[go: up one dir, main page]

CN1967869B - 半导体器件 - Google Patents

半导体器件 Download PDF

Info

Publication number
CN1967869B
CN1967869B CN 200610165662 CN200610165662A CN1967869B CN 1967869 B CN1967869 B CN 1967869B CN 200610165662 CN200610165662 CN 200610165662 CN 200610165662 A CN200610165662 A CN 200610165662A CN 1967869 B CN1967869 B CN 1967869B
Authority
CN
China
Prior art keywords
region
guard ring
body region
semiconductor device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200610165662
Other languages
English (en)
Other versions
CN1967869A (zh
Inventor
堀田幸司
河路佐智子
杉山隆英
庄司智幸
石子雅康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN1967869A publication Critical patent/CN1967869A/zh
Application granted granted Critical
Publication of CN1967869B publication Critical patent/CN1967869B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Thyristors (AREA)

Abstract

一种半导体器件,其防止在周边区域中发生的半导体器件的热破坏,实现半导体器件的高耐压化。是一种具有已形成了半导体开关元件组的中心区域(M),和已形成了把该中心区域围起来的保护环(38)组的周边区域N的半导体器件,在最外周上形成的半导体开关元件的体区域(34),和在最内周形成的保护环(38)重叠起来地形成,已连接到半导体开关元件组的栅电极(35)上的栅布线(48)中间存在着绝缘层(46)地与体区域(34)和保护环(38)的重叠区域(39)对向,上述重叠区域(39)的宽度,是体区域(34)与保护环(38)中的深的一方的深度的1/3以上。

Description

半导体器件
技术领域
本申请是申请日为2004年9月1日,申请号为200410074196.5号中国发明专利申请的分案申请。本发明涉及使半导体器件高耐压化的技术。特别是涉及与把已形成了半导体开关元件组的中心区域围起来的保护环有关的技术。
背景技术
为了在功率控制方面应用,人们正在开发具备MOS(金属氧化物半导体)构造或IGBT(绝缘栅双极型晶体管)构造等的半导体开关元件组的半导体器件。图12例示出了具备半导体开关元件组的半导体器件的平面图。图中M是中心区域,是已形成了半导体开关元件组的区域。图中N是周边区域,把中心区域M围了起来,位于半导体衬底137的周边。在周边区域N中,形成有把半导体开关元件组围起来的保护环组138。保护环组138,是为了提高半导体器件的耐压而形成的。在中心区域M内,布满使半导体开关元件组变成为ON(导通)的栅电极组(省略未画),已连接到该栅电极组上的栅布线148横跨周边区域N地延伸。
图13是图12的XIII-XIII线剖面图。该剖面图模式性地示出了中心区域M和周边区域N的边界附近。另外,周边区域N的保护环,一般地说,虽然大多是要形成十几个,但是,在图13中却仅仅示出了内周一侧的3个保护环138a、138b、138c,请留意这一点。
图13例示出了具备IGBT构造的半导体开关元件组的半导体器件。从下边开始依次具备:集电极电极120;与该集电极电极120接连的第1导电类型(在本例中为p+型)的半导体衬底122;已叠层到该半导体衬底122上边的第2导电类型(在本例中为n+型)的缓冲层124;已叠层到该缓冲层124上边的第2导电类型(在本例中为n-型)的漂移层126;在该漂移层126内形成的第1导电类型(在本例中为p-型)的体区域134;在该体区域134内形成的第2导电类型(在本例中为n+型)的发射极区域130;在该体区域134内形成的第1导电类型(在本例中为p+型)的体接触区域132,与存在于该发射极区域130与漂移层126之间的体区域134中间存在着绝缘层136对向的栅电极135;与发射极区域130和体接触区域132接连的发射极电极144。
漂移层126朝向周边区域N地延伸,在该漂移层126内形成有保护环组138a、138b、138c。
用发射极区域130、体区域134、漂移层126、缓冲层124、中间存在着绝缘层136地与存在于发射极区域130与漂移层126之间的体区域134对向的栅电极135构成作为单位的IGBT构造,该作为单位的IGBT构造,在图的左方反复地进行重复。
保护环组138a、138b、138c缓和等电位线过度地集中到最外周的半导体开关元件的栅绝缘膜136上的现象,要做成为使得等电位线横切保护环组138a、138b、138c与漂移层126的pn结面的宽广的范围。就是说,保护环组138a、138b、138c要做成为使得在使耗尽层扩展到周边区域N内,用广为扩展的耗尽层确保耐压的同时,还不产生局部的电场集中。
此外,在半导体开关元件的导通时,例如在尖峰电压等的高的电压施加到半导体器件上的情况下,如图13中的箭头所示,存在于漂移层126内的剩余的空穴,击穿了在保护环组138a、138b、138c与漂移层126之间的pn结面的附近形成的耗尽层后流入到保护环组138a、138b、138c内。流入进来的空穴,从最内周保护环138a经由体区域134和体接触区域132向发射极电极144排出。剩余的空穴则遍及相邻接的保护环地进行流动。
使得可以顺畅地排除空穴那样地,在与已在最外周上形成的半导体开关元件的p-型的体区域134彼此重叠的位置上形成要在最内周上形成的p+型的保护环138a。栅布线148,中间存在着绝缘层146地,与最外周的半导体开关元件的p-型的体区域134和最内周的p+型的保护环138a的重复部分对向。
在该种的半导体器件中,在已给半导体器件施加上尖峰电压等的高的电压的情况下,在周边区域N中半导体器件就要发热,半导体器件常常会遭受热破坏。
发明内容
本发明的目的在于查明在周边区域N中发热的原因,提供在周边区域中不会招致热破坏的半导体器件。
本发明人等,在在中心区域中形成了MOS构造或IGBT构造等的半导体开关元件组,在周边区域中形成了保护环组的半导体器件中,详细地研究了在其周边区域中发热的现象后,发现:发热最剧烈的部分,是最外周的半导体开关元件的体区域与最内周的保护环的重复区域。还发现:其中,在中间存在着绝缘层与栅布线对向的重复区域中,发热最为剧烈。
于是,在追寻其原因时,发现:在最外周的体区域和最内周的保护环的重复区域的剖面上,存在着深度局部地变浅的区域,空穴不能通过的截面积减少,是一个重要因素。此外,还发现:当给栅布线施加上电压后,在与栅布线对向的区域的上部形成反型层,空穴可以通过的截面积进一步减少,是另外一个重要因素。已经确认:在现实的半导体器件中,由于栅布线延伸为横切最外周的体区域和最内周的保护环的重复区域,故在与栅布线对向的重复区域中2个重要因素重叠地产生,这就会带来剧烈的发热。
本发明人等,由于得到了上述的新的见解,故成功地防止了半导体器件在周边区域中因发热而遭受破坏的情况的发生。
在本发明中所创制的半导体器件,具有已形成了半导体开关元件组的中心区域,和已形成了把该中心区域围起来的保护环组的周边区域。具备在最外周上形成的半导体开关元件的体区域,和在最内周形成的保护环重叠起来地形成,已连接到半导体开关元件组的栅电极上的栅布线,中间存在着绝缘层地与体区域和保护环的重复区域对向的构造。
在本发明中所创制的一个半导体器件,其特征在于:体区域和保护环的重复区域的宽度(正确地说指的是从中心区域朝向周边区域地测定半导体区域的表面已露出来的重复区域的宽度)是体区域的深度和保护环的深度之内的深的一方的深度的1/3以上。
在现有的半导体器件中,最外周的体区域和最内周的保护环也进行重叠。但是,在现有的半导体器件中,最外周的体区域和最内周的保护环只要接触即可,由于并未认识到使之特意地重叠得大的必要性,故不过是即便存在着掩模对准的偏差也会进行接触那种程度地进行重叠。
至少不是那种认识到在与栅布线对向的部分上形成反型层,载流子的通过截面积将会减少的情况后使之进行重叠。
因此,在现有的半导体器件中重复是不充分的,体区域和保护环的重复区域的宽度达不到体区域的深度和保护环的深度之内的深的一方的深度的1/3以上。为此,在与栅布线对向的重复区域中,归因于上边所说的2个重要因素而发生了剧烈的发热。
根据本发明人等的研究,已经确认:如果把体区域和保护环的重复区域的宽度做成为体区域的深度和保护环的深度之内的深的一方的深度的1/3以上,则对于第1重要因素就可以有效地应对,即便是假定载流子的通过截面积因在与栅布线对向的区域上形成了反型层而变窄,也可以在体区域和保护环之间确保充分的载流子的通过截面积,可以抑制剧烈的发热。
这里所说的深度指的是扩散深度,指的是从半导体区域的表面到导电类型反型的深度为止的距离。
体区域和保护环的重复区域的最小深度是体区域的深度的1/2以上,是理想的。
如果把体区域与保护环的重复区域做成为剖面视图,则在体区域和保护环之间局部性地存在着变浅的区域。根据本发明人等的研究,已经确认:如果确保最浅的深度就是说最小深度在体区域的深度的1/2以上,则可以充分地确保载流子的导通路径,可以抑制剧烈的发热。
根据通常的扩散条件,若把体区域和保护环的重复区域的宽度做成为体区域的深度和保护环的深度之内的深的一方的深度的1/3以上,则可以确保体区域的深度的1/2以上的最小深度。
在大多数的情况下,保护环这一方比体区域更深。在保护环这一方比体区域更深的情况下,理想的是把体区域和保护环的重复区域的宽度做成为体区域的深度的2/3以上,做成为保护环的深度的1/3以上
倘满足上述条件,则可以确保载流子的导通路径,可以抑制剧烈的发热。
根据本发明,发现:重要的是在已给栅布线施加上栅导通电压时的、栅布线正下边的重复区域的电阻率,要在20Ω·cm以下。
当给栅布线施加上栅导通电压时,体区域和保护环的重复区域上部(与栅布线对向的区域)上就要形成反型层,重复区域的电阻就要增大。即便是在电阻增大后的状态下,如果满足把体区域和保护环的重复区域的电阻率抑制到20Ω·cm以下的条件,则可以充分地确保载流子的导通路径,可以抑制剧烈的发热。
若采用本发明,则可以提供在栅布线正下边的重复区域中确保载流子的导通路径的其它的各种各样的手法。
在本发明中所创制的一个半导体器件,其特征在于:在包括与栅布线对向的体区域和保护环的重复区域的区域的上部,形成有高浓度地含有与体区域和保护环同一导电类型的杂质的层。
该高浓度层,作为抑制或禁止在体区域和保护环的表面附近(与栅布线对向的部分)进行反型的层发挥作用。由于栅布线的电压抑制或禁止在体区域和保护环的表面附近形成反型层,故可以抑制载流子的导通路径变窄的现象的发生。该高浓度层,理想的是在与栅布线对向,此外,还包括体区域和保护环进行重复的区域的区域上形成。
另外,由于若利用该高浓度层则可以抑制或禁止体区域和保护环的表面附近进行反型,故可以缓和体区域和保护环的重复范围的制约,因此,在要利用该高浓度层的情况下,即便是重复区域的宽度小于体区域和保护环中的深的一方的深度的1/3,仍可以充分地确保载流子的导通路径,可以抑制剧烈的发热。
在本发明中所创制的一个半导体器件,其特征在于:在包括与栅布线对向的体区域和保护环的重复区域的区域的上部,形成有含有与体区域和保护环不同的导电类型的杂质的层。
该相反导电类型的杂质层,本来可以评价为已进行了反型的层。因此,即便是给栅布线施加上了电压,也可以限制反型层一直延伸到其下方。因此只要预先形成相反导电类型的杂质层。由于栅布线的电压可以限制在体区域和保护环的表面附近超过设想的反型层的形成。故可以抑制载流子的导通路径变窄的事项的发生。该相反导电类型的杂质层,理想的是与栅布线对向,而且在包括体区域和保护环进行重复的区域的区域上形成。
另外,由于若利用该相反导电类型的杂质层,则可以限制体区域和保护环的表面附近进行超过设想的反型,故可以缓和体区域和保护环的重复范围的制约。即便是重复区域的宽度小于体区域和保护环中的深的一方的深度的1/3,也可以充分地确保载流子的导通路径,可以抑制剧烈的发热。
本发明,在应用于具有可以排出多量的载流子的构造的半导体开关元件的半导体器件时,则将实现特别有用的结果。该半导体器件所具备的半导体开关元件,具有:集电极电极;与该集电极电极接连的第1导电类型的半导体衬底;叠层到该半导体衬底上边的第2导电类型的漂移层;在该漂移层内形成的第1导电类型的体区域;在该体区域内形成的第2导电类型的发射极区域;中间存在着绝缘层地与存在于该发射极区域和漂移层之间的体区域对向的栅电极;与发射极区域接连的发射极电极。其特征在于:漂移层朝向周边区域延伸,在该漂移层内形成有第1导电类型的保护环组。另外,根据需要,还可以在半导体衬底与漂移层之间形成第2导电类型的高浓度的缓冲层。具备该缓冲层的IGBT构造,一般地说叫做PT(穿通)型。
上述的半导体器件,利用了IGBT构造的半导体开关元件,当施加上高的电压时,就会向最外周的体区域排出多量的载流子。若采用上边所说的任何一种构造,由于可以在最内周的保护环和最外周的体区域之间确保宽的排出路径,故可以抑制半导体器件因在周边区域中发热而招致破坏。
本发明,此外,还产生出了制造耐压高的半导体器件的新的方法。在该方法中,要实施向包括体区域和保护环进行重复,同时与栅布线对向的区域的半导体区域的上部,比形成体区域和保护环时的注入深度浅地注入杂质离子并使之扩散的工序。
如果实施上述工序,则可以制造可以形成禁止或限制体区域和保护环的表面附近进行反型的反型防止层或反型限制层,使得在周边区域中不会因发热而招致破坏的半导体器件。
倘采用本发明的半导体器件,则可以抑制半导体器件在周边区域中因发热而招致热破坏的事项的发生,可以提高半导体器件的耐压。
附图说明
图1示出了本发明的实施例1的主要部分斜视图。
图2示出了重叠比与寄生MOS的电阻率的关系。
图3示出了本发明的实施例1的制造工序(1)。
图4示出了本发明的实施例1的制造工序(2)。
图5示出了本发明的实施例1的制造工序(3)。
图6示出了本发明的实施例2的主要部分斜视图。
图7示出了本发明的实施例2的制造工序(1)。
图8示出了本发明的实施例2的制造工序(2)。
图9示出了本发明的实施例2的制造工序(3)。
图10示出了本发明的实施例2的制造工序(4)。
图11示出了本发明的实施例3的主要部分斜视图。
图12示出了现有的半导体器件的平面图。
图13示出了现有的半导体器件的主要部分剖面图。
具体实施方式
以下所述的实施例的主要的特征列举如下。
(形态1),是一种具有已形成了半导体开关元件组的中心区域,和已形成了把该中心区域围起来的保护环组的周边区域的半导体器件,其特征在于:
每一个的半导体开关元件,都具有:集电极电极;与该集电极电极接连的第1导电类型的半导体衬底;叠层到该半导体衬底上边的第2导电类型的缓冲层;在该缓冲层上叠层的第2导电类型的漂移层;在该漂移层内形成的第1导电类型的体区域;在该体区域内形成的第2导电类型的发射极区域;在该体区域内形成的第1导电类型的体接触区域;中间存在着绝缘层地与存在于该发射极区域和漂移层之间的体区域对向的栅电极;与发射极区域和体接触区域接连的发射极电极,
上述漂移层朝向周边区域地延伸,
第1导电类型的保护环组,在该漂移层内形成,
在最外周上形成的半导体开关元件的体区域,和在最内周上形成的保护环重叠地形成,
已连接到半导体开关元件组的栅电极上的栅布线,中间存在着绝缘层地与体区域和保护环的重复区域对向。
(形态2)是形态1的半导体器件,其特征在于:体区域和保护环的重复区域的宽度,在体区域和保护环中的深的一方的深度的1/3以上。
(形态3)是形态1的半导体器件,其特征在于:体区域和保护环的重复区域的最小深度,在体区域的深度的1/2以上。
(形态4)是形态1的半导体器件,其特征在于:体区域和保护环的重复区域的宽度,在体区域的深度的2/3以上。
(形态5)是形态1的半导体器件,其特征在于:在给栅布线施加上栅导通电压时的栅布线正下边的体区域和保护环的重复区域的电阻率在20Ω·cm以下。
(形态6)是形态1的半导体器件,其特征在于:在包括与栅布线对向的体区域和保护环的重复区域的区域的上部,形成有高浓度地含有与体区域和保护环同一导电类型的杂质的层。
(形态7)是形态1的半导体器件,其特征在于:在包括与栅布线对向的体区域和保护环的重复区域的区域的上部,形成有含有与体区域和保护环不同导电类型的杂质的层。
实施例
以下,参看图1~图11,说明各个实施例。
(实施例1)实施例1的半导体器件,具有已形成了IGBT构造的半导体开关元件组的中心区域,和已形成了把该中心区域围起来的保护环组的周边区域。
图1斜视地模式性地示出了位于中心区域M的最外周上的IGBT33,和在周边区域N上形成的最内周保护环38重叠起来的区域(叫做重复区域)的附近。
作为单位的IGBT33,具备:在背面上形成氧化铝制的集电极电极20;与该集电极电极20接连的第1导电类型(在本例中为p+型)的半导体衬底22;已叠层到该半导体衬底22上边的第2导电类型(在本例中为n+型)的缓冲层24;已叠层到该缓冲层24上边的第2导电类型(在本例中为n-型)的漂移层26;在该漂移层26内形成的第1导电类型(在本例中为p-型)的体区域34;在该体区域34内形成的第2导电类型(在本例中为n+型)的发射极区域30;在该体区域34内形成的第1导电类型(在本例中为p+型)的体接触区域32,与存在于该发射极区域30与漂移层26之间的体区域34a中间存在着绝缘层36对向的栅电极35;与发射极区域30和体接触区域32接连的发射极电极。发射极电极虽然未画出来,利用图1所示的栅电极35的切缺部分,电连到发射极区域30和体接触区域32上。
漂移层26朝向周边区域N延伸,在延伸到该周边区域N上的漂移层26内形成有第1导电类型(在本例中为p+型)的保护环38。在中心区域M内的最外周形成的IGBT33的体区域34,和在周边区域N的最内周上形成的保护环38重叠地形成。把该重叠的部分叫做重复区域39。
已连接到IGBT33的栅电极35上的栅布线48,中间存在着绝缘层46地,与最外周的体区域34和最内周的保护环38的重复区域39对向(与图12所示的现有技术的平面构造类似,这一点请参看图12)。体区域34已掺入了硼,该杂质浓度典型地说是1×1015~1×1018cm-3,其深度方向的厚度为3~6微米。另外,实施例1的体区域34的杂质浓度是1×1018cm-3,其深度被设定为6微米。
图1虽然例示的是用平面栅电极35进行开关的类型。但是也可以是沟槽栅型。栅电极35,可以用金属或多晶硅形成。
在把半导体器件画成俯视图时,在周边区域N内形成有在周边区域N内绕一圈的多个保护环,图1为了方便起见仅仅示出了其中的最内周的p+型的保护环38。保护环38,已掺入了硼,其杂质浓度典型地说为1×1016~1×1020cm-3,其深度方向的厚度为4~8微米。另外,实施例1的保护环38的杂质浓度是4×1018cm-3,其深度被设定为8微米。在保护环38上边,中间存在着绝缘层46地配设有栅布线48,栅布线48已连接到栅电极35上。在实施例1中,在栅电极35与栅布线48之间未画出区域划分。在做成为俯视图时,则可以明确地区分栅电极35和栅布线48。
如图1所示,最外周的体区域34和最内周的保护环38彼此重叠。在重复区域39中用假想线示出了体区域34和最内周的保护环38的轮廓线。所谓重复区域39,指的是要形成体区域34的杂质和要形成保护环38的杂质都存在的区域,指的是位于2条假想线之间的区域。根据本发明人等的研究,已经判明:为了提高半导体器件的耐压,最佳地设计重复区域39是重要的。
所谓重复区域39的宽度,指的是要在半导体区域的表面41上露出来的重复区域39的宽度V。换句话说,指的是图1所示的2条假想线在半导体区域的表面41上露出来的间隔。宽度V的方向,要评价为使之与从中心区域M朝向周边区域N前进的方向一致。此外,所谓重复区域39的最小深度W,指的是从半导体区域的表面41到体区域34的轮廓线与保护环38的轮廓线进行交叉的位置为止的距离。
在实施例1的半导体器件中,保护环38比体区域34形成得更深。在图1中把保护环38的深度表示为X。
在实施例1的半导体器件中,重复区域39的半导体区域的表面41的宽度V用保护环38的深度X的1/3以上形成。
图2示出了在实施例1的半导体器件中在使体区域34和保护环38的重复区域39的宽度V变化时的栅布线48正下边的重复区域39的电阻率的测定结果。在这里,电阻率是在已给栅布线48施加上栅导通电压的状态下测定的。图2的横轴是用保护环的深度X除重复区域39的宽度V所得到的值(在本说明书中定义为重叠比)。图2的纵轴,是重复区域39的电阻率。该电阻率是采用在体接触区域32和保护环38的外周一侧端部上形成一对的电极,给该一对的电极间施加规定的电压的办法测定的值。在该情况下,一对电极间的电阻率以重复区域39的电阻率为主要成分,所以就可以把一对的电极间的电阻率评价为重复区域39的电阻率。
如图2所示,可知:重叠比越大,则重复区域39的电阻率就越低。另外,图2所示的虚线,是在半导体器件中产生热破坏的临界点。在重复区域39的电阻率比虚线更高的情况下,在半导体器件中就会产生热破坏。如果在已给栅布线48施加上栅导通电压的状态下测定的重复区域39的电阻率在20Ω·cm以下,在半导体器件中就不会产生热破坏。由图2可知:如果确保1/3以上的重叠比就可以把电阻率形成为20Ω·cm以下。这被认为是即便因在与栅布线48对向的区域上形成了反型层而使得空穴的通过截面积变窄,如果确保1/3以上的重叠比,也可以在体区域34和保护环38之间确保充分的空穴的通过截面积,故可以使电阻率做成为20Ω·cm以下。
用图3~图5说明在半导体器件中制作重复区域39的方法。
图3示出了制造工序的半导体区域的剖面。该剖面示出的是在n-型的漂移层26的上部形成了p+型的保护环38,在保护环38与漂移层23的表面上形成了氧化膜50的状态。所图示的保护环38,是最内周的保护环38。另外可以利用一般的外延生长方法或离子注入方法或其它的制造方法形成而在迄今为止的制造工序中利用的制造技术不受特别限定。
其次,如图4所示,涂敷形成抗蚀剂膜52,在规定位置上形成开口使之图形化。其次,从该开口离子注入硼。要注入的硼的量或深度要与基于热处理的扩散特性相一致地决定。例如,在要使用的离子为硼的情况下,其扩散特性,相对于向纵向方向上进行扩散的扩散距离向横向方向上扩散的扩散距离约为0.8倍。考虑这种情况,实施离子注入,在所希望的区域上形成扩散距离。
其次,如图5所示,实施热处理,使离子注入进来的硼扩散。扩散后的硼进入到体区域34内,形成重复区域39。重复区域39主要采用使所注入的硼向横向方向扩散的办法形成。
另外,在这种的半导体器件中,一般地说,把保护环38形成得比体区域34更深。为此,当使体区域34进行扩散,形成为与保护环38重叠时,该重复区域39的最小深度W,就会追随着重复区域39的表面的宽度V的增大而增大。如果使体区域34一直扩散到使得重复区域39的表面的宽度V变成为保护环38的深度X的1/3以上为止,则重复区域39的最小深度W,大多就会变成为体区域34的深度Y的1/2以上。另外,重复区域39表面的宽度V多成为体区域34的深度2/3以上。在该情况下,重复区域39的电阻率就会变成为20Ω·cm以下,在半导体器件中就不会产生热破坏。
(实施例2)图6模式性地示出了实施例2的半导体器件的主要部分斜视图。实施例2的特征在于:在包括在中心区域M的最外周的半导体开关元件上形成的体区域34,和周边区域N的最内周的保护环38之间的重复区域39的区域的上部,具备含有与体区域34和保护环38同一导电类型的杂质的高浓度的层60。
在现有的这种的半导体器件(在不具备高浓度的层60的情况下)中,存在着与要施加到栅电极35上的栅导通电压相对应地,在与栅布线35对向的体区域34和保护环38的重复区域39上形成反型层的问题。特别是在已施加上高的栅导通电压的情况下,由于除从周边区域N一侧的漏层22供给经由重复区域39向体接触区域32排出的空穴要增加之外,在重复区域39上形成的反型层的宽度也要与高的栅导通电压相对应地变宽,故该重复区域39中的空穴的导通路径就会变窄。为此,在现有的这种的半导体器件中,就要显著地发生这样的现象:在该重复区域39中产生空穴的过度集中,半导体器件遭受破坏。
在实施例2的半导体器件中,与要在栅布线48正下边的反型层形成的区域相对应地形成与体区域34和保护环38同一导电类型的杂质浓度高的层60。得益于该层60,即便是在已施加上高的栅导通电压的情况下,也可以抑制或禁止在该区域上反型层的形成。由于反型层的形成被抑制或被禁止,故可以充分地确保空穴的导通路径,可以减少因空穴的过度集中所产生的元件破坏。
另外,至于形成高浓度的层60的位置或形状,并没有什么特别限定,只要至少在包括重复区域39的上部的位置上形成即可。只要至少在该位置上形成,就可以抑制或禁止成为热破坏的原因的反型层的形成。
此外,如果利用该高浓度的层60,由于可以抑制或禁止在体区域34和保护环38的表面附近的反型,故可以缓和体区域34与保护环38的重复范围的制约。因此,在利用高浓度的层60的情况下,即便是不考虑与重复区域39的宽度等有关的制约,也可以充分地确保载流子的导通路径,可以抑制剧烈的发热。
用图7~图9说明实施例2的半导体器件的制造方法。
图7示出了制造工序的半导体区域的剖面。该剖面示出的是在n-型的漂移层26的上部形成了p+型的体区域34和p+型的保护环38,在其表面上形成氧化膜50,再在该氧化膜50上边叠层多晶硅膜47后的状态。另外,保护环38,是最内周的保护环38。此外,可以利用一般的外延生长方法或离子注入方法或其它的制造方法形成而在迄今为止的制造工序中利用的制造技术不受特别限定。
首先,如图7所示,采用向多晶硅膜47内掺入杂质使之低电阻化的办法形成栅布线。这时使用的杂质,典型地说可以使用磷。磷由于具有扩散系数高,难于向外方扩散的特征,故可以使之均一地向多晶硅内部扩散。因此,在中心区域的栅电极是沟槽型的情况下,在想要使杂质一直扩散到深的区域的情况下,可以满意地使用磷。如图8所示,多晶硅47可用通常的离子注入法变成为栅布线48。
其次,如图9所示,涂敷形成抗蚀剂膜54,在规定位置上形成开口使之图形化。其次,对该开口离子注入硼。
其次,如图10所示,实施热处理使所注入的硼进行热扩散。借助于此,就可以在所希望的位置上形成高浓度的层60。
如果利用上边所说的制造方法制作高浓度的层60,则抑制或禁止在栅布线48的正下边形成反型层是特别有效的。
如图7所示,在使多晶硅47低电阻化的工序中,要用磷对多晶硅内进行离子注入。该所注入的磷的一部分就越过多晶硅47被注入到其下方的体区域34或保护环38内。在现有的半导体器件中,由于在该阶段制造就结束了,故仅仅体区域34或保护环38的表面部分上才残存有少量的磷(n型杂质)。因此,在已给栅布线48施加上栅导通电压的情况下,就易于在该栅布线48正下边形成反型层,结果是产生了使空穴的导通路径变窄的现象。
但是,倘采用本发明的制造方法,在体区域34或保护环38内残存的少量的磷(n型杂质)归因于在形成p+型的杂质浓度高的层60时注入的硼实质上进行相反的注入而消失。因此,由于在与高浓度的层60对应的区域中难于形成反型层,可以充分地确保空穴的导通路径,故可以得到高耐压的半导体器件。
(实施例3)图11模式性地示出了实施例3的半导体器件的主要部分斜视图。
实施例3的特征在于:在包括要在中心区域M的最外周上形成的体区域34和周边区域N的最内周的保护环38的重复区域的位置的上部,配置有与体区域34和保护环38不同的导电类型的高浓度的层62。
就如实施例3的半导体器件那样,采用与要形成栅布线48正下边的反型层的区域相对应地形成与体区域34和保护环38不同的导电类型的杂质浓度高的层62的办法,形成电子的导通路径。在采用限制电子的导通路径的办法,给栅布线48施加上高的栅导通电压的情况下,就可以限制形成的反型层向比高浓度的层62更下方延伸。因此,空穴的导通路径不会变窄。由于可以充分地确保空穴的导通路径,故可以减少因空穴的过度集中而形成的元件破坏。
另外,形成高浓度的层62的位置或形状,并没有什么特别限定,只要至少在包括重复区域39的上部的位置上形成即可。只要至少在该位置上形成,就可以抑制或禁止成为热破坏的原因的反型层的形成。
此外,如果利用该高浓度的层62,由于可以抑制或禁止在体区域34和保护环38的表面附近的反型,故可以缓和体区域34与保护环38的重复范围的制约。因此,在利用高浓度的层69的情况下,即便是不考虑与重复区域39的宽度等有关的制约,也可以充分地确保载流子的导通路径,可以抑制剧烈的发热。
在以上的实施例中虽然讲述的是IGBT半导体元件,但是对于别的元件(可控硅,双极晶体管、功率MOS)等也可以得到同样的效果。
以上虽然详细地说明了本发明的具体例,但是这些具体例不过是一种例示,并不是对技术方案的范围的限定。在技术方案的范围内所讲述的技术中,包括使以上所例示的具体例进行了各种各样的变形、变更的技术。
此外,在本说明书或图面中所说明的技术要素,可以单独或借助于各种的组合发挥技术上的有用性,并不限定于申请时技术方案所述的组合。此外,在本说明书或图面中所例示的技术,既可以是那种同时实现多个目的的技术,也可以是那种在实现其中的一个目的这件事本身中具有技术上的有用性的技术。

Claims (2)

1.一种半导体器件,具有形成了半导体开关元件组的中心区域,和形成了把该中心区域围起来的保护环组的周边区域,其特征在于:
在中心区域的最外周上形成的半导体开关元件的体区域,和在周边区域的最内周形成的保护环重叠地形成,
连接到半导体开关元件组的栅电极上的栅布线,中间存在着绝缘层地与体区域和保护环的重叠区域对向,
在给栅布线施加上栅导通电压时的栅布线正下方的重叠区域的电阻率在20Ω·cm以下。
2.根据权利要求1所述的半导体器件,其特征在于:
上述半导体开关元件,具有:集电极电极;与该集电极电极接连的第1导电类型的半导体衬底;叠层到该半导体衬底上边的第2导电类型的漂移层;在该漂移层内形成的第1导电类型的体区域;在该体区域内形成的第2导电类型的发射极区域;中间存在着绝缘层地与存在于该发射极区域和漂移层之间的体区域对向的栅电极;与发射极区域接连的发射极电极,
上述漂移层朝向周边区域延伸,
在该漂移层内形成有第1导电类型的保护环组。
CN 200610165662 2003-09-01 2004-09-01 半导体器件 Expired - Fee Related CN1967869B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP308320/2003 2003-09-01
JP2003308320A JP4264316B2 (ja) 2003-09-01 2003-09-01 半導体装置とその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100741965A Division CN1316628C (zh) 2003-09-01 2004-09-01 半导体器件

Publications (2)

Publication Number Publication Date
CN1967869A CN1967869A (zh) 2007-05-23
CN1967869B true CN1967869B (zh) 2010-05-26

Family

ID=34410824

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2004100741965A Expired - Fee Related CN1316628C (zh) 2003-09-01 2004-09-01 半导体器件
CN 200610165662 Expired - Fee Related CN1967869B (zh) 2003-09-01 2004-09-01 半导体器件

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB2004100741965A Expired - Fee Related CN1316628C (zh) 2003-09-01 2004-09-01 半导体器件

Country Status (2)

Country Link
JP (1) JP4264316B2 (zh)
CN (2) CN1316628C (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286706B2 (ja) * 2007-07-10 2013-09-11 三菱電機株式会社 電力用半導体装置とその製造方法
KR100976646B1 (ko) 2008-03-06 2010-08-18 주식회사 케이이씨 전력용 반도체 소자 및 그 제조 방법
CN103094079B (zh) * 2011-11-07 2015-08-19 上海华虹宏力半导体制造有限公司 提高PowerMOS器件UIS性能的方法
DE112013006681B4 (de) * 2013-02-15 2022-01-20 Denso Corporation Halbleitervorrichtung
JP2014241367A (ja) 2013-06-12 2014-12-25 三菱電機株式会社 半導体素子、半導体素子の製造方法
CN112786683B (zh) * 2020-12-29 2022-07-15 浙江清华长三角研究院 一种功率器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4031371B2 (ja) * 1995-03-15 2008-01-09 株式会社東芝 高耐圧半導体素子
JP4416288B2 (ja) * 2000-07-27 2010-02-17 三菱電機株式会社 逆導通サイリスタ
JP4750933B2 (ja) * 2000-09-28 2011-08-17 株式会社東芝 薄型パンチスルー型パワーデバイス
JP2002343967A (ja) * 2001-05-14 2002-11-29 Toyota Central Res & Dev Lab Inc 半導体装置
JP2003197898A (ja) * 2001-12-25 2003-07-11 Shindengen Electric Mfg Co Ltd プレーナ型半導体装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP特开2002-343967A 2002.11.29
JP特开2003-197898A 2003.07.11
JP特开2003-224282A 2003.08.08

Also Published As

Publication number Publication date
CN1591897A (zh) 2005-03-09
CN1967869A (zh) 2007-05-23
CN1316628C (zh) 2007-05-16
JP4264316B2 (ja) 2009-05-13
JP2005079359A (ja) 2005-03-24

Similar Documents

Publication Publication Date Title
US5757046A (en) MOS type semiconductor device
US5723890A (en) MOS type semiconductor device
JP6277814B2 (ja) 半導体装置
JP7230969B2 (ja) 半導体装置
JP5783893B2 (ja) 半導体装置
JP3417013B2 (ja) 絶縁ゲート型バイポーラトランジスタ
CN102347366B (zh) Mos型半导体器件及其制造方法
US10600897B2 (en) Semiconductor device
JP2017059711A (ja) 半導体装置
WO2017098547A1 (ja) 炭化珪素半導体装置
JP2018503268A (ja) 絶縁ゲートパワー半導体デバイスおよびそのデバイスの製造方法
JP7028093B2 (ja) 半導体装置
JPH03219678A (ja) 半導体装置
EP0665595A1 (en) MOS type semiconductor device
CN1967869B (zh) 半导体器件
CN100499159C (zh) 具有改善的安全工作区域性能的igbt阴极设计
JP2018006648A (ja) 半導体装置
JP2005136092A (ja) 半導体装置とその製造方法
JP2003197911A (ja) 半導体装置とその製造方法
JP2023173420A (ja) 炭化珪素半導体装置
US20160049484A1 (en) Semiconductor device
JP2002141505A (ja) 電界効果トランジスタ
JP2021150405A (ja) 炭化珪素半導体装置
JP3664129B2 (ja) 半導体装置
JP3846395B2 (ja) Mos型半導体装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200409

Address after: Aichi Prefecture, Japan

Patentee after: DENSO Corp.

Address before: Aichi Prefecture, Japan

Patentee before: Toyota Motor Corp.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100526

Termination date: 20210901

CF01 Termination of patent right due to non-payment of annual fee