉末来达到上述目的,此时的发光材料不会在其周围的材料(基底)中溶解。另外,有机发光材料与其周围的材料的折射指数互不相同。这样就增加了一个有利之处,即未被发光材料吸收的光的部分不会受发光材料粒度的约制而产生散射。这样就会大大降低半导体主体发射射线的取向特征,从而使未被吸收的射线和经过发光变换的射线得以均匀混合,结果导致产生三维均匀色压。In a preferred embodiment of the semiconductor component according to the invention, the above-mentioned object is achieved by using powders of organic phosphors which do not dissolve in their surrounding material (substrate). In addition, the refractive index of the organic light-emitting material and its surrounding materials are different from each other. This adds an advantage that the part of the light not absorbed by the luminescent material will not be scattered due to the constraints of the particle size of the luminescent material. This greatly reduces the orientation characteristics of the radiation emitted by the semiconductor body, so that the non-absorbed radiation and the radiation transformed radiation can be mixed uniformly, resulting in a three-dimensional uniform color pressure.
由于制造发光变换包壳或发光变换层所用的环氧树脂与无机发光材料(Y3Al5O12:Ce3+)互相混合,所以一种发射白光的、按照本发明的半导体器件能以特别优选的方式实现。由半导体主体发射的蓝色射线的一部分被无机发光材料移位至黄色的光谱段,因而被推移到与蓝色互补的波长段。通过适当选择染料的混合浓度,可以改变白色光的色调(在CIE色表中的色位)。Due to the intermixing of the epoxy resin used for the manufacture of the luminescence conversion envelope or the luminescence conversion layer with the phosphor (Y 3 Al 5 O 12 :Ce 3+ ), a semiconductor device according to the invention which emits white light can be used in particular The preferred way to achieve. A part of the blue radiation emitted by the semiconductor body is shifted by the phosphor into the yellow spectral band and thus into a wavelength band complementary to blue. The hue (color position in the CIE color chart) of white light can be changed by proper selection of the mixing concentration of the dyes.
无机发光材料YAG:Ce还有另外的一个优点,即可以由此而成为一种折射指数在1.84左右的不溶性颜料(粒度在10μm以内)。这样除了波长发生变换之外还会产生一种散射效应,结果导致使发射蓝光的二极管的射线和经过变换发射的黄先进行良好的混合。Another advantage of the phosphor YAG:Ce is that it can become an insoluble pigment with a refractive index of about 1.84 (particle size within 10 μm). This produces, in addition to the wavelength conversion, a scattering effect which results in a good mixing of the radiation from the blue-emitting diode and the converted yellow emission.
在另一个按照本发明的半导体器件的优先选用的改进结构中,以及上述有利的制造形式中,向发光变换元件或结构包壳的其他的一个透过射线的构件另外增加掺有称为扩散剂的光散射颗粒。采用这样的办法,有利于色压和半导体器件发射性能的进一步最佳化。In another preferred development of the semiconductor device according to the invention, as well as in the above-mentioned advantageous form of manufacture, a further radiation-transparent component of the luminescence conversion element or of the structural envelope is additionally doped with a so-called diffusing agent light scattering particles. Adopting such a method is beneficial to the further optimization of the color pressure and the emission performance of the semiconductor device.
特好的优点在于,按照本发明发射白光的半导体器件及其上述结构形式的、主要以GaN为基制成的发蓝光的半导体主体的发光效率与一个白炽灯泡的发光效率有可比性。其原因在于,这种半导体主体的外部量子输出量只有百分之几,而另一方面有机染料分子的发光效率却经常在90%以上。除此以外,按照本发明的半导体器件与白炽灯泡相比,其使用寿命特长,非常结实,工作电压较小。A particularly advantageous advantage is that the luminous efficiency of the white-emitting semiconductor component according to the invention and its blue-emitting semiconductor body of the above-described design, which is mainly based on GaN, is comparable to that of an incandescent light bulb. The reason is that the external quantum output of this semiconductor body is only a few percent, while the luminous efficiency of organic dye molecules is often above 90%. In addition, the semiconductor device according to the invention has a particularly long service life, is very robust, and has a lower operating voltage than an incandescent bulb.
另外的有利之处在于,由于肉眼的灵敏度随着波长的增大而增高,所以人眼对于按照本发明的半导体器件亮度的分辨能力与对于未装发光变换元件的相比,纵然同样都装有半导体器件,但对于前者却能够明显提高。Another advantage is that since the sensitivity of the naked eye increases with the increase of the wavelength, the human eye's resolution ability for the brightness of the semiconductor device of the present invention is compared with that of the non-luminous conversion element, even if it is equipped with the same semiconductor devices, but it can be significantly improved for the former.
另外,按照本发明原理的有利之处还在于当一个半导体主体除了发射紫外射线以外还可改成发射可见光。因此会使半导体主体发射的光的亮度明显提高。Additionally, it is advantageous in accordance with the principles of the present invention when a semiconductor body can be modified to emit visible light in addition to ultraviolet radiation. The brightness of the light emitted by the semiconductor body is thus significantly increased.
此处所说通过发光变换使半导体主体发射蓝光的概念还可以有利于利用多级发光变换元件按照紫外→蓝→绿→黄→红的顺序加以扩展。此时,要在半导体主体后面按照先后顺序设置对多种光谱选择发射的发光变换元件。The concept of making the semiconductor body emit blue light through luminescence conversion can also be extended by using multi-level luminescence conversion elements in the order of ultraviolet → blue → green → yellow → red. In this case, the luminescence conversion elements for selective emission of various spectrums should be arranged sequentially behind the semiconductor body.
还可以采用有利的方式将多种不同的光谱选择发射的染料分子一并掺入发光变换元件的透明塑料之中。这样就能够产生很宽的色光谱。It is also advantageously possible to incorporate several different spectrally selective emitting dye molecules together into the transparent plastic of the luminescence conversion element. This enables a wide color spectrum to be produced.
专门使用YAG:Ce作发光变换染料的、按照本发明发射白光的半导体器件的特殊优点在于,这种发光材料受到蓝光激发会在光谱的吸收和发射之间产生大约100nm的推移。这会导致大大降低对于发光材料所发射的光的反吸收,结果导致发光效率的提高。另外,YAG:Ce具有有利的热和光化学的(例如UV-的)高稳定性(主要是高于有机发光材料),所以适合于制造在户外和在高温段使用的发白光的二极管。A particular advantage of white-emitting semiconductor components according to the invention using exclusively YAG:Ce as luminescence-converting dye is that excitation of this luminescent material by blue light produces a shift of approximately 100 nm between absorption and emission of the spectrum. This leads to a greatly reduced back-absorption of the light emitted by the luminescent material, resulting in an increase in luminous efficiency. In addition, YAG:Ce has favorable thermal and photochemical (such as UV-) high stability (mainly higher than organic light-emitting materials), so it is suitable for manufacturing white light-emitting diodes used outdoors and in high-temperature ranges.
迄今为止,YAG:Ce在反吸收、光效率、光化学稳定性以及制造加工方面显然是一种最适用的发光材料。并且据认为还可以用于在掺有Ce的磷、特别是掺有Ce的石榴石中使用。So far, YAG:Ce is clearly one of the most suitable luminescent materials in terms of anti-absorption, light efficiency, photochemical stability, and fabrication and processing. And it is considered that it can also be used in Ce-doped phosphorus, especially Ce-doped garnet.
按照本发明特别有利的是在于特别适合于全色LED显示的功率消耗小、适合于在Kfz车内或飞机舱内照明、以及在Kfz仪表盘等的显示装置或者液晶显示的照明中使用。It is particularly advantageous according to the present invention that it is particularly suitable for full-color LED display with low power consumption, suitable for lighting in Kfz cars or aircraft cabins, and used in display devices such as Kfz instrument panels or in the lighting of liquid crystal displays.
附图说明Description of drawings
按照本发明的其他特征、优点和实用性参见以下9个实施例结合图1至14的说明。For further features, advantages and practicalities according to the present invention, please refer to the description of the following nine embodiments in conjunction with FIGS. 1 to 14 .
图1是按照本发明的半导体器件第一实施例的示意剖面图;1 is a schematic cross-sectional view of a first embodiment of a semiconductor device according to the present invention;
图2是按照本发明的半导体器件第二实施例的示意剖面图;2 is a schematic cross-sectional view of a second embodiment of a semiconductor device according to the present invention;
图3是按照本发明的半导体器件第三实施例的示意剖面图;3 is a schematic cross-sectional view of a third embodiment of a semiconductor device according to the present invention;
图4是按照本发明的半导体器件第四实施例的示意剖面图;4 is a schematic cross-sectional view of a fourth embodiment of a semiconductor device according to the present invention;
图5是按照本发明的半导体器件第五实施例的示意剖面图;5 is a schematic cross-sectional view of a fifth embodiment of a semiconductor device according to the present invention;
图6是按照本发明的半导体器件第六实施例的示意剖面图;6 is a schematic cross-sectional view of a sixth embodiment of a semiconductor device according to the present invention;
图7是具有以GaN为基的一个多层结构的一个发射蓝光的半导体主体的发射光谱示意图;7 is a schematic diagram of the emission spectrum of a blue-emitting semiconductor body having a GaN-based multilayer structure;
图8是按照本发明的两个发射白光的半导体器件的发射光谱示意图;8 is a schematic diagram of emission spectra of two semiconductor devices emitting white light according to the present invention;
图9是发射蓝光的半导体主体的剖面示意图;9 is a schematic cross-sectional view of a semiconductor body emitting blue light;
图10是按照本发明的半导体器件第七实施例的示意剖面图;10 is a schematic cross-sectional view of a seventh embodiment of a semiconductor device according to the present invention;
图11是发射混合红光的按照本发明的半导体器件的发射光谱示意图;Figure 11 is a schematic diagram of the emission spectrum of a semiconductor device emitting mixed red light according to the present invention;
图12是发射白光的按照本发明其他的半导体器件的发射光谱示意图;12 is a schematic diagram of emission spectra of other semiconductor devices emitting white light according to the present invention;
图13是按照本发明的半导体器件第八实施例的示意剖面图;13 is a schematic cross-sectional view of an eighth embodiment of a semiconductor device according to the present invention;
图14是按照本发明的半导体器件第九实施例的示意剖面图。Fig. 14 is a schematic sectional view of a ninth embodiment of a semiconductor device according to the present invention.
在各图中的同样或起同样作用的部分都标以同样的标号。Parts that are the same or have the same effect in each figure are marked with the same reference numerals.
具体实施方式Detailed ways
图1所示的发光半导体器件具有一个半导体主体1、一个背面接触件11、一个正面接触件12和一个由不同的叠层叠置成的多层结构7,其中还有一个在半导体器件工作状态中发射至少一种射线(例如紫外、蓝或绿)的有源区。The light-emitting semiconductor device shown in FIG. 1 has a semiconductor body 1, a rear contact 11, a front contact 12 and a
图9所示是适合于作为这种元件以及所有在以后介绍的实施例中的元件的一种多层结构7的示例。图中,在用SiC制成的基片18上设置一层涂有AlN-或者GaN-层19、一层n-导通的GaN-层20、一层n-导通的GaxAl1-xN-或者GaxIn1-xN-层21、一个另外的n-导通的GaN-或者一层GaxIn1-xN-层22、一层p-导通的GaxAl1-xN-层或者GaxIn1-xN-层23和一层p-导通的GaN-层24的多层结构。在GaN-层24的一个主表面25上,以及在基片18的一个主表面26上分别设置一个金属接触件27,28,这是采用在惯用的发光半导体技术的导电接触件中所用的材料制成的。FIG. 9 shows an example of a
也可以采用根据其他技术人员认为是适合的其他半导体主体作为按照本发明的半导体器件使用。这同样适用于以下所述所有的实施例。Other semiconductor bodies may also be used as semiconductor components according to the invention which are considered suitable by other persons skilled in the art. The same applies to all the embodiments described below.
在图1的实施例中,半导体主体采用一种导电粘接剂,例如一种金属焊料或者粘接材料将其底面接触件11固定在第一导电引线2上。正面接触件12采用一条粘结金属丝14与一个第二导电引线3连接。In the embodiment of FIG. 1 , the semiconductor body uses a conductive adhesive, such as a metal solder or an adhesive material, to fix its bottom contact 11 on the first
将半导体主体1未占用的表面和导电引线2及3的一部分线段直接用一种发光变换包壳5包住。这种包壳是优先选用一种在透明发光二极管中使用的掺有发光材料6的、优先选用掺有有机发光材料的透明塑料(优先选用是环氧树脂或者也可以用聚甲基丙烯酸甲酯)制成的;发白光的器件优先选用Y3Al5O12:Ce3+(YAG:Ce)掺和。The unoccupied surface of the semiconductor body 1 and part of the
在图2中所示的一个按照本发明半导体构件的实施例与图1的不同之处在于,半导体主体1和导电引线2及3的部分线段不是用一种发光变换材料、而是用一种透明包壳15包住。这种包壳不会使半导体主体1发射的射线波长发生变化;是用一种,例如在发光二极管工艺中惯用的环氧树脂、或丙烯酸酯树脂、或另一种能够透光的材料,例如无机玻璃制成的。An embodiment of a semiconductor component according to the invention shown in FIG. 2 differs from FIG. 1 in that the semiconductor body 1 and the partial line segments of the conductor leads 2 and 3 are not made of a luminescence conversion material but of a
在这种透明的包壳15上涂布一层发光变换层4,如图2所示,将包壳15的整个表面包住,也可以用发光变换层4仅只包住这个表面的一部分。发光变换层4仍然是用,例如由一种掺有发光材料6的透明塑料(例如环氧树脂,清漆或甲基丙烯酸甲酯)制成的。这样发白光的半导体器件也是优先选用YAG:Ce作为发光材料。Coat one deck
这个实施例特有的优点在于,由半导体主体发射的射线穿过发光变换元件的路径长度大体相等。正像经常发生的那样,当由半导体器件发射的光的精确色调要取决于该路径的长度时,这个长度就会起到特别重要的作用。A particular advantage of this embodiment is that the path lengths of the radiation emitted by the semiconductor body through the luminescence conversion element are approximately equal. This length plays a particularly important role when, as often happens, the exact hue of the light emitted by the semiconductor device depends on the length of this path.
为了改善图2中的发光变换层4所发出的光的输出耦合,可以在该器件的一个侧面上设置一个透镜状的覆盖体29(用虚线表示),用来衰减发射光在发光变换层4内部的全反射。这个透镜状的覆盖体29可以用透明塑料或玻璃制造,然后,例如粘结在发光变换层4上,或者直接制成作为发光变换层4的构件的整体结构。In order to improve the outcoupling of the light emitted by the
在图3所示的实施例中,第一和第二引线2、3是预埋在透光的或者预制的、开出一个缺口9的基座8中。所谓“预制”是指,在将半导体主体安装在引线2上之前采用,例如注塑法预先将底座8连接在引线2,3上形成的成品结构。底座8是,例如由一种透光的塑料制成的,缺口9是按照其形状作成在半导体主体工作期间用来反射所发射的射线之用的反射镜(有时候通过缺口9内壁上的合适涂层)。这样的底座8是作为对于安装在其上面的发光二极管的导电板之用的。在安装半导体主体之前是采用,例如注塑法将底座装设在导电引线2、3的导电带(引线框)上。In the embodiment shown in FIG. 3 , the first and
缺口9是用与一层发光变换层4分开单独制造、并且固定在底座8上的塑料制的盖板17盖住。适合做发光变换层4的材料仍然是在以上说明的通论部分中的所列的、掺有在该文中所列有关发光材料的塑料或无机玻璃。该缺口9既可以用一种塑料、用一种无机玻璃或者用气体充填,也可以抽成真空。The notch 9 is covered by a cover plate 17 made of plastic that is manufactured separately from the
正像图2中的实施例那样,为了改善来自发光变换层4的光耦合,此处也可以在其上方设置一个透镜状的覆盖体29(用虚线表示),用来衰减在发光变换层4发射的光的全反射。这种覆盖体可以用透明塑料制造,粘在,例如发光变换层4的上面,或者和发光变换层4共同作成一个整体结构。Just like the embodiment in FIG. 2 , in order to improve the light coupling from the
如图10所示,在一种特别优先选用的制造形式中,缺口9用一种含有发光材料的环氧树脂、也就是说是用一种发光包壳5充填,形成发光变换元件的结构。在此情况下就可以省却一个盖板17和/或一个透镜状的覆盖体29。此外,还有如图13所示的另一种办法,例如将第一导电引线2通过冲压在半导体主体1的范围以内作成一个反光镜34的结构,中间用一种发光变换包壳5充填。As shown in FIG. 10, in a particularly preferred manufacturing form, the gap 9 is filled with an epoxy resin containing a luminescent material, that is to say with a luminescent envelope 5, to form the structure of the luminescence conversion element. In this case, a cover plate 17 and/or a lenticular covering 29 can be omitted. In addition, there is another method as shown in FIG. 13 , for example, the first
图4所示是一种称为径向二极管的另一种制造方法的示例。图中,半导体主体1是通过,例如焊接或粘结的方法,固定在用第一导电引线2作成的一种反光镜结构部件16之中。这种外壳形状的结构是在发光二极管工艺中惯用的形状,所以在此处不再作详细说明。Figure 4 shows an example of an alternative fabrication method known as a radial diode. In the figure, the semiconductor body 1 is fixed in a
在图4的实施例中的半导体主体1是用一种透明包壳15包住,正如在上述第二实施例(图2)所示,不会使半导体主体1发射的射线的波长发生变化,可以采用,例如在发光二极管工艺中惯用的透明环氧树脂或玻璃制造。The semiconductor body 1 in the embodiment of Fig. 4 is surrounded by a kind of
在这种透明的包壳15上面涂布一层发光变换层4。为此所用的材料仍然可以是在以上所述的实施例中采用的塑料或无机玻璃,再加上在该处所列的有关染料。A
由半导体主体1、一部分导电引线2,3、透明包壳15和发光变换层4构成的整个结构直接用另一种透明包壳10包住。不会使透过发光变换层4发射的射线的波长发生变化。这种包壳仍然是,例如采用在发光二极管工艺中惯用的透明环氧树脂或者无机玻璃制成的。The entire structure consisting of the semiconductor body 1 , parts of the conductor leads 2 , 3 , the
图5所示的实施例与图4中的主要不同之处在于,半导体主体1的未占用表面直接用一个发光变换包壳5包住,然后再用另一种透明包壳10包住。在图5中,还作为示例绘出一个半导体主体1,其中不用下沿作接触件、而是改用半导体多层结构7的另一个接触面作接触件,后者利用一条第二连接金属线14与其所属的导电引线2或3连接。不言而喻,也可以用本文介绍的其他实施例取代这样的半导体主体1。反之,当然也可以将图5中的实施例在前述实施例中使用。The embodiment shown in FIG. 5 differs substantially from that in FIG. 4 in that the unoccupied surface of the semiconductor body 1 is directly surrounded by a luminescence conversion envelope 5 and then by another
还要在此处对于这种不言而喻的情况加以解释,也可以将图5所用的结构形状比拟图1实施例的办法制成一个整体发光变换包壳5,从而取代将发光变换包壳5与另一个透明包壳10结合使用的办法。It is also necessary to explain this self-evident situation here. It is also possible to compare the structural shape used in FIG. 5 with the method of the embodiment in FIG. 5 is used in combination with another
在图6的实施例中,直接在半导体主体1上涂布一层发光变换层4(可用以上所列的材料)。该半导体主体1和一部分导电引线2,3用另一种透明包壳10包住,不会使透过发光变换层4发射的射线的波长发生变化。这种包壳仍然是,例如采用在发光二极管工艺中惯用的透明环氧树脂或者无机玻璃制成的。In the embodiment of FIG. 6 , a layer of luminescence conversion layer 4 (the materials listed above can be used) is coated directly on the semiconductor body 1 . The semiconductor body 1 and some
像这样具有一层发光变换层4、但没有包壳的半导体主体1当然还有利于完全采用在半导体工艺中惯用的外壳形状(例如SMD外壳、径向外壳(请参阅图5))。Such a semiconductor body 1 with a
在图14中所示的实施例是按照本发明的一个半导体器件,在半导体主体1上设置一个透明的槽形部件35,这就是在半导体主体1外面的一个包槽36。槽状部件35,例如是用透明环氧树脂或者无机玻璃制成的,并且,例如采用注塑法,将导电引线2,3连同半导体主体1包封在一起制成的。在这样的包槽36中,包含涂有一层仍然是用环氧树脂或无机玻璃制成的发光变换层4,其中掺有以上所列的无机发光材料颗粒37。采用这种结构的有利条件在于,能以保证结构非常简单,在半导体器件的制造过程中发光材料不会聚集在预先未曾考虑到的,例如在半导体主体附近的部位。槽状部件35当然也可以另行单独制造,也可以改用,例如罩在半导体主体1上的办法固定在一个外壳构件上。The embodiment shown in FIG. 14 is a semiconductor component according to the invention, on which a transparent groove-shaped part 35 is arranged on the semiconductor body 1 , which is a groove 36 outside the semiconductor body 1 . The trough part 35 is made, for example, of transparent epoxy resin or inorganic glass, and is made by encapsulating the conductive leads 2 , 3 together with the semiconductor body 1 , for example by means of injection molding. In such a pocket 36 there is contained a
在所有以上介绍的实施例中,为了使颜色介入发射光的程度达到最佳化,为了使其与发光变换元件(发光变换包壳5或发光变换层4)相适配,有时要在透明包壳15、和/或透明包壳10中掺入光散射颗粒,最为有利的是掺入扩散剂。作为这样的扩散剂的示例是矿物性的填充剂,特别是CaF2、TiO2、SiO2、CaCO3或BaSO4,或者也可以用有机颜料。这些物料可以采用简单的方法掺入上述的塑料之中。In all the above-described embodiments, in order to optimize the degree of color intervening in the emitted light, in order to make it suitable for the luminescence conversion element (luminescence conversion envelope 5 or luminescence conversion layer 4), it is sometimes necessary The
图7、8和12所示是半导体主体发射的一种蓝光的发射光谱(图7)(发光最大值在λ=430nm)或者采用一种这样的半导体主体制成的发白光的、按照本发明的半导体器件(图8及图12)的发射光谱。在横坐标上分别以nm为单位标注波长λ;在纵坐标上分别标注一种相对的电致发光(EL)强度。Figures 7, 8 and 12 show the emission spectrum (Fig. 7) of a blue light emitted by a semiconductor body (luminescence maximum at λ=430nm) or a white light emission made of such a semiconductor body, according to the invention The emission spectrum of the semiconductor device (Figure 8 and Figure 12). On the abscissa, the wavelength λ is marked in nm, respectively; on the ordinate, a relative electroluminescence (EL) intensity is marked respectively.
图7所示由半导体主体发射的射线仅只有一部分被变换成为波长较长的波长段,从而产生混合色的白光。在图8中以虚线表示的曲线30是按照本发明的一种半导体器件的发射光谱,这种射线是由两种辅助波长段(蓝和黄)形成的,总体发射的是白光。图中的光谱在大约400和430nm之间(蓝)以及在大约550和580nm之间(黄)分别出现一个最大值。整条曲线31表示一个按照本发明的半导体器件的发射光谱,白色是由三种波长段(由蓝、绿、红构成的叠加三色)混合而成的。图中的发射光谱例如在430nm左右(蓝)、500nm左右(绿)和615nm左右(红)处分别有一个最大值。The radiation emitted by the semiconductor body shown in FIG. 7 is only partially converted into a longer wavelength range, so that mixed-color white light is produced.
另外在图11中示出发射由蓝光(一种波长的最大值在大约470nm)和红光(一种波长的最大值在620nm左右)构成的混合光的按照本发明的半导体器件的发射光谱。发射光对人眼的总色压为品红色。此处由半导体主体发射的发射光谱仍然相当于图7所示。Furthermore, FIG. 11 shows the emission spectrum of a semiconductor component according to the invention which emits a mixed light consisting of blue light (a wavelength with a maximum of about 470 nm) and red light (a wavelength with a maximum of about 620 nm). The total color pressure of the emitted light to the human eye is magenta. Here again the emission spectrum emitted by the semiconductor body corresponds to that shown in FIG. 7 .
图12所示是一个发白光的、按照本发明的半导体器件,具备发射图7所示发射光谱的半导体主体,其中所用的发光材料是YAG:Ce。在半导体主体发射的射线中,只有一小部分被变换成波长较长的波长段,因而产生混合白光。图8中用不同虚线绘制的曲线31至33是表示按照本发明的半导体器件的发射光谱。发光变换元件,其中的发光变换元件是用环氧树脂制成的,含有不同浓度的YAG:Ce。每个发射光谱分别在蓝色光谱段的λ=420nm和λ=430之间、在绿色光谱段的λ=520和λ=545之间出现一个强度最大值,其中含有一个较长波长的强度最大值的发射波段的一大部分都处于黄色光谱段。由图12曲线中明显可见,采用按照本发明的半导体器件只要简单地通过改变环氧树脂中的发光材料的浓度,就能够改变白光中的CIE-色位。FIG. 12 shows a white-emitting semiconductor device according to the invention with a semiconductor body emitting the emission spectrum shown in FIG. 7, wherein the luminescent material used is YAG:Ce. Of the radiation emitted by the semiconductor body, only a small fraction is converted into the longer wavelength range, thus producing mixed white light.
另外,还可以将掺有Ce的石榴石、硫代没食子酸、碱土金属-硫化物铝酸盐直接涂在半导体主体上,不必将其分散在环氧树脂或玻璃中。Alternatively, Ce-doped garnet, thiogallic acid, and alkaline earth metal-sulfide aluminates can be directly coated on semiconductor hosts without having to disperse them in epoxy or glass.
上述无机发光材料的另外的一个特殊优点在于,发光材料在例如环氧树脂中的浓度不会像有机发光材料那样要受溶解度的约制。因而不需要用很厚的发光变换元件。A further special advantage of the above-mentioned phosphors is that the concentration of the phosphors in, for example, epoxy resins is not subject to solubility constraints as is the case with organic phosphors. Therefore, it is not necessary to use a very thick luminescence conversion element.
借助上述实施例对于按照本发明半导体器件的说明当然不会将按照本发明局限在这些实施例上。在示例中是以发光二极管芯片或激光二极管芯片作为半导体主体的示例,还可以理解为,例如是一个发射相应光谱的聚合物LED。The description of the semiconductor component according to the invention with the aid of the above exemplary embodiments does not, of course, limit the invention to these exemplary embodiments. In the example, a light-emitting diode chip or a laser diode chip is used as an example of the semiconductor body, which can also be understood as, for example, a polymer LED emitting a corresponding spectrum.
Claims (32)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19625622.4 | 1996-06-26 | ||
DE19625622A DE19625622A1 (en) | 1996-06-26 | 1996-06-26 | Light radiating semiconductor constructional element |
DE19638667.5 | 1996-09-20 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100917280A Division CN100565945C (en) | 1996-06-26 | 1997-06-26 | The semiconductor chip of divergent-ray and comprise the device of this semiconductor chip |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1983651A true CN1983651A (en) | 2007-06-20 |
CN100557833C CN100557833C (en) | 2009-11-04 |
Family
ID=7798103
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100917280A Expired - Lifetime CN100565945C (en) | 1996-06-26 | 1997-06-26 | The semiconductor chip of divergent-ray and comprise the device of this semiconductor chip |
CNB2006100999783A Expired - Lifetime CN100557833C (en) | 1996-06-26 | 1997-06-26 | Light-emitting semiconductor device and device including the light-emitting semiconductor device |
CN200610101629.0A Expired - Lifetime CN1893136B (en) | 1996-06-26 | 1997-06-26 | Light radiating semiconductor device and arrangement containing same |
CNB2006101016572A Expired - Lifetime CN100502066C (en) | 1996-06-26 | 1997-06-26 | Light-emitting semiconductor device with light-emitting conversion element |
CNB2006100999800A Expired - Lifetime CN100514684C (en) | 1996-06-26 | 1997-06-26 | Light-emitting semiconductor device and device containing the same |
CN200610101860XA Expired - Lifetime CN1917240B (en) | 1996-06-26 | 1997-06-26 | Light-emitting semiconductor component with luminescence conversion element |
CNB2006101016500A Expired - Lifetime CN100435369C (en) | 1996-06-26 | 1997-06-26 | Light-emitting semiconductor device with light-emitting conversion element |
CNB2005100917295A Expired - Lifetime CN100442555C (en) | 1996-06-26 | 1997-06-26 | Radiation-emitting semiconductor device and device containing the semiconductor device |
CNB2005100917308A Expired - Lifetime CN100433382C (en) | 1996-06-26 | 1997-06-26 | Single covering element for semiconductor device outer case and apparatus containing the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100917280A Expired - Lifetime CN100565945C (en) | 1996-06-26 | 1997-06-26 | The semiconductor chip of divergent-ray and comprise the device of this semiconductor chip |
Family Applications After (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200610101629.0A Expired - Lifetime CN1893136B (en) | 1996-06-26 | 1997-06-26 | Light radiating semiconductor device and arrangement containing same |
CNB2006101016572A Expired - Lifetime CN100502066C (en) | 1996-06-26 | 1997-06-26 | Light-emitting semiconductor device with light-emitting conversion element |
CNB2006100999800A Expired - Lifetime CN100514684C (en) | 1996-06-26 | 1997-06-26 | Light-emitting semiconductor device and device containing the same |
CN200610101860XA Expired - Lifetime CN1917240B (en) | 1996-06-26 | 1997-06-26 | Light-emitting semiconductor component with luminescence conversion element |
CNB2006101016500A Expired - Lifetime CN100435369C (en) | 1996-06-26 | 1997-06-26 | Light-emitting semiconductor device with light-emitting conversion element |
CNB2005100917295A Expired - Lifetime CN100442555C (en) | 1996-06-26 | 1997-06-26 | Radiation-emitting semiconductor device and device containing the semiconductor device |
CNB2005100917308A Expired - Lifetime CN100433382C (en) | 1996-06-26 | 1997-06-26 | Single covering element for semiconductor device outer case and apparatus containing the same |
Country Status (2)
Country | Link |
---|---|
CN (9) | CN100565945C (en) |
DE (1) | DE19625622A1 (en) |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19638667C2 (en) | 1996-09-20 | 2001-05-17 | Osram Opto Semiconductors Gmbh | Mixed-color light-emitting semiconductor component with luminescence conversion element |
KR20050053798A (en) | 1996-06-26 | 2005-06-08 | 오스람 게젤샤프트 미트 베쉬랭크터 하프퉁 | Light-emitting semiconductor component with luminescence conversion element |
DE19803936A1 (en) * | 1998-01-30 | 1999-08-05 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Expansion-compensated optoelectronic semiconductor component, in particular UV-emitting light-emitting diode and method for its production |
DE19829197C2 (en) | 1998-06-30 | 2002-06-20 | Siemens Ag | Component emitting and / or receiving radiation |
DE19836943B9 (en) * | 1998-08-17 | 2008-01-31 | Osram Opto Semiconductors Gmbh | Photoluminescent layer in the optical and adjacent spectral regions |
US6204523B1 (en) | 1998-11-06 | 2001-03-20 | Lumileds Lighting, U.S., Llc | High stability optical encapsulation and packaging for light-emitting diodes in the green, blue, and near UV range |
DE19934126A1 (en) * | 1999-07-23 | 2001-01-25 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Fluorescent oxide for forming white LEDs, includes cerium-activated garnet-based oxide with terbium addition |
ATE301802T1 (en) † | 1999-11-18 | 2005-08-15 | Color Kinetics | SYSTEMS AND METHODS FOR GENERATING AND MODULATING LIGHTING CONDITIONS |
KR100748815B1 (en) * | 2000-02-09 | 2007-08-13 | 니폰 라이츠 가부시키가이샤 | Light source device |
JP4709458B2 (en) | 2000-02-23 | 2011-06-22 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Photoluminescence layer and method for forming the same |
DE10032453A1 (en) * | 2000-07-04 | 2002-01-24 | Vishay Semiconductor Gmbh | Radiation emitting component used for producing white light has pigments of one or more luminescent dyes arranged in and/or on a glass housing |
DE10109349B4 (en) * | 2001-02-27 | 2012-04-19 | Osram Opto Semiconductors Gmbh | Radiation-emitting semiconductor component |
DE10112542B9 (en) * | 2001-03-15 | 2013-01-03 | Osram Opto Semiconductors Gmbh | Radiation-emitting optical component |
US6841802B2 (en) | 2002-06-26 | 2005-01-11 | Oriol, Inc. | Thin film light emitting diode |
US7554258B2 (en) | 2002-10-22 | 2009-06-30 | Osram Opto Semiconductors Gmbh | Light source having an LED and a luminescence conversion body and method for producing the luminescence conversion body |
KR20110025236A (en) | 2002-12-25 | 2011-03-09 | 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 | Light emitting device device, light receiving device device, optical device, fluoride crystal, method for producing fluoride crystal and crucible |
DE10261908B4 (en) * | 2002-12-27 | 2010-12-30 | Osa Opto Light Gmbh | Method for producing a conversion light-emitting element based on semiconductor light sources |
DE10305093A1 (en) * | 2003-02-07 | 2004-08-19 | BSH Bosch und Siemens Hausgeräte GmbH | Method and device for determining and monitoring contamination states of different liquids |
US7777235B2 (en) | 2003-05-05 | 2010-08-17 | Lighting Science Group Corporation | Light emitting diodes with improved light collimation |
US7633093B2 (en) | 2003-05-05 | 2009-12-15 | Lighting Science Group Corporation | Method of making optical light engines with elevated LEDs and resulting product |
US7157745B2 (en) | 2004-04-09 | 2007-01-02 | Blonder Greg E | Illumination devices comprising white light emitting diodes and diode arrays and method and apparatus for making them |
US7528421B2 (en) | 2003-05-05 | 2009-05-05 | Lamina Lighting, Inc. | Surface mountable light emitting diode assemblies packaged for high temperature operation |
JP2007511065A (en) * | 2003-11-04 | 2007-04-26 | 松下電器産業株式会社 | Semiconductor light emitting device, lighting module, lighting device, and method of manufacturing semiconductor light emitting device |
DE102005020695B4 (en) * | 2004-04-30 | 2006-06-22 | Optotransmitter-Umweltschutz-Technologie E.V. | Radiation emitting device with variable spectral properties, superimposes beams from luminescent dyes with different absorption spectra excited by LEDs with different emission spectra |
DE102004042461A1 (en) | 2004-08-31 | 2006-03-30 | Novaled Gmbh | Top-emitting, electroluminescent device with frequency conversion centers |
EP1808909A1 (en) | 2006-01-11 | 2007-07-18 | Novaled AG | Electroluminescent light-emitting device |
DE102006015115A1 (en) * | 2006-03-31 | 2007-10-04 | Osram Opto Semiconductors Gmbh | Electronic module, has units and body covered with electrical insulating layer, where units have surfaces that are electrically conductive and connected by one unit with contact area of body and by path structure |
DE102007002003B4 (en) * | 2007-01-08 | 2013-11-21 | Johnson Controls Automotive Electronics Gmbh | Indicating instrument, in particular for a motor vehicle, and method for producing a display instrument |
DE102007057710B4 (en) * | 2007-09-28 | 2024-03-14 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Radiation-emitting component with conversion element |
DE102008006988A1 (en) | 2008-01-31 | 2009-08-06 | Osram Opto Semiconductors Gmbh | Optoelectronic component and method for producing an optoelectronic component |
DE102008026841A1 (en) * | 2008-02-22 | 2009-08-27 | Osram Opto Semiconductors Gmbh | Optoelectronic component |
DE102008020882A1 (en) * | 2008-04-25 | 2009-10-29 | Ledon Lighting Jennersdorf Gmbh | Light emitting device, has inhomogeneous light source and wavelength converting element positioned in relation to each other such that pre-defined optical characteristics of light is achieved by device |
DE102008025756B4 (en) | 2008-05-29 | 2023-02-23 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | semiconductor device |
US7868340B2 (en) | 2008-05-30 | 2011-01-11 | Bridgelux, Inc. | Method and apparatus for generating white light from solid state light emitting devices |
DE102008045882A1 (en) * | 2008-09-04 | 2010-03-11 | Esw Gmbh | Dummy exploding |
DE102008057720B4 (en) * | 2008-11-17 | 2024-10-31 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | radiation-emitting device |
KR100996446B1 (en) * | 2010-05-24 | 2010-11-25 | 엘지이노텍 주식회사 | Light emitting device, method for fabricating the light emitting device and light emitting device package |
DE102010026343A1 (en) * | 2010-07-07 | 2012-03-29 | Osram Opto Semiconductors Gmbh | Component and method for manufacturing a device |
DE102010047156A1 (en) * | 2010-09-30 | 2012-04-05 | Osram Opto Semiconductors Gmbh | Optoelectronic component and method for producing an optoelectronic component |
DE102011003969B4 (en) * | 2011-02-11 | 2023-03-09 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Process for producing an optoelectronic component |
DE102011001928A1 (en) * | 2011-04-08 | 2012-10-11 | Lumitech Produktion Und Entwicklung Gmbh | Color conversion element and lamp |
DE102011101052A1 (en) | 2011-05-09 | 2012-11-15 | Heraeus Materials Technology Gmbh & Co. Kg | Substrate with electrically neutral region |
DE102011078906A1 (en) * | 2011-07-11 | 2013-01-17 | Osram Opto Semiconductors Gmbh | METHOD FOR PRODUCING AN OPTOELECTRONIC SEMICONDUCTOR COMPONENT BY MEANS OF SPRAYING |
CN103764788B (en) * | 2011-08-04 | 2016-04-20 | 皇家飞利浦有限公司 | Photoconverter and the lighting unit comprising such photoconverter |
CN103511995B (en) * | 2012-06-29 | 2016-04-20 | 展晶科技(深圳)有限公司 | Light-emitting diode light bar |
TWI626395B (en) * | 2013-06-11 | 2018-06-11 | 晶元光電股份有限公司 | Illuminating device |
JP6323650B2 (en) * | 2013-12-20 | 2018-05-16 | セイコーエプソン株式会社 | Surface emitting laser and atomic oscillator |
DE102014117764A1 (en) * | 2014-12-03 | 2016-06-09 | Osram Opto Semiconductors Gmbh | Radiation-emitting optoelectronic semiconductor component and method for its production |
KR102451208B1 (en) * | 2015-02-04 | 2022-10-06 | 메르크 파텐트 게엠베하 | Electro-Optical Switching Elements and Display Devices |
DE102018121324A1 (en) * | 2018-08-31 | 2020-03-05 | Osram Opto Semiconductors Gmbh | Sol gels as binders for the production of conversion elements |
CN111312881A (en) * | 2020-02-27 | 2020-06-19 | 盐城东山精密制造有限公司 | A kind of integral molding LED device and its manufacturing method |
DE102020206897A1 (en) | 2020-06-03 | 2021-12-09 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | OPTOELECTRONIC COMPONENT AND METHOD FOR MANUFACTURING AN OPTOELECTRONIC COMPONENT |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3316109A (en) * | 1963-03-11 | 1967-04-25 | Westinghouse Electric Corp | Coating composition |
US3440471A (en) * | 1966-03-16 | 1969-04-22 | Gen Telephone & Elect | Electroluminescent cell matrix material of improved stability |
JPS48102585A (en) * | 1972-04-04 | 1973-12-22 | ||
US3774086A (en) * | 1972-09-25 | 1973-11-20 | Gen Electric | Solid state lamp having visible-emitting phosphor at edge of infrated-emitting element |
US4599537A (en) * | 1982-04-30 | 1986-07-08 | Shigeaki Yamashita | IR light emitting apparatus with visible detection means |
US4479886A (en) * | 1983-08-08 | 1984-10-30 | Gte Products Corporation | Method of making cerium activated yttrium aluminate phosphor |
IT1183061B (en) * | 1984-07-31 | 1987-10-05 | Zambon Spa | COMPOUNDS EQUIPPED WITH ANTI-ALLERGIC ACTIVITY |
DE3804293A1 (en) * | 1988-02-12 | 1989-08-24 | Philips Patentverwaltung | ARRANGEMENT WITH AN ELECTROLUMINESCENCE OR LASER DIODE |
DE9013615U1 (en) * | 1990-09-28 | 1990-12-06 | AEG Niederspannungstechnik GmbH & Co KG, 24534 Neumünster | Electroluminescence or laser diode |
JPH04186679A (en) * | 1990-11-16 | 1992-07-03 | Daido Steel Co Ltd | light emitting diode |
JP2666228B2 (en) * | 1991-10-30 | 1997-10-22 | 豊田合成株式会社 | Gallium nitride based compound semiconductor light emitting device |
JPH05152609A (en) * | 1991-11-25 | 1993-06-18 | Nichia Chem Ind Ltd | Light emitting diode |
US5379186A (en) * | 1993-07-06 | 1995-01-03 | Motorola, Inc. | Encapsulated electronic component having a heat diffusing layer |
JPH0738150A (en) * | 1993-07-22 | 1995-02-07 | Toshiba Corp | Semiconductor light emitting device |
JPH0799345A (en) * | 1993-09-28 | 1995-04-11 | Nichia Chem Ind Ltd | Light emitting diode |
JPH07176794A (en) * | 1993-12-17 | 1995-07-14 | Nichia Chem Ind Ltd | Planar light source |
CN2184257Y (en) * | 1994-02-21 | 1994-11-30 | 中国科学院半导体研究所 | Coupler for semi-conductor light emission and testing |
JP3116727B2 (en) * | 1994-06-17 | 2000-12-11 | 日亜化学工業株式会社 | Planar light source |
CN1108819A (en) * | 1994-10-26 | 1995-09-20 | 欧姆龙株式会社 | Semiconductor shining unit and optical device using semiconductor shining unit |
-
1996
- 1996-06-26 DE DE19625622A patent/DE19625622A1/en not_active Ceased
-
1997
- 1997-06-26 CN CNB2005100917280A patent/CN100565945C/en not_active Expired - Lifetime
- 1997-06-26 CN CNB2006100999783A patent/CN100557833C/en not_active Expired - Lifetime
- 1997-06-26 CN CN200610101629.0A patent/CN1893136B/en not_active Expired - Lifetime
- 1997-06-26 CN CNB2006101016572A patent/CN100502066C/en not_active Expired - Lifetime
- 1997-06-26 CN CNB2006100999800A patent/CN100514684C/en not_active Expired - Lifetime
- 1997-06-26 CN CN200610101860XA patent/CN1917240B/en not_active Expired - Lifetime
- 1997-06-26 CN CNB2006101016500A patent/CN100435369C/en not_active Expired - Lifetime
- 1997-06-26 CN CNB2005100917295A patent/CN100442555C/en not_active Expired - Lifetime
- 1997-06-26 CN CNB2005100917308A patent/CN100433382C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CN1917240A (en) | 2007-02-21 |
CN1881637A (en) | 2006-12-20 |
CN1738067A (en) | 2006-02-22 |
CN100433382C (en) | 2008-11-12 |
CN100435369C (en) | 2008-11-19 |
CN1913183A (en) | 2007-02-14 |
CN1893136A (en) | 2007-01-10 |
CN1917240B (en) | 2012-05-23 |
CN100502066C (en) | 2009-06-17 |
CN1893136B (en) | 2014-03-12 |
CN1722486A (en) | 2006-01-18 |
CN1722485A (en) | 2006-01-18 |
CN1905226A (en) | 2007-01-31 |
DE19625622A1 (en) | 1998-01-02 |
CN100565945C (en) | 2009-12-02 |
CN100557833C (en) | 2009-11-04 |
CN100514684C (en) | 2009-07-15 |
CN100442555C (en) | 2008-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100557833C (en) | Light-emitting semiconductor device and device including the light-emitting semiconductor device | |
CN1534803B (en) | Light-emitting semiconductor device with light-emitting conversion element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee |
Owner name: OSRAM OPTO SEMICONDUCTORS GMBH + CO. OHG Free format text: FORMER NAME: SIEMENS AG |
|
CP01 | Change in the name or title of a patent holder |
Address after: Regensburg, Germany Patentee after: Osram Opto Semiconductors GmbH & Co. OHG Address before: Regensburg, Germany Patentee before: Siemens AG |
|
ASS | Succession or assignment of patent right |
Owner name: OSRAM AG Free format text: FORMER OWNER: OSRAM OPTO SEMICONDUCTORS GMBH + CO. OHG Effective date: 20111228 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20111228 Address after: Munich, Germany Patentee after: Patra Patent Treuhand Address before: Regensburg, Germany Patentee before: Osram Opto Semiconductors GmbH & Co. OHG |
|
CX01 | Expiry of patent term |
Granted publication date: 20091104 |
|
CX01 | Expiry of patent term |