CN1945751A - Accelerator driven fast-thermally coupled subcritical reactor - Google Patents
Accelerator driven fast-thermally coupled subcritical reactor Download PDFInfo
- Publication number
- CN1945751A CN1945751A CNA2006101458582A CN200610145858A CN1945751A CN 1945751 A CN1945751 A CN 1945751A CN A2006101458582 A CNA2006101458582 A CN A2006101458582A CN 200610145858 A CN200610145858 A CN 200610145858A CN 1945751 A CN1945751 A CN 1945751A
- Authority
- CN
- China
- Prior art keywords
- fast
- neutron
- thermal
- area
- accelerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001228 spectrum Methods 0.000 claims abstract description 29
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052770 Uranium Inorganic materials 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 12
- 230000008878 coupling Effects 0.000 claims abstract description 10
- 238000010168 coupling process Methods 0.000 claims abstract description 10
- 238000005859 coupling reaction Methods 0.000 claims abstract description 10
- 239000010935 stainless steel Substances 0.000 claims abstract description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 5
- 230000004992 fission Effects 0.000 abstract description 19
- 238000009377 nuclear transmutation Methods 0.000 abstract description 6
- 239000000446 fuel Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 8
- 239000002699 waste material Substances 0.000 description 7
- 229910052768 actinide Inorganic materials 0.000 description 6
- 150000001255 actinides Chemical class 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 3
- 229910052776 Thorium Inorganic materials 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 230000001488 breeding effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 239000002915 spent fuel radioactive waste Substances 0.000 description 3
- OYEHPCDNVJXUIW-FTXFMUIASA-N 239Pu Chemical compound [239Pu] OYEHPCDNVJXUIW-FTXFMUIASA-N 0.000 description 2
- 229910052778 Plutonium Inorganic materials 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000002927 high level radioactive waste Substances 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- JFALSRSLKYAFGM-FTXFMUIASA-N uranium-233 Chemical compound [233U] JFALSRSLKYAFGM-FTXFMUIASA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 239000002901 radioactive waste Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Particle Accelerators (AREA)
Abstract
本发明公开了一种加速器驱动的次临界反应堆。其从中心向外依次为靶区、快中子能谱区、热中子能谱区、反射层区、屏蔽层区、不锈钢外壳,特别是靶区使用加速器加速的质子与主靶核发生散裂反应产生的中子作为中子源;快中子能谱区所使用的可裂变材料是天然铀或低富集度铀;热中子能谱区使用的是富集度为3~4%的UO2;在快中子能谱区与热中子能谱区自然形成超热中子区,嬗变LLFP。该种次临界反应堆不仅实现了快-热耦合,嬗变MA、LLFP,还可产能,真正实现了加速器驱动洁净核能系统的概念。
The invention discloses an accelerator-driven subcritical reactor. From the center outward, they are the target area, the fast neutron energy spectrum area, the thermal neutron energy spectrum area, the reflective layer area, the shielding layer area, and the stainless steel shell. In particular, the protons accelerated by the accelerator in the target area scatter with the main target nucleus. The neutrons produced by the fission reaction are used as the neutron source; the fissile material used in the fast neutron energy spectrum region is natural uranium or low-enrichment uranium; the thermal neutron energy spectrum region uses uranium with an enrichment of 3 to 4%. UO 2 ; naturally forms an epithermal neutron region in the fast neutron energy spectrum region and the thermal neutron energy spectrum region, transmutation LLFP. This type of subcritical reactor not only realizes fast-thermal coupling, transmutation MA, and LLFP, but also can produce energy, truly realizing the concept of an accelerator-driven clean nuclear energy system.
Description
技术领域technical field
本发明公开了一种用中子照射嬗变放射性废物的装置,具体涉及一种加速器驱动的次临界反应堆。The invention discloses a device for irradiating and transmuting radioactive waste with neutrons, in particular to an accelerator-driven subcritical reactor.
背景技术Background technique
在反应堆的乏燃料中,存在着大量放射性物质,毒性大,而且半衰期很长,很多可长达104~107年,潜在的危害性极大。In the spent fuel of the reactor, there are a large amount of radioactive substances, which are highly toxic and have a long half-life, many of which can be as long as 10 4 to 10 7 years, which is extremely harmful.
国际上有两种方案处理这些乏燃料,一种是以美国为首的所谓一次通过方式,即乏燃料经过较长时间的存放冷却,作为高放废物直接进行深地质埋藏;另一种是以法国等国为首的将乏燃料经过短时间的存放后,进行后处理,回收铀和鈈,将回收后丢掉的铀和鈈、全部其它锕系核素(简称MA)以及全部裂变产物(包括长寿命裂变产物,简称LLFP)作为高放废物经固化进行深地质埋藏。尽管后一种方案比前一种方案风险小得多,它仍存在着远期放射性风险问题,资源也存在一定的浪费。There are two international plans to deal with these spent fuels. One is the so-called one-pass method led by the United States, that is, after a long period of storage and cooling, the spent fuel is directly buried in deep geological land as high-level radioactive waste; the other is the French one. After the spent fuel is stored for a short period of time, reprocessing is carried out to recover uranium and plutonium, and the uranium and plutonium, all other actinide nuclides (referred to as MA) and all fission products (including long-lived Fission products (LLFP for short) are solidified as high-level radioactive waste for deep geological burial. Although the latter option is much less risky than the former one, it still has long-term radiological risks and a certain waste of resources.
在《现代物理知识》1994年第5期,郁忠强在“能量放大器”一文中公开了西欧核子中心主任、诺贝尔奖获得者鲁比亚(C.Rubbia)领导的小组所提出的一个提供干净核能的新概念:利用高能强流质子加速器(能量1~1.6GeV,平均流强~7mA)产生的高能质子束,在物质中形成核级联过程而产生大量的中子,天然钍(232Th)俘获中子而转变为裂变元素233U,233U又裂变产生中子维持链式反应。他们将这个装置称为能量放大器。装置启动后,裂变元素在天然钍中的比例很快可以达到相对稳定,形成一个长期稳定的能量产出。装置运行于次临界状态和相对高的中子通量(~1016cm-2·s-1)以确保增值过程的稳定持续和设备无临界危险。其废料中长寿命的锕系元素很少,大大简化了核废料的处置难题,而且不产生武器级的核燃料,避免了核扩散的担忧。这种用加速器加速的高能质子与重靶核发生散裂反应产生的中子作为外中子源来驱动次临界反应堆的系统,国际上称为ADS。但该文献所提供的ADS系统仅是一种新概念,在技术和工艺上有较大难度,因为按目前的加速器技术,要建一台能量为1~1.6GeV,平均流强达150mA的质子加速器不是一件容易的事。中子通量为1016cm-2·s-1数量级的反应堆工艺技术上也是一个新课题。另外,ADS如果用热中子次临界反应堆可产生核能,设计好可烧掉全部的LLFP,但不能烧掉MA;ADS如果用快中子次临界反应堆可产生核能,设计好可烧掉全部的MA,但不能完全烧掉LLFP,因为MA的嬗变是靠快中子而LLFP的嬗变是靠超热中子。总之,两种堆型(快中子反应堆和热中子反应堆)各有优缺点。In the fifth issue of "Modern Physics Knowledge" in 1994, Yu Zhongqiang disclosed in the article "Energy Amplifier" a method to provide clean nuclear energy proposed by a group led by C. Rubbia, director of the Western European Nuclear Center and Nobel Prize winner. The new concept of the company: using the high-energy proton beam generated by the high-energy proton accelerator (energy 1-1.6GeV, average current intensity-7mA), a nuclear cascade process is formed in the material to produce a large number of neutrons, natural thorium ( 232 Th) Capture neutrons and transform into fissile elements 233 U, and 233 U fissions to produce neutrons to maintain the chain reaction. They called this device an energy amplifier. After the device is started, the proportion of fission elements in natural thorium can reach a relatively stable soon, forming a long-term stable energy output. The device operates in a subcritical state and a relatively high neutron flux (~10 16 cm -2 ·s -1 ) to ensure the stability and continuity of the value-added process and the equipment without criticality hazards. There are very few long-lived actinides in the waste, which greatly simplifies the disposal of nuclear waste, and does not produce weapon-grade nuclear fuel, avoiding the concern of nuclear proliferation. This kind of system, which uses the neutrons produced by the spallation reaction of the high-energy protons accelerated by the accelerator and the heavy target nucleus as the external neutron source to drive the subcritical reactor system, is called ADS internationally. However, the ADS system provided by this document is only a new concept, and there are great difficulties in technology and process, because according to the current accelerator technology, it is necessary to build a proton with an energy of 1-1.6GeV and an average current intensity of 150mA. Accelerators are not an easy task. The reactor technology with a neutron flux of the order of 10 16 cm -2 ·s -1 is also a new subject. In addition, if ADS uses a thermal neutron subcritical reactor to generate nuclear energy, it is designed to burn all LLFP, but not MA; if ADS uses a fast neutron subcritical reactor to generate nuclear energy, it is designed to burn all MA, but LLFP cannot be burned completely, because the transmutation of MA depends on fast neutrons and the transmutation of LLFP depends on epithermal neutrons. In conclusion, both reactor types (fast neutron reactor and thermal neutron reactor) have their own advantages and disadvantages.
另外,在中国专利03152870.8中,中国科学院等离子体物理研究所公开了基于可裂变材料中子增殖的次临界核废料处理与核燃料生产的方法,该方法是通过聚变反应或者高能质子与靶材料发生的散裂反应产生外源中子,这些外源中子进入长寿命放射性锕系元素处理区,与锕系元素处理区中锕系元素发生裂变反应,同时与其中的可裂变钚239或铀233发生裂变反应生产大量的新中子;这些中子部分进入可裂变燃料增殖区中,与其中贫铀或者天然铀或者天然钍发生中子俘获反应,生成可裂变的钚239或铀233,以供给锕系元素处理区的再循环使用,或者输出作其它用途;从可裂变燃料增殖区泄漏的中子进入裂变产物处理区,与其中混合在中子慢化剂中的放射性裂变产物发生俘获反应,使长寿命高毒性的裂变产物转变成稳定无毒性或者短寿命低毒性的裂变产物,各个区中产生的热量采用冷却剂冷却,各区之间采用结构材料分隔,整个系统采用屏蔽材料屏蔽。该技术方案相对于鲁比亚等人提出的概念而言更加细化,但依旧还只是一个概念,并存在如下问题:1)在外中子源产生区使用D-T聚变反应堆或者由高能质子散裂反应提供外中子源,不仅成本高,而且不易控制,难以实现。2)裂变产物处理区利用可裂变燃料增殖区慢化后的低能中子与裂变产物发生俘获反应来处理长寿命的裂变产物废料。实际上,裂变产物处理区可利用的低能中子已很少,能否达到预期的目的很难确定。另外,裂变产物处理区只能用于处理长寿命的裂变产物废料,不能产能,浪费了燃料。In addition, in Chinese patent 03152870.8, the Institute of Plasma Physics, Chinese Academy of Sciences discloses a method for subcritical nuclear waste treatment and nuclear fuel production based on neutron multiplication of fissionable materials, which occurs through fusion reactions or high-energy protons and target materials The spallation reaction produces exogenous neutrons, and these exogenous neutrons enter the long-lived radioactive actinide element processing area, undergo fission reaction with actinide elements in the actinide element processing area, and simultaneously produce fissionable plutonium-239 or uranium-233 therein The fission reaction produces a large number of new neutrons; some of these neutrons enter the fissionable fuel breeding zone, and undergo a neutron capture reaction with depleted uranium or natural uranium or natural thorium to generate fissionable plutonium-239 or uranium-233 to supply actinides Recycling of element processing area, or output for other purposes; neutrons leaked from the fission fuel breeding area enter the fission product processing area, and capture and react with radioactive fission products mixed in the neutron moderator, so that the long-term Fission products with high lifetime toxicity are converted into stable non-toxic or short-lived and low-toxic fission products. The heat generated in each zone is cooled by coolant, and the zones are separated by structural materials. The entire system is shielded by shielding materials. Compared with the concept proposed by Rubia et al., this technical solution is more detailed, but it is still only a concept, and there are the following problems: 1) The use of D-T fusion reactors in the outer neutron source production area or by high-energy proton spallation reactions Providing an external neutron source is not only costly, but also difficult to control and difficult to realize. 2) The fission product processing area utilizes the low-energy neutrons slowed down in the fission fuel breeding area to undergo a capture reaction with the fission products to process long-lived fission product waste. In fact, there are very few low-energy neutrons available in the fission product processing area, and it is difficult to determine whether the expected purpose can be achieved. In addition, the fission product treatment area can only be used to dispose of long-lived fission product waste, which cannot generate energy and wastes fuel.
技术方案Technical solutions
本发明就是根据鲁比亚(C.Rubbia)、中国科学院等离子体物理研究所等人所提供的洁净核能的概念,提供一种既能同时燃烧掉MA、LLFP,又能产能的快-热耦合次临界反应堆。The present invention is based on the concept of clean nuclear energy provided by C.Rubbia, Institute of Plasma Physics, Chinese Academy of Sciences, etc., to provide a fast-thermal coupling that can simultaneously burn off MA and LLFP, and can also produce energy. subcritical reactor.
一种快-热耦合次临界反应堆,从中心向外依次为靶区、快中子能谱区、热中子能谱区、反射层区、屏蔽层区、不锈钢外壳。关键在于靶区是使用加速器加速的质子与主靶核发生散裂反应产生的中子作为中子源;快中子能谱区所使用的可裂变材料是天然铀或低富集度铀;热中子能谱区使用的是低富集度铀,用以产能。同时,在快中子能谱区与热中子能谱区之间自然形成超热中子区。A fast-thermal coupling subcritical reactor comprises a target area, a fast neutron energy spectrum area, a thermal neutron energy spectrum area, a reflective layer area, a shielding layer area, and a stainless steel casing from the center to the outside. The key is that the target area uses the neutrons produced by the spallation reaction between protons accelerated by the accelerator and the main target nucleus as the neutron source; the fissionable material used in the fast neutron spectrum area is natural uranium or low-enrichment uranium; The neutron spectrum region uses low-enrichment uranium for energy production. At the same time, an epithermal neutron region is naturally formed between the fast neutron energy spectrum region and the thermal neutron energy spectrum region.
本发明所提供的的快-热耦合次临界反应堆,其内部为快中子次临界反应堆,其外部是热中子次临界反应堆,弥补了两种堆型各自的缺点,用内部的快中子次临界反应堆来嬗变MA,用内部的快中子次临界反应堆和用外部的热中子次临界反应堆耦合形成的超热中子区来嬗变LLFP。另外内部的快中子次临界反应堆还可对加速器产生的中子源起到放大作用,这样一来,外部的热中子次临界反应堆就可得到比纯外部的中子源要强的中子源来驱动,使热中子次临界反应堆发出更多的核电或减轻对加速器的要求。快次临界反应堆作为外中子源的放大器,可放大倍数为
总之,本发明所提供的快-热耦合次临界反应堆弥补了在ADS中的快中子次临界反应堆和热中子次临界反应堆两种堆型在嬗变MA和LLFP各自的缺点并兼备发电功能,发电量的1/3可用于加速器的用电。同时,实现了ADS使用低富集度铀的要求。In a word, the fast-thermal coupled subcritical reactor provided by the present invention makes up the shortcomings of the fast neutron subcritical reactor and the thermal neutron subcritical reactor in the ADS in transmutation MA and LLFP respectively and has both power generation functions, 1/3 of the power generation can be used for the electricity consumption of the accelerator. At the same time, the requirement for ADS to use low-enrichment uranium has been fulfilled.
附图说明Description of drawings
图1为装置横向剖面图;Fig. 1 is a transverse sectional view of the device;
图2为装置纵向剖面图。Figure 2 is a longitudinal sectional view of the device.
实施例Example
下面将结合实施例对本发明的技术方案作进一步解释。The technical solutions of the present invention will be further explained below in conjunction with examples.
如图1所示,一种快-热耦合次临界反应堆,从中心向外依次为靶区1、快中子能谱区2、热中子能谱区4、反射层区5、屏蔽层区6、不锈钢外壳7。中间设置铅缓存区8。快中子能谱区2与热中子能谱区4之间耦合形成超热中子能谱区3。As shown in Figure 1, a fast-thermal coupled subcritical reactor consists of target area 1, fast neutron
如图2所示,各区的结构如下。As shown in Fig. 2, the structure of each area is as follows.
靶区1:在快中子能谱区2的中心取出7根元件形成一个直径为40~60mm,最佳设计为50mm的空腔作为靶区,中子源铅靶管长为500mm。若高能强流质子加速器产生的能量为1GeV,平均流强~1mA的高能质子束轰击铅靶将产生1.2~1.9×109n/s的中子源。Target area 1: Take out 7 elements in the center of fast
快中子能谱区2:所有元件装在一个六面体的铝块内,铝块直径为195~220mm,最佳设计为200mm。栅距为25mm,平均中子能量为700KeV。天然铀或低富集度铀燃料元件外径为22mm,芯体直径为20mm,芯体长1000mm,总长1035mm,密度18.6g/cm3。包壳材料为铝。燃料元件插在铝件中,元件根数为264根。Fast neutron energy spectrum area 2: All components are installed in a hexahedral aluminum block, the diameter of the aluminum block is 195-220mm, and the best design is 200mm. The grid pitch is 25mm, and the average neutron energy is 700KeV. The natural uranium or low-enrichment uranium fuel element has an outer diameter of 22mm, a core diameter of 20mm, a core length of 1000mm, a total length of 1035mm, and a density of 18.6g/cm 3 . The casing material is aluminum. The fuel elements are inserted in the aluminum parts, and the number of elements is 264.
热中子能谱区4:厚度为150mm,燃料元件插在聚乙烯慢化剂内,按照三角形排列。燃料元件使用富集度为3~5%的UO2,元件外径为8mm,芯体直径为6.55mm,芯体长700mm,元件密度10.4465g/cm3。燃料元件包壳厚0.65mm,材料为Zr-2合金。每根元件芯重753g,间距为12mm。元件根数根据需要而定,使Keff在0.90~0.98之间。Thermal neutron energy spectrum region 4: the thickness is 150mm, the fuel elements are inserted in the polyethylene moderator and arranged in a triangle. The fuel element uses UO 2 with an enrichment degree of 3-5%. The outer diameter of the element is 8mm, the diameter of the core is 6.55mm, the length of the core is 700mm, and the density of the element is 10.4465g/cm 3 . The thickness of the fuel element cladding is 0.65mm, and the material is Zr-2 alloy. Each element core weighs 753g and has a pitch of 12mm. The number of components depends on the needs, so that K eff is between 0.90 and 0.98.
反射层区5:材料为聚乙烯,密度为0.937g/cm3,径向厚度>15~25cm,轴向厚度>15~25cm。Reflective layer area 5: the material is polyethylene, the density is 0.937g/cm 3 , the radial thickness is >15-25cm, and the axial thickness is >15-25cm.
屏蔽层区6:含硼聚乙烯,厚度>25cm。Shielding layer area 6: boron-containing polyethylene, thickness > 25cm.
不锈钢外壳7:厚10cm。Stainless steel shell 7: 10cm thick.
同时,在快中子能谱区2与热中子能谱区4之间自然形成超热中子区3,嬗变LLFP。At the same time, an epithermal neutron region 3 is naturally formed between the fast neutron
本发明所提供的技术方案,在快中子能谱区2除燃料元件外,用铝模拟快区钠冷材料,在热中子能谱区4除燃料元件外,用聚乙烯模拟慢化剂材料——水,结构简单、实用。不仅实现了快-热耦合,嬗变MA、LLFP,还可产能,实现了真正意义上的加速器驱动洁净核能系统(即ADS)的概念。In the technical scheme provided by the present invention, in the fast
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610145858A CN1945751B (en) | 2006-11-21 | 2006-11-21 | Accelerator driven fast-thermally coupled subcritical reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610145858A CN1945751B (en) | 2006-11-21 | 2006-11-21 | Accelerator driven fast-thermally coupled subcritical reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1945751A true CN1945751A (en) | 2007-04-11 |
CN1945751B CN1945751B (en) | 2010-05-12 |
Family
ID=38045089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200610145858A Active CN1945751B (en) | 2006-11-21 | 2006-11-21 | Accelerator driven fast-thermally coupled subcritical reactor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1945751B (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101950591A (en) * | 2010-07-02 | 2011-01-19 | 中科华核电技术研究院有限公司 | Free surface forming component and free surface forming method for spallation target |
CN101377962B (en) * | 2008-09-22 | 2012-07-04 | 中国科学院等离子体物理研究所 | Fusion driven subcritical systems and methods for producing 252Cf neutron sources |
CN102610284A (en) * | 2012-03-30 | 2012-07-25 | 中国科学院合肥物质科学研究院 | Hybrid reactor cladding for realizing long-term energy amplification by using fast-thermal coupling mixed energy spectrum |
CN102623078A (en) * | 2012-03-30 | 2012-08-01 | 中国科学院合肥物质科学研究院 | A high-efficiency nuclear waste transmutation subcritical core based on hybrid energy spectrum |
CN102668723A (en) * | 2009-12-21 | 2012-09-12 | 科学技术设备委员会 | Charged particle generator |
CN102789821A (en) * | 2012-06-14 | 2012-11-21 | 华北电力大学 | A new thorium-based reactor device |
CN102893339A (en) * | 2009-11-12 | 2013-01-23 | 麦帕德核能公司 | Techniques for on-demand production of medical isotopes such as mo-99/tc-99m and radioactive iodine isotopes including i-131 |
CN103093837A (en) * | 2013-01-15 | 2013-05-08 | 西安交通大学 | Accelerator-driven subcritical transmutation reactor core adopting dispersion metal fuel |
CN103366852A (en) * | 2012-03-28 | 2013-10-23 | 华北电力大学 | Reactor core of high flux thermal neutron reactor for transmutation |
CN103839601A (en) * | 2013-11-08 | 2014-06-04 | 西南科技大学 | Radial power flattening reactor core with square arrangement driven by external source |
CN104302088A (en) * | 2014-09-18 | 2015-01-21 | 西南科技大学 | A Spallation Target for Accelerator-Driven Subcritical Reactors with Low Proton Beam Intensity and Efficient Transmutation of Nuclear Waste |
US9355747B2 (en) | 2008-12-25 | 2016-05-31 | Thorium Power, Inc. | Light-water reactor fuel assembly (alternatives), a light-water reactor, and a fuel element of fuel assembly |
WO2016197807A1 (en) * | 2015-06-12 | 2016-12-15 | 陈安海 | Implementation method for fast reactor type coupled nuclear reaction and nuclear reactor therefor |
CN106340336A (en) * | 2016-09-23 | 2017-01-18 | 中国科学院合肥物质科学研究院 | System for transmuting nuclear wastes by utilizing isotopic neutron source |
CN106663474A (en) * | 2014-08-20 | 2017-05-10 | Ad梅约拉有限责任公司 | Exothermic transmutation method |
CN107134298A (en) * | 2017-06-19 | 2017-09-05 | 中科瑞华原子能源技术有限公司 | A kind of compact reactor core and power flattening method |
CN107195334A (en) * | 2017-06-08 | 2017-09-22 | 清华大学天津高端装备研究院 | A kind of Accelerator Driven Subcritical gas-cooled reactor |
CN107705860A (en) * | 2017-09-27 | 2018-02-16 | 中国科学院合肥物质科学研究院 | A High Breeder Ratio Reactor Core |
US10037823B2 (en) | 2010-05-11 | 2018-07-31 | Thorium Power, Inc. | Fuel assembly |
CN109119174A (en) * | 2018-09-06 | 2019-01-01 | 中国原子能科学研究院 | A kind of heat-pipe cooling type nuclear reactor power-supply system based on uranium hydrogen zirconium fuel and static heat to electricity conversion |
US10170207B2 (en) | 2013-05-10 | 2019-01-01 | Thorium Power, Inc. | Fuel assembly |
US10192644B2 (en) | 2010-05-11 | 2019-01-29 | Lightbridge Corporation | Fuel assembly |
CN112912970A (en) * | 2018-09-05 | 2021-06-04 | 阿尔法能源技术公司 | Systems and methods for electrostatic accelerator-driven neutron production based on liquid phase transmutation |
CN116386925A (en) * | 2023-03-06 | 2023-07-04 | 中子高新技术产业发展(重庆)有限公司 | Liquid subcritical isotope production system driven by accelerator |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2856836A1 (en) * | 2003-06-30 | 2004-12-31 | Commissariat Energie Atomique | Increasing safety and reliability of hybrid nuclear reactors, fixes fraction of power produced, which is consumed to supply the accelerator |
CN1279547C (en) * | 2003-08-26 | 2006-10-11 | 中国科学院等离子体物理研究所 | Method and system for subcritical nuclear rubbish treatment and nuclear fuel production based on fissioner neutron breeding |
-
2006
- 2006-11-21 CN CN200610145858A patent/CN1945751B/en active Active
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101377962B (en) * | 2008-09-22 | 2012-07-04 | 中国科学院等离子体物理研究所 | Fusion driven subcritical systems and methods for producing 252Cf neutron sources |
US9355747B2 (en) | 2008-12-25 | 2016-05-31 | Thorium Power, Inc. | Light-water reactor fuel assembly (alternatives), a light-water reactor, and a fuel element of fuel assembly |
CN102301430B (en) * | 2008-12-25 | 2016-06-29 | 钍能源股份有限公司 | The fuel element of light-water reactor fuel assembly (alternative), light-water reactor and fuel assembly |
US9576691B2 (en) | 2009-11-12 | 2017-02-21 | Global Medical Isotope Systems Llc | Techniques for on-demand production of medical isotopes such as Mo-99/Tc-99m and radioactive iodine isotopes including I-131 |
CN102893339B (en) * | 2009-11-12 | 2016-10-12 | 全球医疗同位素系统有限责任公司 | A kind of for producing the radioisotopic equipment in medical field |
US9443629B2 (en) | 2009-11-12 | 2016-09-13 | Global Medical Isotope Systems Llc | Techniques for on-demand production of medical isotopes such as Mo-99/Tc-99m and radioactive iodine isotopes including I-131 |
CN107068229A (en) * | 2009-11-12 | 2017-08-18 | 全球医疗同位素系统有限责任公司 | For such as Mo 99/Tc 99M and the radioactive iodine isotope including I 131 medical isotope the technology produced on demand |
CN102893339A (en) * | 2009-11-12 | 2013-01-23 | 麦帕德核能公司 | Techniques for on-demand production of medical isotopes such as mo-99/tc-99m and radioactive iodine isotopes including i-131 |
CN102668723A (en) * | 2009-12-21 | 2012-09-12 | 科学技术设备委员会 | Charged particle generator |
US11862353B2 (en) | 2010-05-11 | 2024-01-02 | Thorium Power, Inc. | Fuel assembly |
US10192644B2 (en) | 2010-05-11 | 2019-01-29 | Lightbridge Corporation | Fuel assembly |
US10037823B2 (en) | 2010-05-11 | 2018-07-31 | Thorium Power, Inc. | Fuel assembly |
US11837371B2 (en) | 2010-05-11 | 2023-12-05 | Thorium Power, Inc. | Method of manufacturing a nuclear fuel assembly |
US10991473B2 (en) | 2010-05-11 | 2021-04-27 | Thorium Power, Inc. | Method of manufacturing a nuclear fuel assembly |
US11195629B2 (en) | 2010-05-11 | 2021-12-07 | Thorium Power, Inc. | Fuel assembly |
CN101950591A (en) * | 2010-07-02 | 2011-01-19 | 中科华核电技术研究院有限公司 | Free surface forming component and free surface forming method for spallation target |
CN101950591B (en) * | 2010-07-02 | 2012-08-29 | 中科华核电技术研究院有限公司 | Free surface forming component and free surface forming method for spallation target |
CN103366852A (en) * | 2012-03-28 | 2013-10-23 | 华北电力大学 | Reactor core of high flux thermal neutron reactor for transmutation |
CN103366852B (en) * | 2012-03-28 | 2015-10-21 | 华北电力大学 | A kind of high throughput thermally neutron pile reactor core for transmuting |
CN102623078A (en) * | 2012-03-30 | 2012-08-01 | 中国科学院合肥物质科学研究院 | A high-efficiency nuclear waste transmutation subcritical core based on hybrid energy spectrum |
CN102610284A (en) * | 2012-03-30 | 2012-07-25 | 中国科学院合肥物质科学研究院 | Hybrid reactor cladding for realizing long-term energy amplification by using fast-thermal coupling mixed energy spectrum |
CN102789821A (en) * | 2012-06-14 | 2012-11-21 | 华北电力大学 | A new thorium-based reactor device |
CN103093837A (en) * | 2013-01-15 | 2013-05-08 | 西安交通大学 | Accelerator-driven subcritical transmutation reactor core adopting dispersion metal fuel |
US11211174B2 (en) | 2013-05-10 | 2021-12-28 | Thorium Power, Inc. | Fuel assembly |
US10170207B2 (en) | 2013-05-10 | 2019-01-01 | Thorium Power, Inc. | Fuel assembly |
CN103839601A (en) * | 2013-11-08 | 2014-06-04 | 西南科技大学 | Radial power flattening reactor core with square arrangement driven by external source |
CN106663474B (en) * | 2014-08-20 | 2019-06-25 | Ad梅约拉有限责任公司 | Heat release transmuting method |
CN106663474A (en) * | 2014-08-20 | 2017-05-10 | Ad梅约拉有限责任公司 | Exothermic transmutation method |
CN104302088A (en) * | 2014-09-18 | 2015-01-21 | 西南科技大学 | A Spallation Target for Accelerator-Driven Subcritical Reactors with Low Proton Beam Intensity and Efficient Transmutation of Nuclear Waste |
WO2016197807A1 (en) * | 2015-06-12 | 2016-12-15 | 陈安海 | Implementation method for fast reactor type coupled nuclear reaction and nuclear reactor therefor |
CN106340336B (en) * | 2016-09-23 | 2018-03-13 | 中国科学院合肥物质科学研究院 | A kind of system using isotope neutron source transmuting nuke rubbish |
CN106340336A (en) * | 2016-09-23 | 2017-01-18 | 中国科学院合肥物质科学研究院 | System for transmuting nuclear wastes by utilizing isotopic neutron source |
CN107195334A (en) * | 2017-06-08 | 2017-09-22 | 清华大学天津高端装备研究院 | A kind of Accelerator Driven Subcritical gas-cooled reactor |
CN107134298B (en) * | 2017-06-19 | 2019-01-29 | 中科瑞华原子能源技术有限公司 | A kind of compact reactor core and power flattening method |
CN107134298A (en) * | 2017-06-19 | 2017-09-05 | 中科瑞华原子能源技术有限公司 | A kind of compact reactor core and power flattening method |
CN107705860A (en) * | 2017-09-27 | 2018-02-16 | 中国科学院合肥物质科学研究院 | A High Breeder Ratio Reactor Core |
CN107705860B (en) * | 2017-09-27 | 2019-11-12 | 中国科学院合肥物质科学研究院 | A High Breeder Ratio Reactor Core |
CN112912970A (en) * | 2018-09-05 | 2021-06-04 | 阿尔法能源技术公司 | Systems and methods for electrostatic accelerator-driven neutron production based on liquid phase transmutation |
CN109119174B (en) * | 2018-09-06 | 2023-09-29 | 中国原子能科学研究院 | Heat pipe cooling type nuclear reactor power supply system based on uranium zirconium hydrogen fuel and static thermoelectric conversion |
CN109119174A (en) * | 2018-09-06 | 2019-01-01 | 中国原子能科学研究院 | A kind of heat-pipe cooling type nuclear reactor power-supply system based on uranium hydrogen zirconium fuel and static heat to electricity conversion |
CN116386925A (en) * | 2023-03-06 | 2023-07-04 | 中子高新技术产业发展(重庆)有限公司 | Liquid subcritical isotope production system driven by accelerator |
CN116386925B (en) * | 2023-03-06 | 2024-03-19 | 中子高新技术产业发展(重庆)有限公司 | An accelerator-driven liquid subcritical isotope production system |
Also Published As
Publication number | Publication date |
---|---|
CN1945751B (en) | 2010-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1945751A (en) | Accelerator driven fast-thermally coupled subcritical reactor | |
Stacey | Nuclear reactor physics | |
Galahom | Investigate the possibility of burning weapon-grade plutonium using a concentric rods BS assembly of VVER-1200 | |
Liu et al. | Transmutation of MA in the high flux thermal reactor | |
Uguru et al. | A comparative study on the impact of Gd2O3 burnable neutron absorber in UO2 and (U, Th) O2 fuels | |
Şahin et al. | LIFE hybrid reactor as reactor grade plutonium burner | |
Zhou et al. | Flexibility of ADS for minor actinides transmutation in different two-stage PWR-ADS fuel cycle scenarios | |
Hu et al. | Minor actinides transmutation on pressurized water reactor burnable poison rods | |
Liu et al. | The electron accelerator driven sub-critical system | |
Vu et al. | Neutronics study on small power ADS loaded with recycled inert matrix fuel for transuranic elements transmutation using Serpent code | |
Rose et al. | Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor | |
Vu et al. | Seed and blanket ADS using thorium–reprocessed fuel: Parametric survey on TRU transmutation performance and safety characteristics | |
Zheng et al. | Feasibility study of thorium-fueled molten salt reactor with application in radioisotope production | |
Yang et al. | Neutronics analysis of minor actinides transmutation in a fusion-driven subcritical system | |
Zheng et al. | The neutronics studies of a fusion fission hybrid reactor using pressure tube blankets | |
Übeyli | Transmutation of minor actinides discharged from LMFBR spent fuel in a high power density fusion reactor | |
Herrera-Martinez et al. | Transmutation of nuclear waste in accelerator-driven systems: Fast spectrum | |
Marques et al. | Neutronic evaluation for different external neutron sources in a Small-Subcritical fast reactor | |
Cho et al. | Physics analysis of new TRU recycling options using FCM and MOX fueled PWR assemblies | |
Washington et al. | Target fuels for plutonium and minor actinide transmutation in pressurized water reactors | |
Sourov et al. | Enhancing fuel breed-burn performance in a sodium-cooled fast reactor using a novel reactivity control method | |
Uguru et al. | Actinide and non-actinide production from UO2 fuel in W-SMR: effects of gadolinium burnable absorber | |
Hwang et al. | Neutronic analysis on TRU multi-recycling in PWR-based SMR core loaded with MOX (U-TRU) and FCM (TRU) fueled assemblies | |
CN1279547C (en) | Method and system for subcritical nuclear rubbish treatment and nuclear fuel production based on fissioner neutron breeding | |
Melo et al. | Evaluation of different external neutron sources for a hybrid system based on the SEALER reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |