CN1958440A - Method for synthesizing Nano level powder of lithium iron phosphate - Google Patents
Method for synthesizing Nano level powder of lithium iron phosphate Download PDFInfo
- Publication number
- CN1958440A CN1958440A CNA2006101367371A CN200610136737A CN1958440A CN 1958440 A CN1958440 A CN 1958440A CN A2006101367371 A CNA2006101367371 A CN A2006101367371A CN 200610136737 A CN200610136737 A CN 200610136737A CN 1958440 A CN1958440 A CN 1958440A
- Authority
- CN
- China
- Prior art keywords
- lithium
- phosphate
- iron phosphate
- iron
- lithium iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000000843 powder Substances 0.000 title claims abstract description 19
- 230000002194 synthesizing effect Effects 0.000 title claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 16
- 239000010935 stainless steel Substances 0.000 claims abstract description 16
- 238000010791 quenching Methods 0.000 claims abstract description 13
- 230000000171 quenching effect Effects 0.000 claims abstract description 13
- 238000001354 calcination Methods 0.000 claims abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 8
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 8
- 239000002243 precursor Substances 0.000 claims abstract description 8
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 7
- 150000002505 iron Chemical class 0.000 claims abstract description 7
- 239000010452 phosphate Substances 0.000 claims abstract description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 10
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 8
- 229930006000 Sucrose Natural products 0.000 claims description 8
- 239000005720 sucrose Substances 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 6
- 239000006258 conductive agent Substances 0.000 claims description 6
- 229940062993 ferrous oxalate Drugs 0.000 claims description 6
- OWZIYWAUNZMLRT-UHFFFAOYSA-L iron(2+);oxalate Chemical compound [Fe+2].[O-]C(=O)C([O-])=O OWZIYWAUNZMLRT-UHFFFAOYSA-L 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 claims description 5
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 claims description 5
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 claims description 5
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 5
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 235000019837 monoammonium phosphate Nutrition 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 4
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 4
- SNKMVYBWZDHJHE-UHFFFAOYSA-M lithium;dihydrogen phosphate Chemical compound [Li+].OP(O)([O-])=O SNKMVYBWZDHJHE-UHFFFAOYSA-M 0.000 claims description 4
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 claims description 4
- 239000005955 Ferric phosphate Substances 0.000 claims description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 3
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 3
- 229940032958 ferric phosphate Drugs 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910000399 iron(III) phosphate Inorganic materials 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 239000006230 acetylene black Substances 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- 238000000498 ball milling Methods 0.000 claims description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 2
- 239000007833 carbon precursor Substances 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229960005191 ferric oxide Drugs 0.000 claims description 2
- 229960001781 ferrous sulfate Drugs 0.000 claims description 2
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 2
- 239000011790 ferrous sulphate Substances 0.000 claims description 2
- 239000008103 glucose Substances 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 229910000398 iron phosphate Inorganic materials 0.000 claims description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 2
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 239000004484 Briquette Substances 0.000 claims 1
- 150000002910 rare earth metals Chemical class 0.000 claims 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 5
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 5
- 238000000713 high-energy ball milling Methods 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 abstract description 2
- 239000010405 anode material Substances 0.000 abstract 2
- 238000011068 loading method Methods 0.000 abstract 2
- 238000002156 mixing Methods 0.000 abstract 1
- 238000000643 oven drying Methods 0.000 abstract 1
- 238000003825 pressing Methods 0.000 abstract 1
- 238000007789 sealing Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 8
- 239000010406 cathode material Substances 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 238000010532 solid phase synthesis reaction Methods 0.000 description 4
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域 本发明属于一种纳米级锂离子电池正极材料的制备方法,特别是一种采用淬冷法合成高电子-离子导电性的正极材料磷酸铁锂的方法。Technical field The present invention belongs to a method for preparing a cathode material for a nanoscale lithium ion battery, in particular a method for synthesizing a cathode material lithium iron phosphate with high electron-ion conductivity by a quenching method.
背景技术 橄榄石结构的LiFePO4具有原料来源广泛、价格低廉、作为锂离子电池正极材料高温性能优良而被人为是一种较为理想的锂离子二次动力电池正极材料。但是,LiFePO4存在电子-离子导电性差的缺点,因而提高其电子-离子导电性是磷酸铁锂面向应用所必须解决的问题。Background technology LiFePO 4 with olivine structure has wide sources of raw materials, low price, and excellent high-temperature performance as a cathode material for lithium-ion batteries, so it is considered to be an ideal cathode material for lithium-ion secondary power batteries. However, LiFePO 4 has the disadvantage of poor electron-ion conductivity, so improving its electron-ion conductivity is a problem that lithium iron phosphate must solve for its application.
目前合成LiFePO4的方法主要有高温固相法、水热法、溶胶-凝胶法、液相氧化还原法、固相微波法。At present, the methods for synthesizing LiFePO 4 mainly include high-temperature solid-phase method, hydrothermal method, sol-gel method, liquid-phase redox method, and solid-phase microwave method.
目前被广泛采用的高温固相法是将二价铁的草酸盐或乙酸盐,与磷酸氢铵和锂盐混合,然后在惰性气氛氩气或氮气保护下经过高温煅烧获得产品。这种方法合成的磷酸铁锂的晶粒粗大,材料的离子-电子导电性差。The currently widely used high-temperature solid-phase method is to mix ferrous oxalate or acetate with ammonium hydrogen phosphate and lithium salt, and then calcine at high temperature under the protection of an inert atmosphere of argon or nitrogen to obtain the product. The crystal grains of lithium iron phosphate synthesized by this method are coarse, and the ion-electronic conductivity of the material is poor.
碳热还原法也是高温固相法中的一种,一般采用三氧化二铁或四氧化三铁为铁源,在高温和氩气或氮气保护下,碳将三价铁还原为二价铁。对于该方法反应时间过长而且晶粒过度长大的问题依然存在,因而难以制备电化学性能优良的正极材料。The carbothermal reduction method is also one of the high-temperature solid-phase methods. Generally, ferric oxide or ferric oxide is used as the iron source. Under the protection of high temperature and argon or nitrogen, carbon reduces ferric iron to ferrous iron. The problem that the reaction time of this method is too long and the crystal grains grow too much still exists, so it is difficult to prepare positive electrode materials with excellent electrochemical performance.
水热法虽然可以制备纳米级的电子-离子导电性高的磷酸铁锂正极材料,但是水热法要使用耐高温高压的反应器,而且最终产物常伴有杂相存在,制备过程也很难控制。Although the hydrothermal method can prepare nano-scale lithium iron phosphate cathode materials with high electron-ion conductivity, the hydrothermal method needs to use a high-temperature and high-pressure reactor, and the final product is often accompanied by impurities, and the preparation process is difficult to control. .
溶胶-凝胶法前驱体干燥收缩大、工业化生产难度较大、合成周期较长。此外金属醇盐价格昂贵,且醇盐的溶剂通常有毒。The sol-gel method has a large drying shrinkage of the precursor, which makes industrial production difficult and the synthesis cycle is long. In addition, metal alkoxides are expensive, and the solvents of the alkoxides are usually toxic.
液相氧化还原方法中用了维生素C酸、H2O2、LiI、等化工产品,从而增加了产品的成本和工艺的复杂性,因此也不适合工业生产。The liquid-phase redox method uses vitamin C acid, H 2 O 2 , LiI, and other chemical products, which increases the cost of the product and the complexity of the process, so it is not suitable for industrial production.
发明内容 针对磷酸铁锂离子-电子导电性差的弊病,本发明以制备高电子-离子导电性的具有纳米尺寸的磷酸铁锂作为目标并提出了一种磷酸铁锂的制备方法,该方法采用淬冷技术制备纳米级磷酸铁锂,可以制备高电子-离子导电性的电极材料,电化学性能优良。SUMMARY OF THE INVENTION Aiming at the disadvantages of poor lithium iron phosphate ion-electron conductivity, the present invention aims at preparing nanometer-sized lithium iron phosphate with high electron-ion conductivity and proposes a preparation method of lithium iron phosphate, which uses quenching The preparation of nano-scale lithium iron phosphate by cold technology can prepare electrode materials with high electron-ion conductivity and excellent electrochemical performance.
本发明制备磷酸铁锂正极材料的做法如下:The present invention prepares the practice of lithium iron phosphate cathode material as follows:
一种合成纳米级磷酸铁锂粉体的方法,采用锂盐、铁盐、磷酸盐、掺杂元素和导电剂为原料,将锂盐、铁盐、掺杂金属离子(Men+)和磷酸盐按照摩尔比为:锂∶铁∶Men+∶磷酸1.0∶x(x=0.80-0.99)∶(1-x)∶1.0,同时添加上述原料总质量0.5-2.0%的导电剂;经过球磨混合均匀后置于惰性气氛反应炉中,反应温度为300-400℃,保温时间为2-6小时,然后冷却至室温;将粉末取出、压块,再将块体前驱体置于耐热不锈钢容器内,抽真空密封,置于马弗炉内经500-800℃煅烧,煅烧时间为10-20小时,然后在煅烧温度将密封的耐热不锈钢容器取出进行淬冷,淬冷后得到纳米级磷酸铁锂粉体材料。A method for synthesizing nanoscale lithium iron phosphate powder, using lithium salt, iron salt, phosphate, doping element and conductive agent as raw materials, lithium salt, iron salt, doping metal ion (Me n+ ) and phosphate According to the molar ratio: Lithium: Iron: Me n+ : Phosphoric acid 1.0: x (x = 0.80-0.99): (1-x): 1.0, at the same time, add a conductive agent of 0.5-2.0% of the total mass of the above raw materials; mix evenly through ball milling Then put it in an inert atmosphere reaction furnace, the reaction temperature is 300-400°C, the holding time is 2-6 hours, then cool to room temperature; take out the powder, briquetting, and then put the block precursor in a heat-resistant stainless steel container , vacuum-sealed, placed in a muffle furnace and calcined at 500-800°C for 10-20 hours, then the sealed heat-resistant stainless steel container was taken out at the calcining temperature for quenching, and nano-scale lithium iron phosphate was obtained after quenching Powder material.
所述锂盐包括:碳酸锂、氢氧化锂、硝酸锂、氯化锂、磷酸二氢锂中的一种或多种;The lithium salt includes: one or more of lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride, lithium dihydrogen phosphate;
所述铁盐包括:草酸亚铁、三氧化二铁、硫酸亚铁、磷酸铁中的一种或多种;The iron salt includes: one or more of ferrous oxalate, ferric oxide, ferrous sulfate, ferric phosphate;
所述磷酸盐包括:磷酸氢铵、磷酸二氢铵、磷酸铁、磷酸二氢锂中的一种或多种;The phosphate includes: one or more of ammonium hydrogen phosphate, ammonium dihydrogen phosphate, iron phosphate, lithium dihydrogen phosphate;
所述的掺杂元素为锰、锌、钛、镁、铝、锆、铌、铬及稀土等元素中的一种或多种,The doping element is one or more of manganese, zinc, titanium, magnesium, aluminum, zirconium, niobium, chromium and rare earth elements,
所述导电剂为碳或碳的前驱体,包括乙炔黑、鳞片石墨、蔗糖、葡萄糖、聚乙烯醇中的一种或多种。The conductive agent is carbon or a carbon precursor, including one or more of acetylene black, flake graphite, sucrose, glucose, and polyvinyl alcohol.
本发明通过低温300-400℃煅烧分解掉副产物,再将所得前驱体进行压块可以显著提高产物的振实密度;将淬冷技术应用于本发明,具有降温时间短,合成温度低的特点,而且制备的磷酸铁锂产品纯度高,碳含量低,电化学性能和物理性能优良,采淬冷技术合成的材料具有纳米尺寸的晶粒尺寸,电子-离子导电性高。The present invention decomposes by-products by calcining at a low temperature of 300-400°C, and then briquetting the resulting precursor can significantly increase the tap density of the product; applying the quenching technology to the present invention has the characteristics of short cooling time and low synthesis temperature , and the prepared lithium iron phosphate product has high purity, low carbon content, excellent electrochemical and physical properties, and the material synthesized by quenching technology has nano-sized grain size and high electronic-ionic conductivity.
采用本发明制备的纳米尺寸的磷酸铁锂可以有效地减少锂离子在电极反应过程的扩散路径,由于颗粒细小因而可以使得材料与电解液充分接触提高活性物质的利用率,通过体相掺杂和表面包覆可以提高该材料的本征电导率和改善电极-电解液的界面电荷传递能力,首次放电容量达到155mAh/g,而传统的高温固相法所制备的磷酸铁锂在0.2C倍率下首次放电容量只有110mAh/g。The nanometer-sized lithium iron phosphate prepared by the present invention can effectively reduce the diffusion path of lithium ions in the electrode reaction process, and because the particles are small, the material can be fully contacted with the electrolyte to improve the utilization rate of the active material. Through bulk phase doping and Surface coating can improve the intrinsic conductivity of the material and improve the interfacial charge transfer capability of the electrode-electrolyte solution, and the first discharge capacity can reach 155mAh/g, while the lithium iron phosphate prepared by the traditional high-temperature solid-phase method can reach 0.2C rate. The first discharge capacity is only 110mAh/g.
附图说明Description of drawings
图1:样品的SEM图,其中A-实施例1所得样品,B-实施例2所得样品,C-实施例3所得样品;Figure 1: SEM image of the sample, wherein A-sample obtained in Example 1, B-sample obtained in Example 2, C-sample obtained in Example 3;
图2:样品的XRD图,其中A-实施例1所得样品,B-实施例2所得样品,C-实施例3所得样品;Figure 2: XRD pattern of the sample, wherein A-sample obtained in Example 1, sample obtained in B-Example 2, and sample obtained in C-Example 3;
图3:样品的充放电曲线-电压图,其中A-实施例1所得样品,B-实施例2所得样品,C-实施例3所得样品.Figure 3: The charge and discharge curve-voltage diagram of the sample, where A-the sample obtained in Example 1, B-the sample obtained in Example 2, and C-the sample obtained in Example 3.
具体实施方式Detailed ways
实施例1:将含碳酸锂3.71克,草酸亚铁18克,NiO 0.37克磷酸二氢铵11.52克蔗糖1.2克的混合物经过高能球磨,经低温60℃烘干置于自制的惰性气氛反应炉中,开始升温,反应温度为300-400℃保温时间为4小时,分解排出副产物,然后冷却至室温,整个过程中通入惰性气体进行保护。将粉末取出、压块,再将块体前驱体置于耐热不锈钢容器内,抽真空密封。将密封的耐热不锈钢容器置于马弗炉内经650℃煅烧一定时间,然后在煅烧温度将密封的耐热不锈钢容器取出进行淬冷,将产物取出便得到掺杂镍离子的纳米级磷酸铁锂粉体材料。经检测制备的材料的比容量为155mAh/g。实施例2:将含碳酸锂3.71克,草酸亚铁18克,MnCO3 0.114克磷酸二氢铵11.52克蔗糖1.2克的混合物经过高能球磨,经低温60℃烘干置于自制的惰性气氛反应炉中,开始升温,反应温度为300-400℃保温时间为4小时,分解排出副产物,然后冷却至室温,整个过程中通入惰性气体进行保护。将粉末取出、压块,再将块体前驱体置于耐热不锈钢容器内,抽真空密封。将密封的耐热不锈钢容器置于马弗炉内经650℃煅烧一定时间,然后在煅烧温度将密封的耐热不锈钢容器取出进行淬冷,将产物取出便得到掺杂锰离子的纳米级磷酸铁锂粉体材料。经检测制备的材料的比容量为149mAh/g。Example 1: A mixture containing 3.71 grams of lithium carbonate, 18 grams of ferrous oxalate, 0.37 grams of NiO, 11.52 grams of ammonium dihydrogen phosphate, 11.52 grams of sucrose and 1.2 grams of sucrose was passed through high-energy ball milling, dried at a low temperature of 60°C and placed in a self-made inert atmosphere reaction furnace , start to heat up, the reaction temperature is 300-400°C and the holding time is 4 hours, decompose and discharge by-products, then cool to room temperature, and pass inert gas for protection during the whole process. The powder is taken out and compacted, and then the bulk precursor is placed in a heat-resistant stainless steel container and vacuum-sealed. Place the sealed heat-resistant stainless steel container in a muffle furnace for a certain period of calcination at 650°C, then take out the sealed heat-resistant stainless steel container at the calcination temperature for quenching, and take out the product to obtain nano-scale lithium iron phosphate doped with nickel ions Powder material. The specific capacity of the prepared material was tested to be 155mAh/g. Example 2: A mixture containing 3.71 grams of lithium carbonate, 18 grams of ferrous oxalate, MnCO 0.114 grams of ammonium dihydrogen phosphate, 11.52 grams of sucrose, and 1.2 grams of sucrose was passed through high-energy ball milling, dried at a low temperature of 60°C and placed in a self-made inert atmosphere reaction furnace During the process, the temperature starts to rise, the reaction temperature is 300-400°C and the holding time is 4 hours, the by-products are decomposed and discharged, and then cooled to room temperature, and an inert gas is introduced for protection during the whole process. The powder is taken out and compacted, and then the bulk precursor is placed in a heat-resistant stainless steel container and vacuum-sealed. Place the sealed heat-resistant stainless steel container in a muffle furnace for a certain period of calcination at 650°C, then take out the sealed heat-resistant stainless steel container at the calcination temperature for quenching, and take out the product to obtain nano-scale lithium iron phosphate doped with manganese ions Powder material. The specific capacity of the prepared material was tested to be 149mAh/g.
实施例3:将含碳酸锂3.71克,草酸亚铁18克,CoCO3 0.236克磷酸二氢铵11.52克蔗糖1.2克的混合物经过高能球磨,经低温60℃烘干置于自制的惰性气氛反应炉中,开始升温,反应温度为300-400℃保温时间为4小时,分解排出副产物,然后冷却至室温,整个过程中通入惰性气体进行保护。将粉末取出、压块,再将块体前驱体置于耐热不锈钢容器内,抽真空密封。将密封的耐热不锈钢容器置于马弗炉内经650℃煅烧一定时间,然后在煅烧温度将密封的耐热不锈钢容器取出进行淬冷,将产物取出便得到掺杂钴的纳米级磷酸铁锂粉体材料。经检测制备的材料的比容量为145mAh/g。Example 3: A mixture containing 3.71 grams of lithium carbonate, 18 grams of ferrous oxalate, 0.236 grams of CoCO 3 , 11.52 grams of ammonium dihydrogen phosphate, 11.52 grams of sucrose and 1.2 grams of sucrose was passed through high-energy ball milling, dried at a low temperature of 60°C and placed in a self-made inert atmosphere reaction furnace During the process, the temperature starts to rise, the reaction temperature is 300-400°C and the holding time is 4 hours, the by-products are decomposed and discharged, and then cooled to room temperature, and an inert gas is introduced for protection during the whole process. The powder is taken out and compacted, and then the bulk precursor is placed in a heat-resistant stainless steel container and vacuum-sealed. Place the sealed heat-resistant stainless steel container in a muffle furnace for a certain period of calcination at 650°C, then take out the sealed heat-resistant stainless steel container at the calcination temperature for quenching, and take out the product to obtain cobalt-doped nano-scale lithium iron phosphate powder body material. The specific capacity of the prepared material was tested to be 145mAh/g.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101367371A CN100450919C (en) | 2006-11-24 | 2006-11-24 | Method for synthesizing Nano level powder of lithium iron phosphate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101367371A CN100450919C (en) | 2006-11-24 | 2006-11-24 | Method for synthesizing Nano level powder of lithium iron phosphate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1958440A true CN1958440A (en) | 2007-05-09 |
CN100450919C CN100450919C (en) | 2009-01-14 |
Family
ID=38070311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101367371A Expired - Fee Related CN100450919C (en) | 2006-11-24 | 2006-11-24 | Method for synthesizing Nano level powder of lithium iron phosphate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100450919C (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101800310A (en) * | 2010-04-02 | 2010-08-11 | 中国科学院苏州纳米技术与纳米仿生研究所 | Method for preparing graphene-doped anode material for lithium-ion batteries |
CN102013489A (en) * | 2010-10-28 | 2011-04-13 | 河北工业大学 | Metallic titanium doped carbon-coating lithium iron phosphate and preparation method thereof |
CN102064317A (en) * | 2009-11-13 | 2011-05-18 | 深圳市比克电池有限公司 | LiFe1-xMxPO4 compound containing carbon element and preparation method thereof |
CN101359731B (en) * | 2007-07-31 | 2012-03-14 | 深圳市比克电池有限公司 | Method for synthesizing lithium ionic cell positive pole material lithium iron phosphate |
CN102502562A (en) * | 2011-11-14 | 2012-06-20 | 东莞市长安东阳光铝业研发有限公司 | Preparation method of lithium iron phosphate, lithium ion battery and anode material and anode thereof |
CN102593447A (en) * | 2011-03-23 | 2012-07-18 | 江苏菲思特新能源有限公司 | Metal doping method of lithium iron phosphate anode material |
CN101373831B (en) * | 2007-08-24 | 2012-07-25 | 比克国际(天津)有限公司 | Method for preparing lithium ion battery anode material lithium iron phosphate |
CN102810670A (en) * | 2012-08-01 | 2012-12-05 | 因迪能源(苏州)有限公司 | Composite anode material of lithium ion battery and preparation method |
CN108199041A (en) * | 2017-12-29 | 2018-06-22 | 桑德集团有限公司 | A kind of modified phosphate iron lithium material, preparation method and application |
WO2018129883A1 (en) * | 2017-01-11 | 2018-07-19 | 宁德时代新能源科技股份有限公司 | Lithium iron phosphate/carbon composite material and preparation method therefor |
CN113363483A (en) * | 2021-04-27 | 2021-09-07 | 北京当升材料科技股份有限公司 | Olivine-structure positive electrode material, preparation method and application thereof, and lithium ion battery |
CN114188519A (en) * | 2021-12-09 | 2022-03-15 | 合肥工业大学 | Preparation method and energy storage application of nano-spherical carbon-coated lithium iron phosphate composite material |
CN114368736A (en) * | 2022-01-28 | 2022-04-19 | 中南大学 | A kind of preparation method of olivine-type sodium iron phosphate cathode material |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100418255C (en) * | 2005-12-23 | 2008-09-10 | 清华大学 | A kind of preparation method of lithium-rich type lithium iron phosphate powder |
CN100551821C (en) * | 2005-12-23 | 2009-10-21 | 清华大学 | Preparation method of rare earth doped lithium iron phosphate powder |
-
2006
- 2006-11-24 CN CNB2006101367371A patent/CN100450919C/en not_active Expired - Fee Related
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101359731B (en) * | 2007-07-31 | 2012-03-14 | 深圳市比克电池有限公司 | Method for synthesizing lithium ionic cell positive pole material lithium iron phosphate |
CN101373831B (en) * | 2007-08-24 | 2012-07-25 | 比克国际(天津)有限公司 | Method for preparing lithium ion battery anode material lithium iron phosphate |
CN102064317A (en) * | 2009-11-13 | 2011-05-18 | 深圳市比克电池有限公司 | LiFe1-xMxPO4 compound containing carbon element and preparation method thereof |
CN102064317B (en) * | 2009-11-13 | 2014-11-19 | 深圳市比克电池有限公司 | LiFe1-xMxPO4 compound containing carbon element and preparation method thereof |
CN101800310B (en) * | 2010-04-02 | 2013-02-13 | 中国科学院苏州纳米技术与纳米仿生研究所 | Method for preparing graphene-doped anode material for lithium-ion batteries |
CN101800310A (en) * | 2010-04-02 | 2010-08-11 | 中国科学院苏州纳米技术与纳米仿生研究所 | Method for preparing graphene-doped anode material for lithium-ion batteries |
CN102013489A (en) * | 2010-10-28 | 2011-04-13 | 河北工业大学 | Metallic titanium doped carbon-coating lithium iron phosphate and preparation method thereof |
CN102593447A (en) * | 2011-03-23 | 2012-07-18 | 江苏菲思特新能源有限公司 | Metal doping method of lithium iron phosphate anode material |
CN102593447B (en) * | 2011-03-23 | 2016-03-16 | 江苏菲思特新能源有限公司 | A kind of metal-doped method of lithium iron phosphate positive material |
CN102502562B (en) * | 2011-11-14 | 2014-06-11 | 东莞市长安东阳光铝业研发有限公司 | Preparation method of lithium iron phosphate, lithium ion battery, positive electrode material and positive electrode thereof |
CN102502562A (en) * | 2011-11-14 | 2012-06-20 | 东莞市长安东阳光铝业研发有限公司 | Preparation method of lithium iron phosphate, lithium ion battery and anode material and anode thereof |
CN102810670A (en) * | 2012-08-01 | 2012-12-05 | 因迪能源(苏州)有限公司 | Composite anode material of lithium ion battery and preparation method |
CN102810670B (en) * | 2012-08-01 | 2015-03-04 | 因迪能源(苏州)有限公司 | Composite anode material of lithium ion battery and preparation method |
WO2018129883A1 (en) * | 2017-01-11 | 2018-07-19 | 宁德时代新能源科技股份有限公司 | Lithium iron phosphate/carbon composite material and preparation method therefor |
CN108305991A (en) * | 2017-01-11 | 2018-07-20 | 宁德时代新能源科技股份有限公司 | Lithium iron phosphate/carbon composite material and preparation method thereof |
CN108199041A (en) * | 2017-12-29 | 2018-06-22 | 桑德集团有限公司 | A kind of modified phosphate iron lithium material, preparation method and application |
CN108199041B (en) * | 2017-12-29 | 2020-09-08 | 桑德新能源技术开发有限公司 | Modified lithium iron phosphate material, preparation method and application |
CN113363483A (en) * | 2021-04-27 | 2021-09-07 | 北京当升材料科技股份有限公司 | Olivine-structure positive electrode material, preparation method and application thereof, and lithium ion battery |
CN114188519A (en) * | 2021-12-09 | 2022-03-15 | 合肥工业大学 | Preparation method and energy storage application of nano-spherical carbon-coated lithium iron phosphate composite material |
CN114368736A (en) * | 2022-01-28 | 2022-04-19 | 中南大学 | A kind of preparation method of olivine-type sodium iron phosphate cathode material |
Also Published As
Publication number | Publication date |
---|---|
CN100450919C (en) | 2009-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1958440A (en) | Method for synthesizing Nano level powder of lithium iron phosphate | |
CN101764207B (en) | Lithium titanate for lithium ion battery negative electrode material and preparation method thereof | |
EP2357691A1 (en) | Nonstoichiometric titanium compound, carbon composite of the same, method for producing the compound, negative electrode active material for lithium ion secondary battery containing the compound, and lithium ion secondary battery using the negative electrode active material | |
CN103560227B (en) | A kind of Li 4ti 5o 12the preparation method of/C composite | |
CN100435390C (en) | Synthesis of lithium vanadium phosphate as cathode material for lithium-ion batteries by sol-gel method | |
CN1255888C (en) | Method for preparing lithiumion cell positive material iron-lithium phosphate | |
CN101339992B (en) | Preparation method of lithium vanadium silicate lithium ion battery cathode material | |
CN101475155B (en) | Preparation method of lithium iron phosphate cathode material for lithium ion battery | |
CN101152959A (en) | Preparation method of lithium iron phosphate composite oxide | |
CN103165890B (en) | A kind of method adopting sol-gel auto-combustion to prepare phosphoric acid vanadium lithium | |
CN107437617A (en) | A kind of surface modification method, gained richness lithium material and application for improving rich lithium material chemical property | |
CN114695862B (en) | A fluorine-aluminum co-doped lithium cobalt oxide positive electrode material and preparation method thereof | |
CN100450920C (en) | Method for preparing powder of lithium iron phosphate | |
CN101070149A (en) | Lithium iron carbonate material prepared by vacuum carbon reduction and method | |
CN1803590A (en) | Method for preparing lithium ion battery anode material lithium ion phosphate | |
CN113066978A (en) | A kind of Ta surface doped high nickel single crystal cathode material and preparation method | |
CN103159201B (en) | A kind of high pressure, low temperature method preparing carbon-coated LiFePO 4 for lithium ion batteries anode composite material of lithium ion battery | |
CN102502562A (en) | Preparation method of lithium iron phosphate, lithium ion battery and anode material and anode thereof | |
CN115332510A (en) | Lithium-rich manganese-based layered material coated with g-C3N4 and containing oxygen vacancies, preparation method and application thereof | |
CN114655984A (en) | Indium-niobium oxide cathode material of lithium ion battery and preparation method thereof | |
CN118507707A (en) | P2/T composite phase oxide sodium ion battery positive electrode material and preparation method thereof | |
CN102983333A (en) | Novel preparation method of lithium vanadium phosphate/carbon composite material for positive pole of lithium ion battery | |
CN117497753A (en) | Potassium-sodium mixed cathode material and preparation method and application thereof | |
CN112875766B (en) | Method for preparing ternary cathode material by microwave heating solution method with carbon source added | |
CN114142010B (en) | Magnesium oxide and cerium fluoride composite coated lithium ion battery positive electrode material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Assignee: Hunan Jiafei Technology Development Co., Ltd. Assignor: Central South University Contract fulfillment period: 2009.12.2 to 2011.12.1 contract change Contract record no.: 2009430000242 Denomination of invention: Method for synthesizing Nano level powder of lithium iron phosphate Granted publication date: 20090114 License type: Exclusive license Record date: 20091216 |
|
LIC | Patent licence contract for exploitation submitted for record |
Free format text: EXCLUSIVE LICENSE; TIME LIMIT OF IMPLEMENTING CONTACT: 2009.12.2 TO 2011.12.1; CHANGE OF CONTRACT Name of requester: HUNAN JIAFEI SCIENCE AND TECHNOLOGY DEVELOPMENT CO Effective date: 20091216 |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090114 Termination date: 20141124 |
|
EXPY | Termination of patent right or utility model |