CN102623078A - A high-efficiency nuclear waste transmutation subcritical core based on hybrid energy spectrum - Google Patents
A high-efficiency nuclear waste transmutation subcritical core based on hybrid energy spectrum Download PDFInfo
- Publication number
- CN102623078A CN102623078A CN2012100892226A CN201210089222A CN102623078A CN 102623078 A CN102623078 A CN 102623078A CN 2012100892226 A CN2012100892226 A CN 2012100892226A CN 201210089222 A CN201210089222 A CN 201210089222A CN 102623078 A CN102623078 A CN 102623078A
- Authority
- CN
- China
- Prior art keywords
- transmuting
- neutron
- transmutation
- district
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001228 spectrum Methods 0.000 title claims abstract description 35
- 238000009377 nuclear transmutation Methods 0.000 title abstract description 83
- 239000002699 waste material Substances 0.000 title abstract description 33
- 239000000446 fuel Substances 0.000 claims abstract description 60
- 230000004992 fission Effects 0.000 claims abstract description 19
- 229910001152 Bi alloy Inorganic materials 0.000 claims abstract description 14
- 239000007788 liquid Substances 0.000 claims abstract description 14
- 239000002826 coolant Substances 0.000 claims abstract description 11
- 238000009826 distribution Methods 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 16
- 230000000712 assembly Effects 0.000 claims description 13
- 238000000429 assembly Methods 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 229910002804 graphite Inorganic materials 0.000 claims description 11
- 239000010439 graphite Substances 0.000 claims description 11
- 239000003758 nuclear fuel Substances 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 229910052580 B4C Inorganic materials 0.000 claims description 3
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000013077 target material Substances 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims 2
- 150000001257 actinium Chemical class 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 229910052768 actinide Inorganic materials 0.000 abstract description 2
- 150000001255 actinides Chemical class 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 9
- 230000002285 radioactive effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000002927 high level radioactive waste Substances 0.000 description 3
- 239000002915 spent fuel radioactive waste Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 241001057584 Myrrha Species 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 208000019155 Radiation injury Diseases 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- NASFKTWZWDYFER-UHFFFAOYSA-N sodium;hydrate Chemical compound O.[Na] NASFKTWZWDYFER-UHFFFAOYSA-N 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
一种基于混合能谱的高效核废料嬗变次临界堆芯,从其中心向外依次为外中子源区、嬗变区、慢化层区、反射层区和屏蔽层区,通过在嬗变区外围设置慢化层区和反射层区,使快中子得到充分慢化后反射回嬗变区形成混合能谱,利用混合能谱同时嬗变次锕系核素(简称MA)和长寿命裂变产物(简称LLFP)。本发明通过合理的堆芯结构布置形成混合能谱,根据快中子和热中子的分布情况分别设置超铀核素(简称TRU)燃料区和LLFP燃料区,两个燃料区采用相同的燃料组件形式,实现同一个堆芯同一个嬗变区内同时嬗变MA和LLFP,堆芯结构简单,中子利用率高,具备高效嬗变核废料的功能,并且采用液态铅铋合金作为冷却剂将嬗变区产生的裂变能带出堆芯,进行产能。
A high-efficiency nuclear waste transmutation subcritical core based on mixed energy spectrum. From its center to the outside, there are outer neutron source area, transmutation area, moderation layer area, reflective layer area and shielding layer area. The moderator layer area and the reflector layer area are set so that the fast neutrons are fully moderated and then reflected back to the transmutation area to form a mixed energy spectrum. The mixed energy spectrum is used to simultaneously transmutate minor actinide nuclides (referred to as MA) and long-lived fission products (referred to as LLFP). The invention forms a mixed energy spectrum through a reasonable core structure layout, respectively sets a transuranium nuclide (abbreviated as TRU) fuel area and an LLFP fuel area according to the distribution of fast neutrons and thermal neutrons, and the two fuel areas use the same fuel The component form realizes simultaneous transmutation of MA and LLFP in the same core and the same transmutation zone. The core structure is simple, the neutron utilization rate is high, and it has the function of efficiently transmuting nuclear waste, and the liquid lead-bismuth alloy is used as the coolant to turn the transmutation zone The resulting fission energy is taken out of the core for production.
Description
技术领域 technical field
本发明属于放射性核废物处理技术领域,具体涉及一种用于高放核废料嬗变的反应堆堆芯。The invention belongs to the technical field of radioactive nuclear waste treatment, and in particular relates to a reactor core used for transmutation of high-level radioactive nuclear waste.
背景技术 Background technique
核废料处理问题,尤其是长寿命核废料的最终处理是一个世界性难题,目前各国都没有确定的处置方案。随着我国压水堆核电站装机容量的快速增长,核废料的积累量将快速增加。这些核废物寿命长、放射毒性大,对人类环境构成长期危害。如何实现废物最少化,最大限度地减少核电站运行产生的高放废物的体积及其放射毒性,并将高放废物安全处置,使之可靠地与生物圈长期隔离,确保子孙后代的环境安全,是关系到核能可持续发展和影响公众对核能接受度的关键问题之一。Disposal of nuclear waste, especially the final disposal of long-lived nuclear waste is a worldwide problem, and currently no country has a definite disposal plan. With the rapid growth of the installed capacity of PWR nuclear power plants in my country, the accumulation of nuclear waste will increase rapidly. These nuclear wastes are long-lived and highly radioactive, posing long-term hazards to the human environment. How to minimize waste, minimize the volume and radiotoxicity of high-level radioactive waste generated by nuclear power plant operation, and safely dispose of high-level radioactive waste so that it can be reliably isolated from the biosphere for a long time and ensure the environmental safety of future generations is a matter of concern. One of the key issues affecting the sustainable development of nuclear energy and influencing public acceptance of nuclear energy.
目前,国际上有两种乏燃料处理方案,分别是以美国为代表的“一次通过”方式和以法国等国为代表的“闭式循环”方式。“一次通过”方式是将乏燃料存放冷却后直接进行深地填埋;“闭式循环”方式是将乏燃料进行后处理,回收铀和钚后将剩余的产物经过固化后进行深地填埋。这两种方法都没有对高放核废料进行实质性的处理,都存在着远期放射性风险问题,资源也存在一定的浪费。“分离-嬗变”法是核废料处理的一种新途径,即通过化学分离把高放射性废物中的次锕系核素(简称MA)和长寿命裂变产物(简称LLFP)分离出来,利用核反应装置(如反应堆,加速器)把长寿命核素转变成短寿命核素或稳定核素。现有研究成果表明,MA适合采用快中子嬗变,LLFP适合采用热中子嬗变。At present, there are two kinds of spent fuel disposal schemes in the world, namely the "one-pass" method represented by the United States and the "closed cycle" method represented by France and other countries. The "one-pass" method is to store the spent fuel for cooling and then directly carry it into a deep landfill; the "closed cycle" method is to reprocess the spent fuel, recover the uranium and plutonium, and then solidify the remaining products before going to a deep landfill . Neither of these two methods has substantially dealt with high-level nuclear waste, and both have long-term radioactive risks, and there is a certain waste of resources. The "separation-transmutation" method is a new way of nuclear waste treatment, that is, the minor actinide nuclides (MA for short) and long-lived fission products (LLFP for short) in high-level radioactive waste are separated by chemical separation, and nuclear reactors are used to (such as reactors, accelerators) to convert long-lived nuclides into short-lived nuclides or stable nuclides. The existing research results show that MA is suitable for fast neutron transmutation and LLFP is suitable for thermal neutron transmutation.
加速器驱动次临界系统(Accelerator Driven Sub-critical System,ADS)是目前致力于嬗变放射性核废物、有效利用核资源及产出核能量的理想装置。国际原子能机构(IAEA)把ADS列入新型核能系统中,并称之为“新出现的核废物嬗变及能量产生的核能系统”。ADS嬗变系统中由散裂反应产生的散裂中子和由燃料发生裂变反应产生的裂变中子均属于快中子,适合于嬗变MA。在现有的ADS嬗变系统概念设计中,用于嬗变MA的有美国的ATW计划、欧盟的CDT计划(基于MYRRHA/XT-ADS计划)、日本的OMEGA计划和韩国的HYPER计划。The Accelerator Driven Sub-critical System (ADS) is currently an ideal device dedicated to the transmutation of radioactive nuclear waste, the effective use of nuclear resources and the generation of nuclear energy. The International Atomic Energy Agency (IAEA) included ADS in the new nuclear energy system, and called it "emerging nuclear waste transmutation and energy generation nuclear energy system". In the ADS transmutation system, the spallation neutrons produced by the spallation reaction and the fission neutrons produced by the fuel fission reaction belong to the fast neutrons, which are suitable for the transmutation of MA. In the existing conceptual design of ADS transmutation system, there are ATW plan in the United States, CDT plan in EU (based on MYRRHA/XT-ADS plan), OMEGA plan in Japan and HYPER plan in Korea for the transmutation of MA.
在韩国的HYPER计划中,采用快中子谱堆芯,通过在嬗变MA的堆芯内设置LLFP燃料组件实现同时嬗变LLFP的功能。LLFP燃料组件中采用石墨作为慢化层。但LLFP燃料组件中石墨的厚度有限,HYPER计划中采用LLFP燃料组件的方案的中子慢化效果有限,能否达到嬗变LLFP的预期目的还有待验证。In Korea's HYPER project, the fast neutron spectrum core is used, and the function of simultaneous transmutation of LLFP is realized by setting LLFP fuel assemblies in the transmutation MA core. Graphite is used as the moderator layer in LLFP fuel assemblies. However, the thickness of graphite in LLFP fuel assemblies is limited, and the neutron moderation effect of the scheme using LLFP fuel assemblies in the HYPER plan is limited. Whether the expected purpose of transmuting LLFP can be achieved remains to be verified.
在中国专利CN 1945751B中,中国原子能科学研究院公开了一种加速器驱动的快-热耦合次临界反应堆。该反应堆通过在快中子能谱区与热中子能谱区形成超热中子能谱区,并利用超热中子能谱区嬗变LLFP。在该方案中的快中子能谱区采用钠(实施例中采用铝模拟)作为冷却剂,热中子能谱区采用水(实施例中采用聚乙烯模拟)作为慢化剂,快谱区和热谱区燃料组件采用不同的结构布置形式。在同一个反应堆中同时存在两种不同的冷却剂,并且同时存在两种不同布置形式的燃料组件,极大地增加了系统的复杂性,对反应堆设计和运行提出来更高的要求。而且,钠和水接触将发生剧烈的化学反应,这将存在严重的安全隐患。In Chinese patent CN 1945751B, China Institute of Atomic Energy discloses an accelerator-driven fast-thermally coupled subcritical reactor. The reactor forms an epithermal neutron energy spectral region in the fast neutron energy spectral region and thermal neutron energy spectral region, and utilizes the epithermal neutron energy spectral region to transmute LLFP. In this scheme, the fast neutron energy spectrum region adopts sodium (using aluminum simulation in the embodiment) as coolant, and the thermal neutron energy spectrum region adopts water (using polyethylene simulation in the embodiment) as moderator, and the fast spectrum region The fuel assembly in the thermal spectrum area adopts a different structural arrangement. In the same reactor, there are two different coolants and two different arrangements of fuel assemblies at the same time, which greatly increases the complexity of the system and puts forward higher requirements for the design and operation of the reactor. Moreover, a violent chemical reaction will occur when sodium and water are in contact, which will pose a serious safety hazard.
在中国专利03152870.8中,中国科学院等离子体物理研究所公开了基于可裂变材料中子增殖的次临界核废料与核燃料生产的方法,该方法可同时实现嬗变MA,核燃料增殖和嬗变LLFP的功能。但该方法中从可裂变燃料增殖区慢化后的低能中子很少,对于LLFP的嬗变效果很难确定。In Chinese patent 03152870.8, the Institute of Plasma Physics of the Chinese Academy of Sciences discloses a method for the production of subcritical nuclear waste and nuclear fuel based on neutron multiplication of fissionable materials, which can simultaneously realize the functions of transmutation MA, nuclear fuel multiplication and transmutation LLFP. However, in this method, there are few low-energy neutrons moderated from the fission fuel breeding region, and it is difficult to determine the transmutation effect of LLFP.
在上海交通大学核科学与工程学院提出的混合能谱超临界水堆中,提出了混合能谱的概念,并利用其进行产能和增殖,提高反应堆的经济效益。该方案的反应堆属于快中子反应堆,若用于核废料嬗变,将会是使反应堆动态参数(多普勒系数,空泡系数,缓发中子份额等)变差,控制棒效率变差,影响反应堆的安全性。因此该方案不适合用于核废料嬗变。In the mixed energy spectrum supercritical water reactor proposed by the School of Nuclear Science and Engineering of Shanghai Jiaotong University, the concept of mixed energy spectrum is proposed, and it is used for production capacity and multiplication to improve the economic benefits of the reactor. The reactor of this scheme belongs to the fast neutron reactor, if it is used for nuclear waste transmutation, it will make the dynamic parameters of the reactor (Doppler coefficient, cavitation coefficient, delayed neutron share, etc.) affect the safety of the reactor. Therefore, this scheme is not suitable for nuclear waste transmutation.
发明内容 Contents of the invention
本发明的技术解决问题:克服现有技术的不足,提供一种基于混合能谱的高效率核废料嬗变次临界堆芯,在嬗变区内形成混合能谱,根据快中子和热中子的分布情况分别设置了的TRU燃料区和LLFP燃料区,两个燃料区采用相同的燃料组件形式,利用混合能谱中的快中子嬗变MA,利用混合能谱中的热中子嬗变LLFP,实现在同一个堆芯同一个嬗变区内同时嬗变MA和LLFP的功能,中子利用率高,堆芯结构简单,具备高效嬗变核废料的功能,并且采用液态铅铋合金作为冷却剂将嬗变区产生的裂变能带出堆芯,进行产能。The technical problem of the present invention is to overcome the deficiencies of the prior art, and provide a high-efficiency nuclear waste transmutation subcritical core based on the mixed energy spectrum, which forms a mixed energy spectrum in the transmutation region, according to the fast neutron and thermal neutron The TRU fuel area and the LLFP fuel area are respectively set for the distribution. The two fuel areas adopt the same form of fuel assembly, use the fast neutron transmutation MA in the mixed energy spectrum, and use the thermal neutron transmutation LLFP in the mixed energy spectrum to realize Simultaneous transmutation of MA and LLFP functions in the same transmutation zone of the same core, high neutron utilization rate, simple core structure, high-efficiency transmutation of nuclear waste, and the use of liquid lead-bismuth alloy as coolant to generate transmutation zone The fission energy can be taken out of the core for production.
本发明的技术解决方案:一种基于混合能谱的高效核废料嬗变次临界堆芯,从其中心向外依次为外中子源区、嬗变区、慢化层区、反射层区和屏蔽层区;外中子源使用高能质子撞击靶材发生散裂反应产生的散裂中子作为外源中子;嬗变区分别设置了的TRU燃料区和LLFP燃料区,两个燃料区采用相同的燃料组件形式;外中子源驱动嬗变区中的燃料发生裂变反应,并产生快中子,由嬗变区泄漏出去的快中子经过慢化层区进行一次慢化,到达反射层区后反射回来,再次经过慢化层区进行二次慢化,最后慢化成热中子进入嬗变区,这样由外中子源区提供的散裂中子、裂变反应产生的快中子和慢化并反射回来的热中子在嬗变区中形成一个混合能谱,利用其中的快中子嬗变MA,热中子嬗变LLFP,实现在同一个堆芯同一个嬗变区内同时嬗变MA和LLFP的功能,中子利用率高,堆芯结构简单,具备高效嬗变核废料的功能,并且采用液态铅铋合金作为冷却剂将嬗变区产生的裂变能带出堆芯,进行产能。The technical solution of the present invention: a high-efficiency nuclear waste transmutation subcritical core based on mixed energy spectrum, from the center to the outside is the outer neutron source area, the transmutation area, the moderation layer area, the reflection layer area and the shielding layer area; the external neutron source uses the spallation neutrons produced by the spallation reaction of high-energy protons hitting the target as the external source neutrons; the transmutation area is respectively set up with a TRU fuel area and an LLFP fuel area, and the two fuel areas use the same fuel Component form; the external neutron source drives the fuel in the transmutation region to undergo fission reaction, and produces fast neutrons. The fast neutrons leaked from the transmutation region undergo a moderation through the moderation layer region, and reflect back after reaching the reflection layer region. It passes through the moderator layer again for secondary moderation, and finally moderates into thermal neutrons and enters the transmutation area, so that the spallation neutrons provided by the outer neutron source area, the fast neutrons produced by the fission reaction, and the moderated and reflected neutrons Thermal neutrons form a mixed energy spectrum in the transmutation zone, using fast neutrons to transmute MA and thermal neutrons to transmute LLFP, realizing the function of simultaneously transmuting MA and LLFP in the same core and the same transmutation zone. High efficiency, simple core structure, high-efficiency transmutation of nuclear waste, and the use of liquid lead-bismuth alloy as a coolant to bring the fission energy generated in the transmutation area out of the core for production capacity.
所述外中子源区放置一个液态铅铋合金散裂靶,采用高能强流质子加速器产生的能量为1GeV,平均流强10mA的高能质子束轰击液态铅铋合金靶材料,产生10MeV的中子,作为驱动嬗变区的外中子源。A liquid lead-bismuth alloy spallation target is placed in the outer neutron source area, and a high-energy proton beam with an energy of 1GeV and an average current intensity of 10mA is used to bombard the liquid lead-bismuth alloy target material to generate neutrons of 10MeV. , as the outer neutron source driving the transmutation region.
所述嬗变区中的快中子主要分布在内侧,热中子主要分布在外侧,根据快中子和热中子的分布情况由内到外分别设置了TRU燃料区和LLFP燃料区,TRU燃料区为6层燃料组件,LLFP燃料区为1层燃料组件。The fast neutrons in the transmutation area are mainly distributed on the inside, and the thermal neutrons are mainly distributed on the outside. According to the distribution of fast neutrons and thermal neutrons, a TRU fuel area and an LLFP fuel area are respectively set up from the inside to the outside. The zone is 6-layer fuel assembly, and the LLFP fuel zone is 1-layer fuel assembly.
所述慢化层区由1层慢化层组件组成,主体材料为石墨。The moderator layer area is composed of a moderator layer component, and the main material is graphite.
所述反射层区由1层反射层组件组成,主体材料为不锈钢。The reflective layer area is composed of one layer of reflective layer components, and the main material is stainless steel.
所述屏蔽层区由1层屏蔽层组件组成,主体材料为碳化硼。The shielding layer area is composed of one layer of shielding layer components, and the main material is boron carbide.
所述慢化层区、反射层区和屏蔽层区的轴向分布,均布置在燃料棒上。The axial distribution of the moderator layer area, reflective layer area and shielding layer area are all arranged on the fuel rod.
所述堆芯采用液态铅铋合金作为冷却剂将堆芯热量带出,进行产能。The core uses a liquid lead-bismuth alloy as a coolant to take out heat from the core to generate energy.
本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:
(1)本发明提供的基于混合能谱的高效核废料嬗变次临界堆芯的结构,在同一个嬗变区内同时存在快中子和热中子,且快中子集中于内层,热中子集中于外层,能够同时嬗变MA和LLFP,中子利用率高,实现高效核废料嬗变的目的。(1) The structure of the high-efficiency nuclear waste transmutation subcritical core based on the mixed energy spectrum provided by the present invention has both fast neutrons and thermal neutrons in the same transmutation zone, and the fast neutrons are concentrated in the inner layer, and the thermal neutrons are concentrated in the inner layer. The subsets are concentrated in the outer layer, which can simultaneously transmute MA and LLFP, have high neutron utilization rate, and realize the purpose of high-efficiency nuclear waste transmutation.
(2)本发明提供的基于混合能谱的高效核废料嬗变次临界堆芯的结构,在同一个嬗变区内设置了TRU燃料区和LLFP燃料区,两个燃料区采用相同燃料组件形式,堆芯结构简单。(2) The structure of the high-efficiency nuclear waste transmutation subcritical core based on the mixed energy spectrum provided by the present invention is provided with a TRU fuel area and an LLFP fuel area in the same transmutation area, and the two fuel areas adopt the same fuel assembly form. The core structure is simple.
(3)相比于中国专利CN 1945751B中公开的加速器驱动快-热耦合次临界反应堆,本发明只存在一个嬗变区,只采用一种燃料组件形式,结构简单,且不存在钠水反应的安全问题,安全性更高,具备高效处理核废料的功能。(3) Compared with the accelerator-driven fast-thermal coupling subcritical reactor disclosed in Chinese patent CN 1945751B, the present invention only has one transmutation zone, only one fuel assembly form is used, the structure is simple, and there is no safety of sodium-water reaction problems, higher security, and the ability to efficiently dispose of nuclear waste.
(4)相比于韩国的HYPER计划中采用LLFP燃料组件的方案,本发明具有足够厚度的石墨进行中子的慢化,中子能够得到充分的慢化,LLFP嬗变效果更好。(4) Compared with the scheme of using LLFP fuel assembly in Korea's HYPER project, the present invention has graphite with sufficient thickness for neutron moderation, neutrons can be fully moderated, and LLFP transmutation effect is better.
(5)相比于中国专利03152870.8中公开的基于可裂变材料中子增殖的次临界核废料与核燃料生产的方法,本发明的TRU燃料和LLFP燃料处于同一个嬗变区内,具有足够的中子进入慢化区并反射回来,并且具有足够厚度的石墨进行中子的慢化,LLFP嬗变效果更好,且TRU燃料区和LLFP燃料区产生的裂变能均可通过冷却剂带出堆芯,进行产能。(5) Compared with the production method of subcritical nuclear waste and nuclear fuel based on neutron multiplication of fissionable materials disclosed in Chinese patent 03152870.8, the TRU fuel and LLFP fuel of the present invention are in the same transmutation zone and have enough neutrons Entering the moderation zone and reflecting back, and graphite with sufficient thickness for neutron moderation, the LLFP transmutation effect is better, and the fission energy generated by the TRU fuel zone and the LLFP fuel zone can be taken out of the core through the coolant, and carried out production capacity.
(6)相比于上海交通大学核科学与工程学院提出的混合能谱超临界水堆,本发明利用混合能谱进行核废料嬗变,充分利用了快中子和热中子的特性,进一步发挥了混合能谱的优势。(6) Compared with the hybrid energy spectrum supercritical water reactor proposed by the School of Nuclear Science and Engineering of Shanghai Jiao Tong University, the present invention utilizes the hybrid energy spectrum to carry out nuclear waste transmutation, fully utilizes the characteristics of fast neutrons and thermal neutrons, and further develops Advantages of hybrid spectrum.
附图说明 Description of drawings
图1是本发明的径向布置图;Fig. 1 is a radial arrangement diagram of the present invention;
图2是本发明的轴向布置图。Fig. 2 is an axial layout view of the present invention.
具体实施方式 Detailed ways
如图1所示,本发明提供的基于混合能谱的高效核废料嬗变次临界堆芯,从径向其中心向外依次为外中子源区1、嬗变区2、慢化层区3、反射层区4和屏蔽层区5。堆芯总高度3.8m,直径3.5m,其中活性区高度1m,直径1.22m。如图2所示,外中子源区1贯穿整个堆芯,从嬗变区2向轴向上下两端分布依次为慢化层区3、反射层区4、屏蔽层区5。外中子源提供的散裂中子能量约10MeV。外中子源驱动嬗变区2中的燃料发生裂变反应,并产生能量约500keV的快中子。由嬗变区2泄漏出去的快中子进过慢化层区3进行一次慢化,到达反射层区4后反射回来,再次经过慢化层区3进行二次慢化,最后慢化成热中子进入嬗变区2。这样,由外中子源提供的散裂中子、裂变反应产生的快中子和慢化并反射回来的热中子在嬗变区2中形成一个混合能谱,可实现在一个嬗变区内同时嬗变MA和LLFP的功能,具备高效嬗变核废料的功能,并且采用液态铅铋合金作为冷却剂将嬗变区产生的裂变能带出堆芯,进行产能。As shown in Figure 1, the high-efficiency nuclear waste transmutation subcritical core based on the mixed energy spectrum provided by the present invention has the outer
外中子源区1:放置一个直径为20cm的液态铅铋合金散裂靶,可选用有窗靶或无窗靶。采用高能强流质子加速器产生的能量为1GeV,平均流强10mA的高能质子束轰击液态铅铋合金靶材料,产生10MeV的中子,作为驱动嬗变区2的外源中子。采用高能强流质子加速器散裂靶作为外中子源,能在嬗变区2内获得能谱较硬的中子,有利于嬗变MA。采用液态铅铋合金作为散裂靶采用,主要考虑其具备较高的中子产额,且同时可以作为反应堆的冷却剂。Outer neutron source area 1: place a liquid lead-bismuth alloy spallation target with a diameter of 20 cm, and a target with a window or without a window can be selected. The high-energy proton beam produced by the high-energy high-current proton accelerator with an energy of 1GeV and an average current intensity of 10mA bombards the liquid lead-bismuth alloy target material to generate 10MeV neutrons as the exogenous neutrons driving the transmutation zone 2. The spallation target of the high-energy and high-current proton accelerator is used as the external neutron source, and neutrons with a harder energy spectrum can be obtained in the transmutation region 2, which is beneficial to the transmutation of MA. The use of liquid lead-bismuth alloy as the spallation target is mainly considered to have a high neutron yield, and at the same time it can be used as a coolant for the reactor.
嬗变区2:嬗变区2由210盒燃料组件组成,分为2个区,分别是6层TRU燃料组件和1层LLFP燃料组件,共7层燃料组件。嬗变区2内燃料组件的布置根据该区域内中子分布情况而定:在嬗变区2的内层,接近外中子源区1,该区域快中子密度高,中子能谱硬,适合嬗变MA,放置6层TRU燃料组件;在嬗变区2外层,接近慢化层区3,热中子密度高,适合嬗变LLFP,放置1层LLFP燃料组件。这样充分利用了快中子和热中子的特点和分布情况,在一个嬗变区2内同时嬗变MA和LLFP,实现高效率嬗变核废料的目的。燃料组件采用六边形套管组件,每盒组件由271根燃料棒组成,三角形排列。燃料组件高度3.8m,组件中心距175mm,组件间隙4mm,组件壁厚3mm。燃料棒外径6.7mm,棒间距10mm,包壳厚度0.5mm,芯块与包壳间距0.1mm。慢化层区3、反射层区4和屏蔽层区5的轴向分布,均布置在燃料棒上。Transmutation area 2: The transmutation area 2 is composed of 210 boxes of fuel assemblies, which are divided into 2 areas, which are 6 layers of TRU fuel assemblies and 1 layer of LLFP fuel assemblies, with a total of 7 layers of fuel assemblies. The arrangement of fuel assemblies in the transmutation zone 2 is determined according to the distribution of neutrons in this zone: in the inner layer of the transmutation zone 2, close to the outer
慢化层区3:慢化层区3由1层六边形慢化层组件组成,主体材料为石墨,结构材料采用不锈钢,由嬗变区2出来的快中子经过石墨的进行一次慢化,由反射层区4反射回来的中子再次经过石墨进行二次慢化,最后慢化成热中子返回嬗变区2,嬗变位于嬗变区2中LLFP区。石墨具有较好的慢化性能,且为固体材料,采用石墨作为慢化层区材料,结构简单,工程可实现性高。Moderator layer area 3: The
反射层区4:反射层区4由1层反射层组件组成,主体材料为不锈钢,将由慢化层区3泄漏出来的中子反射回去。Reflective layer area 4: The
屏蔽层区5:屏蔽层区5由1层六边形屏蔽层组件组成,主体材料为碳化硼,结构材料为不锈钢,主要屏蔽从由反射区4泄漏出来的中子,减少中子对堆芯外围部件的中子辐照损失。Shielding layer area 5:
本发明提供的基于混合能谱的高效核废料嬗变次临界堆芯的结构,其嬗变区2同时存在快中子和热中子,并根据快中子和热中子的分布情况分布设置了TRU燃料区和LLFP燃料区,两个燃料区采用相同燃料组件形式,实现在同一个堆芯同一个嬗变区内同时嬗变MA和LLFP的功能,中子利用率高,堆芯结构简单,具备高效嬗变核废料的功能,并且采用液态铅铋合金作为冷却剂将嬗变区产生的裂变能带出堆芯,进行产能。The structure of the high-efficiency nuclear waste transmutation subcritical core based on the hybrid energy spectrum provided by the present invention has both fast neutrons and thermal neutrons in the transmutation zone 2, and TRUs are distributed according to the distribution of fast neutrons and thermal neutrons The fuel area and the LLFP fuel area, the two fuel areas adopt the same fuel assembly form to realize the simultaneous transmutation of MA and LLFP in the same core and the same transmutation area. The neutron utilization rate is high, the core structure is simple, and it has high-efficiency transmutation The function of nuclear waste, and the liquid lead-bismuth alloy is used as the coolant to bring the fission energy generated in the transmutation zone out of the core for production.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100892226A CN102623078A (en) | 2012-03-30 | 2012-03-30 | A high-efficiency nuclear waste transmutation subcritical core based on hybrid energy spectrum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100892226A CN102623078A (en) | 2012-03-30 | 2012-03-30 | A high-efficiency nuclear waste transmutation subcritical core based on hybrid energy spectrum |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102623078A true CN102623078A (en) | 2012-08-01 |
Family
ID=46562940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012100892226A Pending CN102623078A (en) | 2012-03-30 | 2012-03-30 | A high-efficiency nuclear waste transmutation subcritical core based on hybrid energy spectrum |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102623078A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103077758A (en) * | 2012-12-31 | 2013-05-01 | 中国科学院合肥物质科学研究院 | Radial-power-flattened efficient nuclear waste transmutation subcritical core and design method thereof |
CN103093837A (en) * | 2013-01-15 | 2013-05-08 | 西安交通大学 | Accelerator-driven subcritical transmutation reactor core adopting dispersion metal fuel |
CN103106939A (en) * | 2013-01-15 | 2013-05-15 | 西安交通大学 | Method of transmuting long-life high level radioactive nuclide through using pressurized water reactor |
CN104302088A (en) * | 2014-09-18 | 2015-01-21 | 西南科技大学 | A Spallation Target for Accelerator-Driven Subcritical Reactors with Low Proton Beam Intensity and Efficient Transmutation of Nuclear Waste |
CN105590658A (en) * | 2015-12-29 | 2016-05-18 | 中国科学院合肥物质科学研究院 | Sub-critical miniature reactor driven by neutron tubes |
CN106340336A (en) * | 2016-09-23 | 2017-01-18 | 中国科学院合肥物质科学研究院 | System for transmuting nuclear wastes by utilizing isotopic neutron source |
CN106373621A (en) * | 2016-11-14 | 2017-02-01 | 清华大学天津高端装备研究院 | Reactor core structure of lead-bismuth reactor ADS |
CN106601309A (en) * | 2016-12-30 | 2017-04-26 | 中国科学院合肥物质科学研究院 | Non-penetration spallation target and reactor coupling system |
CN108198635A (en) * | 2018-02-12 | 2018-06-22 | 中国科学院上海应用物理研究所 | A kind of thorium base molten-salt breeder reactor (MSBR) reactor core |
CN109313948A (en) * | 2016-06-10 | 2019-02-05 | 科学与创新股份公司 | The method of radionuclide is produced in fast neutron nuclear reaction heap |
CN112912970A (en) * | 2018-09-05 | 2021-06-04 | 阿尔法能源技术公司 | Systems and methods for electrostatic accelerator-driven neutron production based on liquid phase transmutation |
CN113488204A (en) * | 2021-07-12 | 2021-10-08 | 西南科技大学 | Casing type MA transmutation rod for fast neutron reactor |
CN114496314A (en) * | 2022-02-17 | 2022-05-13 | 中国核动力研究设计院 | Fast neutron thermal neutron concentric circle type partitioned ultrahigh flux reactor core |
CN116386925A (en) * | 2023-03-06 | 2023-07-04 | 中子高新技术产业发展(重庆)有限公司 | Liquid subcritical isotope production system driven by accelerator |
CN116978495A (en) * | 2023-07-25 | 2023-10-31 | 上海交通大学 | Thin isotope irradiation production energy spectrum optimization method based on layered target |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6027953A (en) * | 1998-02-25 | 2000-02-22 | Industrial Technology Research Institute | Lateral PN arrayed digital X-ray image sensor |
CN1945751A (en) * | 2006-11-21 | 2007-04-11 | 中国原子能科学研究院 | Accelerator driven fast-thermally coupled subcritical reactor |
JP2010190833A (en) * | 2009-02-20 | 2010-09-02 | Japan Atomic Energy Agency | Method for converting long-life fission product into short-lived nuclide |
-
2012
- 2012-03-30 CN CN2012100892226A patent/CN102623078A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6027953A (en) * | 1998-02-25 | 2000-02-22 | Industrial Technology Research Institute | Lateral PN arrayed digital X-ray image sensor |
CN1945751A (en) * | 2006-11-21 | 2007-04-11 | 中国原子能科学研究院 | Accelerator driven fast-thermally coupled subcritical reactor |
JP2010190833A (en) * | 2009-02-20 | 2010-09-02 | Japan Atomic Energy Agency | Method for converting long-life fission product into short-lived nuclide |
Non-Patent Citations (4)
Title |
---|
于涛 等: "ADS原理验证装置快热耦合次临界堆设计", 《核科学与工程》 * |
戴光曦: "加速器驱动的核电站", 《核物理动态》 * |
谢金森 等: ""启明星1#"单相耦合快区外中子源放大系数研究", 《核动力工程》 * |
赵志祥 等: "加速器驱动次临界系统(ADS)与核能可持续发展", 《中国工程科学》 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103077758A (en) * | 2012-12-31 | 2013-05-01 | 中国科学院合肥物质科学研究院 | Radial-power-flattened efficient nuclear waste transmutation subcritical core and design method thereof |
CN103077758B (en) * | 2012-12-31 | 2015-05-27 | 中国科学院合肥物质科学研究院 | Radial-power-flattened efficient nuclear waste transmutation subcritical core and design method thereof |
CN103093837A (en) * | 2013-01-15 | 2013-05-08 | 西安交通大学 | Accelerator-driven subcritical transmutation reactor core adopting dispersion metal fuel |
CN103106939A (en) * | 2013-01-15 | 2013-05-15 | 西安交通大学 | Method of transmuting long-life high level radioactive nuclide through using pressurized water reactor |
CN103106939B (en) * | 2013-01-15 | 2014-07-02 | 西安交通大学 | A method for transmutation of long-lived and high-radioactive nuclides using pressurized water reactors |
CN104302088A (en) * | 2014-09-18 | 2015-01-21 | 西南科技大学 | A Spallation Target for Accelerator-Driven Subcritical Reactors with Low Proton Beam Intensity and Efficient Transmutation of Nuclear Waste |
CN105590658A (en) * | 2015-12-29 | 2016-05-18 | 中国科学院合肥物质科学研究院 | Sub-critical miniature reactor driven by neutron tubes |
CN109313948A (en) * | 2016-06-10 | 2019-02-05 | 科学与创新股份公司 | The method of radionuclide is produced in fast neutron nuclear reaction heap |
CN106340336A (en) * | 2016-09-23 | 2017-01-18 | 中国科学院合肥物质科学研究院 | System for transmuting nuclear wastes by utilizing isotopic neutron source |
CN106340336B (en) * | 2016-09-23 | 2018-03-13 | 中国科学院合肥物质科学研究院 | A kind of system using isotope neutron source transmuting nuke rubbish |
CN106373621B (en) * | 2016-11-14 | 2017-12-19 | 清华大学天津高端装备研究院 | A kind of lead bismuth heap ADS core structure |
CN106373621A (en) * | 2016-11-14 | 2017-02-01 | 清华大学天津高端装备研究院 | Reactor core structure of lead-bismuth reactor ADS |
CN106601309A (en) * | 2016-12-30 | 2017-04-26 | 中国科学院合肥物质科学研究院 | Non-penetration spallation target and reactor coupling system |
CN108198635A (en) * | 2018-02-12 | 2018-06-22 | 中国科学院上海应用物理研究所 | A kind of thorium base molten-salt breeder reactor (MSBR) reactor core |
CN112912970A (en) * | 2018-09-05 | 2021-06-04 | 阿尔法能源技术公司 | Systems and methods for electrostatic accelerator-driven neutron production based on liquid phase transmutation |
CN113488204A (en) * | 2021-07-12 | 2021-10-08 | 西南科技大学 | Casing type MA transmutation rod for fast neutron reactor |
CN113488204B (en) * | 2021-07-12 | 2023-07-25 | 西南科技大学 | A Sleeved MA Transmutation Rod Used in Fast Neutron Reactor |
CN114496314A (en) * | 2022-02-17 | 2022-05-13 | 中国核动力研究设计院 | Fast neutron thermal neutron concentric circle type partitioned ultrahigh flux reactor core |
CN114496314B (en) * | 2022-02-17 | 2024-02-13 | 中国核动力研究设计院 | Ultra-high flux reactor core with fast neutron thermal neutron concentric circle type partition |
CN116386925A (en) * | 2023-03-06 | 2023-07-04 | 中子高新技术产业发展(重庆)有限公司 | Liquid subcritical isotope production system driven by accelerator |
CN116386925B (en) * | 2023-03-06 | 2024-03-19 | 中子高新技术产业发展(重庆)有限公司 | An accelerator-driven liquid subcritical isotope production system |
CN116978495A (en) * | 2023-07-25 | 2023-10-31 | 上海交通大学 | Thin isotope irradiation production energy spectrum optimization method based on layered target |
CN116978495B (en) * | 2023-07-25 | 2024-03-12 | 上海交通大学 | Energy spectrum optimization method for scarce isotope irradiation production based on layered targets |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102623078A (en) | A high-efficiency nuclear waste transmutation subcritical core based on hybrid energy spectrum | |
Horvath et al. | Nuclear power in the 21st century: Challenges and possibilities | |
US8279994B2 (en) | Tokamak reactor for treating fertile material or waste nuclear by-products | |
CN108470589B (en) | A fast-thermal hybrid spectrum critical core capable of simultaneously transmuting minor actinide nuclides and long-lived fission products | |
CN103077758B (en) | Radial-power-flattened efficient nuclear waste transmutation subcritical core and design method thereof | |
Aït Abderrahim | Realization of a new large research infrastructure in Belgium: MYRRHA contribution for closing the nuclear fuel cycle making nuclear energy sustainable | |
He et al. | Accelerator driven system—A solution to multiple problems of society | |
CN208173248U (en) | It is a kind of can transmuting simultaneously time actinium series nucleic and long-lived fission product the fast critical reactor core of hot mixing power spectrum | |
Banerjee et al. | Thorium utilization for sustainable supply of nuclear energy | |
CN102789821A (en) | A new thorium-based reactor device | |
US20100246740A1 (en) | Nuclear Material Tracers | |
Gudowski | Nuclear waste management. Status, prospects and hopes | |
Iiyoshi et al. | A Safer, Smaller, Cleaner Subcritical Thorium Fission—Muonic Fusion Hybrid Reactor | |
Şarer et al. | Monte Carlo studies in accelerator-driven systems for transmutation of high-level nuclear waste | |
Moir et al. | Fusion–Fission Hybrid Reactors | |
CN104302088A (en) | A Spallation Target for Accelerator-Driven Subcritical Reactors with Low Proton Beam Intensity and Efficient Transmutation of Nuclear Waste | |
Xiao et al. | Neutronic study of an innovative natural uranium–thorium based fusion–fission hybrid energy system | |
Shwageraus et al. | Optimization of the lwr nuclear fuel cycle for minimum waste production | |
Peakman et al. | The role of nuclear fission technology in decarbonization | |
Zhao et al. | Sustainable development of nuclear energy and study on ADS in China | |
CN106340336B (en) | A kind of system using isotope neutron source transmuting nuke rubbish | |
Kotschenreuther et al. | Near term fusion-fission hybrids | |
Baxter et al. | Combining a gas turbine modular helium reactor and an accelerator and for near total destruction of weapons grade plutonium | |
Akbari et al. | A Strategy for Deployment of Thorium and U233 (In Italy) | |
Moiseenko et al. | Americium and Curium Burnup in a Fusion Reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120801 |